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ORIGINAL ARTICLE

Pharmacometabolomic Assessments of Atenolol and
Hydrochlorothiazide Treatment Reveal Novel Drug
Response Phenotypes

DM Rotroff'2, MH Shahin®, SB Gurley®, H Zhu®, A Motsinger-Reif'2, M Meisner?, AL Beitelshees®, O Fiehn”®, JA Johnson®,
M Elbadawi-Sidhu’, RF Frye®, Y Gong®, L Weng®, RM Cooper-DeHoff* and R Kaddurah-Daouk®®*

Achieving hypertension (HTN) control and mitigating the adverse health effects associated with HTN continues to be a global
challenge. Some individuals respond poorly to current HTN therapies, and mechanisms for response variation remain poorly
understood. We used a nontargeted metabolomics approach (gas chromatography time-of-flight/mass spectrometry gas
chromatography time-of-flight/mass spectrometry) measuring 489 metabolites to characterize metabolite signatures
associated with treatment response to anti-HTN drugs, atenolol (ATEN), and hydrochlorothiazide (HCTZ), in white and black
participants with uncomplicated HTN enrolled in the Pharmacogenomic Evaluation of Antihypertensive Responses study.
Metabolite profiles were significantly different between races, and metabolite responses associated with home diastolic blood
pressure (HDBP) response were identified. Metabolite pathway analyses identified gluconeogenesis, plasmalogen synthesis,
and tryptophan metabolism increases in white participants treated with HCTZ (P < 0.05). Furthermore, we developed predictive
models from metabolite signatures of HDBP treatment response (P<1 x 107°). As part of a quantitative systems
pharmacology approach, the metabolites identified herein may serve as biomarkers for improving treatment decisions and
elucidating mechanisms driving HTN treatment responses.

CPT Pharmacometrics Syst. Pharmacol. (2015) 4, 669-679; doi:10.1002/psp4.12017; published online 29 October 2015.

Study Highlights

WHAT IS THE CURRENT KNOWLEDGE ON THE TOPIC? M The adverse health effects of HTN have been well charac-
terized, and the impact of ATEN on metabolite signatures has been previously investigated. ¢« WHAT QUESTIONS DID
THIS STUDY ADDRESS? M How endogenous metabolites and biological pathways are impacted in subjects treated with
either ATEN or HCTZ.» WHAT THIS STUDY ADDS TO OUR KNOWLEDGE M Biological pathways indicating changes in
gluconeogenesis and tryptophan metabolism were impacted upon treatment with HCTZ. Furthermore, multivariable mod-
els of metabolites are capable of predicting treatment response to patients administered ATEN or HCTZ. « HOW THIS
MIGHT CHANGE CLINICAL PHARMACOLOGY AND THERAPEUTICS ™ The work presented here is an early step
toward identifying metabolite biomarkers for treatment response to hypertensive therapies.

Hypertension (HTN) remains a public health burden affect-
ing about one-third of US adults and more than one billion
individuals worldwide."? Response to antihypertensive
treatment also varies among individuals with some individu-
als remaining resistant to certain therapies, and only about
50% of patients treated with antihypertensive therapies
achieve blood pressure (BP) control.’>® Ethnic differences
regarding both side effects and drug efficacy have been
noted between white and black populations prescribed anti-
hypertensives.®>® For these reasons, the current approach
for treatment of HTN is suboptimal. Thus, identifying predic-
tors associated with BP response of antihypertensive thera-
pies would be of value in optimizing treatment selection,
and ultimately reduce morbidity and mortality by improving
BP control. Significant contributions to the development of

more effective therapies can be made by developing a
deeper understanding of the mechanism of action of current
therapies, and mapping of pathways implicated in both
treatment response and side effects.

Atenolol (ATEN) is a cardioselective beta-adrenergic
receptor blocker that was previously a first-line treatment
for HTN, but has more recently been downgraded because
of its reduced efficacy at preventing adverse cardiovascular
events compared with some other antihypertensive
agents.®>® Whether this reduced efficacy is due to ATEN’s
short duration of action and need for twice daily dosing,
despite it typically being prescribed only once a day, is
unclear. Clarifying the metabolic pathways impacted by
ATEN treatment may help to identify which patients will
respond favorably to ATEN treatment and can provide new
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insights for improved drug development. In a previous publi-
cation, we identified an initial metabolic signature of ATEN
exposure.” In this study, we expand upon these findings
and construct a multivariable predictive model of home dia-
stolic blood pressure (HDBP) response after ATEN treat-
ment and interrogate pathways impacted upon ATEN
treatment.

