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Abstract

A connectionist architecture is proposed and pro-
vides representations for probabilities and utili-
ties, the basic elements of formal decision mak-
ing theories. The outputs of standard feedforward
feature-extraction networks then become inputs to
this decision making network. A formalism shows
how the gradient of expected utility can be back-
propagated through the decision making network
“down” to the feature extraction network. The
formalism can be adapted to algorithms which op-
timize total or minimum expected utility. Utilities
can be either given or estimated during learning.
When utility estimation and decision making be-
havior adapt simultaneously, learning dynamics
show properties contrasted to “puzzling” obser-
vations made in experimental situations with hu-
man subjects. The results illustrate the interest in
computational properties emerging out of the inte-
gration of elements of decision making formalisms
and connectionist learning models.

Introduction

By tradition, formal theories of decision making build
concepts of utility and probability out of a set of nor-
mative axioms characterizing “rational” behavior (e.g.,
Slovie, Lichtenstein & Fischhoff, 1988). They usually
do not emphasize adaptive behavior, notions of rep-
resentation, or information processing properties. In-
spired by connectionist “principles”, this paper sug-
gests a general connectionist architecture for decision
making which can be integrated with pre-existing fea-
ture extraction feedforward networks. The architec-
ture provides representations for probabilities and util-
ities. Learning integrates elements of decision making
formalisms in a computational framework and then op-
erates through the resulting representations.

Using this architecture, a variant of the back-
propagation learning algorithm can be derived which
propagates the gradient of a response expected utility
through the decision network “down” to the feature
extraction network. This principle generates two al-
gorithms, one maximizing total expected utility, the
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other maximizing the minimum expected utility com-
puted over the set of possible responses. The goal of
this paper is then to examine learning dynamics and
convergence properties of these algorithms.

These properties are described through simulations
of two-response environments. In particular, when
utilities are estimated during behavior adaptation,
simulations show interesting results which are then
compared to experimental data observed with human
subjects. The results illustrate the relevance of com-
putational models of decision making.

Probability and Utility Representations
Probability Representation

Consider a multinomial distribution where a given in-
put pattern has to be classified in 1 of n categories.
We would like the n-unit output layer of a network to
represent the set of classification probabilities associ-
ated with this multinomial distribution. If we call p;
the activations of these units, we need to have p; > 0
and 3.7 p; = 1. One way to satisfy these constraints is
to make sure that unit activations of a previous layer
are positive and to normalize these activations at the
output layer. If we write s; the “net input” to the first
layer, positivity can be obtained with exponential e-
units: e; = €P*'. Normalization is then obtained with
p-units:

eBs

€;
pi = = -
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This corresponds to the familiar ratio rule used in
numerous decision tasks (e.g., Busemeyer and Myung,
1989; Luce, 1959; Estes, 1987). The parameter 4 can
be seen as a sensitivity parameter. For 8 =0,p; = 1/n:
the response distribution is uniform across categories.
When f — oo,pyy — 1 where M corresponds to
sy = maz;{s;}: the network response is determinis-
tic and corresponds to the largest net input. A simple
computation yields the derivative of the p-units with
respect to the activations of the e-units:

(1)
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We can then write the derivative of the p-units with
respect to the net inputs of the e-units:

OB _ 865 — )2y (3)
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where §;; is the Kronecker symbol (6;; =1 fori = j, 0
otherwise).

Subjective Expected Utility

We now consider the activations p; of the p-units cor-
respond to network “propensities” to classify an in-
put pattern in category i. We assume these response
propensities (or “beliefs” or “subjective probabilities”)
are computed so as to maximize a given performance
index. We consider payoffs are obtained when the net-
work classifies an input pattern in category j and when
the environment responds with category i. We write
u;; (utilities) the perceived values of the terms of the
n.n payoff matrix (e.g., utility might typically be a
bounded, monotonically increasing function of payoff;
utility functions are not examined in this paper). We
assume for now the u;; are known. We will see below
how they can also be estimated during learning.

