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ABSTRACT OF THE DISSERTATION

Knowledge discovery from biomedical and scientific text

by

Justin Wood

Doctor of Philosophy in Computer Science

University of California, Los Angeles, 2022

Professor Wei Wang, Chair

The world is overflowing with text. This ever-growing resource has the ability to capture thoughts,

ideas, and understandings. One example is the scientific research paper which often contains a

new discovery or details an in depth understanding—and new research papers are growing at an

exponential rate, a rate that may be difficult for the human mind to keep up with. Additionally,

the increase of collaboration across different knowledge domains requires an increased effort for a

specialist of any one field to understand. These increases can lead to mistakes among researchers

from missing important information that has already been documented. Similarly, the electronic

health record is increasing rapidly as technology is integrating itself into the patient physician

interaction. To be able to deliver information quickly and accurately to a physician can help ease

the burden and lesson the mistakes that a primary care physician can make when dealing with the

increasing pressure from seeing too many patients in too little time.

Given the enormous amount of textual data, computational techniques must be developed

that can effectively process the data. This work presents approaches that seek knowledge discovery

from a large input of biomedical and scientific text. In the context of scientific research papers, we

discuss how and why we need to automate the scientific method using a causal pipeline. Starting

with the raw text of a scientific corpus we demonstrate the ability to improve scientific decision

making in experiment planning and deductions. For the task of summarizing corpora, we introduce

a new topic model that seeks to model topics off a pre-existing knowledge source. As we show

empirically, our methods of extraction, connection, and summarization of relevant electronic text

records results in knowledge discovery and new understandings.
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We’ve developed a language that allows computers to reason like us. This will allow computers to

assist those who are constantly on the lookout for cause and effect, such as researchers in the

healthcare sciences, as well as in the social sciences. They care about improving drugs, they care

about whether a drug is going to prevent a disease or harm your liver. They are concerned with

narrowing economic inequality and slowing global warming. But until very recently, they didn’t

have a language in which to express their scientific knowledge and translate it into causal questions

and conclusions. Once you are able to express your scientific knowledge mathematically, you can

combine it with data and come up with conclusions that answer your questions.

—JUDEA PEARL

And the other idea, which also has been around, is causality. The idea that forming a prediction

about the future is different from making a causal claim about the way the world works. A lot of the

successes for AI and machine learning are now predictive in nature. They are taking the world as it

comes to us and they are forming a prediction about the future and then using that prediction to

succeed. But if we want to take the next step, and we want to know what would happen if I

intervene in a certain way and how will that change the world, that’s a causal problem.

—DAVID BLEI

Humans and machine algorithms have complementary strengths and weaknesses. Each uses

different sources of information and strategies to make predictions and decisions...humans can

improve the predictions of AI even when human accuracy is somewhat below [that of] the AI – and

vice versa. And this accuracy is higher than combining predictions from two individuals or two AI

algorithms.

—MARK STEYVERS
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CHAPTER 1

Introduction

There exists an overabundance of text. So much so that it is impossible to manually curate all this

data to make the same kinds of knowledge findings that a machine is capable of discovering. How

can a machine do this? One way is to extract out all the relevant information from a given input

set and then process the extracted data. A biological research paper, for example, consists of a

complete understanding of an idea. But we may wish to only focus on the causality a research paper

is conveying.

In the field of neuroscience (sub-field of biology), findings (which imply causality) are

represented as outcomes observed from a target after intervening on an agent. It is in the research

paper that neuroscientists document these findings. The collection of all neuroscience research

papers represents the most complete database of causal assertions. What is needed is a way to store

this data in a manner as succinctly as possible. A simplification of a causal assertion can thus be

represented as a causal graph, where each node is an agent or target and the edge is the intervention

and outcome. To store, construct, query and otherwise manage biological causal graphs, we develop

a software application we call ResearchMaps.

With the framework in place for storing and representing causal assertions, we can then

proceed to mine this data. One potential this data has is the ability to aid in experiment planning. In

experiment planning, a major goal of the scientists is to plan experiments to uncover true causal

assertions. Given the nature of causal understanding prior to any experiment planning as causal

assertions that are connected together to form chains, these chains of causality can be represented

as a partial graph with an arrow signifying a casual connection in the direction of the edge. Through

careful experimentation, the research scientist is able to complete these graphs (every possible edge

investigated) representing a casual network. But given a network representing only partial knowledge

of true causality, how does the scientist determine which experiment to perform next? The answer
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is most doubtedly a qualitative one. We seek to shift this process to be a more quantitative one. By

doing so, we have the potential to limit bias that hinders experiment planning and slows down the

rate of scientific discovery. Additionally, by stitching together a network of causal assertions, called

piecemeal causality, we show the ability to make meaningful deductions about the known causal

world. These deductions include: a ranking of the most important associations, a score of how likely

an association is to be discovered, and how likely an association is due to confounding variables.

ResearchMaps is an important first step in documenting the causal assertions of a research

paper and modeling the causality in a way which is easy for data mining. The existing method of

data input is by entering in the information by hand. While this most likely has the benefit of high

precision, there is a lack of recall. The manual finding of the relevant information to input into

ResearchMaps is an expensive one, even for the trained neuroscientist. It is thus unlikely given the

existing method that the ResearchMaps database will grow sufficiently large enough to do intensive

machine learning analysis. This lack of input data also hinders the current state of the art extraction

methods, which are based off of machine learning and require a large amount of labeled input data.

We are thus faced with the cyclic problem of needing data to find data. We seek to develop a new

method for extracting causality using a small input size. By shifting away from traditional machine

learning approaches we hope to leverage string alignment algorithms to find new causal assertions

existing in text.

The extraction, representation, and data mining on the causal networks steps can be used to

construction a pipeline starting with the research paper and ending with discoveries about the known

causal world. We formalize this pipeline and demonstrate the results over an exhaustive collection of

biological research papers. The results are presented, which we hope leads the biological community

to new scientific discoveries. The pipeline represents a fundamental change to the scientific method,

a shift from a qualitative approach to a quantitative one. As the research scientist is

struggling to process the enormous amounts of textual data from an exponentially increasing corpus

of research papers, so to is the physician with the electronic health record. The practice of medicine

is undergoing a transformation driven by the rapid adoption of computational technologies. This

transformation has been induced in part by technological developments that have enhanced the

capability of health information technology (HIT) to streamline medical workflows, simplify billing
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practices, automate the collection of quality improvement (QI) data to improve outcomes, and

much more. One important component of this transformation has been the widespread adoption of

electronic health record (EHR) systems. These systems are intended to replace paper charts and

allow for complete storage and retrieval of all medical records on a computer. The intent of these

systems is to streamline workflows and increase efficiency by making it easier to index, find relevant

information, and share it with members of a care team potentially in different geographic locations.

Increasing the usability of EHRs is one potential way to bring additional benefit to physician

users. One important area of usability is better indexing and retrieval of a patient’s clinical notes.

Currently, it is often difficult for physicians to search through any one patient’s clinical record and

get a sense of what has been important to the patient over time. A system that could automatically

detect what conditions have affected a patient at any given time by analyzing the text of the patient’s

medical record could allow for easy searching and visualization of a patient’s history.

It is in the attempt to visualize the patient history that led to the development of Source-

LDA [WTW17]. Topics provide a succinct overview of a given document; so by displaying the

relevance of topics for a set of patient notes created over time, the physician can easily determine

the important items needed to discuss or focus on when interacting with the patient. The application

takes on the form of a multi-line chart with each line being the relevance of a topic to a patient’s

history. In order to facilitate the quick understanding of the topics and fit the topic descriptions

in a single chart requires topic labels. Popular Bayesian techniques of topic modeling, which are

usually extensions of latent Dirichlet allocation (LDA) [BNJ01], just return a distribution over

the vocabulary of the corpus as the topic. It is unreasonable to ask the physician to decipher this

distribution and map a label onto the topic mixtures. It must be the topic model itself or some

post processing technique that assigns meaningful labels to the topics. Existing methods that label

topics after inference (post processing) suffer from topics that contain a high assignment of words

which cannot be easily assigned to a single topic. It is therefore more advantageous to integrate the

labeling into the inference. This approach led us to the development of Source-LDA, a technique

that represents the state-of-the-art technique for the labeling of topics and the related concept of

topic interpretability. The key component to topic labeling and interpretability of Source-LDA is it’s

presumption of an outside knowledge source used to generate the corpus. The outside knowledge
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source is interpreted as topics, assumed to be a superset of topics used in the generative model, and

then a subset of the knowledge source topics is used to bias the discovered topics of a Bayesian

topic model.

At it’s inception, Source-LDA was the best model among competing models, and it is still a

competitive model—even among the more recently developed class of neural topic models—but

it is far from complete. One problem the model has is deciding which topics from the knowledge

source to use in the topic model. Since the desire is to make the process of selecting which labeled

topics are used in the generation of the corpus require as little manual intervention as possible, we

only require that a superset of topics be input into the model. For example if we are labeling patient

notes, then we can easily get the possible topics by looking at MedlinePlus1 (a consumer friendly

medical encyclopedia). Using MedlinePlus as input to discover topics in patient notes produces

good results, but the good results come at a significant cost. The superset of topics that are used as

input significantly slow down the model. One complaint of people using Source-LDA is the speed.

What is needed is a method that can be used to eliminate topics before inference that are unlikely

to make it to the output—a set of topics we refer to as discarded topics. For this desideratum we

introduce our ranking method, KnowledgeRank, which utilizes PageRank [PBM99] to order the

topics by likelihood of being discarded.

Even though Source-LDA does a good job of labeling interpretable topics, it is always in the

research scientist’s aim to seek improvement. Source-LDA established itself as the best Bayesian-

based interpretable topic labeling model because of it’s flexibility to allow for assignment of words

to topics even when they do not exist in the weakly-supervised knowledge source article. However,

when semantically related words should be clustered together in a topic but do not cooccur in the

knowledge source article, Source-LDA is lacking in it’s ability to bind the related words together

(even though it does allow for it). For example, suppose we have a Wikipedia article on the topic

“Baseball” and for some reason the word “glove” is missing from the write-up. We would then say

“glove” should belong to the topic “Baseball” even though it is not found in the knowledge source

article. Topic modeling has techniques to handle this, for example if the words are showing up in

the same documents than it is likely the topic model will assign them to the same topic. But can we

1https://www.nlm.nih.gov/medlineplus/
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do better? And if so how? We propose a method to improve upon the assignment of words that

should belong to a topic by leveraging the recurrent neural network (RNN). This deep learning

technique has shown an astounding ability to generate segments of output that resemble the input

used to train the model. These generated segments are often colloquially referred to as “dreaming”.

Because these “dreams” are often similar to the trained input set but do not belong to the input set,

we can ask the RNN whether or not a word that should belong to a topic is a “dream” produced

after falling asleep while reading the knowledge source that corresponds to that topic. This method

we refer to as the RNN enhanced Source-LDA (ReSource-LDA).

Further improvement of our general approach can be achieved in the amalgamation with

nonparametric topic modeling. A somewhat unreasonable assumption of finite topic models is that

the number of topics are known before hand. Nonparametric topic modeling provides the theoretical

framework to remove this assumption. Dropping the need to prespecify the number of topics allows

this number to be derived from the input—potentially leading to a more accurate partitioning of

topics. We demonstrate the similarities between bounded and nonparametric inference techniques

in a new interpretation of the Dirichlet process (the latent stochastic process that underpins nonpara-

metric topic models) we call the biased coin flip process. The unboundedness of nonparametric

topic models leads to the potential of an infinite-sized knowledge source input. Even with our

topic filtering technique (KnowledgeRank) we are limited to a knowledge source size in the order

of 106. Additionally, instead of filtering input before inference, we may be able to consider all

input by utilizing the infinite nonparametric framework. Indeed, we demonstrate this possibility

in our combination of weakly-supervised topic models (a class in which Source-LDA belongs to)

and nonparametric topic modeling. In this combination we discover an interesting, novel topic

model—a self-contained nonparametric topic model for highly-interpretable and labeled topics.
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CHAPTER 2

Background

2.1 Piecemeal causality

2.1.1 Causality in biological literature

Much of biology is modeled as pathways, or signal cascades. Statements in the literature that

describe causal relations between phenomena thus help biologists to understand these causal chains.

And gaps in the understanding of a causal chain—i.e., its missing links—motivate hypotheses that

then direct future research.

If an article is known to address the relation between two entities—e.g., a biological agent,

A, and a biological target, T , then sentences in the article that mention both A and T are likely

to describe that relation—for instance, in a results section that describes empirical results of

experiments, or in a discussion section that describes the experiments’ implications for the field.

Beyond simply stating that two entities are causally related, a sentence can also state (1) the

type of experiment that was performed on the two entities, and (2) the result of the experiment.

One way to express this type of biological evidence is with the research map representation

[SM15]: Each experiment is either an intervention (involving an experimental manipulation) or

an observation (involving no manipulation); within these two classes, the change of the agent can

be either positive or negative, yielding four experiment classes: positive intervention (↑), negative

intervention (↓), positive observation (∅↑), and negative observation (∅↓). The results of these

experiments are categorized as either increase (+), decrease (−), or no-change (0) to indicate how

the target responded to a change in the agent. Each pairing of an experiment class and a result class

provides evidence for one of three types of relations: excitatory
(
(↑ ,+); (∅↑,+); (∅↓,−); (↓ ,−)

)
,

inhibitory
(
(↑ ,−); (∅↑,−); (∅↓,+); (↓ ,+)

)
, and independent (any experiment that results in no

change in the target).
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2.1.1.1 Biological representations

The need to synthesize the vast amounts of biological data are given in various publications [SM15,

LS13, MWW17a, MWD18]. An argument for the adoption of biological representations of existing

knowledge are that the expansive set is too large for humans to process effectively. To that end,

various different approaches have been developed to aid the scientist in understanding and utilizing

this vast amount of scientific data.

One way to represent biological data is in the form of a probabilistic model [Fri04]. Prob-

abilistic models have been effectively applied to different biological concepts such as cellular

networks. Under such models, analysis and discovery have been enhanced after inference of the

constructed representations. Other representations include causal graphs or networks [MWW17a].

Such work provides the groundwork for what information to take from a scientific article and how

graphs can be constructed in order to select future experiments.

Other graph like forms can be biological ontologies, such as the Neuroscience Information

Framework (NIF) [GAA08]. NIF is a general approach to synthesize nueroscience findings. The

work includes a wide variety of data points and can serve as a biological ontology. NIF is com-

prehensive but is lacking a smaller focus on causality which can lead to a poor results in causal

analysis. Other ontological representations come from Exelixis [KP11]. This project aims to track

and represent ontologies that evolve over time. The work emphasizes a novel query language that

facilitates an ontological search for the evolution of biological concepts. Our work, while more

focused on representing and facilitating the querying of causality is similar in it’s approach to

graphical represent biological elements. Gene Ontology, another ontological representation, is a

tool that synthesizes biological information into an ontological form. The project is ambitious and

attempts to create a genomic vocabulary covering gene and protein roles. This tools shows the

power of such data aggregation approaches as the Gene Ontology has become quite influential.

Networks again provide the setting in a more varied group of applications that model bio-

logical elements. A technique utilizing network based representations of biological elements have

foundation in providing context for memory understanding [CAS16]. This work demonstrates

that memories are linked together via neural ensembles when occurring close in time. The paper

underscores the power of synthesizes biological processes into graphical networks to better under-
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stand some scientific domain. ResearchMaps [MWD18] is the basis for our pipeline method on

representing biological causality graphically. The tool is also the main source of data for causal text

fragments. The goal of Researchmaps is to represent a research paper as a casual network allowing

for a more succinct yet powerful representation of a research paper. When the graph is connected

together we form an exciting environment for knowledge discovery. A third network based method

in a more general domain is WatsonPaths [LBB17]. WatsonPaths establishes the utility of using

graphical based models for knowledge discovery. Another general biological representation is

shown via BioCarta [Nis01]. This application is an example of an existing science based application

that has enabled scientists an easier navigation of science-based information. The application

specifically synthesizes biological pathways into connected graphical pathways. This work shows

how the stripped down nature of textual content can be beneficial for understanding of mass amounts

of information.

2.1.2 Causal extraction

Much of the early work in causal extraction was performed using some form of predefined knowl-

edge bases [CC04, KB91, Hua21, HY10] or rule-based techniques [Che21b, GM02, PB21]. One

example of a knowledge base approach is advance by [KB91]. In this work, the authors developed

a system that integrates different components for the task of causal extraction. These combined

techniques help form a knowledge base of textual causal relationships. Other techniques take as

input pre-existing knowledge bases such as Freebase [Hua21] or WordNet [Gir10]. The knowledge

bases can then be used as input to an algorithm to extract causality. While the effectiveness has

been established in their respective settings, these techniques based on a knowledge base may not

be suitable for our case as our vocabulary is quite esoteric without much supervised data. Also the

knowledge base is only applicable to a single language.

Rule based approaches [Che21b, GM02, PB21] are somewhat similar to knowledge based

approaches in that they rely on a fixed and previous established input. For example, [Che21b] use

a rule based system for extraction of causal statements pertaining to the stock market. The rule

based system was formed using a supervised input set. This work may be difficult in our setting

because the rule-based technique is static to the input set and the input set itself may be difficult
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to obtain. Another approach advanced by [PB21] looks at six different issues related to causality.

The work uses a model based on natural-language to extract or acquire causal statements. The rule

based nature of the work limits the scope to that of general causality and is not transferable across

languages.

Recently, focus has moved to more deep learning based approaches [Cao21, Gu21, KAS,

BS21, Zha21]. One such method, based on a convolutional neural network, is proposed by [Zha21]

to isolate context over sentences. The technique utilizes distant sentences to weigh the the labeling

using a convolutional neural network and conveys better results than baseline methods. Another

convolutional approach models relations as a dependency tree and inputs them into a graph convo-

lutional network [Cao21]. These examples achieve good results over a large training set but also

highlights the limitations. The large amount of training data required may not be attainable in the

causal biological world. The convolution neural network may not be the best model in our setting

as we are limited in supervised input. Another large collection of works takes a learning approach

based on entity embeddings [Gu21, KAS, BS21]. Word embeddings are the foundation for causal

search in a set of learning models [BS21]. These models are demonstrated to be applicable across

different languages. A technique which utilizes BERT based vector representations is given by the

model SCIBERT. The approach utilizes unsupervised scientific text to build vector representations

similar to BERT, which can be used in a similar manner [Gu21]. BERT is again used in a transfer

learning approach that is shown the improve causal sentence detection in some datasets using a

bidirection gru with self attention combined with ELMO and BERT [KAS]. Embeddings based

approahces while applicable on some datasets, may not be well suited for a more complicated set of

data where causality is explained in esoteric terms. The focus on supervised data necessitates the

model to learning more general textual patterns.

To allow for knowledge discovery in a setting without much training data, zero-learning

approaches attempt to extract causality or related tasks without being solely dependent on deep

learning models [Tau20, Do11, Lyu21, GE21]. Such techniques can use dependency graphs to

search scientific text by focusing on patterns obtained from a labeled input set. In [Tau20], the

authors are able to use a dependency graph for extractive search while adding a new query language

for searching scientific based linguistic patterns. Differing zero-shot approaches focuses on examin-
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ing the similarity among causal sentences [Do11], transfer learning to extract events from textual

data [Lyu21] or crowd-sourced input [GE21]. However, these approaches are defined in the general

domain, and not specific to causality extraction from biological text.

2.1.2.1 Sequence Alignments

Sequence alignment algorithms were primarily applied in the context of comparing genetic se-

quences [NW70, HC03, AG11, SW81]. Starting with a dynamic programming algorithm to com-

pare the entirety of two sequences [NW70], the works evolved to comparing only singular subse-

quences [SW81] to multiple subsequences [HC03, AG11]. The latter [AG11] being an algorithm

that takes an input k, and proceeds to find the optimal k breaks in the two sequences that result

in the maximal local alignment scores. More recent work has recognized the ability of sequence

alignment algorithms to be useful outside the context of genetic sequences [Wad21, WMS19].