Hydrochlorothiazide (HCTZ) is a thiazide diuretic and is
considered a first-line therapy for all populations.® Addition-
ally, HCTZ is largely well tolerated and considered compa-
rably effective to many other treatment options, including
angiotensin converting enzyme inhibitors, calcium channel
blockers, and angiotensin receptor blockers.3 For black indi-
viduals, thiazide-based treatments are considered prefera-
ble, based on evidence that they offer superior prevention
of cerebrovascular effects, heart failure, and other out-
comes when compared to angiotensin converting enzyme
inhibitor treatments.>* HCTZ is also widely available and
inexpensive. However, there remains a significant portion of
both black and white individuals that are resistant to HCTZ
therapy, and, presently, no biomarkers exist that are capa-
ble of identifying which of these patients will experience
adverse outcomes or which patients will be resistant to
treatment. Identifying putative biomarkers and metabolic
pathways implicated in this disparity of response is a goal
of the present study.

Metabolomics, the study of metabolism at an “omic” level,
integrates naturally with quantitative systems pharmacology
approaches, and aims to improve our understanding of
drug mechanisms of action and the molecular basis for
drug response variation.® Recently, several studies suc-
cessfully used pharmacometabolomics to identify novel bio-
markers and explain variation in drug response (e.g.,
sertraline, escitalopram, aspirin).2~'* Furthermore, meta-
bolic phenotypes have been used to explain variation in BP
across ethnic groups.’® In the present study, we used a
nontargeted metabolomics approach in which we measured
489 metabolites (of both known and unknown annotation)
in 206 and 227 participants treated with HCTZ and ATEN,
respectively, to define metabolites significantly altered after
exposure to either drug and significantly associated with
change in HDBP. Furthermore, we performed exploratory
analysis and constructed multivariable models predictive of
changes in HDBP. Overall, through the systems-level
metabolomics approach, our study provides new insights
into the potential biological mechanisms of HTN and BP
response in white and black individuals, and provides can-
didate metabolites as potential new biomarkers.

METHODS

Study population

Subjects were enrolled in the Pharmacogenomic Evaluation of
Antihypertensive Responses study at the University of Florida
(Gainesville, FL), Emory University (Atlanta, GA), and the
Mayo Clinic (Rochester, MN). Pharmacogenomic Evaluation
of Antihypertensive Responses is registered at clinicaltrials.-
gov, http://clinicaltrials.gov/ct2/show/NCT00246519. Enrolled
participants were primary care patients of any self-identified
race or ethnicity, aged 17-65 years, with newly diagnosed,
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untreated, or treated, mild-to-moderate essential HTN.
Plasma samples and associated clinical data were obtained
from 128 white participants and 109 black participants ran-
domly assigned to receive ATEN monotherapy, and 123 white
participants and 83 black participants randomly assigned to
receive HCTZ monotherapy. Individuals with cardiovascular
disease, primary renal or hepatic disease, or diabetes mellitus
(type I or 11) were excluded from participating. Nineteen partici-
pants were taking statins before starting the trial or initiated
statin treatment during the trial. However, statin was not incor-
porated into subsequent analyses because stratification of
metabolic profiles by statin status was not statistically signifi-
cantly different (P> 0.1). Additional details regarding the study
population have been previously published in Johnson et al.®