The network expected utility for category i can be
written as E[U;] = 307 uij.p;- This equation can be
implemented in a network by adding a layer of n linear
u-units with a connectivity matrix between p-units and
u-units corresponding to the utility matrix. Outputs
of a feature extraction network can then serve as in-
puts to the decision making network computing prob-
abilities and expected utilities. The resulting network
architecture is presented in Figure 1.

Learning consists in maximizing the expected utility
(EU: = E[U;]) associated with a targetted category t.
The network learns by adjusting its set of “beliefs”
p; through parameter (weight) adaptation. We can
use gradient ascent on EU; to compute weight changes
after each pattern presentation:

oUu,

Ay =gt (1)
Using the chain rule, we get:
dw, ds; Ow, !

The terms Js; /0w, might be computed with the stan-
dard back-propagation algorithm (Rumelhart, Hin-
ton & Williams, 1986), considering a given feature-
extraction architecture “below” the e-units. We then
use the chain rule to obtain the back-propagated “er-
ror” term de; associated with the jth e-unit:

QE[UY] _ 5~ OE[UY] O
R

fe3 Bs; Opr s,

Eutkﬁ(‘skj — px)-p; = Bp;j.(uy; — Uy) (6)
P
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Figure 1: Decision making network architecture: The
architecture provides representations for probabilities
(p-units) and utilities (weights from p-units to u-units).
The decision making network might be connected to
a feature extraction network, for example a standard
multi-layer back-propagation network.

Note since 3 .p; = 1, 3. 6e; = 0.
uy; > E[U:], the network “receives more than ex-
pected”: p;.(uy; — Uy) > 0 and p; will increase, as
it should.

Given a set of u;;, the previous equation computes
the gradient of expected utility EU; with respect to
the input of the decision making network. This gra-
dient can then be back-propapaged “further down” in
hidden layers to extract features relevant to the deci-
sion strategy. The parameters (weights) of the feature-
extraction network can then be changed by gradient as-
cent. The goal of this paper is not to investigate how
the decision making network influences the properties
of the feature extraction network. Rather, we look
at properties of the decision network itself, at various
decision strategy implementations and at utility esti-
mations.

Moreover, if

Maximizing Total Expected Utility:
Fixed Utilities

Considering a set of training patterns, the total ex-
pected utility is EU = ), EU;: maximizing the to-
tal expected utility consists in maximizing the sum of
response expected utilities. If the training sample is
known, batch learning can be implemented to compute
OEU /8w,. Alternatively, the well-known Widrow-Hoff
procedure can be used to adjust the weights after each
pattern presentation.

Sample Learning Dynamics

We consider the u;; are known a priori. Suppose the
network is now being trained with a finite data base in



which a given input pattern is presented N times and
targetted N; times in each category i . Ni=N,fi=
Ni/N.3oifi = L, fi # fj for i # j, fm = ma.r.{f.})
We can then compute the total sample gradient of EU
(associated with that given input pattern) with respect
to the net input s;:

_ ): N, 2B o

ds;

Assuming a utility matrix equal to the identity matrix
(uij = 8;5), we get:

aU;
% B(8:; = pi)ps
bej = NPBp;j(f; — Z fipi)
= NBp; Y pilfi—fi) (8)
i%i
Sem = NPpm _ pi(fm — fi)
iEM

Equilibria are obtained for §e; = 0 for all 5. But depr =
0 implies ppr =0 or p; = 0 for 1 # M < ppyr = 1. The
first equilibrium is unstable; the second one is stable.
Therefore the response probability associated with the
biggest response frequency of the sample will increase
to 1 during training. Using the same arguments, the
response probability associated with the smallest re-
sponse frequency will decrease to 0. All other response
probabilities may either decrease or first increase then
decrease depending on the initial values of p;. These
results may be generalized for any value of u;;.

The learning principle involved in this framework is
gradient ascent on the total expected utility when util-
ities are known in advance. It is well-known that re-
sulting so-called Bayesian optimality can be obtained
when response probabilities correspond to “pure” de-
cisions (p; = 0 or 1), even in stochastic environments
(e.g.; DeGroot, 1970).