Sequence alignment algorithms seek to assign a score for an alignment between two strings

(A and B). The two most popular algorithms are Smith-Waterman [SW81] (local) and Needleman-

Wunsch [NW70] (global). A local alignment is a maximal scoring alignment over the subsequences

Ap, Ap+1, Ap+2, . . . , Aq and Bx, Bx+1, Bx+2, . . . , By. A global alignment is the maximal scoring

alignment over the A and B. Aligned strings often contain one or more instances of an insertion (or,

interchangeably, deletion), which represents a single-character gap in the alignments. For example,

with the alignments of the strings “BAT” and “BEAM” a global alignment could easily be:

B – A T

| | |
B E A M

With the “E” representing a deletion in the string “BEAM” and an insertion in “BAT”. Also note that

the “T” in “BAT” is aligned to the “M” in “BEAM”; since they are not the same, this is referred to

as a mismatch. To find the alignments, most algorithms use dynamic programming with one or more

two variable recurrence relations stored in a matrix. We demonstrate the matrix using the alignment

of “BAT” and “BEAM” and a scoring of match/mismatch ±1 and an indel (insertion/deletion) score

of −2.
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B E A M

0 -1 -2 -3 -4

B -1 1 -1 -3 -4

A -2 -1 0 0 -2

T -3 -3 -2 -1 -1

2.1.2.2 Smith-Waterman Algorithm

The Smith-Waterman algorithm [SW81] is a dynamic programming solution to the problem of

finding an optimal local alignment. A local alignment over two sequences A and B is a maximal

scoring alignment over the subsequences Ap, Ap+1, Ap+2, . . . , Aq and Bx, Bx+1, Bx+2, . . . , By. An

alignment with a linear gap is scored by assesing values for a match/mismatch S, and insertion/dele-

tion Q. The solution to solving this maximal subsequence matching is given by the dynamic

programming algorithm with recurrence:

M(i, j) = Max



0

M(i− 1, j − 1) + S(Ai, Bj)

M(i− 1, j) +Q

M(i, j − 1) +Q


(2.1)

This algorithm as shown can compute and return the maximal subsequence match in O(n2)

time and space. The linear gap however is not practical in such situations where it is more likely to

see clusters of insertions/deletions than many non connected insertions/deletions.

For this reason it is common practice to use an affine gap penalty [Got82]. The change

requires there to be an additional two recurrences. One for holding a transition to the insertion

state (I) and the other for a transition into the deletion state (D). The M matrix then becomes the

match/mismatch state. These new recurrences are given as:
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(a) AGE

(b) Local (c) Global

Figure 2.1: A visualization of two genomic sequences and their proper alignment which is formed
by AGE (a). Both the global alignment (c) and local alignment(b) algorithms are unable to properly
align the sequences to their optimal alignment which consists of two local alignments with a large
gap in the bottom sequence.

M(i, j) = Max



0

M(i− 1, j − 1) + S(Ai, Bj)

I(i− 1, j − 1) + S(Ai, Bj)

D(i− 1, j − 1) + S(Ai, Bj)


(2.2)

I(i, j) = Max


M(i− 1, j) +O +Q

D(i− 1, j) +O +Q

I(i− 1, j) +Q

 (2.3)

D(i, j) = Max


M(i, j − 1) +O +Q

I(i, j − 1) +O +Q

D(i, j − 1) +Q

 (2.4)

2.1.2.3 AGE

Alignment with Gap Excision (AGE) [AG11] is an alignment algorithm that rectifies the problem

of optimally aligning sequences that contain a large amount of insertions or deletions. It is shown
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that tuning the parameters of the Smith-Waterman [SW81] and Needleman-Wunsch [NW70] do

not guarantee the optimal alignment equivalent to local alignments performed on both ends of

certain sequences (shown visually in Figure 2.1). AGE is able to solve this problem by introducing

a maximum matrix into the recurrence that hold the maximum value of the equivalent location in

the local alignment matrix. This coupled with two local alignments, one going forward from the

left end (L), and one going backward from the right end (R), guarantee a maximal split of local

alignment scores. The algorithm guarantees finding the maximal right and left local alignments in

both quadratic time and space. Even though the space is polynomial, AGE can be unusable with a

large input size. To rectify this, a linear space version can be formulated as:

L(i, j) = Max



0

L(i− 1, j − 1) + S(Ai, Bj)

L(i− 1, j) +Q

L(i, j − 1) +Q


(2.5)

M(i, j) = Max


L(i, j)

M(i− 1, j)

M(i, j − 1)

 (2.6)

R(i, j) = Max



0

R(i− 1, j − 1) + S(ai, bj)

R(i− 1, j) +Q

R(i, j − 1) +Q

M(i− 1, j − 1) + S(ai, bj)


(2.7)

Db(i, j) = Max


Ib(i, j + 1) +O + E

Gb(i, j + 1) +O + E

Db(i, j + 1) + E

 (2.8)

This algorithm can thus be used with linear space, requiring a memory bound of O(n) with

computation time remaining at O(n2).
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2.1.2.4 NLP Search and Extraction

A similar objective to causality discover is that of scientific search. For knowledge discovery over

scientific textual input, approaches utilize syntactic patterns [Shl20], patterns over dependency

graphs [Tau20], and using preexisting machine learning based methods [Gu21, BS21, KAS]. Simi-

larly, although not between scientific texts, search between parallel texts can be done effectively

though word alignments [Wad21]. This analysis also showed the applicability to corpora across

different languages.

Akin to the goals of causality extraction is that of relation extraction. The desiderata in relation

extraction to discover relationships between different fragments in text. For example, one technique

to causal discovery without labeled data is shown using a predefined database [Hua21] to connect text

fragments. Other methods utilize graph-based techniques [Cao21], injected side information [GE21],

or neural networks to achieve superior improvements over baseline models [Zha21].

A third extraction task, event extraction, is well-suited for zero-shot learning [Lyu21]. This

allows extraction to be done in a way where annotation is not necessary—which is how event

extraction is commonly done. In this setting transfer learning can be applied via neural networks to

obtain results comparable to supervised methods.

2.1.3 Visualizing causality

As a representation for ontological information (i.e., entities and their relations), graphical causal

models [SGS00, KF09, Pea09] can been used as a tool for experiment planning [Pea95]. Graphical

models are a sensible formalism for guiding causal discovery: graphs concisely encode probabilistic

relations between variables [Fri04]; they are accessible to domain experts because they encode plain

causal statements (as opposed to only statistical or probabilistic ones) [Pea95, Pea09]; and principled

methods exist for assembling fragments of graphical models into one [Fri04, Coh15], a strategy

that resembles the way researchers integrate facts from various sources. An example graphical

representation of causality is given by ResearchMaps. ResearchMaps, in addition to ontological

information, includes epistemological (specifically, methodological) information regarding the

evidence behind causal assertions.
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2.1.3.1 Graphs of causality

A causal model can encode the causal structure of its variables with a causal graph. A causal graph

is a directed graph with a set of variables (nodes) and a set of directed edges among the variables. A

directed edge between two variables in the graph means that the variable at the tail of the edge has a

direct causal effect on the variable at the head [SGS00, Pea09].

Via its structure (i.e., its connectivity), a causal graph encodes probabilistic dependence and

independence relations. The graphical criterion known as d-separation [Pea09] can be used to read

such relations of a causal graph; d-separation thus translates the edges of a graph into probabilistic

statements. There is a key connection between d-separation and probabilistic independence rela-

tions: considering a directed acyclic graph (DAG) with the causal Markov and causal faithfulness

assumptions [SGS00], any independence implied by d-separation holds if and only if the probability

distribution associated with this DAG also exhibits this independence [Pea09].

2.1.3.2 Markov Equivalence Classes

Per the rules of d-separation, even if two or more causal graphs have different structures, they can

encode the same (in)dependencies. A set of causal graphs that all imply the same (in)dependencies

is called a Markov equivalence class [Pea09], or simply an equivalence class. An example of an

equivalence class consisting of three unique graphs could be: X → Y → Z; X ← Y → Z; and

X ← Y ← Z. Although the graphs disagree on the orientation of the edges, they all imply the

same (in)dependence relations: X ⊥6⊥ Y ; Y ⊥6⊥ Z; X ⊥6⊥ Z; and X ⊥⊥ Z|Y . Thus, these graphs

are observationally Markov equivalent—i.e., they are indistinguishable given only the observed

(in)dependence relations.

It is important to note that an equivalence class can be extremely large; the number of possible

causal graphs is super-exponential in the number of variables in the model. For a system with

only six variables, there are over three million possible causal graphs [Rob73]; if we allow for

feedback (cyclicity), there are 230 million possible graphs. Causal discovery algorithms (that is,

methods to identify the causal structure of a system) often cannot fully specify a single causal graph

that accounts for the data; instead, they identify an equivalence class of graphs that satisfy the
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given (in)dependence relations. With only observational data, the graphs in an equivalence class

will share the same adjacencies and vary in their edges’ orientations. Interventional data, where

the experimenter manipulates one of the variables, can eliminate specific causal structures from

consideration.

2.1.3.3 Related representations

Existing representations such as Knowledge Engineering from Experimental Design (KEfED)

provide a way to model experimental procedures and findings in a detailed and machine-readable

manner [RRH11]. Other representations that represent formalisms such as probabilistic graphical

models (e.g., Bayesian networks) have been shown to be effective at conveying relations among

biological phenomena using a graph structure, as they compactly encode the joint probability

distribution across variables [Fri04]. However, conditional probabilities are often missing in reports

of experiments designed to test causal assertions. To display representations, pathway analysis tools

such as BioCarta [Nis01] and Ingenuity Pathways Analysis (QIAGEN Redwood City, Redwood

City, CA, USA) provide graphical interfaces of possible causal connections, but they do not keep

track of the classes of experiments carried out to arrive at those conclusions, and they are usually

restricted to specific domains of biological phenomena (e.g., molecular interactions).

2.1.4 Experiment selection

2.1.4.1 Causal discovery

Identifying the true causal graph for a system is the goal of a field known as causal discovery [Ebe17].

Each causal graph that can be drawn—with its unique structure—can be considered a particular

explanation for the system it models. The goal of causal discovery is to find the one causal graph

that correctly models the system—i.e., the correct explanation for the system’s behavior. Knowing

the true causal graph allows us to predict how the system will behave, including when we intervene

on it.

Causal discovery is possible due to bridge principles, which “connect what can be observed

to the underlying causal structure that generates the phenomena” [Ebe09]. The bridge principles we

use here are two assumptions known as the causal Markov condition and the causal faithfulness
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condition. Together, these conditions allow for a relation between independencies in a probability

distribution and edges in a causal graph [SGS00]. This relation thus allows us to infer features of a

system’s causal graph based on statistical relations that we derive from studies. For instance, if two

variables in a system are statistically dependent, the causal graph that models the system will have

certain features, such as one or more specific paths that correspond to this statistical dependence.

The rules that these relations follow are given in the theory of d-separation [Pea09].

We express causal-structure constraints in the form X ⊥⊥ Y | C || J. In this notation, X and

Y are two variables that are statistically independent. This independence may have been inferred

by statistically conditioning; the set C indicates the variables on which we conditioned to infer

the independence. Similarly, the independence may have been inferred from an experiment in

which one or more variables were intervened on; the set J indicates the variables that underwent

experimental intervention when the relation manifested [HEJ14]. Both C and J can be the empty

set ( ∅ ). Dependence statements have the same form but instead use the “not-independent” symbol

(⊥6⊥ ). For example, the dependence relation

long-term potentiation⊥6⊥ spatial learning | ∅ || long-term potentiation,

conveys that long-term potentiation and spatial learning were observed to be correlated in an

experiment that intervened on long-term potentiation; in this case, no variables were statistically

conditioned on to infer this independence.

The inference from statistical relations to causal graphs is not trivial: a set of (in)dependence

relations may imply not just one graph but an equivalence class—a set of multiple graphs that are

all equally consistent with the relations. An example of an equivalence class is these three causal

graphs:

• X → Y → Z,

• X ← Y → Z,

• X ← Y ← Z.

Each of these causal graphs is equally consistent with the following statistical relations:

• X ⊥6⊥ Y ,
17



• Y ⊥6⊥ Z,

• Z ⊥6⊥X ,

• X ⊥⊥ Z | Y .

Given a set of (in)dependence relations over a set of variables, it is not immediately obvious which

causal graphs are consistent with the relations. In principle, a researcher could derive the equivalence

class by hand; however, this manual computation is infeasible for all but the simplest of cases. And

causal inference is further complicated by conflicting information. For instance, one experiment

may suggest that two variables are dependent, while another experiment may suggest that they are

independent. A principled approach to causal discovery should include a method to resolve such

conflicts.

2.1.4.2 Constraint-based causal discovery

The strategy known as constraint-based causal discovery is to express information about a system

in the form of logical propositions, which serve as constraints on causal structure. These constraints

then guide how an algorithm searches for the set of causal graphs that are optimal, according to some

optimization criterion. Although research articles are often unaccompanied by the primary data

that underlie them, articles often contain constraints implicitly in the form of statistical relations,

statements indicating either a dependence or independence between two variables. Beyond stating

that variables are (in)dependent, an (in)dependence relation may be qualified by additional context:

the relation may have been observed only when one or more other variables were statistically

conditioned on, or when one or more variables were intervened on—or both.

One particular constraint-based algorithm—developed by [HEJ14]—represents the current

state-of-the-art algorithm in causal discovery. Among current methods, it considers the most general

model space: neither acyclicity nor causal sufficiency needs to be assumed—the algorithm can

thus consider models that contain both cycles (feedback) and latent confounders. Additionally,

the algorithm’s constraint-based approach enables the formalization of background assumptions

[Ebe17], as well as the degree-of-freedom approach described in Section 3.4.1.1.
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The intuition for this constraint-based algorithm is as follows: Scientists will perform experi-

ments to understand the causal relations that govern the phenomena in a system. These phenomena

and the causal relations between them can be represented by the nodes and directed edges that

compose a causal graph. We call this causal graph that correctly models the system the true causal

graph. In addition to this true graph, there are other graphs with the same variables but different sets

of edges, corresponding to different causal descriptions of the system’s phenomena. The number of

possible causal graphs is large, even for small sets of variables. Thus, the scientist who performs

experiments to identify the true causal graph is “searching for a needle in a really huge haystack of

falsehoods” [Gly04].

An experiment’s result can show the scientists which parts of the haystack are safe to remove:

namely, all the causal graphs that are inconsistent with the result.1 When a result is expressed as

an (in)dependence relation, the rules of d-separation can be used to identify the particular causal

graphs that are consistent with the result. Any scientist who understands d-separation can use a pen

and paper to check whether an (in)dependence relation is consistent with a causal graph. But this

computation is infeasible to do manually when there are thousands of possible graphs, as is true

even for a system with only five variables. Therefore, the strategy taken by [HEJ14] is to have this

done computationally.

The algorithm uses answer set programming (ASP), a type of logic programming that is

useful for solving very challenging problems such as NP-hard optimization tasks. It is based on

the concept of declarative constraint satisfaction [GL88, Bar03]. In this context, the constraints are

(in)dependence relations, and they are satisfied only by the particular causal graphs that encode

those relations, as given by the rules for d-separation.

The algorithm proceeds in the following steps: First, (in)dependence relations among the sys-

tem’s variables are obtained—either by performing statistical independence tests on data [HEJ14], or

by annotating statistical relations that are reported in the literature, as is done with the ResearchMaps

web application [MWW17a, MWW17b, MWD18]. If none of the constraints conflict with each

other, then a Boolean satisfiability (SAT) solver [BHM09] is sufficient to find the consistent causal

1Of course, an erroneous result can mislead the scientists by motivating them to remove a part of the haystack that in
fact contains the needle (i.e., the true causal graph). The model discounts the scientist’s fallibility; instead, the focus is
on how to reason with evidence and plan experiments, assuming that those experiments will be performed competently.
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graphs [HHE13]. However, if the constraints contain conflicts—for instance, if one constraint

states that X and Y are independent, while another states that they are dependent—then a Boolean

maximum satisfiability (MaxSAT) solver is required. In this case, each constraint is assigned a

weight that denotes its confidence, and the solver finds the causal graphs that minimize the sum of

the weights for unsatisfied constraints [BHM09]. Weights can be assigned based on the p-values

of independence tests [HEJ14] or based on other measures of confidence, such as the evidence

score for the research-map edge from which the constraint was derived (see Section 3.3.3). [HEJ14]

formulate the search for (maximally) consistent causal graphs as a constrained optimization problem.

For the (in)dependence constraints K over the variables V, each with a non-negative weight w(k),

we search through a class of graphs, G, to find the causal graph G∗ such that

G∗ ∈ argmin
G∈G

∑
k∈K:G 6|=k

w(k) , (2.9)

where G 6|= k states that the causal structure of G does not imply the constraint k. We thus wish to

find the causal graphs that minimize the summed weight of unsatisfied constraints. A state-of-the-art

MaxSAT solver named Clingo [GKK11] is guaranteed to converge to a globally optimal solution,

thus identifying the one or more causal graphs that maximally satisfy the constraints.

To accommodate both conflicting and conflict-free sets of evidence, here we use the phrase

“equivalence class” in two ways: (1) to refer to a Markov equivalence class, as traditionally defined

[SGS00]; and (2) to refer to the set of causal graphs that satisfy Equation 2.9. This second meaning

addresses the fact that conflicts can be resolved in multiple ways. Depending on how the conflict

is resolved—and which evidence is discarded to achieve this resolution—different sets of graphs

will be considered consistent. In this case, “equivalence class” denotes the set of causal graphs

that remain consistent with the evidence that one is currently willing to consider. Unless otherwise

specified, we intend this second meaning throughout this dissertation.
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2.1.4.3 Degrees of freedom

An equivalence class of causal graphs represents the range of causal interpretations one can

defensibly take in light of the available evidence. The diversity of causal structures in an equivalence

class represents the extent to which the available evidence is lacking and the extent to which the

true causal graph is underdetermined: the less evidence there is, the more causal graphs will remain

that are consistent with what is known. Because this lack of knowledge is what drives scientific

inquiry, quantifying a causal graph’s underdetermination can help scientists to determine which next

experiments could be most instructive. We can quantify this underdetermination by considering the

diversity of causal structures that exist throughout all the graphs in an equivalence class.

The degrees of freedom for a causal graph are the possible variations in edge relations that

can exist between any two variables throughout an equivalence class [MWW17b]. For DAGs, these

edge relations are:

• a “left-to-right” edge (X → Y );

• a “right-to-left” edge (X ← Y ); and

• neither edge (X Y ).2

When we allow for cycles, there is a fourth relation consisting of both directed edges (X � Y ).

Here we consider only the three edge relations for DAGs. To fully specify a causal graph over N

variables, we need to instantiate exactly one of these edge relations for each of the
(
N
2

)
pairs of

variables in the graph. Once a particular edge relation is instantiated for a pair of variables (e.g.,

X → Y ), there are two other possible edge relations—two degrees of freedom—that the pair can

take (e.g., X ← Y and X Y ). The trivial equivalence class that contains every possible causal

graph (satisfying zero constraints) thus has 2
(
N
2

)
degrees of freedom. Note that this number is much

smaller than the number of possible causal graphs over the same number of variables.