Study protocol

The Pharmacogenomic Evaluation of Antihypertensive
Responses protocol was approved by the institutional
review boards at all study sites (University of Florida, Mayo
Clinic, and Emory University) and after providing voluntary
informed consent, all study participants were randomly
assigned to either ATEN or HCTZ therapies. A minimum
washout period of 18 days was initiated for any participant
already receiving treatment for HTN. Upon completion of
baseline measurements, 50 mg daily or 12.5 mg daily was
initiated for ATEN or HCTZ groups, respectively. After three
weeks of treatment, and based on BP >120/70 mmHg and
tolerability, subjects were titrated to 100 mg daily or 25 mg
daily for ATEN and HCTZ groups, respectively. BP was
recorded in triplicate upon rising from bed in the morning
and before retiring in the evening. The morning and eve-
ning recorded triplicate BP measurements were subse-
quently averaged. BP measurements were obtained using
a Microlife model 3AC1-PC home BP monitor (BP Microlife,
Minneapolis, MN)."® In addition to baseline BP measure-
ments, post-treatment BP was assessed after nine weeks
of treatment. Baseline (before drug administration) and
posttreatment plasma samples were collected during study
visits under fasting conditions. Dietary information (e.g.,
food intake, food preference, sodium intake) were not
recorded, although subjects were asked to maintain a
steady diet during participation in the study, which mini-
mizes the impact of dietary intake on the metabolite meas-
urements. Additional information regarding the study design
details have been previously published in Johnson et al.'®

Metabolomic profiling

Study design information was entered into the miniX database
(a simplified version of the SetupX database).'® All plasma
samples were aliquoted and stored at —80°C until use, at
which point 30 pL of each sample was thawed, extracted, and
derivatized.'” Briefly, 30 uL aliquots were extracted with 1 mL
of degassed acetonitrile:isopropanol:water (3:3:2) at —20°C,
centrifuged, aliquoted into two portions, and evaporated to
complete dryness. Acetonitrile/water (1:1) was used to
remove membrane lipids and triglycerides and the superna-
tant was again dried down. Internal standards C8-C30
FAMEs were added and the sample was derivatized using
methoxyamine hydrochloride in pyridine and subsequently by
MSTFA (Sigma-Aldrich) for trimethylsilylation of acidic


http://clinicaltrials.gov/ct2/show/NCT00246519

protons. All metabolites were measured as peak height. A
total of 489 metabolites were measured (224 known and 265
unknown metabolites). Gas chromatography time-of-flight/
mass spectrometry data acquisition and processing were con-
ducted, as previously described.”

Data processing and statistical analysis

All data processing and analysis was performed in the
open-source statistical software, R.'® Initial processing of
the data included testing to determine if the peak height of
each metabolite was normally distributed based on whether
the data were skewed more or less upon natural log trans-
formation. If data for a metabolite were skewed less upon
natural log transformation, then the metabolite data was
transformed and used for all subsequent analysis. Skew-
ness was determined by the ratio of the number of metabo-
lites that were <1 ¢ to the number of metabolites that were
>1 o from the mean (Supplemental Figures S1 and S2).
Samples were considered outliers if +/— 5 median absolute
deviations from the median, and were subsequently
removed from further analysis.

Signature of exposure

Metabolites significantly altered by treatment with either
ATEN or HCTZ were determined using a pairwise Wilcoxon
signed-rank test and testing both with and without stratify-
ing by race. False discovery rate was used to correct for
multiple comparisons.'® Metabolites with a g <0.2 were
considered to be statistically significant.

Signature of response

Comparisons of the number of participants of each race
that did not respond to treatment with a decrease in HDBP
were tested using a Fisher's exact test. Univariate linear
regression analysis was used to test associations between
HDBP and each covariate (baseline HDBP, baseline levels
of renin, insulin, glucose, homeostasis model of assess-
ment, triglyceride, uric acid, high-density lipoprotein, low-
density lipoprotein, and race, gender, waist size (cm), age,
and body mass index). Covariates associated with HDBP
with P < 0.05 were considered to be statistically significant
and were included in the linear metabolomics model to
control for confounding. Subsequently, associations were
performed using the initial/baseline metabolite level, post-
treatment level, and the change observed between the
initial and posttreatment level. If two covariates were highly
correlated (R® > 0.15), then only the most significantly asso-
ciated covariate was retained in the model. Associations
were tested both with and without treatment stratification,
and with and without race stratification.

Multivariable model

Before performing the multivariable associations, the data-
set was partitioned into a discovery (50%) and validation
set (50%) to internally assess potential predictive perform-
ance. Multivariable associations were determined by gener-
ating multiple regression models. Variable selection was
performed by models with all combinations of the 15 most
significant baseline metabolites and all significant covari-
ates from the univariate analysis using the discovery data.
Although significant metabolites were allowed to drop from
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the individual models during variable selection, all signifi-
cant covariates were maintained in each model iteration.
The model with the lowest BIC was carried forward and
tested in the validation dataset. Overall model performance
was evaluated by a Bonferroni corrected P value and R?
(with bootstrapped 95% confidence interval) using the vali-
dation data.