Illustration: Two-response Environment

The algorithm was implemented for a simple two-
response environment without feature extraction. In
this case, the two weights to be learned in the net-
work are simply the biases of the e-units. The envi-
ronmental binomial distribution can be characterized
by a single parameter p* = pj, the probability of oc-
currence of the first response/category. Rewards from
the environment are received as a function of the net-
work responses. The previous EU-back-propagation
algorithm should find the optimal values of the proba-
bilities as a function of the utility matrix.

As expected, simulations show the network always
learns how to make pure optimal decisions, indepen-
dently of the utility matrix and environmental proba-
bilities (except in obvious trivial cases). Convergence
speed is essentially dependent on the environmental
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probabilities, on the range of the u;;, on the learning
rate 7 and on the sensitivity parameter [3.

Standard Bayesian techniques might first estimate
posterior probabilities and then compute expected
costs from given a priori cost matrices. Input patterns
are then classified in categories associated with low ex-
pected costs. The network presented above directly es-
timates the model parameters so as to directly maxi-
mize total expected utility. The EU-back-propagation
might “bypass” the estimation of posterior probabil-
ities to compute response behavior. From a perfor-
mance point of view, it is quite possible to imagine
that the model might actually make better use of its
resources (weights) by not “wasting” them in estimat-
ing posterior probabilities. Performance characteris-
tics are not investigating further in this paper.

Maximizing Total Expected Utility:
Estimated Utilities

We now assume the u;; have to be estimated during
learning. This task can be considered more typical of
human learning situations in decision making environ-
ments. In this framework, the EU-back-propagation
algorithm can be used with the EU gradient being
back-propagated through currently estimated utilities.
The task of the decision network is still to maximize
EU through adaptation of the response probabilities
pj given current u;;.

Trial Estimation

Let R (with elements r;) be the current n-dimensional
response vector generated by the network. The re-
sponse R is a random variable with a multinomial dis-
tribution characterised by the p;. At each trial, we
assume the network response R is chosen in function
of this distribution and that the environment responds
with a “target” vector R* (with elements r}) drawn
from the environmental multinomial distribution char-
acterised by a set of probabilities p;. We write u;; the
current estimates of the utilities and uj;, the perceived
values of the true rewards obtained after each network
response R and environment response R*.

Trial learning can be implemented in a network hav-
ing the set r; as input units and the set r} as output
units. The received utility predicted by the network
after each trial is then U; = }; u;jrj; the truly re-
ceived utility is U} = 3_, uj;r;. Estimation of the re-
ceived utilities is performed by gradient descent on L,
the sum of squares of the differences between predicted
and truly received utilities. Considering a single trial,
we obtain:

JaL oy
Au; = —m Wij ==a(U; - Ui)rir; (9)
ElAuw;] = —a(uij — uj;)ppj



Equilibrium is obtained for E[Au;;] = 0 & u;; = ujj.
Speed of convergence will not only éepend on the learn-
ing rate a but also on the current set of beliefs p;
and on the the environmental probabilities p}. After
each trial, utilities are evaluated, and the EU-back-
propagation algorithm is used with the currently esti-
mated set of utilities. Eventually, the estimated util-
ities will converge to the environmental utilities (for
non-zero p; and p}). At this point, response behavior
adaptation will become identical to the case where util-
ities are known a priori. Therefore, the network will
end up making optimal pure decisions. However, in
general, response probabilities being learned simulta-
neously with utility estimation, the complete learning
dynamics might become quite complex. These charac-
teristics are examined in more detail below.

Average Estimation

With trial learning, u;; is reevaluated after each trial,
in function of the network response R and the envi-
ronment response R*. Because a specific element of
the utility matrix has to be estimated after each trial,
trial learning makes the implicit assumption that the
learner already understands the deterministic property
of trial obtained rewards. Trial learning also makes
the computational assumption the learner stores and
estimates each elements of the utility matrix indepen-
dently. We now turn to a maybe more natural learning
hypothesis where expected utilities are estimated in the
average. Utilities are evaluated in function of current
response probabilities because the learner does not as-
sume (or trust) the determinism of the utility matrix
or does not have the information processing capacity
to estimate each element of the utility matrix.