Each causal graph in an equivalence class instantiates these edge relations differently for at

least one of the pairs of variables. For each pair of variables in a system, we can determine the

number of instantiations that remain underdetermined by looking at the set of all edge relations
2The blank space between the two variables is intentional; it is meant to call attention to the fact that the corresponding

nodes in the graph lack any type of edge between them.
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that appear in a particular equivalence class. In the example of an equivalence class discussed

above, the graphs all agree that there is no edge for the pair {X,Z}. This edge relation is thus fixed:

regardless of which graph is correct, we know what the edge relation for this pair is X Z. The

graphs in this equivalence class unanimously agree regarding the existence of edges for the pairs

{X,Y } and {Y,Z}; however, they do not unanimously agree regarding the edges’ orientations. This

equivalence class thus has two degrees of freedom. This metric can be expressed as a percentage

to convey the amount of underdetermination relative to the number of variables in the system.

Returning to the example equivalence class above, there are 2/(2
(

3
2

)
) ≈ 33% of the degrees of

freedom remaining. Once enough constraints have been supplied to prune an equivalence class

to only one graph, zero degrees of freedom remain. This pruning of the equivalence class thus

provides an analytic expression for Popper’s conception of science based on falsifiability [Pop59].

2.1.5 Piecemeal causality

Piecemeal causality [May14, May19, May11] is the stitching together of indvidual experiments to

find a larger network suitable for fully contextual causal discovery [Ebe13, Ebe10, Ebe09, HEH13].

The piecing together of observational data introduces new sets of challanges [May14, May11],

nevertheless discoveries can be made in such context [May14]. The abundance of data plays a vital

role in the ability to make meaningful discoveries from piecemeal causality [May11, May19]. The

increased data leads to an increase in the amount of unknown variables, to discover the true value of

the variables it is suggested to examine every variable [May11], or approximate the values using

statistical assumptions [May19].

One technique to PCD is to evaluate the problem under different models and select the

most appropriate one [VJB06b, VJM00]. Experimental networks can be considered in examining

the various alternative models [VJB06b]. Starting with the inclusion of all possible models, the

approach is to focus on eliminating models via experimentation. The work advances that some

models may be shown to be superior over others. Model selection is again considered by [VJM00].

This work focuses on a perturbation of competing models via experimentation. Entropy is then used

to further refine the result set.
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More recent approaches to solve PCD problems are to format the input into a set of constraints

and then feed the input into a module that utilizes answer set programming (ASP) [GKK11,

Bar03, HEJ14]. In [Bar03], the declarative problem solving approach is shown to be an effective

approach to some causal problems. These problems can be synthesized into a reduced declarative

programming problem which is then solved by answer set semantics. Related approaches utilize

boolean satisfiability solvers that have been used to help aid in causal discovery [HHE13, HEJ14].

One such method advanced by [HEJ14], provides a technique to use boolean satisfiability solvers

while accounting for statistical variations of the variables. This approach uses a new logical encoding

methodology to obtain high accuracy in causal discovery.

2.2 Topic interpetability and labeling

2.2.1 Topic modeling

Topic modeling began as a subfield of information retrieval with the goal of obtaining short

descriptions from a much larger body of text that preserves the essential statistical relations. From

the short descriptions the full text can be summarized, compared to other text, classified, and be

used in novelty detection. Initially, techniques such as tf-idf vectors were used to summarize a

given body of text. [SM84]. To allow for more reduction, latent semantic indexing (LSI) [DDL90]

takes the tf-idf vectors and uses singular value decomposition to capture a small set of variance

from the input feature set. This technique while achieving the desired reduction, also results

in some semantic cohesiveness between the derived features. To allow for more probabilistic

reductions of the original textual data, probabilistic LSI (pLSI) [Hof99] was developed which

introduced a generative model that models each word as a sample from a mixture model. This

mixture model is defined over the vocabulary and can be thought to represent a “topic.” Probabilistic

LSI was improvement over LSI, however the model lacked a probabilistic model over the set of

documents. To allow for this document model, latent Dirichlet allocation (LDA) [BNJ03] was

introduced which provided a distribution over the vocabulary (topics) and distribution over the

documents. Recently, the field of topic modeling has shifted towards leveraging deep neural

networks [Dua21, Che21a, Rez20, Nin20] for topic discovery. These works have shown to be better
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for predicting held out data and in pointwise mutual information (PMI) based scoring than Bayesian

(LDA-based) topic models.

2.2.1.1 Dirichlet Distribution

The Dirichlet distribution is a distribution over probability mass functions with a specific number of

atoms and is commonly used in Bayesian models. A property of the Dirichlet that is often used

in inference of Bayesian models is conjugacy to the multinomial distribution. This allows for the

posterior of a random variable with a multinomial likelihood and a Dirichlet prior to also be a

Dirichlet distribution.

The parameters are given as a vector denoted by α. The probability density function for a

given probability mass function (PMF) θ and parameter vector α of length J is defined as:

f(θ, α) =
Γ(
∑J

i αi)∏J
i Γ(αi)

J∏
i

θαi−1
i (2.10)

A sample from the Dirichlet distribution produces a PMF that is parameterized by α. The

choice of a particular set of α values influences the outcome of the generated PMF. If all α values

are the same (symmetric parameter), as α approaches 0, the probability will be concentrated on a

smaller set of atoms. As α approaches infinity, the PMF will become the uniform distribution. If all

αi are natural numbers then each individual αi can be thought of as the “virtual” count for the ith

value [Min03].

2.2.1.2 Latent Dirichlet Allocation

Latent Dirichlet allocation (LDA) [BNJ03] is an unsupervised technique for discovering topics in a

corpus. LDA represents the basis for many existing Bayesian probabilistic topic models. The topics

the model considers are composed of a discrete distribution over the vocabulary. Each document is

also assigned a distribution over the set of topics.

LDA is a hierarchical Bayes model which utilizes Dirichlet priors to estimate the intractable

latent variables of the model. The corpus (C) is assumed to be generated according to a generative

model that samples the mixture of words (words per topic) from a Dirichlet distribution parame-
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Figure 2.2: Plate notation for LDA.

terized by β and each document (topics per document) is sampled from a Dirichlet distribution

parameterized by α. To build a document, after the topic to document mixture is sampled (θ), for

each word we sample a topic assignment (z), and for that sampled topic we sample a word from the

corresponding topic’s mixture over words (φ). This is given as:

1: for k ← 1 to K do

2: Choose φk ∼ Dir(β)

3: end for

4: for c← 1 to |C| do

5: Choose θc ∼ Dir(α)

6: Choose Nc ∼ Poisson(d∗)

7: for n← 1 to Nc do

8: Choose zn,c ∼ Multinomial(θ)

9: wn,c ∼ Multinomial(φzn,c)

10: end for

11: end for

With d∗ defined as the average length for each document. From the generative algorithm the resultant

Bayes model is visualized in plate notation by Figure 2.2.

Bayes’ law is used to infer the latent θ distribution, φ distribution, and z

P (θ,φ,z|w,α,β) =
p(θ,φ,z,w|α,β)

p(w|α,β)
(2.11)
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Unfortunately, the exact computation of this equation is intractable. Hence, it must be

approximated with techniques such as expectation-maximization [BNJ01], Gibbs sampling or

collapsed Gibbs sampling [GS04]. An example Gibbs sampling update equation is:

P (zi=j|z-i,w) ∝
nwi

-i,j + β

n
(·)
-i,j + V β

·
ndi-i,j + α

n
(di)
-i +Kα

(2.12)

With n being count matrices for word counts in a topic or topic counts in a document, V the size of

the vocabulary of the corpus, K the number of topics, w the vector of words in document i and d

the vector of documents of the corpus.

2.2.2 Nonparametric topic modeling

Nonparametric topic modeling is based off the hierarchical Dirichlet process [Ble03]. These initial

techniques interpret the Dirichlet process as a Chinese restaurant franchise, which is an alternate

view of the hierarchical Dirichlet process. Inference can be made in a similar manner to parametric

topic modeling—by using Markov chain Monte Carlo techniques. Later techniques have shown

inference between non-parametric and parametric topic modeling to be almost the same [WWA21].

A subfield of nonparametric topic modeling is that of hierarchical topic modeling. These

techniques seek to find semantically hierarchal topics in a corpus [Ble03, Man21, Che21a]. The

models can be based on the Dirichlet process or a similar method such as using a directed acyclic

graph [LM06, MLM07]. The generalizations produced by these models have been shown to discover

meaningful relations among topics.

2.2.2.1 Dirichlet Process

The Dirichlet process [Fer73] is a probability distribution that describes a method of generating a

series of separate probability distributions. Each subsequent probability distribution is generated

with a decreasing probability. The process is parameterized by some underlying distribution and a

variable or variables that determine when to generate a new distribution.

Though each generated probability distribution is created with a decreasing probability, the

process has no stopping criteria. One way to think of the likelihood of generation is to take the
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previous probability of generating a new distribution and multiplying it by some probability value.

This continuous multiplication of probabilities asymptotically tends to zero however will never

actually be zero. For this reason, and because the underlying distribution is most often a Dirichlet

distribution, the Dirichlet process is often thought of as the infinite length Dirichlet distribution.

To understand the generative process better, several analogies have been created that describe

the process. In the Chinese restaurant process, a customer sits at an existing table (assigned to an

existing generated distribution) with probability equal to the number of customers already seated

at the respective table, or is seated at a completely new table (newly generated distribution) with

probability equal to some scaling parameter γ. Another such analogy is that of the stick-breaking

process. Each time a distribution is requested, a stick that was initially at length 1 is broken with a

percentage length drawn from the beta distribution parametrized by (1, γ). Each stick break length

represents the probability that the corresponding probability distribution is returned on subsequent

requests. The third most common view of the Dirichlet process is the the Pólya urn scheme—where

a ball is drawn from a bag, then returned to the bag along with a duplicate of the ball. The bag

represents a distribution that resembles the Dirichlet process distribution.

We define a sample from the Dirichlet process as:

Gi ∼ DP (γ ·G0) (2.13)

With G0 being the underlying distribution. It follows then that the posterior takes the form of:

P (G|−→G) ∝ DP (γ ·G0 +
∑−→

G) (2.14)

2.2.2.2 Hierarchical Dirichlet Processes

The concept of nonparametric topic modeling was shown to be possible using a hierarchical Dirichlet

process [TJB06]. By doing so, topics were able to be discovered without supplying the number

of topics a priori. The solution utilizes the concept of the Chinese restaurant franchise, which is

a hierarchical interpretation of the Chinese restaurant process. Inference was done using Markov

chain Monte Carlo algorithms. Another interpretation of the Chinese restaurant franchise is the
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Chinese district process—whereby a customer is searching for a table inside a number of restaurants

in a district [PC09].

A similiar process to the Chinese restaurant franchise, the Pitman-Yor process can also form

the basis for hierarchical n-gram models. For example, a hierarchical model based off the Pitman-

Yor process is advanced by [Teh06]. In this model, inference is based on an approximation and

yields results similar to established smoothing methods.

Another similar model to the Chinese restaurant franchise is the Indian buffet process [GG11].

The underlying distribution of the Indian buffet process has been shown to be a beta process [TJ07].

This interpretation can be useful in document classification and other machine learning tasks.

Outside of traditionally used Markov chain Monte Carlo methods for inference of hierarchical

Dirichlet processes [PR08], inference can be done using collapsed variational inference [TKW07].

This technique has advantages over Gibbs sampling and is general to the hierarchal Dirichlet

process. Furthermore, other techniques such as slice sampling have also been used in place of Gibbs

sampling [TGG07].

Other adaptations of the Chinese restaurant process have been proposed [AX08] which

are useful in evolutionary clustering for tree construction [FGM07], connected data across data

prevalence [WWH10], and for Pachinko allocation [Li07]. Another area utilizing the hierarchical

Dirichlet process is genomic applications where discrete nonparametric priors can be used in place of

the previously used priors [LPW08]. Additionally, and adaption of hierarchical Dirichlet processes

is demonstrated in labeling topic models which suffer from the problem of interpretability [RMD11].

Since hierarchal Dirichlet processes are a well established and not so emerging technique,

much of the new research work does not involve the theoretical interpretation of the process

to improve upon the sampling. Recent work focuses more on the application of the hierarchal

Dirichlet processes [MAO21, MS21, SSS20, LLF20, CLP21] and less on estimation and sampling

techniques [BFP21].

2.2.3 RNN-based topic modeling

The combination of RNN’s and topic modeling has been shown to capture semantic dependencies

at both the word and document level to improve word prediction [DWG17]. This method, named
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TopicRNN, achieves improvement by adding an RNN into the topic generative model. Another

technique that involves utilizing latent feature word representations is advanced by [Ngu15]. This

generative model mixes the traditional LDA based approach with a maximum likelihood estima-

tion to learn features—and results in improvements in topic coherence and the classification of

documents.

2.2.3.1 Recurrent Neural Networks

Recurrent neural networks (RNNs) are a class of neural networks well suited for sequential in-

put. They are straightforward extensions of the standard feedforward multilayer perceptron net-

works [Ros61], which add a cycle to the hidden layer. At each time step, the RNN updates its

hidden state per the new input. The RNN’s hidden state is thus maintained and passed through time,

which can distill information from an infinite-length context window. Such mechanisms can endow

RNNs with long-term learning, which allows them to model long distance dependencies effectively.

Given a sequence of input vectors (x1, ..., xT ), the RNN predicts the output sequence

(ŷ1, ..., ŷT ) using the following equations:

ht = tanh(W hxxt +W hhht−1 + bh) (2.15)

ŷt = softmax(W yhht + bo) (2.16)

where ht is the high-dimensional hidden state at the time-step t, W hx, W hh, and W yh are the weight

matrices connecting the input layer to the hidden layer, the hidden layer to the hidden layer, and the

hidden layer to output layer, respectively, and the vectors bh and bo are the biases.

One problem with traditional RNNs is the vanishing gradient. Because each time step of

the RNN is a product of the input and each previous time-step hidden layer, on back propagation

the distant axons are multiplied by a smaller and smaller value. This leads to an increasingly low

or even nonexistent influence onto the current time-step’s edge weights. A popular solution to

mitigating the vanishing gradient problem is the Long Short-Term Memory (LSTM) neuron. These

neurons replace the simple hidden layer neurons of the traditional RNN with a more complex
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gating neuron which regulates the it’s inner state to forget unimportant information and remember

important information.

2.2.3.2 Deep Learning Sequence Generation

Deep learning sequence generation research has successfully injected side information into RNN

models on a word-level basis to achieve increased performance [Hoa16]. Hoang et al. analyzed

different methods of subjecting information into the input, hidden, and the output layer of the RNN

language model (RNNLM). The research shows and effective and consistent performance boost to

the non-sub structured RNNLM.

One drawback to the RNNLM is that long-range information cannot be forwarded between

phrases. To improve on the basic RNN structure, recent research has looked into combining the

LSTM with the RNN to generate long sequences [Gra13]. This work demonstrates the possibility

of generating complex long-range sequences. Additionally, the method successfully extended the

approach to a handwriting synthesis, where they could condition the text sequence to a highly

realistic handwriting style.

Kim et al. demonstrated an approach to predicting next characters in text streams by using a

large RNN-powered by a Hessian-Free optimizer [SMH11]. Similarly, character-level generation

was shown to be attractive in achieving the asymptotic limit of text compression [War00]. While

word-level generation is limited to the vocabulary set of the training set, character-level generation

can generate an “understanding” using the intelligence of the model.

Character-level generation is investigated using other models as well, such as the model

proposed by Santos et al., CharWNN, that attains state-of-the-art results for a language-independent

model [SZ14]. Research by Zhang et al. demonstrates a deep character-based CNN network

performs measurably well on text classification problems. Additionally, this work shows that

character-level generation can be done without structure if several conditions are satisfied [ZZL15].

These conditions are: the size of the dataset, if the texts are curated, and the right selection of the

character sets.
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2.2.3.3 Topic and Document Modeling RNNs

Utilizing deep neural networks has alleviated several document classification challenges in research

today. Tang et al. developed a neural network model for sentiment classification[TQL15]. The

results over the IDMB and the Yelp Dataset Challenge have achieved performance improvements

over state-of-art algorithms and the current sentiment classification model using a neural network.

In the first step, the model uses a CNN or an LSTM with a word model to create new sentence

models. In the second step, a gated RNN translates relationships between sentence semantic and the

document models. In their result, they have found that the LSTM achieved a higher performance

compared to a multi-filtered CNN.

Wan et al. demonstrates the use for topic modeling in neural networks on image classifica-

tion [Wan]. The image data contains scenic images such as an office, bedroom, living room, etc., a

total of 15 scenic categories. The experiments were designed in three different settings: hierarchical

topic modeling, a neural network, and a hybrid model that combined both the hierarchical model and

the neural network. Throughout the experiment, the hybrid model outperforms the neural network

by a wide margin and achieves comparable results against the supervised LDA model.

2.2.4 Supervised topic modeling

Supervised Latent Dirichlet Allocation (sLDA) is a supervised approach to labeling topics [BM07].

The approach includes a response variable used in the LDA model to obtain latent topics that

potentially provide an optimal prediction for the response variable of a new unlabeled document.

The model requires the manual input of individual topic labels and is constrained to permitting one

label per topic.

Similar to sLDA is Discriminative LDA (DiscLDA) which attempts to solve the same problem

as sLDA, but differs in the approach [LSJ08]. The differing approach was centered around introduc-

ing a class-dependent linear transformation on the topic mixture proportions. This transformation

matrix is learned through a conditional likelihood criterion. This method has the benefit of both

reducing the dimension of documents in the corpus and labeling the lower dimension documents.
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Both sLDA and DiscLDA only allow for a supervised input set that label a single topic. An

approach that allows for multiple labels in a topic is given by Labeled LDA (L-LDA) [RHN09].

This model differs in the generation of the multinomial distribution, theta, over the topics in the

model. The scaling parameter is then modified by a label projection matrix to restrict the distribution

to those topics considered most relevant to the document.

2.2.5 Semi-supervised Topic Modeling

A known weakness of traditional topic modeling (LDA) [BNJ03] is a lack of interpretability [CBG09].

Given a set of topics, a human annotator can often have difficulty identifying a label for the topics.

One solution to increase interpretability comes in the form of semi-supervised topic modeling.

Some forms of semi-supervised topic modeling combine unsupervised models with supervised

models to classify documents [Aga21, LML21]. Although a model could be adapted to utilize

a knowledge source [PD21], the supervised portion would still require an input set that may be

expensive or challenging to obtain. Other forms of semi-supervised topic modeling take the semi-

supervised input directly from the input itself [SRR21]. While the approach is effective, such as in

the domain of sentiment classification, this may not apply all domains since they do not incorporate

outside knowledge and may lead to problems when the input does not contain enough information

to form meaningful topics [WTW17].

2.2.6 Weakly-supervised Topic Models

Weakly-supervised topic models are a subclass of topic models that are mostly extensions of the

Dirichlet-based Bayesian topic model, latent Dirichlet allocation (LDA) [BNJ03]. The desideratum

of Weakly-supervised models is to utilize a large collection of documents that have already been

labeled to improve topic labeling and interpretability. These documents are formed into topics and

serve to bias some subset of the existing LDA topics. The set of labeled topics (extracted from the

labeled documents) is often referred to as a knowledge source. We formalize the knowledge source
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(KS) along with the associated topic distribution (φ̂j) as:

φ̂j ∼ fφ(X̂,KS, Âj, β) (2.17)

KS = (Â1, Â2, . . . , ÂB̂) (2.18)

X̂j = fX̂(Âj) (2.19)

Âj = (L̂j, ŵ1,j,ŵ2,j, . . . ,ŵĜj ,j
) (2.20)

With Ĝj being the word count of article-topic Âj , L̂j the article label, ŵi,j as the ith word in Âj , β

is a Dirichlet distribution hyperparameter and f being a function determined by the model.