Hierarchical clustering

Significant metabolites for either white, black, or both
groups treated with ATEN or HCTZ with g< 0.2 were used
for clustering, respectively. Missing values were imputed
with the median across metabolites for all other partici-
pants. Hierarchical clustering was performed using Modu-
lated Modularity Clustering and Pearson correlation.2°

Pathway analysis

Metabolite lists were created for each treatment/race sub-
group from the signature of exposure results. Groups were
defined by drug (ATEN or HCTZ), direction of metabolite
association (increased or decreased), and race. In order to
combine metabolite level to a pathway level score, a corre-
lated Lancaster approach®' was performed using data from
the Human Metabolome Database version 3.5,% and Inter-
national Union of Pure and Applied Chemistry International
Chemical Identifier codes for annotation. This approach uses
correlation information from permutation testing of all known
metabolites in the study rather than using a list based on a
metabolite significance threshold. Pathway significance val-
ues were adjusted for multiple comparisons using a Bonfer-
roni correction with a significance threshold of P < 0.05.

RESULTS

The vast majority of participants (83.1%) treated with either
ATEN or HCTZ experienced a decrease in HDBP over the
course of the nine-week treatment period, with an overall
mean reduction in HDBP of —6.45 = 0.16 mmHg (Figure 1).
The white cohort treated with ATEN had the largest decrease
in HDBP with a mean of —10.13 £0.6 mmHg. The black
cohort treated with ATEN displayed the poorest response with
a mean change in HDBP of —4.0 £0.64 mmHg and 77
(70.6%) participants recorded an overall decrease in HDBP.
The white participants treated with HCTZ displayed a mean
decrease in HDBP of —4.5 = 0.51 mmHg with 102 of partici-
pants (83%) with an overall decrease in HDBP. Last, the black
participants treated with HCTZ had a mean change in HDBP
of —6.8 = 0.73 mmHg, and 66 participants (79.5%) displayed
an overall decrease in HDBP. Distributions of responses were
statistically significantly different (g < 0.05, with matching let-
ters) between ATEN and HCTZ across all groups when both
combined and separated by race (Figure 1).

Signature of exposure to ATEN and HCTZ

The baseline metabolic profiles were significantly different
between the black and white cohorts, based on a paired
Wilcoxon rank test (P <.001), confirming the need to stratify
the analyses by race. Additional information detailing our
results from this analysis can be found in the supplemen-
tary material (Supplementary Table S1).
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Figure 1 Histograms of change in HDBP in participants treated with HCTZ or ATEN. Each panel represents the distribution of change
in HDBP with columns stratifying groups by treatment of ATEN, HCTZ, or combining all participants. Rows combine all participants or
stratify by race. Panels with matching letters represent groups that displayed statistically significant differences in HDBP response

(g<0.1).

The eight most significantly changed metabolites in the
white group treated with HCTZ were uric acid, ribonic acid,
1-hexadecanol, kynurenine, glycerol-gulo-heptose NIST,
dihydroabietic acid, behenic acid, and glucose-1-phosphate
(Table 1). Four metabolites were significantly increased
(g<0.1) in the black group treated with HCTZ (uric acid,
propane-1-2-3-tricarboxylate  NIST, 223865, 455836).
Although four metabolites were significantly decreased
(g<0.1) in the white group treated with HCTZ, glycine was
the only identified metabolite (glycine, 217797, 294266,
228983). Overall, there were five metabolites significantly
decreased (g<0.1) in the black group treated with HCTZ
composed of phytol, 428330, 200906, 617225, and phos-
phoethanolamine (Table 1).