After each trial, the expected utility (in the math-
ematical sense of expected) is E[Ui] = 3 ; ui;p;. For
given p;, it is possible to estimate the new u;; by gra-
dient descent on the squares of the differences between
expected utility E[U;] and the truly received utility U .
Considering a single trial, we obtain:

L = ) ri(EW]-U;)
Au‘-_,- = —01%
—a(E[U] = U?)ri .ps
E[Au;] = —o(E[U] - EU{pip;  (10)

Equilibrium is reached when E[U;] = E[U}!] &
2 ; wijpj = 2_;ul;p;. An obvious solution to this
equation is found for u;; = uj;. Again, in this case, the
network will then converge to pure decision optimality.
However, the equilibrium condition might lead to other
estimations of u;; which might correspond to various
response behaviors. For each run and for a given lim-
ited learning time, obtained behaviors will depend on
the network initial conditions and on the random order

of category presentations during training.
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Figure 2: Histogram of learned response probability p
after 200 trials for 100 runs. The decision network is
trained with the EU-back-propagation algorithm using
average estimated utilities.

Simulations of the algorithm were then performed in
the previous two-response environment with uj; = §;;.
The initial response probability parameter p was ran-
domly chosen at each run. The following general re-
sults were obtained, that we will contrast to observa-
tions made with humans in two-response experiments.

A great majority of runs are stable after a fixed
number of trials: for a sufficient number of runs, av-
erage performance seems to have reached an asymp-
totic level. Settlement occurs in two modes: pure de-
cision optimality where p converges to 1 if p* > 5
and to 0 otherwise; a less common “reversed” opti-
mal mode where p converges to 0 if p* > .5 and to
0 otherwise. The mean of the resulting bimodal dis-
tribution depends of the values of the parameters, in
particular of uj;, of the initial values for u;; and of
the parameters o and . Larger learning rates for the
estimation of utilities or more accurate initial estima-
tions lead to improved estimations of u;; during learn-
ing and to higher proportion of cases converging to
optimal behavior. Figure 2 represents the histogram
of learned response probability p after 200 trials for
100 runs (varying the initial values of p; a = 1, § = 4,
initial u;; = .256;;, p* = .2). The mean value of the
distribution is .27 in this case, roughly matching the
environmental p*.

A model predicting “reversed” optimality seems a
priori to deserve rejection as a potential model of hu-
man behavior. However, Luce and Suppes (1963), re-
viewing a large number of two-response studies, have
the following warning:

The data reported in the literature are always av-
erages for groups of subjects, [...]. Considerable
evidence (not much of it published) indicates that
these group results can be quite misleading. The



distribution of estimated p., over subjects often
seems not to be binomial, and sometimes there is
little doubt but that it is bimodal, with the val-
ley of the distribution coinciding roughly with the
group mean probability. (Luce & Suppes, 1963, p.
391).

Until now, these experimental individual data still
remain a puzzle for theoretical psychologies of learning
and decision making. The present approach suggests
an explanation for these data in the simultaneous aver-
age estimation of rewards and adaptation of response
behavior. The mean result (probability matching) is
then observed along with the puzzling bimodal distri-
bution of individual responses. Precise simulations of
experimental results (e.g., 25 studies examined in Luce
et al., 1963) are beyond the scope of this paper.

Minimax Learning

So far, we have assumed the goal of the decision mak-
ing network was to maximize the total expected utility
over the environmental distribution. We now turn to
the other well known framework for decision making:
we would like the network to maximize the minimum
expected utility over the set of possible decisions (e.g.,
von Neumann & Morgenstern, 1944).

The architecture of the decision network presented in
Section 2 is still valid since it simply provides a repre-
sentation for probabilities and utilities (usually written
as costs in game setups) and a formalism for comput-
ing the gradient of a given response expected utility.
The difference is now in the definition of optimality
(minimax for costs, equivalently maximin for utilities)
and in the resulting learning algorithm.