This labeled topic input is assumed to be part of the generative model. Before generating the

corpus, we determine the total number of topics (K) and vocabulary size (V ). For each topic, we

sample from a Dirichlet distribution that may or may not be influenced by an individual knowledge

source topic. If a knowledge source topic influences the topic, the topic label becomes the article’s

title from which the knowledge source topic was created (L̂). Each document in the corpus is

generated by first sampling a topic from a discrete distribution of size K. After the topic is sampled,

a word is chosen by sampling from the topic’s discrete distribution (φ) of size V .

During the corpus generation, some topics are formed using the technique from LDA, while a

set of others are drawn from a function of the labeled input data. This function can place a Dirichlet

prior over the vocabulary [SSC11, PS20]; however, this tends to lose any semblance from the

labeled input data. Since the labeled input data tends to be highly interpretable, a more interpretable

approach involves assuming the labeled input data are topics themselves [Han13, ND18]. In

these approaches, the labeled input often comes in the form of documents describing a topic,

which becomes the knowledge source. The labeled documents are formed into histograms and

directly turned into distributions representing the histograms. While these approaches increase

interpretability, they can be too rigid in representing a labeled topic, leading to a decrease in the

number of interpretable labeled topics [WTW17].

An example plate diagram for a weakly-supervised topic model is highlighted in Figure 4.15,

with the variables explained in Table 4.9 and Table 4.10. Since the labeled topics are part of

the generative model, the inference must consider these new variables for any weakly-supervised
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topic model. Weakly-supervised methods generally assume a modification to only that of the

φ-distributions. Therefore, when building a Gibbs sampler each model considers some existing

posterior density calculation (for example the posterior density used in LDA) alongside a posterior

density that utilizes a predetermined knowledge source. A general Gibbs sampler [GS04] can be

built using the sampling condition given as:

P (−→z i=j|−→z -i,
−→w ,x,y) ∝ fL(x,i,j,nz,nd,β,α,K) (2.21)

which is the traditionally used posterior density (fL) that can take on different forms [GS04, Wal08]

for j ≤ K. For j > K we use the knowledge source density of:

T̂j = (L̂j, ŵ1,j,ŵ2,j, . . . ,ŵV̂j ,j) (2.22)

X̂j = tX̂(T̂j) (2.23)

P (−→z i=j|−→z -i,
−→w ,x,y) ∝ fS(x,i,j,nz,nd,β,α,K,X̂,T̂ ) (2.24)

where: −→z is a vector of topic assignments for document x, i is the index of the current token in

document x, −→w the vector of words for document x, nz is the count matrix for each word and each

topic, nz is the count matrix for each topic and each document, β is the symmetric hyperparameter

for the word to topic mixtures, α is the symmetric hyperparameter for the topic to document mixture,

K is the number of all non-labeled topics, y becomes the index of wi, L̂j is the label associated with

knowledge source topic j, ŵ1,j is the count of word w1 in knowledge source topic j, V the size of

the vocabulary, with tX̂ and fS as a transformation and density function specific to the model.

2.2.7 Topic modeling rankings

The original PageRank algorithm was used to determine the importance of a given web page [PBM99].

This ranking was shown to be an excellent way to rank the importance of a word in a sen-

tence [MT04] and determine trustworthy websites [Gyo04]; however, they are only applicable

to their respective domains. The integration of topics into PageRank can help weight the edges

used in PageRank. This weighting is accomplished using topic vectors determined by topic
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lists [Hav02]. PageRank has also been used to add weighting to some classification and topic

tasks [AHB20, LC21, JDR20, BRD20]. As in TextRank, vanilla PageRank works to find an impor-

tance ranking among connected components. These and other approaches help form a motivation

for our goal of improving weakly-supervised models, but they do not offer insights on how to

integrate PageRank with weakly supervised topic models.

2.2.7.1 PageRank

The PageRank algorithm [PBM99] was developed to objectively determine the best web sites that

human users pay attention to. The method consists of web pages filled with links. A link from

a website A to another website B was modeled as two nodes for each website (A and B) and a

directed edge connects node A to node B. The world wide web could then be modeled as a directed

graph.

To determine a ranking for a node, the intuition was to give high importance to the node if it

had many other highly important nodes pointing to it. This implies an iterative algorithm where at

each step, the current ranking is calculated given the current state of the model, and continued until

convergence.

Additional variables are added to the single step calculation due to the potential for some

nodes to have no outbound edges, or no inbound edges. This leads to the calculation of a single step

ranking (R) for a given node m as:

R(m) =
1− d
|N | + d×

∑
n∈I(m)

R(n)

|O(n)| (2.25)

where I(x) and O(x) are functions that returns a set of all the inbound and outbound nodes

connected to node x respectively, and N is the set of all nodes. The variable d represents the

damping factor, which can be interpreted as a probability to mitigate against those nodes which

have no inbound or outbound edges.

An interpretation of PageRank can be that of a random surfer. The random surfer starts at any

one web page randomly in the world wide web and either clicks a random link with a probability
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of d or goes to any other page randomly in the world wide web. The result of the ranking is the

probability that the random surfer will visit a particular page.

2.2.8 Topic Labeling

Topic labeling can be done in the post-processing stage [MSZ07, LGN11] by comparing the topic

distributions with some predetermined knowledge source. The drawback of these approaches is

that the topics tend to cluster non semantically related words [WTW17]. Prior to post-processing

labeling, labels were often generated by hand [MSZ07, Mei06, MZ05, MZ06]. Though manual

labeling may generate more understandable and accurate semantics of a topic, it costs a lot of

human effort and it is prone to subjectivity [WM06]. An example of manual labeling is given by

the Topics over Time (TOT) model [WM06]. This method implements continuous timestamps with

each topic [WM06], and is shown to produce accurate topics along with more accurate time stamp

predictions.

Mei et al. proposed probabilistic approaches to automatically interpreting multinomial topic

models objectively. The intuition behind these algorithm was to minimize the semantic distance

between a topic and a label. To this end, they extracted candidate labels from noun phrases chunked

by an NLP Chunker and the most significant 2-grams. Next, they ranked labels to minimize

Kullback-Leibler divergence and maximize mutual information between a topic and a label. The

approach achieved the automatic interpretation of topics, but available candidate labels were limited

to phrases inside documents.

Lau et al. developed an automatic topic label generation method which obtains candidate

labels from Wikipedia articles containing the top-ranking document terms, titles, and sub-phrases. To

rank the candidates topic labels, they used different lexical measurements, such as point-wise mutual

information, Student’s t-test, Dice’s coefficient and the log likelihood ratio [Pec10]. Supervised

methods like support vector regression were also applied in the ranking process. Results showed

that supervised algorithm to outperform unsupervised baseline in four corpora.

In previous approaches, topics were treated individually and the relationships among topics

was not considered. Mao et al. created a hierarchical descriptor for topics, and the results proved

that inner-topic relations can increase the accuracy of topic labels [MMZ12]. Topic relationships
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were also considered by [HHK13] in their graph-based approach to topic labeling. In a similar

manner, Mehdad et al., build an entailment graph over phrases—and from the entailment graph,

relevant phrase were aggregated by generalization and merging [MCN13].

Conceptual labeling is an approach to generate a minimum sized set of labels that best

describe a bag of words which includes topics generated from topic modeling [SXW15]. Concepts

used in the topic labeling are taken from a semantic network and deemed appropriate using the

introduced metric: Minimum Description Length. This approach is applied after topic modeling

and represents an effective way of labeling topics.

Supervised approaches allow predetermined labels to be assigned to clustered topics [BM07,

LSJ08, RHN09]. These approaches can assign an entire document a label [BM07, LSJ08] or assign

multiple labels to a document [RHN09]. Supervised techniques are often dependent on an extensive

collection of labeled data that may be expensive or time-consuming to obtain.

A balance between after-inference topic labeling and supervised topic labeling comes from

weakly-supervised topic modeling, previously discussed in Section 2.2.5. These methods use some

form of labeled input, much like supervised topic modeling; however, the input is much easier and

cheaper to obtain.

More recent approaches use deep neural networks to label topics or perform similar tasks [Gho21,

YHC20]. One example is mapping the vectorized tokens against the tokens of the corpus [Gho21].

After the corpus tokens are mapped to vectors, classification is run using a deep learning model.

This approach yields good results when the input is labeled and enough training data exists to build

a supervised model. When there is not enough labeled data, the supervised model may yield poor

results.

2.2.9 Contextual Integration

An example of other forms of contextual integration is given by [SSC11]. The approach is con-

structed by taking into account concepts supplied by prior sources and requires a manual input

set of relevant terms. The authors then integrate this context into a topic model and the concepts

(context) are applied to the assignment of tokens to a topic. Alongside this concept topic modeling
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a hierarchical method can also be used to incorporate concepts into a hierarchical structure. This

work shows the utility of bringing in prior knowledge into topic modeling.

Other research related to the incorporation of concepts into topic modeling are demonstrated

in [Han13]. This work brings prior knowledge in the form of Wikipedia information into the

topic model. Additionally, the model only requires an existing Wikipedia article, as opposed to

manually curated data often used in supervised topic modeling. The assumption of the model is that

in the generative process the topics are selected from the Wikipedia word distributions—and the

results show that Wikipedia articles can be used as effective topics in topic modeling to improve

interpretability [Han13].

Wikipedia again was shown as an enhancement for topic modeling, albeit for a tangential

approach, entity disambiguation [HC13]. The approach involved topic modeling as a way of

annotating entities in text. This involved the use of a large dataset of topics requiring the development

of efficient processing methods. Experiments against a public dataset resulted in a state of the art

performance.

2.2.10 Interpretable topic modeling

The interpretability problem in topic models was established by asking humans to find relationships

among words comprising topics [CBG09]. This work provides a technique to score the interpretabil-

ity level and presents findings that show topic models are not highly interpretable [CBG09]. With

this deficiency established methods have been developed to increase the interpretability of topics.

Existing methods can use visualization, careful selection of displayed words, or interacting peri-

odically with annotators to increase semantics [DGW20, PMM21]. Recent methods seem to have

shifted toward neural based topic models and represent the state-of-the art approach for obtaining

high pointwise mutual information (PMI) based scores [New10, Dua21, Che21a, Rez20, Nin20,

Bia21, Tom20].
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2.3 Contributions of this dissertation

2.3.1 Causal extraction using alignments

Given the work achieved in ResearchMaps to date, we have a small, limited amount of labeled

data to form our causal graph. However, we can expand the number of causal discoveries from

this small, labeled data set by matching the textual input to a vast set of candidate fragments. We

introduce a novel technique for matching text fragments to accomplish this goal. The algorithm

is based on sequence alignments and expands on previous work by allowing two sequences to be

broken into a variable number of breakpoints and then aligned. This work (1) serves to improve

the capabilities of existing sequence alignment algorithms and (2) represents a novel technique to

piecemeal casual extraction. With our developed algorithm, named OpBerg, we bestow upon the

research community another tool in the search of causality. We also form the foundation for our

textual extraction technique by which we can increase the number of causal connections in our

understanding of the causal world.

2.3.2 The piecemeal cumulative evidence index (PCEI)

In describing piecemeal causality, it is vital to quantify the strength of evidence. Furthermore,

any score must agree with the concepts of convergency and consistency [MWD18]. Convergency

represents the same underlying structural result between experimental participants under different

conditions—while consistency is the same result when performing the same experiment. To this

effect, we developed a Bayesian model [Kra17] that amalgamates the heuristics of the biological

world and the field of statistics. The result of our novel method referred to as the piecemeal cumula-

tive evidence index, allows us to describe the strength of evidence of a piecemeal causal assertion.

This quantification simplifies the concepts of convergency and consistency into a numerical form

and contributes to the field of meta-research [IFD15]. The metric can help scientists determine

which experiments to focus on and can help deduce which experiment to perform next.
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2.3.3 Causal discovery from textual piecemeal casual statements

Unlike data-driven causal discovery we develop a technique to discover causal from textual state-

ments assumed to represent an individual causal statement. The individual causal statements are

then stitched together to form piecemeal causal networks from which causality can be discovered.

The techniques are congruent with data-driven causal discovery and serves to enhance the overall

understanding of causality. This meta-analytic approach helps researchers further understand a

more robust causal world independent of inferential data. The only necessary component is a textual

assertion describing the causal phenomena. Given the simplicity of our technique, we can discover

piecemeal causality from a robust amount of data sources and corpora. This approach expands

the scope of causal discovery to a vast amount of data. From the textual assertion, we connect the

existing elements connected in other assertions. This causal structure, representing a graph, can

be used in existing causal discovery algorithms [HEJ14] to uncover a true causal graph among

competing evidence. Next, given our set of causal networks consistent with the evidence at a given

time, t, we can then proceed to make assertions about the causal structure until we have a complete

understanding of the causal network.

The graphical nature of our piecemeal representations is beneficial to scientists in how the

causal assertions are synthesized into a common form well situated for knowledge discovery. The

format is made in such a way that constrains the empirical findings to help the scientist differentiate

between causal facts and background assumptions. The delineated background assumptions can

then be synthesized into formal constraints to add further knowledge to the causal graph [Ebe17].

The background assumptions can be interchanged with different yet competing background as-

sumptions that, together with the causal fact constraints, present the scientist with a synthetic

environment in which to test hypotheses. Another benefit allows the scientist to examine whether a

test hypothesis is logically consistent with previously established results. The existing state of the

causal representation aids future work by allowing the new hypothesis to be tested for consistency.

Depending on the determination of the hypothesis, the scientist can be more confident in performing

the experiment that confirms the hypothesis, or in contrast, seek out a more congruent hypothesis if

the consistency test is conflictive. This process represents a powerful new tool to aid the scientist

in planning experiments, a technique that is both time and cost-effective. The causal network
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represents the synthesis of previously learned information, allowing the scientist to make a more

informed decision.

2.3.4 Experiment selection heuristics

A key component of scientific reasoning is uncertainty in an existing scientific setting. We provide

a set of heuristics that can quantify the amount of uncertainty, allowing the scientist to convey

and ultimately act on this uncertainty amount. This dissertation introduces and submits a novel

application, ResearchMaps, to visualize and represent the causal evidence numerically using

the piecemeal cumulative evidence index. The score, representing the inherent consistency and

convergence, allows the scientist to select an experiment based on the established certainty and

uncertainty of an experimental setting. The ResearchMaps visualizations come in the form of graphs

that are easily deduced into causal graphs, which present the researcher with causal biological

pathways when chained together. Given the evidence, we then provide a technique to aggregate the

existing causal world into a set of possible explanations. We introduce a degree-of-freedom metric

and an expectation metric to guide the process of experiment selection and reduce the process into

the elimination of inconsistent causal networks. We then provide heuristic algorithms that strengthen

the natural intuition of the biological researcher. The technique contributes to the scientific process

by formalizing and quantifying the process behind selecting an experiment.

2.3.5 Contextual piecemeal causality

So far, the contributions in the domain of piecemeal causality have been made upon two direct

participants in most experiments—that of an agent and target. The time and cost difficulties in

conducting experiments often limit the scope of investigation to one biological concept acting on

another. We add to this environment the surrounding context of the experiment. Given that we have

constructed a partial causal network, we develop a scoring approach that quantifies the effect that

other variables may have affected the observed outcome. Much like the PCEI, we can synergize

with consistency and convergence in numeric form. This additional consideration adds to the causal

network even more information. We apply this technique to that of an experimental setting to show

that contextual information converges more quickly than that of analyzing the causal network in
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isolation. This theoretical finding lays the groundwork for real-world applications which we show

have the potential to make key scientific findings—such as helping scientists discover the next

experiment to find a previously unestablished connection, to find the biological elements most likely

to be causing an effect, and which previously established connection is most likely to be due to

confounding variables. The addition of contextual assumptions yields two potentially impactful

concepts in the piecemeal causal framework: piecemeal causal decay and potential piecemeal

causality. These concepts are expressed in a Bayesian model and then used to make improved

discoveries in the causal network. We add into our piecemeal setting the surrounding causal network

information for an even richer quantification of piecemeal causality.

2.3.6 The piecemeal causal pipeline

Having established an approach starting from extracting causal text fragments from raw text and

ending with discovering potential assertions about the causal world, we connect each of the steps

to form our piecemeal causal pipeline. We show the steps and processes needed to arrive at our

end discovery, representing a systematic and highly informed process by which the scientist can

arrive at hypotheses. The hypotheses can then be tested and fed back into the pipeline arriving at

an even more lucid understanding of the biological elements. We demonstrate the applicability of

our method by running the pipeline from an exhaustive dataset. From the output of our pipeline

(with the input being the exhaustive dataset), we arrive at various discoveries about the existing

biological landscape. These include: establishing new causal pipelines, highlighting the amount

of certainty about established relationships, key biological elements which are likely to have a

causal relationship, known associations that are most likely due to confounding variables, and the

most important entities in a causal cluster. Put together this pipeline represents a potentially highly

transformative approach to the scientific method—one in which previously established information

is accumulated at a massive scale to make a Bayesian-based decision on what steps to take that are

consistent with and strengthened by the massive known and documented causal universe.
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2.3.7 Foundations for interpretable topic modeling

Topic models cluster words into classes that represent topics in a corpus. The clusters form a

distribution based on the number of times each word is assigned to a topic. Additionally, we can

assign each document a distribution over each topic based on the topic assignments. To help with

the identification of a topic, a label can be placed over the topic distribution that summarizes the

allocation of words. To assign a single topic label implies some coherence among the word’s

assignments to the applied topic label. However, given the naiveness of the Bayesian model, many

words are inconsistent with each other. This lack of interpretability restricts topic models from

being utilized in applications such as summarizing patient free-text medical records to assist the

clinician in understanding the context of a patient. In this dissertation, we contribute to the fields

of topic interpretability and topic labeling by introducing our novel method, Source-LDA. We

establish a technique to label topics by integrating outside knowledge sources into the Bayesian

topic model. The knowledge source integration also helps shape the distributions to be more like

the input knowledge source. Since the input knowledge sources tend to be highly interpretable, the

topic clusters become highly interpretable as well. Source-LDA lays the foundation for this novel

approach to topic interpretability and labeling.

2.3.8 Improvements to weakly supervised topic models

Source-LDA represents a contribution to a larger field of weakly supervised topic models. This

subfield introduces into the generative model outside information in order to help shape the topics to

be more interpretable. Additionally, a label can be given to the topic clusters based on which outside

item was utilized to form the cluster. However, the models are limited to the amount of input that

can be used to help bias the topics. This limitation is due to the inference method, which requires

the input to be iterated over in conjunction with each token in the corpus. To mitigate this problem,

we introduce an approach to filter out noisy topics a priori. Our approach utilizes PageRank and

eliminates input while maintaining the benefits of the weakly supervised topic models. This addition

allows weakly supervised topic models to be used with a 100-fold increase in input size. The
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benefits of our novel ranking method are extended to the topic model inference, which improves the

interpretability and perplexity of weakly supervised models.

We also seek to improve upon our weakly-supervised input. We add the deep learning

recurrent neural network (RNN) into our weakly supervised approach. Given the ability of RNNs

for word and character prediction, we utilize this ability to assist the weakly supervised topic model

in predicting words outside the weakly-supervised input. By doing so, we can improve our topic

assignments based on the words’ structure. The RNN is trained against the input set, and each

unknown word is asked which trained input it belongs to. This approach takes advantage of a

strength of the RNN to improve a weakness of the weakly supervised model. This strategy drastically

improves the topic model assignments, further increasing the interpretability. Remarkably, this

relationship also works in reverse as we contribute to the field of RNNs by adding an ensemble

method partitioned by topic. Our technique, referred to as Topic-RNN, represents the state-of-the-art

addition of topic modeling into the RNN.