Clustering of significant metabolites in signature
of exposure
Twenty-nine unique metabolites at baseline were significantly
associated with ATEN exposure in either the black, white, or
both groups (9g<0.2) and were clustered together using
Modulated Modularity Clustering.2° A group of eight metabo-
lites (300379, 240264, nicotinic acid, 239995, 210904,
566053, 210901, and 516629) were clustered together with
an absolute average correlation of 0.43. The remaining clus-
ter, composed of the additional 21 metabolites, had an aver-
age absolute correlation of 0.11 (Supplementary Figure S1).
A total of 170 unique metabolites were associated at
baseline with HCTZ treatment in the white, black, or both
groups (g<0.1). Overall, 5 clusters were identified with 10,
6, 5, 8, and 141 metabolites, respectively, and absolute
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average correlation coefficients of 0.78, 0.77, 0.73, 0.65,
and 0.11, respectively (Figure 2).

Signature of response to ATEN and HCTZ
Baseline metabolite associations with HDBP response.

Patient distributions of HDBP response confirmed that,
although most participants in each group experienced lower
HDBP after treatments with ATEN or HCTZ, there was a
statistically significant difference between the responses
observed in black and white groups for either treatments
(Figure 1). Initial tests were conducted to determine the
associations of baseline metabolites with changes in HDBP.
The 5-methoxytryptamin was the only metabolite at base-
line that was associated with a change in HDBP for the
white group treated with ATEN (g<0.2), and exhibited a
negative association. However, seven metabolites were
associated at baseline with a change in HDBP for the black
group treated with ATEN, with all but three being unidenti-
fied (2,4-diaminobutyric acid, arabitol, and O-acetylserine;
Table 2).

Arachidonic acid and 223548 were the only metabolites
associated at baseline with change in HDBP for the white
group treated with HCTZ (g < 0.2), and both displayed posi-
tive associations. An unidentified metabolite, 223548, was
also significantly associated with a change in HDBP at
baseline in the black group treated with HCTZ. However,
unlike in the white cohort, 223548 was negatively associ-
ated with change in HDBP in the black cohort (Table 2).

Metabolite changes associated with HDBP response.
Metabolite change from baseline to posttreatment was tested
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Figure 2 Hierarchical clustering of metabolites altered upon treatment of HCTZ (g < 0.2). The boxes on the heat map outline significant
modules and are annotated with the metabolites within each module. The x-axis and y-axis are metabolites and the shade of color rep-

resents the Pearson correlation.

for associations with HDBP response. In the white group
treated with ATEN, changes in 4 metabolites (2 known:
2-oxogluconic acid NIST and maltose) were significantly
associated with a HDBP change (g<0.05). In the black
group treated with ATEN, the change in six metabolites was
associated with HDBP response with four identified metabo-
lites (isothreonic acid, gluconic acid, 4-hydroxyproline, and
indole-3-acetate; Table 3).

Participants in the white group treated with HCTZ dis-
played no metabolite changes that were significantly asso-
ciated with HDBP response at < 0.05. In the black group
treated with HCTZ, there was only a single, unidentified
metabolic change (437822) that was associated with an
HDBP response (g < 0.05; Table 3).

Multivariable model predictive of HDBP response.
Using baseline metabolite profiles, models were developed
to predict HDBP response for participants treated with
either ATEN (Supplementary Figure S2) or HCTZ (Sup-
plementary Figure S3) in order to identify metabolites that
are associated with a good BP response regardless of the
mode of therapy used. Models combining groups by either
race or drug treatment performed better, presumably from
increased statistical power with the increased number of
participants. Models for All treatments-All races, ATEN-AIl
races, HCTZ-AIl races, and All treatments-White were stat-
istically significant for both discovery and validation sets
with a multiple test corrected P < 0.006 with R? values for
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the validation set of 0.19, 0.43, 0.49, and 0.33, respectively
(Supplementary Figures S2, S3, and Figure 3). A sum-
mary of all results for the discovery and validation data can
be seen in Figure 3.

Additional multivariable models were constructed using
changing metabolites and are described in the supplemen-
tary material (Supplemental Figures S4-S6).

Pathway analysis

Pathways enriched by metabolite signature of drug
exposure. Pathway analysis detected 11 significant path-
ways for both ATEN and HCTZ (adjusted P < 0.05). In sub-
jects treated with ATEN, pathway analysis detected
significant decreases of the o-linolenic acid and linoleic acid
metabolism pathway (adjusted P=1.09 x 1078 for all
races and 7.57 X 10~° for whites; Table 4). In addition, the
fatty acid biosynthesis (adjusted P = 0.0055) and glyceroli-
pid metabolism (adjusted P = 0.0005) pathways were signif-
icantly decreased when both races were combined, and
when only the white group was tested (i.e., adjusted
P=0.0093 and P=0.0023, respectively).