Back-propagation for Maximum Minimum
Utility

We would now like the p-units to compute probabilities
maximizing the minimum of expected utilities over a
set of possible responses. For any given input pattern,
the expected utility associated with each response is
E[U;] = Ej ujjp;j. Learning then consists in gradient
ascent on the minimum expected utility computed over
the set of responses:

dmin;{ E[U;]} (11)
Ow,
The expression min;{ E[U;]} is not differentiable (but
still continuous) with respect to the weights of the net-
work. The proposed implementation consists in com-
puting E[U,] for each training pattern and to check if
E[U:] = min,{E[U;]}. If E[U:] = min;{E[U;]}, the
gradient of E[U,] is computed (Section 2) and weights
are changed accordingly. If E[U;] # min;{E[U;]},
weights remain unchanged.

Theoretical minimax probabilities usually corre-
spond to mixed decisions (p; # 0,1) function of the

Awy, =1
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Net. Resp. I Net. Resp. 2
Env. Resp. 1 1 -2
Env. Resp. 2 -3 3

Table 1: Cost/utility matrix for the two-response and
game situations as a function of environmental and net-
work responses.

cost (utility) matrix. These probabilities do not de-
pend on environmental distributions. However, if net-
work resources are limited (limited number of weights
in the feature-extraction network), the computations
of the network minimax probabilities might depend on
the training distribution, justifying the relevance of a
training sample. Again, the consequences of decision
strategies on feature extraction are not examined in
this paper.

Example Implementation

The minimax-back-propagation procedure was im-
plemented in a two-response situation using the
cost/utility matrix shown in Table 1. The theoreti-
cal minimax equilibrium is found for p; = p = 5/9 and
p2 = 1 — p=4/9. Simulations show the algorithm al-
ways converges to the optimal minimax probabilities,
independently of initial p;. The non-differentiability of
the algorithm creates an angular point when p reaches
the desired equilibrium but the network remains stable
around equilibrium point. This behavior is described
in more detail in the following situation.

Game Learning

The minimax-back-propagation algorithm was imple-
mented in a two-player zero-sum game playing situ-
ation. The cost/utility matrix of Table 1 was used
for player 1 and its opposite for player 2. The well-
known munimax theorem (von Neumann & Morgen-
stern, 1944) shows there always exists a minimax equi-
librium for such games. With the given cost/utility
matrix, the minimax equilibria are found for the mixed
strategies p' = p! = 5/9 for player 1 and p* = p? = 2/3
for player 2.

The game was implemented using two networks
playing each other, simultaneously trained with the
minimax-back-propagation algorithm. The “environ-
mental” probability of one network/player now corre-
sponds to the response probability of the other net-
work/player: pf' = p?,pi? = p}. Figure 3 shows p
and p? as a function of the number of plys played by
the networks for various initial conditions.

Simulations show the networks always converge to
optimal minimax response behavior. When equilibria
are reached, the response dynamics present an angular
point but the equilibria remain stable in all cases. Fur-
thermore, the network/player learning dynamics show
interdependence since the response probabilities of one
network/player correspond to the environmental prob-
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Figure 3: Examples of learning dynamics for the
minimax-back-propagation algorithm during a game
playing situation. Both network/players reach and re-
main at optimal minimax probabilities (5/9 and 2/3)
independently of initial conditions (3 runs are shown,
one per line type).

abilities of the other network/player. This result pro-
vides interesting hypotheses and predictions on learn-
ing dynamics where players learn from each other’s
playing strategy. The implications on observed exper-
imental data in game learning situations are beyond
the scope of this paper.

Conclusion

A general decision making network architecture is sug-
gested along with representations for probabilities and
utilities. The involved principles integrate formal prop-
erties of optimal decision making and connectionist
computational characteristics. Variants of the back-
propagation learning algorithm are then obtained to
maximize total and minimum expected utility. The
dynamic properties of the resulting algorithms are ex-
amined through simulations of a two-response environ-
ment.

Obviously, the complex properties of human decision
making are barely mentioned in this paper. Nonethe-
less, in the case of simultaneous utility estimation and
behavior adaptation, the approach provided interest-
ing insights on observed experimental data. In general,
the proposed architecture seems able to provide a rich
computational framework which might lead to a num-
ber of interesting hypotheses and predictions about hu-
man learning and decision making behavior.

Acknowledgements. Thanks to David Rumelhart
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