2.3.9 A novel view of the Dirichlet process

The Dirichlet process generalizes the Dirichlet distribution over an infinite dimension. The continu-

ous nature of the stochastic process makes the Dirichlet process appealing in the topic modeling

setting. Assuming a generative model constructed by the Dirichlet process allows for corpora to

theoretically contain an infinite number of topics. Additionally, the need to specify the number

of topics a priori is unnecessary, and the variable is removed from the input set. The result is a

more flexible and a potentially more correct discovery of topics. To help in understanding and

deriving inference approaches to the Dirichlet process, alternative views are established which

include the Chinese restaurant process, the Pólya urn scheme, and the stick-breaking process. Each

view has a representative and equivalent derivation for inference. In this dissertation, we present a

fourth alternative view that is quite suitable for topic modeling. The process assumes a bank teller

partitioning a table full of coins by biasing the coins to a distribution for each partition, then flipping

each coin and placing the coin into the partition if the coin lands on heads. This interpretation,

called the biased coin flip process, results in an inference closely resembling existing topic modeling

inference equations. The similarity results in the applicability of the Dirichlet process into topic

44



modeling that produces state-of-the-art perplexity and topic number discovery. The view also serves

as a more straightforward bridge to understanding non-parametric topic modeling.

2.3.10 A complete topic model for interpretability and topic labeling

Source-LDA provides the foundation for interpretable topic modeling and labeling. However, a few

shortcomings exist that limit the applicability of the model. The main drawback is the relatively

limited input size that can be used in the model. The increase in execution time limits the knowledge

source to be in the order of 103. Our ranking method previously discussed helps in this regard;

however, improvements may still be attainable. We present a solution that represents a complete

non-parametric topic model that labels topics and is highly interpretable. The approach is an

amalgamation between weakly-supervised topic models and non-parametric topic models. We take

the inputs of a weakly-supervised input and aggregate out the external variables, which allows us to

re-use existing inference equations of non-parametric models. We can also take an approximation of

probability for the weakly-supervised input to sample from a higher-order knowledge source input

size. Given the foundations we have established in this area, we show the result of a combination

to be highly fruitful. The resultant topic model represents a complete non-parametric, highly

interpretable topic model, which additionally results in topic labeling. The non-parametric nature

of the model allows for an input size that was previously infeasible. A further reduction using our

ranking method alongside existing information retrieval techniques allows for a virtually unlimited

input size. The model itself takes as input only hyperparameter settings alongside a corpus and

results in topics assigned meaningful labels that are highly interpretable. In our evaluations, the

model represents the state-of-the-art approach for interpretable topic modeling.
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CHAPTER 3

Piecemeal Causality

3.1 Introduction

The number of scientific research articles are expanding at an exponential rate. With such a vast

amount of information it is even more difficult for the research scientist to synthesize the information

relevant to their interests. One way to reduce the information overload is to extract out the most

relevant parts. In biology, the most relevant parts take on the form of causal statements. Given

the unmatched ability of computers to index, retrieve, and process information, biologists could

benefit enormously from a computational approach to help them to track and reason through

causal assertions; such a tool could help biologists to synthesize empirical findings and plan future

experiments.

The general need to mitigate this information overload is discussed in [LS13, SM15]. An ap-

plication stemming from these general overviews is represented in our proposed approach, research

maps, designed to help biologists integrate and plan experiments. A research map graphically repre-

sents hypothetical assertions and empirical findings. The graphical representation is accompanied by

a Bayesian calculus of evidence that allows researchers to formally synthesize empirical results. Our

approach includes integration principles, including convergence and consistency, commonly used by

many biologists to judge the strength of causal assertions. Thus, our goal with research maps is not

to build another ontology but rather to formalize aspects of biologists’ epistemology [MWW17a].

Biologists traditionally find research summaries in reviews and opinion articles. Although

these articles are useful, they have clear limitations: they are not dynamically updated; it is

cumbersome to personalize them; and they usually reflect the state of a field as it existed at least

one to two years before the publication date. These limitations are particularly a problem in rapidly

changing fields like neuroscience. By comparison, digital lab notebooks are extremely useful for
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tracking and sharing experiments and findings between collaborators, but they are not designed to

track large amounts of causal information in a representation that facilitates evidence synthesis,

knowledge discovery, or causal reasoning.

Existing representations such as Knowledge Engineering from Experimental Design (KEfED)

provide a way to model experimental procedures and findings in a detailed and machine-readable

manner [RRH11]. Here, we present a complementary approach for representing and querying

high-level assertions that characterize connections among phenomena. Moreover, formalisms such

as probabilistic graphical models (e.g., Bayesian networks) have been shown to be effective at

conveying relations among biological phenomena using a graph structure, as they compactly encode

the joint probability distribution across variables [Fri04]. However, conditional probabilities are

often missing in reports of experiments designed to test causal assertions.

A research map is a representation of an assertion in the biological domain. From the research

map we can further synthesize the information down into casual assertions; since a biological

assertion contains an implicit causal assertion we can easily extract out the causal implications from

a documented biological relationship. The reduction of the research map leads us to knowledge

discovery along the steps of the scientific process. From a set of causal assertions, connected

together in a piecemeal fashion, we can recommend to the scientist a set of experiments to perform

to yield a more informative result. Additionally, we show that we can make assertions about what

experiments are likely to be established via experimentation, what results are most likely due to

confounding variables, and which entities are most important in a network of causal connections.

The scientific method becomes a pipeline with the input being a set of causal statements and the

output being knowledge discovery based on a network of piecemeal components. However, the

current database of causal statements in the biological domain is somewhat limited. To increase this

set, we focus on a technique to extract causal statements from a large corpus of biological research

documents.

3.2 Piecemeal causal extraction

Researchers who perform biological experiments convey their discovery in published research arti-

cles, which contain descriptions of causal relations. This growing literature provides an enormous
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amount of information and represents the current state of biological understanding. This documenta-

tion of scientific discovery can verify previous experiments, provide insights to researchers [SM15],

and motivate future research [Mat17].

Because these corpora of biological text are growing at an exponential rate, algorithms and

approaches are thus needed to extract the relevant information, allowing biologists to understand

and connect biological processes. Since researchers describe causal connections among biological

entities in free-text research papers, it is logical to extract these connections using natural language

processing (NLP).

A causal assertion can be thought of as a relation between an agent and a target. Often in

biological studies, an agent is either passively observed or actively manipulated, and a change or

lack thereof is noted in a target. Although this type of result can be described across many different

and sometimes nonadjacent sentences, this paper focuses only on causal assertions appearing in

a single sentence. This approach has the advantage of limiting the search range for descriptions

of causality and takes advantage of existing methods that can reliably fragment documents into

collections of sentences [Man14].

Existing methods for causality extraction use either predefined knowledge bases, word lists,

other types of databases [PB21, Che21b, KB91, Sah21, GM02, Wan21, Bui10, Hus21], or are

based on statistical techniques—often some form of machine learning [TJ97, LDS21, Gir10, BG21,

Do11, Han21, CC04, Fis21]. Predefined knowledge bases are of course limited by the quality of

the knowledge base itself. Often, these sources are manually curated and do not always contain all

possible words or phrases of interest. Additionally, they require exact matches to be useful. For

instance, if a knowledge base contains causal verbs and a potential causal sentence contains the

misspelled verb “cuases” (instead of “causes”), the sentence will be dismissed due to the misspelling.

These predefined knowledge bases are also not able to capture new words or concepts, and they are

not extensible to other tasks such as extracting causality from text in other languages.

One solution to these problems is to use existing machine learning techniques. But these

approaches often require large amounts of labeled training data, something that can be expensive

and tedious to obtain. These barriers of time and cost are expanded when the task is to discover

more fine-grained details pertaining to causality, such as that of finding the specific types of studies
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and outcomes that lend evidence for a causal assertion. Additionally, the vocabulary for biomedical

free text can be quite large, as it contains not only common words but also domain-specific terms.

This large vocabulary set requires an even larger training data for the machine-learning model to

predict the necessary components for representing causal phenomena.

Thus, to automatically extract causal sentences, an approach is required that does not suffer

from limitations in the size of the training data, and that can be performed efficiently. The approach

presented in this paper is inspired by the analogy of the aforementioned problem to that of comparing

a set of genomic sequences in bioinformatics.

Though it may not be obvious, there is indeed a connection between aligning sequences in

genomic data and finding causal sentences in free text. While each sentence may contain a unique

set of words, the part-of-speech (POS) sequence of each sentence is likely to be much more common.

Breaking each sentence into its grammatical structures can thus help to identify patterns in the

way that causal relations are described. Thus, applying an alignment method to the grammatical

structures of sentences has the potential to discover similarities that may be missed by approaches

that focus only on words. We further illustrate this with the following example of three sentences

and their corresponding POS mappings (for brevity we replace the POS label with a single character:

P = pronoun, V = verb, D = determiner, A = adjective, N = noun, PP = preposition):

We noticed a rather large increase in insulin after eating.

P V D D A N PP N PP V

N P V D N PP N PP V

Today we observed an increase in melatonin after running.

N P V D N PP N PP V

We observed that we are running out of melatonin today.

P V PP P V V PP PP N N

Here the first two sentences are talking about two different things; yet both are causal sentences.

Their POS structures are similar. In comparison, the second and third sentence share a lot of words,

more so than the first and second sentences, yet their POS representations have fewer matching

elements, with long gaps in between matches. Therefore, knowing that the second sentence is

causal, we cannot determine whether the third sentence is causal. It is our hypothesis that given a
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labeled set of causal sentences C+ and non-causal sentences C−, a new sentence s is classified as

a causal sentence if its POS structure is most similar to a causal sentence and the similarity (S) is

above a threshold δ,

max
c∈C+

S(c, s) > max
c∈C−

S(c, s) ∧ max
c∈C+

S(c, s) > δ (3.1)

Our desired approach is to find causal relations by comparing the POS mappings of unlabeled

sentences to that of labeled sentences. A new causal sentence is discovered by identifying the

optimal number of alignments between the grammatical representations of the sentences. We show

this alignment approach can thus classify causal sentences accurately and efficiently, and it has the

potential to be used for other problems as well.

Existing methods of sequence alignment are insufficient for aligning POS representations of

free text: either (1) they require the user to specify the number of local alignments [AG11] or (2)

they introduce a gap penalty for each new local alignment [HC03], possibly leading to erroneous

alignments [AG11]. Given the nature of free text, it is unreasonable to ask the users to pre-specify

the number of local alignments. Here, we generalize existing alignment algorithms by removing the

need to specify these parameters, while keeping the same algorithmic complexity in terms of both

space and time. This generalization allows us to efficiently apply the algorithm to text mining.

Although our problem setting is that of text mining and NLP, the techniques presented in this

paper need not be limited to those domains. We recommend using our approach for information

retrieval tasks dealing with sequential similarity when the input data set is too small to be sufficient

for machine learning.

3.2.1 OpBerg

The proposed approach, named OpBerg, builds upon the AGE [AG11] algorithm: it uses a similar

strategy to find the optimal number of local alignments. AGE can be thought of as splitting the

input sequences into segments and then running a local alignment algorithm on those segments.

The original form of AGE that involves going forward and reverse in two matrices makes any

additional alignment gaps difficult to compute and store. It is thus the linear-space algorithm that

holds the key to solving the problem of optimal local alignments. Because the directionality moves

from left to right (or right to left), this approach can be used to split the strings into an arbitrary
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number of segments. Further information is needed to implement the proposed approaches that

retain necessary information about the locations of the gaps in the alignments. The change required

to the original AGE equation is the addition of a matrix that stores the location of a newly created

alignment (for brevity we show only the relevant additions to Equation 2.5–Equation 2.8):

X(i, j) =



X(i-1, j), if R(i,j) = R(i-1, j) +Q

X(i-1, j-1), if R(i,j) = R(i-1, j-1) + S(ai, bj)

X(i, j-1), if R(i,j) = R(i, j-1) +Q

(i-1, j-1), if R(i,j) = M(i, j-1) + S(ai, bj)

(0,0), if R(i,j) = 0

(3.2)

This optimal solution also uses our proposed concept of score length, whose definition is as

follows:

Definition: score length. The score length for the alignment of POS tokens aiai+1 . . . ai+d1

and bjbj+1 . . . bj+d2 is defined as the difference between the max score in the alignment matrix at

cell locations (i+ d1,j + d2) and (i,j). As an example, the score length between “BA” and “AM”

in Section 2.1.2.1 is (-2)− (-3) = 1

A naive algorithm for solving the optimal alignment problem is to run the existing AGE

method on every possible number of local alignments that could reasonably occur:

L(i, j, 0) = Max



L(i− 1, j, 0) +Q

L(i− 1, j − 1, 0) + S(ai, bj)

L(i, j − 1, 0) +Q

0


(3.3)
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L(i, j, k) = Max



L(i− 1, j, k) +Q

L(i− 1, j − 1, k) + S(ai, bj)

L(i, j − 1, k) +Q

M(i− 1, j − 1, k) + S(ai, bj)

0


(3.4)

M(i, j, 0) = Max


M(i− 1, j, 0)

L(i, j, 0)

M(i, j − 1, 0)

 (3.5)

M(i, j, k) = Max


M(i− 1, j, k)

L(i, j, k − 1)

M(i, j − 1, k)

 (3.6)

XI(i,j) = X(i− 1,j,k) (3.7)

XM(i,j) = X(i− 1, j − 1,k) (3.8)

XD(i,j) = X(i,j − 1,k) (3.9)

XX(i,j) = X(i,j,k − 1) ∪ (i− 1, j − 1) (3.10)

X0 = (0, 0) (3.11)

LI(i,j,k) = L(i− 1, j, k) +Q (3.12)

LM(i,j,k) = L(i− 1, j − 1,k) + S(ai, bj) (3.13)

LD(i,j,k) = L(i, j − 1,k) +Q (3.14)

LX(i,j,k) = M(i− 1, j − 1, k) + S(ai, bj) (3.15)
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X(i, j, k) =



XI(i,j), if L(i,j,k) = LI(i,j,k)

XM(i,j), if L(i,j,k) = LM(i,j,k)

XD(i,j), if L(i,j,k) = LD(i,j,k)

XX(i,j), if L(i,j,k) = LX(i,j,k)

X0, if L(i,j,k) = 0

(3.16)

Although this may seem to be an unreasonable solution, the running time and memory usage

remain polynomial and thus feasible for small input sizes.

As shown by Equation 3.3–Equation 3.16, the change required is to compute and store the

possible different alignments using a separate matrix for each split. A new variable is introduced, k,

which represents the current number of local alignments to run on the given input sequences. The

results of these additions require an n factor increase in both running time and memory retention,

where n is defined as the size of the largest input POS token sequence. The running time becomes

O(n3) with memory required as O(n3).

Like the segmented least squares problem [Bel61], it is intuitive to add a penalty (P ) for

each additional increase in local alignments. This penalty is needed since otherwise, the optimal

alignment would always just match individual POS tokens. Because this penalty is proportional

to the number of local alignments, we make the penalty a simple linear constant. The maximum

alignment score can then be defined as:

Max
1≤k≤n

[P × k +M(|A|, |B|, k)] (3.17)

where A and B are the input POS token sequences mapped from two sentences. M is the three-

dimensional maximum matrix which holds the maximum alignment score for each ai, bj , and k;

where ai ∈ A and bj ∈ B.

A simple linear penalty constant reveals that returning one such alignment is not a trivial and

deterministic task. The linear penalty can be thought of as an additional larger gap penalty, thus

taking the form of a generalized global alignment [HC03]. It has already been shown [AG11] that

this can lead to improper alignments.
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Figure 3.1: Dependent states to determine the states in the (i,j) cell for OpBerg with a linear gap
(a), and affine gap (b).

The question then becomes: What is the optimal number of alignments? For example, a user

may prefer to find an alignment that has only 1 large segment aligned and a score of 28 over 10

alignments and a score of 29. To determine the correct number of alignments, this work focuses on

three major trade-offs:

1. Number of alignments.

2. Score length to break apart an alignment (α).

3. Minimum score length to start an alignment (β).

The naive algorithm solves the problem of finding the optimal number of local alignments,

but it does so at a considerable cost. For causal sentences, this increase is not infeasible due to the

relatively low input size of sentences. But running this algorithm over a very large corpus like the

entirety of PubMed Central1 would carry a considerable execution cost. Thus, it is advantageous to

seek solutions that are more efficient in both time and space. Opberg, the approach we present here,

seeks to reduce memory by a factor of n2 and execution time by a factor of n2.

3.2.1.1 Model

Note that during execution of the naive algorithm described above, once it is decided that a new local

alignment is a better choice, the optimal solution can then only be of the same or more alignments.

1https://www.ncbi.nlm.nih.gov/pmc/
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This allows us to reuse the existing M matrix and shave off the k dimension, allowing for much

simpler bookkeeping. We introduce a new matrix L that represents the values of a local alignment.

The M matrix then takes on the interpretation of a matrix whose values are the max of the previous

max M cell value and the corresponding L cell value. The optimal solution then can be in the L

matrix (that is, performing a local alignment) or in the M matrix (that is, moving through the cells

of the matrix and not decreasing in value). We use the notation that if the optimal solution is in the

L matrix, then it is in the “L” or “alignment” state; and if the optimal solution is in the M matrix,

then it is in the “M” or “max” state. Given that there is only one L state, it is entirely possible for

the optimal solution to transition multiple times from the M state to the L state before beginning

an alignment. We store the values of a transition in a new matrix N which holds the point of a

transition in and out of the M state. Another matrix X holds the points of all transitions through the

optimal solution.

The three trade-offs discussed above can be dealt with in various ways. To account for the

number of alignments, we can leave in the original penalty P , but instead of considering this as a

larger gap penalty, one can think of it as a value less than 1 and possibly even 0 (with the original

gap penalty greater than 1). By doing so, one can easily gauge at what point a new alignment gap

starts to weigh negatively on the score and thus becomes less desirable.

To consider the minimum score length that is considered to break apart an alignment, we

need only consider the point at which the algorithm exits the max state. If the current alignment has

not dropped below the input score length α, then we will restrict the transition until the appropriate

threshold has been reached.

Likewise for the start of an alignment, with the change only to the entering of the max state.

This requires storing the score at the start of entering the alignment state so that we can compare the

difference to see if we are above threshold. This value is stored in the matrix H . This allows us

to restrict the length as we do for breaking apart an alignment, but a key difference happens when

an alternative alignment is nonexistent. For example, a user may prefer not to start a segment of

only 3 matched characters unless this is the max score out of any alternative alignments by a score

of 3 matches. We must introduce into this restriction of a transition into the max state a way to

keep track of how a score length smaller than β influences the score. That is, we do not necessarily
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want to discard these alignments unless there is a better alignment available. A new parameter is

introduced, γ(x), which allows the user to specify a function to weigh how important a certain score

length is when it is below threshold, but no higher scoring alternatives exist.

With these parameters, the algorithm is bound to a running time of O(n2) and memory

requirements of O(n3). The intuition for this algorithm follows the intuition of segmented least

squares. In the segmented least squares problem, we are searching for a balance between accuracy

and number of lines, whereas in OpBerg we seek this parsimony between alignment score and

number of jumps through the matrix to start a new local alignment. The trade-off is then enforced

by the penalty constants P , α, β, and function γ(x).

3.2.1.2 Concurrent Processing

Even with the reduction in the running time as given by the above algorithm it is still desirable

to reduce the speed of computation for large input sizes. To reduce the speed of computation,

one may search for and take the path of large diagonals in the matrix [PL88, Rog01] or use

approximations [Alt90]. The approximations are unusable where exact matching is required, and

the large diagonals speedup is dependent on having the right type of input to be effective. We

present a simple multi-threaded approach that guarantees the exactness of the result while providing

the same speed-up regardless of the inputs.