Interestingly, all significant pathways in the HCTZ treatment
group were due to increases in metabolite levels. The purine
metabolism pathway was significantly increased for all races
(adjusted P< 1 x 10~9), the white group (adjusted P=2.24 X
10~8), and the black group (adjusted P=5.12 x 10~°). This
was the only pathway significantly affected when the data was



Table 2 Baseline metabolites associated with change in HDBP (g < .20)
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Atenolol Hydrochlorothiazide
Race Metabolite P value q value Association Metabolite P value q value Association
All O-acetylserine® 0.001 0.030 Negative Palmitoleic acid® 0.003 0.086 Positive
483390% 0.001 0.041 Positive Salicylic acid® 0.007 0.007 Positive
213253% 0.003 0.081 Positive
6-deoxyglucitol NIST* 0.008 0.167 Positive
Beta-mannosylglycerate® 0.009 0.177 Positive
Fucose + rhamnose® 0.009 0.180 Positive
2160432 0.011 0.198 Positive
White 5-Methoxytryptamine® 0.009 0.176 Negative Arachidonic acid® 0.002 0.067 Positive
223548° 0.007 0.153 Positive
Black 2,4-diaminobutyric acid® 0.002 0.068 Negative 223548° 0.004 0.11 Negative
470983° 0.002 0.074 Negative
340257° 0.003 0.078 Negative
228377° 0.003 0.094 Positive
Arabitol® 0.004 0.101 Positive
O-acetylserine® 0.004 0.105 Negative
483390° 0.004 0.107 Positive
HDBP, home diastolic blood pressure.
@Adjusted for: gender, baseline glucose levels, baseline HDBP.
®Adjusted for: baseline HDBP and baseline renin.
°Adjusted for: baseline renin and baseline glucose levels.
stratified by only black subjects. For HCTZ exposure, other sig- DISCUSSION

nificantly increased pathways include galactose metabolism,
lactose synthesis, gluconeogenesis, glycolysis, and the urea
cycle when both races were combined (adjusted P < 0.05).
When stratified by only white subjects, significant increases in
lactose synthesis, plasmalogen synthesis, glycolysis, trypto-
phan metabolism, galactose metabolism, and gluconeogenesis

The results of the metabolomics analysis in this study
reveal important insights into interindividual and interpopu-
lation differences in response to antihypertensives. HCTZ
and ATEN have distinct mechanisms of action. HCTZ, a
thiazide diuretic, lowers BP by inhibiting renal reabsorption.

were observed with adjusted P < 0.05 for each pathway. ATEN, on the other hand, is a beta-blocker. The
Table 3 Metabolite changes associated with change in HDBP
Atenolol Hydrochlorothiazide
Race Metabolite P value q value Association Metabolite P value q value Association
All Indole-3-acetate® 4.47E-06 0.0005 Negative Palmitoleic acid® 0.003 0.086 Positive
Gluconic acid? 7.23E-05 0.005 Negative Salicylic acid® 0.007 0.007 Positive
Inositol myo-? 8.75E-05 0.006 Negative
339186° 0.0003 0.017 Negative
2269272 0.0008 0.033 Negative
2-oxogluconic acid NIST* 0.0009 0.037 Positive
1997732 0.001 0.043 Negative
White 2-oxogluconic acid NIST? 1.89E-06 0.0002 Positive
Inositol myo-° 0.0001 0.008 Negative
270066° 0.0002 0.010 Positive
Maltose® 0.0004 0.020 Negative
Black Erythritol® 0.0001 0.007 Negative 437822° 0.003 0.028 Negative
Isothreonic acid® 0.0001 0.009 Negative
Gluconic acid® 0.0002 0.012 Negative
228377° 0.0002 0.012 Positive
4-hydroxyproline® 0.0003 0.017 Positive
Indole-3-acetate® 0.001 0.046 Negative

HDBP, home diastolic blood pressure; HOMA, homeostasis model of assessment.

2Adjusted for:
®Adjusted for
°Adjusted for
9Adjusted for
®Adjusted for:

: race, baseline renin, baseline HOMA, baseline triglycerides.
: baseline HDBP and baseline renin.
: baseline renin and baseline glucose levels.

: gender, baseline HDBP, baseline glucose levels.
: gender and baseline glucose levels.
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Figure 3 Multivariable modeling of change in HDBP using baseline metabolic signatures. (a) Shows for each model the p value
obtained for the discovery (red) and validation (blue) sets. The vertical dashed line represents the Bonferroni corrected P value
required for the model results to be considered statistically significant. The x-axis is the —logqo (P value) so that points to the right rep-
resent increasing significance. (b) The R? of each model separated by discovery (red) and validation (blue) sets. The error bars repre-

sent the bootstrapped 95% confidence interval.

mechanism by which ATEN lowers BP has not been fully
elucidated, although it is thought that the primary mecha-
nism is through reduced cardiac output via a reduction in
heart rate. The mechanistic differences in these drugs are
reflected in the distinctive metabolite signatures detected
here. Furthermore, the observed heterogeneity of response
between white and black groups treated with either ATEN
or HCTZ, based on HDBP (g < 0.05), stresses the need for
an improved understanding of the mechanisms of action
underlying these two medications (Figure 1).

Treatment with HCTZ resulted in a substantially different
metabolic profile compared to treatment with ATEN (Table 1
and Supplementary Table S1). Uric acid was significantly
increased upon treatment with HCTZ in both black and
white groups consistent with the well-documented side
effect of hyperuricemia of thiazide-based diuretics.?®2* This
metabolomic finding confirms the previous clinical findings
of uric acid increase in this same cohort,?® but expand on
the previous findings with a more comprehensive interroga-
tion of the “metabolome.” The effect observed on uric acid
may be indicative of the renal mechanism of action of
HCTZ, which is not observed with ATEN treatment.

CPT: Pharmacometrics & Systems Pharmacology

Several baseline or changing metabolites demonstrated
significant positive or negative associations with HDBP
response in participants treated with ATEN or HCTZ. Both
baseline levels and the change of palmitoleic acid were posi-
tively associated with an HDBP response in participants
treated with HCTZ, when all races were combined. Although
the role of palmitoleic acid in BP is not well understood, sev-
eral epidemiological studies have observed significant associ-
ations relating increases in palmitoleic acid with increased
BP2%27 In white participants treated with ATEN, baseline
5-methoxytryptamine displayed a negative association with
HDBP response. In black participants treated with ATEN,
change in indole-3-acetate was associated with HDBP
response. The 5-methoxytryptamine is a tryptamine deriva-
tive related to serotonin. Also, melatonin and indole-3-acetate
are derived from tryptophan and are important components
of the gut microbiome in humans.?82° These two metabolites
suggest a possible impact of tryptophan or tryptamines (e.g.,
serotonin, melatonin) on antihypertensive response to multi-
ple classes of antihypertensive drugs (e.g., beta-blockers and
thiazide diuretics), and a possible impact for the gut micro-
biome.®® Additional studies have identified metabolites
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associated with BP that point toward potential mechanisms in
the gut microbiome.'® These results are further supported by
the significant effect on the tryptophan metabolism pathway
in white participants treated with HCTZ (adjusted P < 0.05;
Table 4). Furthermore, several studies have demonstrated
the ability for some tryptamines to impact BP and their role
as either vasopressors or vasodepressors.®'33

Treatment with either ATEN or HCTZ resulted in several
significantly altered pathways. Namely, effects on fatty acid
biosynthesis and glycerolipid metabolism were observed in
subjects treated with ATEN (Table 4). Effects on purine
metabolism (driven mainly by effects on uric acid), galactose
metabolism, lactose synthesis, plasmalogen synthesis, gly-
colysis, gluconeogenesis, and tryptophan metabolism were
observed in subjects treated with HCTZ (adjusted P < 0.05;
Table 4). Plasmalogens, a type of phospholipid, play an
important role in cell signaling, membrane structure, and are
protective against reactive oxygen species.®**® Increases in
plasmalogens have been considered markers of increased
oxidative stress and have been associated with increased
cardiovascular mortality in participants with endstage renal
disease.®* Several metabolites implicated in fatty acid bio-
synthesis, glycerolipid metabolism, and alpha linolenic acid
and linoleic acid metabolism clustered after ATEN exposure
(Supplementary Figure S1). Many unknown metabolites
were highly clustered after HCTZ exposure (Figure 2).
Annotating these unknown metabolites will be very important
and may provide new insight into biological pathways
impacted by HCTZ treatment.