The approach is to utilize the necessary knowledge to compute a given comparison (cell in

the recurrent matrix). As shown by Figure 3.1 all that is necessary for calculation of the given state

is 3 previous states. With this restriction we can have a pool of threads that calculate their state

given the known information and then continue. The only requirement is that the previous 3 states

are ready for the calculation of the current state. With the necessary knowledge being the cell above,

diagonal, and left of the current cell of interest, one thread will calculate a cell based on these given

states, then the current calculated cell can be passed along to a parallel process which then becomes

the necessary left state.

Under this approach the execution time becomes O(n2/T ) where T is the number of parallel

units.
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3.2.1.3 Quadratic Space

With the introduction of the concurrent processing approach it is not entirely clear whether the

algorithm can be used under existing linear space approaches which utilize a column vector and

a divide-and-conquer approach to reduce the memory. We find the existing approach to be easily

adaptable to Hirschberg-based methods [Hir75] by maintaining a column vector and shifting the

cells as necessary. An additional change is needed that holds the current locations of each cell and

restricts updating a cell until the locations of the subsequent thread have moved on from the current

cell of interest. Algorithm 3.2.1 details the necessary changes which reduce the memory to O(n2).

The existing memory requirements can be reduced even further by trading space for com-

putation time. By limiting the number of items held in the X and N matrices, the memory will

be capped by an input number Y . With one run of the algorithm the input can be reduced by the

returned Y breakpoints and recursively run. If the optimal number of breakpoints is R then the

execution time becomes O(R×n
2

Y×T ) and memory at O(Y × n).

3.2.1.4 Affine Gap

It should not always be the case that insertions and deletions (indels) between the inputs are weighed

equally, regardless of where they occur. For instance, in certain causal sentences, a large cluster of

indels may represent a tangential segment of words. To capture these occurrences, an affine gap

model that takes into account segments of tangential words must be adapted to OpBerg.

The changes required of OpBerg for an affine gap are similar to those in the original local

alignment algorithm [Got82]. Three matrices—representing a match/mismatch (LG), insertion (LI),

and deletion (LD) transitions, respectively—must be used in place of the original L matrix. The

max matrix M cannot enter into any of these three states because it represents a jump through

the inputs, so it remains the same. Also, since a local alignment must start and end with a match

(diagonal move), the transition between the L states to the M states can occur only through the new

LG matrix. This also applies to the X and N matrices, as they only must monitor jumps between

the LG and the M matrices.

57



The recurrent relations needed for the affine gap OpBerg model are given in their entirety as:

LI(i, j) = Max


LI(i− 1, j) + E

LG(i− 1, j) +O + E

LD(i− 1, j) +O + E

 (3.18)

HI(i, j) =


HI(i− 1, j) if LI(i, j) = LI(i− 1, j) + E

HG(i− 1, j) if LI(i, j) = LG(i− 1, j) +O + E

HD(i− 1, j) if LI(i, j) = LD(i− 1, j) +O + E

(3.19)

θ(i,j) = Max

 M(i− 1, j)

M(i, j − 1)

 (3.20)

δ(i,j) = Max



0

LI(i− 1, j − 1) + S(ai,bj)

LG(i− 1, j − 1) + S(ai,bj)

LD(i− 1, j − 1) + S(ai,bj)


(3.21)

LG,I,H(i, j) = LI(i− 1, j − 1) + S(ai, bj) (3.22)

LG,G,H(i, j) = LG(i− 1, j − 1) + S(ai, bj) (3.23)

LG,D,H(i, j) = LD(i− 1, j − 1) + S(ai, bj) (3.24)

LG,M,H(i, j) = M(i− 1, j − 1) + S(ai,bj) + P (3.25)

ψ(i,j) =



θ(i,j) if δ(i,j) = 0

HI(i− 1, j − 1) if δ(i,j) = LG,I,H(i, j)

HG(i− 1, j − 1) if δ(i,j) = LG,G,H(i, j)

HD(i− 1, j − 1) if δ(i,j) = LG,D,H(i, j)

(3.26)

π(i,j) = M(i− 1, j − 1) + S(ai,bj) + P (3.27)
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ε(i,j) =


π(i,j) if δ(i,j)− ψ(i,j) ≤ α

−∞ otherwise
(3.28)

LG(i, j) = Max

 δ(i,j)

ε(i,j)

 (3.29)

HG(i, j) =



θ(i,j) if LG(i, j) = 0

HI(i− 1, j − 1) if LG(i, j) = LG,I,H(i, j)

HG(i− 1, j − 1) if LG(i, j) = LG,G,H(i, j)

HD(i− 1, j − 1) if LG(i, j) = LG,D,H(i, j)

θ(i,j) if LG(i, j) = LG,M(i, j)

(3.30)

LD(i, j) = Max


LI(i, j − 1) +O + E

LG(i, j − 1) +O + E

LD(i, j − 1) + E

 (3.31)

LD,I,H(i, j) = LI(i, j − 1) +O + E (3.32)

LD,G,H(i, j) = LG(i, j − 1) +O + E (3.33)

LD,D,H(i, j) = LD(i, j − 1) + E (3.34)

HD(i, j) =


HI(i, j − 1) if LD(i, j) = LD,I,H(i, j)

HG(i, j − 1) if LD(i, j) = LD,G,H(i, j)

HD(i, j − 1) if LD(i, j) = LD,D,H(i, j)

(3.35)

ζ(i,j) =


LG(i, j) if LG(i, j) ≥ β

γ(LG(i, j)) otherwise
(3.36)
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M(i, j) = Max


ζ(i,j)

M(i− 1, j)

M(i, j − 1)

 (3.37)

LG,I,X(i, j) = LI(i− 1, j) +Q (3.38)

LG,G,X(i, j) = LG(i− 1, j − 1) + S(ai,bj) (3.39)

LG,D,X(i, j) = LD(i, j − 1) +Q (3.40)

NX(i, j) = N(i− 1, j − 1) ∪ (i, j) (3.41)

XD(i, j) = X(i− 1, j − 1) (3.42)

X(i, j) =



X(i− 1, j) if LG(i, j) = LG,I,X(i, j)

XD(i, j) if LG(i, j) = LG,G,X(i, j)

X(i, j − 1) if LG(i, j − 1) = LG,D,X(i, j)

NX(i, j) if LG(i, j) = ε(i,j)

∅ if LG(i, j) = 0

(3.43)

N(i, j) =


X(i, j) ∪ (i, j), if M(i, j) = ζ(i,j)

N(i− 1, j), if M(i, j) = M(i− 1, j)

N(i, j − 1), if M(i, j) = M(i, j − 1)

(3.44)

where (i,j) represents the cell location of both matrices and the ith POS token in A and the jth POS

token in B. S is a function that takes in two POS tokens and returns a score value. The opening gap

penalty is represented by O and the extension penalty by E.

Even with the newly created matrices and additional processing that must take place to

populate the matrices, the running time will be O(n2), with memory as O(n2).
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3.2.1.5 Path Reconstruction

The existing techniques presented so far have neglected to discover the path used to find the

maximal local alignments. The return values have only consisted of the maximum score and a set

of breakpoints derived from transitions from the M to the LG matrices. From these breakpoints

the path can be easily recovered using traditional techniques [MM88] that find the local alignment

path with an affine gap. The inputs can be broken into substrings along the breakpoints and then

fed into a subroutine calculating the normal local alignment with an affine gap. The results will be

matched with the substring and returned. Even though the traditional techniques are not concurrent,

the existing concurrency method is also applicable to these approaches. Therefore, the existing

execution time and memory size does not change.

3.2.1.6 Linear Space

Hirschberg-based methods have already shown the ability to linearize existing quadratic space

algorithms. It is a reasonable approach to apply this technique to the optimal alignments problem.

In fact, the solution does not differ very much from the techniques that have previously been applied.

The difference between OpBerg and other classical alignment problems dealing with affine gap

is the addition of the jump (M matrix) state. Outside of this state, the problem is the same as the

affine gap solution with the only change being higher starting values.

The solution to the linear affine gap problem is to consider the fact that the point on an optimal

path must be in one of two different states. These states are the deletion state or the diagonal state

(assuming indel penalties are less than match/mismatch penalties). The reason the maximum point

in the column vector that bisects the matrix cannot be in the insertion state is due to the fact that this

would require another point in the same column vector to be a higher value. With the addition of the

jump state, we consider whether the optimal path is in this jump state–much like the consideration

of whether the optimal path is in a deletion or diagonal state. Since the transition between the jump

state to an alignment state must occur through a diagonal, we can just consider this case as a normal

diagonal move.
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Algorithm 3.2.1 Affine OpBerg
Input: Sequences a and b, new alignment penalty P , gap opening penalty O, gap extending penalty E, scoring function S.
Output: Maximum score, set of breakpoints

procedure SCORE(a, b)
if |a| > |b| then

swap(a, b)
end if
for j = 1 to 2 do

for i = 1 to |a| do
LI(i, j)← −∞
LG(i, j)← 0
LD(i, j)← −∞
M(i, j)← 0
X(i, j)← {}
N(i, j)← {}
A(i, j)← (i,j)

end for
end for
α← −∞
µ← (0,0)
for j = 1 to |b| in parallel do

for i = 1 to |a| do
c← true
while c = true do

c← A(i-1, j) 6= (i-1, j)





(a)
c← c ∨A(i-1, j-1) 6= (i-1, j-1)
c← c ∨A(i, j-1) 6= (i, j-1)

end while
Calculate LI(i, j) according to Equation 3.18
Calculate LG(i, j) according to Equation 3.29
Calculate LD(i, j) according to Equation 3.31
Calculate M(i, j) according to Equation 3.37
Calculate X(i, j) according to Equation 3.43
Calculate N(i, j) according to Equation 3.44
if M(i, 1) > α then

lock α
if M(i, 1) > α then

α←M(i, 1)
µ← X(i,1)

end if
end lock

end if
LI(i-1, 1)← LI(i-1, 2)
LG(i-1, 1)← LG(i-1, 2)
LD(i-1, 1)← LD(i-1, 2)
M(i-1, 1)←M(i-1, 2)
X(i-1, 1)← X(i-1, 2)
N(i-1, 1)← N(i-1, 2)
if j = m then





(b)
LI(i, 1)← LI(i, 2)
LG(i, 1)← LG(i, 2)
LD(i, 1)← LD(i, 2)
M(i, 1)←M(i, 2)
X(i, 1)← X(i, 2)
N(i, 1)← N(i, 2)

end if
A(i-1, 1)← (i-1, j)
A(i-1, 2)← (i-1, j+1)
if j = m then





(c)
A(i, 1)← (i, j)
A(i, 2)← (i, j+1)

end if
end for

end for
return α, µ

end procedure

1
62



The forward recurrences become:

If (i, j) = Max


If (i− 1, j) + E

Gf (i− 1, j) +O + E

Df (i− 1, j) +O + E

 (3.45)

δ(i, j) = Max



If (i− 1, j − 1) + S(ai, bj)

Gf (i− 1, j − 1) + S(ai, bj)

Df (i− 1, j − 1) + S(ai, bj)

0


(3.46)

π(i,j) = Mf (i− 1, j − 1) + S(ai, bj) + P (3.47)

ε(i,j) =


π(i,j) if δ(i, j)−Mf (i, j) ≤ α

−∞ otherwise
(3.48)

Gf (i, j) =


ε(i,j) if ε > δ(i, j)

π(i, j) otherwise
(3.49)

Df (i, j) = Max


If (i, j − 1) +O + E

Gf (i, j − 1) +O + E

Df (i, j − 1) + E

 (3.50)

ζ(i,j) =


Gf (i, j) if Gf (i, j) ≥ β

γ(Gf (i, j)) otherwise
(3.51)

Mf (i, j) = Max


Mf (i− 1, j)

ζ(i,j)

Mf (i, j − 1)

 (3.52)
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With the backwards recurrences as:

Ib(i, j) = Max


Ib(i+ 1, j) + E

Gb(i+ 1, j) +O + E

Db(i+ 1, j) +O + E

 (3.53)

δ(i, j) = Max



Ib(i+ 1, j + 1) + S(ai, bj)

Gb(i+ 1, j + 1) + S(ai, bj)

Db(i+ 1, j + 1) + S(ai, bj)

0


(3.54)

π(i,j) = Mb(i+ 1, j + 1) + S(ai, bj) + P (3.55)

ε(i,j) =


π(i,j) if δ(i, j)−Mb(i, j)≤α

−∞ otherwise
(3.56)

Gb(i, j)=


ε(i,j) if ε(i,j) > δ(i, j)

δ(i, j) otherwise
(3.57)

Db(i, j) = Max


Ib(i, j + 1) +O + E

Gb(i, j + 1) +O + E

Db(i, j + 1) + E

 (3.58)

ζ(i,j) =


Gb(i, j) if Gb(i, j)≥β

γ(Gb(i, j)) otherwise
(3.59)

Mb(i, j) = Max


Mb(i+ 1, j)

ζ(i,j)

Mb(i, j + 1)

 (3.60)

With the affine gap the solution must always remember whether the first forward or backward

move is in a deletion state. In these cases, the subsequent deletion moves will be applied as a

linear case instead of opening a gap. To determine the state which is maximal in the column

64

3.2.2



vector bisecting the matrix, variables holding an opening delete (o), extension delete (e), jump (m),

match/mismatch (d), transition from a jump state (tf ), transition to a jump state (tb), and transition

to and from a jump state (t) state must be evaluated under the following equations:

oI(i, j) = If (i, j − 1) + Ib(i+ 1, j + 1) +O + E (3.61)

oG(i, j) = Gf (i, j − 1) +Gb(i+ 1, j + 1) +O + E (3.62)

o(i, j) = Max

 oI(i, j)

oG(i, j)

 (3.63)

e(i, j) = Df (i, j − 1) +Db(i+ 1, j + 1) + E (3.64)

m(i, j) = Mf (i,j − 1) +Mb(i+ 1, j + 1) (3.65)

df (i, j) = Max


If (i− 1, j − 1) + S(ai, bj)

Gf (i− 1, j − 1) + S(ai, bj)

Df (i− 1, j − 1) + S(ai, bj)

 (3.66)

db(i, j) = Max


Ib(i+ 1, j + 1) + S(ai, bj)

Gb(i+ 1, j + 1) + S(ai, bj)

Db(i+ 1, j + 1) + S(ai, bj)

 (3.67)

d(i, j) = df (i,j) + db(i, j)− S(ai, bj) (3.68)

tf (i, j) = Mf (i− 1, j − 1) + P + df (i,j) (3.69)

tb(i, j) = Mb(i+ 1, j + 1) + P + db(i,j) (3.70)

t(i, j) = Mf (i-1, j-1) +Mb(i+1, j+1) + P + S(ai, bj) (3.71)

The above equations handle the correct score in the majority of cases. A few edge cases occur

given the requirements of P , α, β and γ(x). It may be the case that P is added an additional time,

if both the forward and backward alignments have transitioned out for the matrix state. For this

we just need to add an additional boolean matrix that records whether there was a transition. If a

transition did occur, we just add a P back to the score where the current state is in an alignment.
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Algorithm 3.2.2 OpBerg
Input: Sequences a and b, new alignment penalty P , gap opening penalty O, gap extending penalty E, scoring function S.
Output: Maximum score, alignment path

procedure SCORE(a, b, P , O, E)
z ← 0
if |a| > |b| then

swap(a, b)
end if
return Linear(a, b, O, z,O, z,O, z,O, z, P,O,E)

end procedure

procedure LINEAR(a, b, if , gf , df , mf , ib, gb, db, mb, P , O, E)
Initialize I , G, DM from to i, g, d, m
for i = 1 to |a| do

Calculate If (i, 0) according to Equation 3.45
Gf (i, 0)← −∞
Df (i, 0)← −∞
Mf (i, 0)← mf

Af (i, 0)← (i, 0)
end for
Calculate Df (0, 1) according to Equation 3.50
for i = |a| − 1 to 1 do

Calculate Ib(i, 1) according to Equation 3.53
Gb(i, 1)← −∞
Db(i, 1)← −∞
Mb(i, 1)← mb

Ab(i, 1)← (i, 1)
end for
Calculate Db(|a|, 1) according to Equation 3.58
for j = 1 to d|b|/2e − 1 in parallel do

for i = 1 to |a| do
Wait for Af according to Algorithm 3.2.1(a)
Calculate If , Gf , Df , Mf according to Equations 3.45–3.52
Shift If , Gf , Df , Mf according to Algorithm 3.2.1(b)
Set Af according to Algorithm 3.2.1(c)

end for
end for
for j = |b| to d|b|/2e+ 1 in parallel do

for i = |a| to 1 do
Wait for Ab according to Algorithm 3.2.1(a) (rev)
Calculate Ib, Gb, Db, Mb according to Equations 3.53–3.60
Shift Ib, Gb, Db, Mb according to Algorithm 3.2.1(b) (rev)
Set Ab according to Algorithm 3.2.1(c) (rev)

end for
end for
α← −∞
s← 0
h← d|b|/2e
for i = 1 to |a| do

Calculate o, e,m, d, tf , tb, t according to Equations 3.61–3.71
max←Max(o, e,m, d, tf , tb, t)
if max > α then

α← max
s← i
Set if , ib, g, d, m according to move

end if
end for
al ← a1,2,...,s−1

ar ← as+1,s+2,...,|a|
bl ← b1,2,...,h−1

br ← bh+1,h+2,...,|b|
left← Linear(al, bl, if , gf , df ,mf , ib, gb, db,mb)
right← Linear(ar, br, if , gf , df ,mf , ib, gb, db,mb)
return left ∪ {α, (s, h)} ∪ right

end procedure

1
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The other edge case to consider is when the backward and forward alignments are both in a state

of an alignment that is less than β. It is possible that the sum may be greater than β or even a

separate call to γ(x) must be made. This only requires a call to the original M equation but with

the consideration of both the forward and backward alignments for the case when the alignments

are in a small score length alignment state.

The linear approach also has the benefit of discarding the N and X matrices. The breakpoints

will no longer need to be recorded as we go through the matrix since they will be discovered linearly

in a divide-and-conquer manner through the matrix. The existing multithreaded algorithms apply in

the same way as in the linear space version. Algorithm 3.2.1 shows the complete approach which

results in a solution that costs O(n2/T ) in execution time and O(n) in memory.

3.2.2 Evaluation

To show the utility of OpBerg, we demonstrate its ability to find causal sentences and compare it

to other models. We also run a set of empirical tests, which shows OpBerg to be well suited for

various tasks. After investigating the performance of our algorithm, we describe in more detail a

causal example, followed by experiments showing OpBerg’s ability to identify causal sentences.

3.2.2.1 Performance Benchmarking

To show the utility of the concurrent processing approach, we set up a simple experiment where we

compare two sequences of size n using 1 to 3 threads. The input size is varied from 100 to 10,000

characters. The results which are plotted in Figure 3.2, show that the execution does indeed follow

a O(n2) function, but adding in additional threads decreases the execution time. At an input size of

10,000, the processing time for 3 threads is approximately half that of 1 thread. This reduction is

likely to be even more significant as the input size grows, which makes the concurrent processing

approach useful in large input sets, such as the human genome.

It is often assumed that a quadratic-running-time algorithm is too slow to be feasible for

analysis. We show that this is not the case when using OpBerg, compared to using a popular

platform such as Weka [HFH09] for analysis. From Weka, we use the four most popular machine

learning baseline methods for causality extraction. These are logistic regression (LR), random forest
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Figure 3.2: Execution time of OpBerg against varying input sizes for 1, 2, and 3 threads.

(RF) [LW02], support vector machines (SVM), and naive Bayes classifiers (NBC). We set up a

simple experiment where we wish to classify causality of biological sentences with a training set

of 100 labeled sentences and a test set that ranges from 1,000 to 10,000 candidate sentences. The

results, which are plotted in Table 3.1, show that the execution time of OpBerg far outperforms

that of the baseline methods. This is due to the ability to process the input concurrently, which is

an advantage of the model. The ability to execute concurrent processing of the baseline methods

is dependent on the platform in which they are run, and at least some platforms do not provide

concurrency implementations—as is the case with Weka.

Input size OpBerg LR RF SVM NBC

1,000 248 495951 14001 12703 44901

5,000 598 1013126 72434 61958 416065

10,000 934 1496572 138446 122060 867166

Table 3.1: Execution time (ms) of multi-threaded OpBerg alongside logistic regression, random
forest, support vector machines, and naive Bayes classifiers for varying input sizes (n) for causality
discovery.

3.2.2.2 PubMed Extraction

An integral part of neuroscience initiatives, such as our work in Section 3.3, is cataloging and

connecting causal assertions of biomedical findings. To show that OpBerg can automatically

discover causal assertions, we give an example of assertions found by OpBerg in a corpus of
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However UVB has been demonstrated to be a causal factor for basal cell carcinoma,

squamous cell carcinoma, and lentigo maligna in epidemiological and experimental stud-

ies, and UVB exposure has been shown to induce the superficial spread of melanoma in

humans and other animals.

ABCDDEFGHBIBBJBBIHJHKJBBCDDEFGHBIBIKJHKL

(a) OpBerg

Hypoxic regulation of EMT has been shown to be involved in cancer pro-

gression and metastasis, and HIF-1α has been identified as a regulator

of EMT in several cancer cell lines.

HBIBCDDEFDIBBJBJBCDDIGBIBIHBBKLLL

(b) AGE

Because dendritic filopodia have been proposed to be precursors of dendritic spines and syndecan-2 has been shown to induce filopodia

formation in nonneuronal cells (Granes et al.,1999, 2000), it is likely that the overexpression of syndecan-2 incultured hippocampal

neurons first induces filopodia formation and then promotes dendritic spine maturation.

IHBNDDEFKIKJBCDDEFBIHKCOOLLLPCHIGBIBIDHKACBJACBB

IHBNDDEFKIKJBCDDEFBIHKCOOLLLPCHIGBIBIDHKACBJACBB

Associations between outcomes of antiangiogenic therapy with VEGF levels in the circulation has been

reported in some phase II studies but many studies have shown a lack of correlation between VEGF

levels at baseline and outcome of antiangiogenic therapy.

KIKIHBIBKIGBCDDIGBMKLLLJHKNDGBIBIBKIBJBIHBLL

(c) Global

A negative feedback loop between ZEB1 and microRNA-

200c has been shown to regulate this EMT induction in

various models.

GHBBIBJBCDDEFGBBIHK

(d) Local

Figure 3.3: A graphical example of matching potential causal sentences using POS mappings. The
base sentence [Lin07] was taken from ResearchMaps, found in the PubMed Central corpus, and
used as a reference point to find similar sentences under the OpBerg (a) [Shi10], AGE (b) [Vas10],
Global (c) [RB10] and Local (d) [Wel10] alignment methods. The dotted lines represent the aligned
segments.

biomedical text, as well as those found by other methods. This example is meant to provide the

reader with a visual intuition as to why OpBerg works and not meant for large data comparative

analysis.

3.2.2.2.1 Experimental Setup

A subset of potential causal sentences was taken from the PubMed Central data set. PubMed Central

is an open-access corpus of biomedical literature consisting of over 4 million full-text articles.

Each PubMed Central document is broken into a set of sentences using the Stanford CoreNLP

tokenizer. Each sentence is filtered to identify whether it has two or more entities from the

Neuroscience Information Framework (NIF) ontology2. These candidate sentences are then broken

into their respective parts of speech (POS) using the Stanford CoreNLP POS tagger. The NIF

filtering was applied to a randomly chosen subset of PubMed Central documents, resulting in 10,000

candidate sentences that originated from 95 distinct research articles.

2https://neuinfo.org/
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Next, the existing ResearchMaps database was queried to obtain a list of agent–target pairs, as

well as the research article in which the agent–target pair appeared. Each article from an agent–target

pair was then obtained and split into sentences. The sentences that contain both the agent and targets

were taken to be causal sentences and were manually verified. This ground truth consisted of 111

sentences found from a pool of 5,895 experiments in the ResearchMaps database. The sentences

were then broken into their respective POS mappings, and the longest sentence was taken as the key

in which to map potential causal sentences with.

Each of the 10,000 potential causal sentences from PubMed were aligned against the selected

ResearchMap sentence using POS mappings of the sentences. The goal is to find the best matching

sentence that captures a causal connection, as well as the type of study that was performed, using

the OpBerg, local, global, and AGE algorithms. For each algorithm, a match/mismatch penalty was

given as +2/–1, indel as −2 for opening and −1 for an extension. For OpBerg, a new alignment

penalty P was set to –1/2, α as 6, β as 3 and γ(x) = 0.5× x. The parameters were chosen out of

what we believe is the most traditionally used parameters for these variables [Wik20]. β, α, and

γ(x) are chosen to what we think is most intuitive. What we think are important are alignments

that have some variance (i.e. mismatches and indels) which lead to a high α, and want matches

to be longer than single POS matches (β). However, for an additional alignment that gives us a

max alignment score we would want to consider it given it is not a single POS match (γ(x)). This

experiment and choice of parameters underscore a larger concept of OpBerg. The algorithm is not

meant to be a classifier in the traditional sense, rather it is to find appropriate matches given a small

set of input. The only ground truth we have for each input item is the input item itself so any choice

of parameters cannot be learned or optimized and must be somewhat arbitrary.

Name Description Classes D Sentences

RM46 ResearchMaps collection of 46 neuroscience articles 2,4,7 46 200

LLL05 Causal sentences and papers extracted from the LLL05 Challenge 2 45 131

NDE27 Non-domain experts labeling of various PubMed articles 2 27 1,025

BioCause The biomedical discourse causality corpus and corresponding articles 2 20 1,000

RM6 Domain expert labeled set of articles from ResearchMaps 2,4,7 6 356

Table 3.2: Datasets used in the evaluation of OpBerg in a classification task.
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Figure 3.4: F-scores shown as a heatmap for OpBerg compared with baseline methods using POS
features of sentences, general word embeddings, and causal embeddings in order to determine
causality and other biological classes.

3.2.2.2.2 Experimental Results

The matching sentence for each model is given by Figure 3.3. Out of all the algorithms, OpBerg

maintains the highest score (32) over AGE (27), global (7), and local alignments (20). All returned

sentences show some form a causality, but to be most useful in research contexts, it is important

to identify not only causality but also the experiment type and result. The sentence from AGE

indicates a causal connection between HIF-1α and EMT, but no information is given as to how

these two entities interact. The sentence used as the key clearly indicates a positive intervention (on

syndecan-2) and an excitatory relationship between syndecan-2, filopdia formation, and dendritic

spine maturation. This lack of information regarding the study and relationship types also occurs in

the global sentence and local sentences. However, the returned OpBerg sentence discovers both the

causal relation and the type of study that was performed. The relationship of UVB exposure and

melanoma is the exact same as that of the key and therefore is the most useful match among the

competing models.

71



OPB LR NBC RF
SVM

OPB LR NBC RF
SVM

OPB LR NBC RF
SVM

0.
12

0.
26

0.
39

0.
53

BOW
BOW+POS

F
−

sc
or

e
Causal Result All

%
∆ 

 F
−

sc
or

e

LR
−B

OW

NBC−B
OW

RF−B
OW

SVM
−B

OW

LR
−B

OW
+P

OS

NBC−B
OW

+P
OS

RF−B
OW

+P
OS

SVM
−B

OW
+P

OS

LR
−B

OW

NBC−B
OW

RF−B
OW

SVM
−B

OW

LR
−B

OW
+P

OS

NBC−B
OW

+P
OS

RF−B
OW

+P
OS

SVM
−B

OW
+P

OS

LR
−B

OW

NBC−B
OW

RF−B
OW

SVM
−B

OW

LR
−B

OW
+P

OS

NBC−B
OW

+P
OS

RF−B
OW

+P
OS

SVM
−B

OW
+P

OS

−
19

.7
4

−
6.

58
6.

58
19

.7
4

Causal Result All

Figure 3.5: F-scores for OpBerg (OPB) compared with LR, NBC, RF, and SVM using a bag of
words representation of the input sentences with and without part of speech features in order to
determine causality (Causal), the appropriate result class (Result) and all relevant neuroscience
classes (All) (a). Results are also shown as a percent change increase in F-score when OpBerg
features are included in the baseline models (b).

3.2.2.3 General Classification

A useful feature of OpBerg is its ability to determine whether a sentence is a good match to an

existing labeled sentence; it thus captures the similarity between two sentences. This similarity

measure then can be used to classify whether the sentence is causal. Furthermore, we seek the

ability to classify a more diverse set of classes that are useful to biologists. We test the ability

of OpBerg to classify causality against the baseline methods of logistic regression (LR), support

vector machines (SVM), naive Bayes classifier (NBC), random forest (RF) [LW02], AGE, the local

alignment algorithm (local), global alignment algorithm (global), k-means clustering, density-based

spatial clustering of applications with noise (DBSCAN) [Est96], balanced iterative reducing and

clustering using hierarchies (BIRCH) [Zha96], a feedforward neural network (NN), and a recurrent

neural network (RNN), convolutional neural network (CNN) and lastly a BERT based bidirectional
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GRU with self attention (BERT+BIGRUATT) [KAS]. The various datasets used are described by

Table 3.2.

3.2.2.3.1 Experimental Setup

For each dataset that contains only causal sentences, we query the PubMed Central corpus for their

respective articles. For each article we obtain the sentences which are not like a causal sentence.

We define similar as the global alignment score and remove the top 5 most similar sentences to

any causal sentence. All remaining sentences are labeled as non-causal. The resultant number of

sentences and articles for each dataset is given in Table 3.2.

The hyperparameters for OpBerg were optimized using Bayesian optimization. For each

labeled input set we then trained OpBerg, and the baseline methods using 10-fold cross validation.

To obtain a classification probability for each alignment method, each test sentence’s POS tokens

(a) were compared to each POS-mapping of the sentences in the training set using the OpBerg

algorithm. The highest matching score (Hm) was taken as the best match for a given sentence’s

POS string (b). If the best match belonged to a causal sentence, a probability was given to the test

item as P+(a,Hm), with P+ defined as:

P+(a,H) =
H

Max[S(ai, ai)]× |a|
(3.72)

For each test input we also recorded the highest matching score aligned to a causal training sentence

(Hc). If the best match was not a causal sentence, the probability was given to be:

P−(a,H) = Min


1− P+(a,Hm)

P+(a,Hc)

 (3.73)

Inputs for all methods were made using part of speech (POS) features obtained by the Stanford

CoreNLP POS tagger, embeddings using the GloVe Wikipedia 2014 + Gigaword dataset [Pen] and

and from a task-specific word embedding technique for causality [BS21].
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Figure 3.6: The precision recall curve for OpBerg and competing models for the task of determining
whether a given sentence is causal.

In some of the datasets we were only able to obtain whether a sentence was causal or not.

However, in the ResearchMaps datasets we were able to determine more numerous classes of

interest. The classes of interest were separated into three sets. The simplest set was labeled whether

a sentence was causal. In the second, we are given the qualitative result of the experiment, i.e.,

increase, decrease, no change, or non-causal. The most diverse set consisted of 7 different classes

describing biological phenomena: a permutation of the set negative or positive with the set of no

change, increase, or decrease together with a non-causal label.

3.2.2.3.2 Experimental Results

The F-score for all models and datasets is represented as a heat map in Figure 3.4. In all but one

dataset, OpBerg gives the highest F-score amongst each baseline method. Our results suggest

alignments are a good technique in classifying causal sentences when the training set size is low;

and the best among these alignment algorithms is OpBerg.

3.2.2.4 Domain Expert Classification

3.2.2.4.1 Experimental Setup

From ResearchMaps and the PubMed Central corpus we obtain a ground truth set of sentences as in

Section 3.2.2.2. Next, we randomly select a set of sentences that are not causal. The non-causal

sentences were first randomly obtained from PubMed Central, along with their POS mappings, and
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then manually verified as not causal. The result was 81 causal and 119 non-causal sentences. The

81 causal sentences were comprised from a total of 6 research articles.

With this labeled input set we then trained OpBerg, LR, RF, NBC, and SVM by using all

but one research article and tested every sentence in the left-out article. We repeat this process for

each individual research article. The classification probabilities were taken from Equation 3.72 and

Equation 3.73.

Inputs for LR, RF, SVM, and NBC were made using a bag-of-words (BOW) representation,

and a combination of BOW and part of speech (POS) features. Probabilities were also calculated

for the baseline methods combined with OpBerg features for comparative analysis. The classes of

interest are described in Section 3.2.2.3.

3.2.2.4.2 Experimental Results

The F-score for all the models and the classification tasks are given by Figure 3.5(a). Results that

were computed using a combination of BOW and POS features are represented in the figure by

“BOW+POS”. In each task, OpBerg gives the highest F-score compared to each baseline method,

regardless of the input. The addition of POS features to the BOW representation appears negligible,

but the addition of OpBerg features shows a more profound effect. Figure 3.5(b) demonstrates that

more models have a positive change in F-score than models where there is a decrease. And the

positive cases show a higher increase in F-score than the negative decreases. This substantiates

OpBerg features as useful in existing machine learning methods of causality extraction.

When mining causal connections in text, precision is more important than recall. This is

due to having so many candidate items from large document collections such as PubMed Central.

Most of the high F-score values for the machine learning models come from a threshold resulting in

small precision and large recall. But this is the opposite of what we want: it would result in noisy

and incorrect assertions. As is shown in Figure 3.6, only OpBerg displays a precision–recall curve

which allows for a threshold to be set that results in a high precision and a high F-score. This ability

makes OpBerg ideal in returning a relativity large set of accurate causal classifications.
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3.2.3 Discussion

Opberg represents a new approach to solving difficult NLP problems. Opberg is not meant to

replace previous state of the art techniques in all datasets, rather it can be the best approach

when the classification is complex and only a small amount (in the order of 102 to 104) labeled

data exists. We maintain the effectiveness of Opberg over other machine learning approaches

[TJ97, Gir10, Do11, HY10, CC04, Bla08] when the labeled training data is small. Additionally,

if confidence is maintained in the quality of the knowledge source in covering the input data,

predefined knowledge methods [PB21, Che21b, KB91, GM02, Bui10] may be more appropriate. In

situations where an alternative method is preferred, Opberg can add value as an additional learning

feature. In fact, it is the vision of the authors that Opberg will be most valuable to the research

community as a complement to established approaches.

The benefits of Opberg come at an additional cost. The algorithm is complex, and the context

can be unfamiliar to both the trained computer scientist and/or bioinformatician. If execution time

is not a concern, it is recommended to implement either Equations 3.3–3.16 or Equations 3.18–3.44.

However, with large input sizes it is likely that Equations 3.3–3.16 or Equations 3.18–3.44 may

degrade performance significantly. To improve the execution time taken for large input it may be

worth investigating the use of graphics processing units (GPU) to enhance Algorithm 3.2.2. If the

GPU processing power can be used, large inputs sizes, such as the human genome, can be used as

input to Opberg and results determined in a reasonable amount of time.

The approach of POS sequence alignment has some weaknesses. For one the algorithm does

not take into account particles which may confer a different meaning than a sentence without the

particle. An example of this would be the two sentences: A does have a positive effect on B. and A

does not have a positive effect on B. Opberg does not take into account the negating word and a

comparison would result in a high score. Another area for further research exploration is in entity

extraction. Opberg may be good at finding similar structured sentences but in identifying the key

terms, it is lacking. In real world applications, the authors envision to use Opberg in a pipeline with

entity extraction methods run on the output after Opberg “filtering” for small labeled input sets.

Opberg represents a novel approach to causal discovery by considering alignments among

POS mappings of sentences. This approach considers restrictions on the score size to break apart
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an alignment and enforces a minimum length requirement while also considering the number of

alignments. OpBerg discovers meaningful alignments that return from alignment query results that

are more useful in finding semantic similarity of two causal sentences. The improved model and

efficient implementation make OpBerg the best model to use when performing tasks that involve the

alignment of two or more sets of input, particularly in that of POS mappings for causal extraction.

3.3 ResearchMaps

Having extracted a causal representation, the next step is developing the semantics to describe

the causal representations in a way that maximizes knowledge discovery. To establish this goal

we seek to represent the extracted causality from Opberg into a causal network. We develop an

application, called ResearchMaps which visualizes the network of biological assertions; a superset

of information to causal assertions. Additionally, we formulate numeric descriptions of certainty

that are in line with scoring heuristics of the neurobiologist. These numeric descriptions become

the context for how we later describe casual assertions.

A research map is a directed graph that represents information concerning possible causal

relations between biological phenomena [LS13]. Each node in the graph represents the identity

and properties of a biological phenomenon, and each directed edge—from an Agent node to a

Target node—represents a relation between phenomena (e.g., A B). In an experiment, an Agent

is either intervened on or observed; this Agent may or may not act on another phenomenon, the

Target, which is measured in the experiment. An Agent for one edge can be a Target for another.

The key concepts captured in research maps reflect common epistemic practices in many fields of

biology, represented in areas as diverse as neuroscience, development, immunology, and cancer.

Thus, research maps should be useful to represent information in these and other areas of biology.

See Figure 3.7 for an example of a research map of a published article [CAS16].

3.3.1 Framework

In research maps, biological experiments are categorized according to a hierarchical framework

[SLB14]. We propose that experiments in many fields of biology can be classified into three general

77



NMDAR
CA1
adult

strength memory second context
mice

5 hours after first context exposure

0.1 

ensemble overlap
CA1

exposure to two contexts 5 hours apart

0.0625 

memory linking
CA1

after training in two contexts 5 hours apart

Excitability
CA1

in old mice

0.0625 

anxiety
CA1

14-16 month old

0.0625 

0.0625 

Exposure to two contexts
14-16 month old mice mice

5 hours apart

ensemble overlap
14-16 month old CA1

exposure to two contexts 5 hours apart

0.1 

Exposure to two contexts
14-16 month old mice

5 hours apart

memory linking
14-16 month old CA1

after training in two contexts 5 hours apart

0.0625 

Exposure to two contexts
mice

7 days apart

ensemble overlap
CA1

exposure to two contexts 7 days apart0.125 

memory linking
CA1

after training in two contexts 7 days apart

0.1 

Exposure to two contexts
mice

5 hours apart

0.1429 

0.125 

linked extinctions
CA1

after training in two contexts 5 hours apart

0.0625 

aging
mice

14-18 months

Excitability
CA1

5 hours after context exposure
memory allocation

CA1
5 hours after context exposure

context exposure
mice
adult

0.0625 

0.0625 

strength memory second context
mice

7 days after first context exposure
0.0625 

Figure 3.7: An example research map corresponding to the paper: “A shared neural ensemble links
distinct contextual memories encoded close in time.”

classes: (1) Identity Experiments attempt to identify phenomena and their properties; (2) Connection

Experiments, the subject of research maps, test causal hypotheses; and (3) Tool Development

Experiments develop and evaluate tools for performing Identity and Connection Experiments.

Within the class of Connection Experiments, we propose that there are four subclasses

of experiments used to test a hypothesized connection between an Agent A and a Target B:

(1) Positive Intervention, (2) Negative Intervention, (3) Positive Non-intervention, and (4) Negative

Non-intervention. In a Positive Intervention experiment, the quantity or probability of the Agent A

is increased, and the change (or lack of change) in Target B is measured. For example, to determine

whether the activity of cell type A affects memory B, one could increase the activity of cell type A

and then study the impact on memory B. In this case, the activity of cell type A is actively increased

via an intervention—for instance, optogenetically.