For many years, studies have noted glucose impairment in
some patients treated with thiazide-based diuretics.3%-3”
Although still under debate, recent studies have also demonstrated
associations with thiazide-based treatments and increased
risk of type Il diabetes and subsequently increased the risk
of cardiovascular events.®83° Phosphoethanolamines are
used in the construction of sphingolipids, and perturbations
in sphingolipid metabolism have been implicated in adverse
cardiovascular effects, have demonstrated the ability to alter
insulin resistance, and in turn may be connected to increased
fisk of type Il diabetes.*®™*? We detected a statistically significant
decrease in circulating O-phosphoethanolamine in the black
group exposed to HCTZ (g< .05), which may be due to an
increase in sphingolipid biosynthesis. Lipidomic profiling, with
increased coverage of the sphingolipid metabolism pathway, will
be required to further elucidate the impact of HCTZ treatment on
this pathway.

Additionally, increases in metabolic sugars resulted in
increases in galactose metabolism, lactose synthesis, gly-
colysis, and gluconeogenesis pathways (Table 4). This
increase in metabolic sugars may also exacerbate risks of
glucose impairment in patients treated with HCTZ. How-
ever, because of the nontargeted approach of this metabo-
lite panel, many of these metabolites in our panel had only
minimal overlap with any specific pathway. Therefore, a
more targeted approach, with improved coverage of particu-
lar pathways, is needed to follow-up these new hypotheses
and gain a better understanding of how these biological
pathways are related to treatment response.

Multivariable modeling offers the advantage of exploring
combinations of factors that may provide predictive capability

CPT: Pharmacometrics & Systems Pharmacology

for patient drug response. Multivariable modeling in the cur-
rent study highlighted a subset of baseline metabolic meas-
urements that were predictive for ATEN (validation set:
P=227 x 107% R?®=0.43) and HCTZ (validation set:
P=2.74 x 1078 R®=0.49) induced HDBP response when
both black and white groups were combined (Supplemen-
tary Figures S2-S3, Figure 3). The validation set was
tested using the model constructed on the discovery data, in
order to assess model overfitting, and models that were stat-
istically significant in both the discovery and the validation
set would be expected to have strong predictive perform-
ance. Models were not statistically significant when treat-
ments and race were separated, presumably from the
reduction in sample size and subsequent loss of statistical
power. Race was a significant covariate that was retained in
the model for ATEN during feature selection; however, gen-
der was a significant covariate included in the model for
HCTZ treatment. Together, these models demonstrate that a
significant contribution of the change in HDBP by ATEN and
HCTZ can be explained by metabolomics profiling. However,
many of the metabolites included as features in the models
are currently unidentified, underscoring the need to identify
and characterize these metabolites. With extensive additional
validation, these models could provide a cost-effective, non-
invasive, diagnostic capable of determining which treatment
is the most likely to elicit a positive outcome for a patient.

In addition to being significantly associated with HDBP in
white participants treated with ATEN, baseline methoxy-
tryptamine was also selected as a variable in the multivari-
able model for ATEN for white participants and when both
black and white participants were combined. Baseline levels
of palmitoleic acid and oleic acid were both included as fea-
tures for predicting HCTZ-induced changes in HDBP. The
coefficient for palmitoleic acid was positively associated
with change in HDBP; whereas, the coefficient for oleic
acid, albeit small, was negatively associated with change in
HDBP, consistent with previous studies on the effects of
these fatty acids on BP.2%43

Through the use of metabolomics, we have identified
sets of metabolites significantly altered by either treatment
with HCTZ or ATEN and are associated with change in
HDBP. In addition, we have demonstrated that racial differ-
ences in response to either drug exist and can be, at least
partially, explained through metabolic profiles. Although
additional work will be needed to determine the full impact
of these medications on participants, these data offer new
insights into the impact of hypertensive treatments on fatty
acid and other metabolic pathways related to BP response.
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