A Negative Intervention experiment decreases the quantity or probability of A and measures

B. For example, we could study how memory B is effected by a manipulation that inhibits cell

type A. Positive and Negative Intervention experiments thus complement each other: the two use

different approaches to probe the strength of the hypothesized connection between A and B.
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Using only Positive and Negative Intervention experiments raises a number of problems that

could confound the interpretation of those experiments. For example, such experiments always

impose a change in an Agent A with methods that could have unintended effects. Therefore, any

change observed in Target B may not necessarily result from a causal connection between A and

B that is observable under specific conditions (e.g., during a spatial learning task); the change

in B could instead be caused by experimental side effects of artificially intervening on A. The

experimental process of intervening on A may inadvertently affect another phenomenon, C, even if

C is not normally affected by A outside of the experimental setting. Although C may be the true

cause of B, it may appear to the experimenter, who is oblivious to C’s involvement, that A causes

B. This possibility demonstrates the need for Non-intervention experiments to complement Positive

and Negative Interventions.

A Non-intervention experiment measures A and B without intervening on either. In a Positive

Non-intervention experiment, the quantity or probability of A is observed to increase, and the

change (or lack of change) in B is measured. In a Negative Non-intervention experiment, the

quantity or probability of A is observed to decrease, and B is measured. These experiments help us

to learn whether the relation between A and B identified by Intervention experiments exists outside

of the experimental setting used to intervene on A. Without Non-intervention experiments, it is

difficult to be sure that experimental results are not mere artifacts caused by the interventions used

to change A. In many fields of biology, Non-intervention experiments alone are usually judged to

be insufficient to determine whether two phenomena are causally connected, as they are thought to

merely document the correlation between these phenomena. However, elegant methods have been

developed to identify specific causal structures solely from patterns of correlations derived from

observational (i.e., non-interventional) data [SGS00].

From the four classes of experiments described above, we can glean evidence for three types

of relations between phenomena. A relation between an Agent and a Target is defined as Excitatory

when an increase in the Agent leads to an increase in the Target, or a decrease in the Agent leads to

a decrease in the Target. In an Excitatory relation, a Positive Intervention experiment would result

in an increase in the Target, and a Negative Intervention experiment would result in a decrease

of the Target. In an Inhibitory relation, an increase in the Agent leads to a decrease in the Target,
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while a decrease in the Agent leads to an increase in the Target. When changes in the Agent fail to

affect the Target, there is evidence for the absence of a connection between the two phenomena. In

this last case, although the Agent and Target do not appear to be connected, this independence is

represented explicitly with a relation denoted as No-connection.

3.3.2 Rules of Integration

In biology—and in research maps—a key approach to determine the reliability of results and

the usefulness of hypotheses is to look for convergence and consistency in a set of findings. For

instance, we can ask whether A reliably affects B or whether A and B are consistently independent

of each other. We refer to the process that attempts to combine a series of experimental results as

Integration [SLB14].

Integration methods determine the strength of the evidence for a particular connection, which

is quantified and expressed as a score for a particular edge in a research map. The evidential strength

of a connection is not to be confused with the magnitude of the causal effect that A has on B, where

A may be one of many possible causes of B. Integration methods include (but are not limited to)

Convergence Analysis and Consistency Analysis [SLB14]. By gauging the extent to which evidence

is convergent and consistent, these Integration methods help to distinguish hypotheses with strong

support from those with weak support. The principles of convergence and consistency are thus used

for instantiating and scoring empirical edges in research maps.

Convergence Analysis assesses whether the outcomes of the different kinds of Connection

Experiments (Positive and Negative Interventions, and Positive and Negative Non-interventions) are

consistent with each other—i.e., whether they support a single connection type (either Excitatory,

Inhibitory or No-connection). Suppose we find that optogenetically inhibiting cell type A is

associated with a deficit in spatial learning. Suppose also that enhancing the activity of cell type A

enhances the same form of learning. If we also found that cell type A is activated during spatial

learning, and that this cell type is inactive when the animal is not learning, then our combined results

would make a compelling argument that the activation of cell type A is causally connected to spatial

learning. This convergence between these four classes of experiments would yield a relatively high

score for the Excitatory connection in a research map representing the relation between cell type A
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and spatial learning. On the other hand, contradictions among the data would lower the score of the

connection. Convergence Analysis thus encompasses the notions that multiple lines of evidence are

preferable to one, and that different experiment classes make unique contributions to testing the

reliability of a hypothesized connection between two phenomena.

In addition to gauging the convergence of experimental results across multiple classes of

experiments, it is also important to gauge the consistency of experimental results within each class

of experiment. For this purpose, Consistency Analysis assesses whether experimental results are

reproducible. For example, we might ask whether different kinds of Positive Interventions on the

activity of cell type A (e.g., chemogenetic and optogenetic) always result in an enhancement of

spatial learning. This question can refer to multiple iterations of the exact same experiment, or to a

set of experiments that are similar in principle—e.g., two Positive Interventions of receptor A, one

chemogenetic and the other optogenetic, that test two different forms of spatial learning.

3.3.3 Calculating Scores

To convey the amount of evidence for a particular empirical edge in a research map, a score for

the edge is calculated using an algorithm based on the Integration methods above. These methods

reflect epistemological rules and commonsense intuitions found in fields that use molecular and

cellular approaches to biological problems, including neurobiology, biochemistry, cell biology, and

physiology. In designing an approach to scoring such evidence, we strove to express quantitatively

the following axioms: the principles of (1) convergence and (2) consistency, as described above;

(3) the principle that convergence carries greater epistemological weight than consistency; and

(4) the principle that we have no a priori reason to prefer one class of experiment to another when

aggregating evidence. (In areas of science where one type of experiment is favored over others

for technical reasons, our approach allows for a non-uniform weighting of evidence from different

experiment classes.) There are other axioms used in science that have not been expressed in the

scoring algorithm of research maps [SLB14] because we see them to be secondary to the ones

above.

The central idea of our scoring approach is that convergent and consistent results increase the

score of an edge, while conflicting results decrease the score. Each score falls in the range (0,1),
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and each experiment class (Positive Intervention, Negative Intervention, Positive Non-intervention,

and Negative Non-intervention) contributes an amount in the range (0,0.25) to the overall score.

Multiple experiments of the same kind contribute progressively smaller scores to the edge. As

experiments are recorded, a Bayesian approach is used to update the degrees of belief attributed to

each type of relation. The scores thus reflect an approach for gauging the strength of the convergent

and consistent evidence supporting a given connection; their semantics are derived not from their

absolute values but from their relative values. In addition to p-values from statistical tests and

associated meta-analyses, this scoring method could conceivably be used to evaluate the strength of

evidence across various types of experiments testing a single causal assertion.

The score for an edge in a research map is calculated as follows. Let C =
{
↑,∅↑,∅↓, ↓

}
denote the set of all experiment classes, where c = ↑ denotes the class Positive Intervention; c = ∅↑

denotes the class Positive Non-intervention; c = ∅↓ denotes the class Negative Non-intervention;

and c = ↓ denotes the class Negative Intervention. Let R = {E ,N ,I} denote the set of relations

that can exist between two phenomena and for which an experiment can provide evidence, where E
denotes an Excitatory relation; N denotes a No-connection relation; and I denotes an Inhibitory

relation. Thus, an experiment of class c ∈
{
↑,∅↑,∅↓, ↓

}
can yield evidence in support of relation

r ∈ {E ,N ,I}.
−→α c = (αc,E ,αc,N ,αc,I) (3.74)

−→
θ c = (θc,E ,θc,N ,θc,I) (3.75)

−→x c = (xc,E ,xc,N ,xc,I) (3.76)

(θc,E ,θc,N ,θc,I) ∼ Dir(αc,E ,αc,N ,αc,I) , (3.77)

(xc,E ,xc,N ,xc,I) ∼ Mult(θc,E ,θc,N ,θc,I ,nc) . (3.78)

Here, αc,r is the prior weight given to relation r supported by experiments of class c; θc,r is the

probability that the next experiment of class c will yield evidence in support of relation r; xc,r is the

number of experiments of class c that have yielded evidence in support of relation r, and nc is the

number of experiments of class c that have been performed. For each class of experiment c, we can
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B+ B0 B−
A ↑ 5 1 1

A∅↑ 1 1 2

A∅↓ 1 1 2

A ↓ 1 1 1

P(E) = (1/4)
[
(5/7)↑ + (1/4)∅↑ + (2/4)∅↓ + (1/3)↓

]
= 0.449

P(N ) = (1/4)
[
(1/7)↑ + (1/4)∅↑ + (1/4)∅↓ + (1/3)↓

]
= 0.244

P(I) = (1/4)
[
(1/7)↑ + (2/4)∅↑ + (1/4)∅↓ + (1/3)↓

]
= 0.307

Relation = Excitatory Score =
0.449 − (1/3)

1 − (1/3)
= 0.174

Figure 3.8: An example of a score calculation given the observed values in the table.

define −→x c (compare to the table in Figure 3.8):

−→x ↑ = [x↑,E ,x↑,N ,x↑,I ] (3.79)

−→x ∅↑ =
[
x∅↑,E ,x∅↑,N ,x∅↑,I

]
(3.80)

−→x ∅↓ =
[
x∅↓,E ,x∅↓,N ,x∅↓,I

]
(3.81)

−→x ↓ = [x↓,E ,x↓,N ,x↓,I ] (3.82)

The score of an edge is based on the values of θc for each of the experiment classes, which

are updated as additional experiments are recorded, thereby changing the values of −→x c. We are thus

interested in estimating each
−→
θ c in light of the evidence represented by each −→x c. Applying Bayes

theorem yields

p(
−→
θ c | −→x c,

−→α c) ∝ θ
αc,E+xc,E−1
c,E θ

αc,N+xc,N−1
c,N θ

αc,I+xc,I−1
c,I (3.83)

The posterior distribution is in the form of a Dirichlet distribution, so we have that

θc | −→x c,αc ∼ Dir(αc +−→x c) . (3.84)

The expected value of this distribution is thus expressed as

E [θc,r | −→x c,αc] =
αc,r + xc,r∑
r αc,r + nc

. (3.85)
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If αc,r = 1 for all c and r, the above expression becomes

E [θc,r | −→x c,αc,r = 1] =
1 + xc,r
|R|+ nc

, (3.86)

which is an implementation of Laplace (add-one) smoothing.

In the absence of evidence (i.e., before any experiments are performed), xc,r = 0 for all c, r.

We denote this state by θo:

θo = E [θc,r | −→x c = (0,0,0) ,αc,r = 1] =
1

|R| =
1

3
. (3.87)

Let θ denote the set of mean r-components across all experiment classes (an expression of

convergence):

θE =
∑
c

E [θc,E | −→x c,αc,E = 1] (3.88)

θN =
∑
c

E [θc,N | −→x c,αc,N = 1] (3.89)

θI =
∑
c

E [θc,I | −→x c,αc,I = 1] (3.90)

θ =
1

|C|
[
θE ,θN ,θI

]
(3.91)

The relation assigned to the research-map edge is the relation with the largest component in θ:

argmax
r

θr (3.92)

The score assigned to the research-map edge is

max θ − θo
1− θo

(3.93)

where max θ denotes the largest component of θ. In cases where two or more components of θ are

equal, neither a relation nor a score is assigned to the edge.
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Edge's score

0.25

0.00
↑ ↑↑ ↑ ∅↓∅↑↑ ↓

Class of experiment Class of experiment

Figure 3.9: Plots showing how the edge score value changes with increasing the number of
experiment of the same class (left) and with different experiment classes (right).

See Figure 3.8 for a depiction of a shorthand calculation of an edge’s score. See Figure 3.9 for

plots of how the score of an edge increases with each subsequent experiment due to the principles

of consistency and convergence.

It is worth noting that the scores derived from the above scoring algorithm, which is based on

Bayesian principles, closely resemble those derived from another heuristic scoring approach from

early versions of research maps, which expressed scientists’ intuitions regarding the integration of

evidence [SM15].

3.3.3.1 A scoring example

To develop an intuition for the above scoring approach, consider the following example, which uses

the experiments involving CREB and the number of Arc neurons that are depicted in Figure 3.10(a).

In this research map, the edge connecting these two nodes represents three experiments: two Positive

Interventions of CREB resulting in no change in the number of Arc neurons, and one Negative

Intervention of CREB, again resulting in no change. Together, these three experiments provide

evidence for a No-connection edge between the two nodes. Before any of these experiments were

performed,
−→
θc was uniform for all c. After the first experiment, in which a Positive Intervention

produced no change in the Target,
−→
θc = (0.25,0.50,0.25) and the score of the edge was 0.0625.
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After the second Positive Intervention (with the same result as the first), the score of the edge

became 0.1000.

The first Positive Intervention thus changed the score by 0.0625, while the second experiment

changed the score by 0.0375. These two changes in the score demonstrate a commonsense intuition

regarding evidence that is expressed quantitatively by the scoring algorithm: each subsequent

experiment that yields consistent results increases the score, albeit by an amount that is less than the

amount contributed by the previous consistent experiment.

After the third experiment, in which a previously unrepresented experiment class (Negative

Intervention) yielded a consistent result (no change), the score increased to 0.1625, for a net change

of 0.0625. This change demonstrates another desirable feature of the scoring algorithm: when

consistent results are obtained across multiple experiment classes, each sequence of experiments

within a class contributes the same set of decaying amounts to the score, such that results across the

four experiment classes are weighted independently of the order in which they were obtained.

If a fourth experiment with conflicting evidence were recorded—for example, a Positive

Non-intervention yielding an increase in the Target—the score would drop to 0.1313. Appropriately,

the conflicting evidence would undermine the still-dominant evidence that the relation between the

two nodes is No-connection. Had this conflicting evidence come from another Positive Intervention,

an experiment class already represented in the score, the score would drop to 0.1250. This larger

drop than the one incurred for a conflicting Positive Non-intervention reflects the idea that scientists

tend to trust evidence from a particular experiment class to the extent that experiments within this

class yield consistent results.

3.3.4 Components of ResearchMaps

In ResearchMaps, an Agent or Target is defined in three complementary ways: what the phenomenon

is, where the phenomenon exists, and when the phenomenon acts. ResearchMaps stores this

information as three properties for each node: (1) What describes a key identifier of the phenomenon

involved (e.g., the name by which the gene, protein, cell, organ, behavior, etc. is known); (2) Where

describes the location of the What (e.g., the organ, species, etc.); and (3) When provides temporal

information that is critical to the identity of the What (e.g., the time, age, phase, etc.). For example,
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Figure 3.10: A research map of experiments involving the transcription factor CREB (a) alongside
the initial map of experiments exploring the role of CREB in amygdala memory enhancements (b).

if the protein neurofibromin is measured in multiple locations, a corresponding research map

would include multiple nodes for neurofibromin with different Where properties. This approach

is instructive, as neurofibromin could have different biological characteristics in different cellular

locations (e.g., excitatory neurons versus inhibitory neurons) or at different stages of development.

ResearchMaps displays the What, Where, and When properties on separate lines within each node.

In ResearchMaps, the four experiment classes are represented by symbols above each em-

pirical edge. As given in set C above, Positive Interventions are represented by an upward arrow

(↑); Negative Interventions are represented by a downward arrow (↓); Positive Non-interventions

are represented by the empty set symbol and a superscript upward arrow (∅↑); and Negative Non-

interventions are represented by the empty set symbol and a superscript downward arrow (∅↓).

Although we have not yet defined a formal representation for experiments involving more than two

nodes, ResearchMaps accommodates intervention experiments with two Agents. At the time of

this writing, such experiments comprise approximately fourteen percent of the experiments logged.

The putative mechanisms underlying the results of these multi-intervention experiments can be
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visualized using hypothetical edges among the three entities involved (two Agents and one Target);

the structure of these hypothetical edges is provided by the user.

ResearchMaps can accommodate information about the statistical test used to establish each

finding and its associated p-value. Such information is of course valuable in evaluating experiments;

however, as the areas covered by research maps are diverse, and there are no standards as to which

statistics are used and how to report them, p-values do not currently affect the score of research-map

edges, and they are optionally tracked by each user. See Figure 3.7 for an example of a research

map.

3.3.4.1 Empirical and hypothetical edges

ResearchMaps allows the user to input both empirical and hypothetical edges between any two

phenomena (and, by extension, empirical and hypothetical nodes). A hypothetical edge represents a

putative connection with no direct experimental evidence. Hypothetical edges are usually implied

by empirical edges, and they are often key in interpreting and reporting the results of a research

article. Since hypothetical edges do not represent empirical evidence, they are assigned neither

scores nor experiment symbols. To visually differentiate hypothetical edges, they are shown in a

lighter color and without a score or experiment symbols.

Beyond allowing users to track various hypotheses, hypothetical edges can also help to

structure research maps of empirical evidence, as illustrated with the following example. Consider

a signaling pathway (e.g., a biochemical cascade), which we will represent as A→B→C→D. Just

as hypotheses help to frame and organize the results of research articles, hypothetical edges help to

structure and contextualize empirical edges in a research map. For instance, a map that represents

the connections A→C, A→D, and B→D (Figure 3.11) would not explicitly reflect the putative

A→B→C→D pathway because not all connections in this pathway are part of that map. By

including in the resulting map the hypothetical edges A→B, B→C, and C→D, the underlying

hypothesis for the experiments carried out is immediately obvious (Figure 3.11).
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Figure 3.11: A diagram showing how hypothetical edges (in gray) help to organize empirical edges
in a research map, thus framing the empirical results with a specific hypothesis.

3.3.5 Generating maps for research articles

There are multiple steps to make a research map for a given research article. The first step is to

identify all the nodes that will be included in the research map. This process entails the identification

of Agent–Target pairs involved in the reported experiments. For any one Agent–Target pair, the next

step is to find the experiment class that was performed to test their relation. In addition to the class

of the experiment, the user can record the result that was obtained, as well as the key techniques

that were used to observe (or manipulate) the Agent and observe the result in the Target. Once the

empirical edges are entered (ones for which an experiment is reported), any hypothetical edges

suggested by the article can be added, thereby helping to structure the map and contextualize the

empirical results. Finally, because research maps can become large and complex, it is instructive to

highlight the main connections, whether they are hypothetical or empirical.

3.3.6 Research maps at work

As stated above, research maps are designed to facilitate the personal curation of information derived

from detailed analyses of research articles, reviews, and other sources central to the activities of

scientists. The derived maps are designed to function at the interface between the large body of

information that could potentially be relevant to any one individual scientist, and that subset of

empirical and hypothetical assertions that an individual scientist judges to be directly relevant to

ongoing work. For example, in the space of three years, one of our users created public research
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maps for 125 articles with 2,251 experiments, 1,293 nodes, and 1,693 edges. Even in this relatively

small set of articles, the sheer number of empirical and hypothetical relations is too large for most

individual scientists to remember, objectively integrate, and systematically reason through.

Additionally, the process of mapping information critical for a project affords a clarity that

is harder to come by any other way. For instance, a few years ago some of us were involved in

experiments that suggested that the expression of the cAMP responsive element binding (CREB)

transcriptional factor in a small subset of neurons in the lateral amygdala of mice could lead

to enhancements of memory for both auditory and contextual fear conditioning. These results

were surprising, and they led to a series of experiments that explored the nature of these memory

enhancements. One of the motivations for these experiments was the hypothesis that the cellular

levels of CREB may be one factor that determines the subset of lateral amygdala neurons that go

on to store a given fear memory [HKY07]. The initial research map of the experiments designed

to explore the CREB memory enhancement is shown in Figure 3.10(b). While thinking of the

connections in that article with the help of research maps, we realized that there may be a more

fundamental concept that could both provide a better structure for the map and a more useful

framework for future experiments (Figure 3.10(a)).

In our initial experiments [HKY07], we used positive and negative manipulations of CREB,

and determined which lateral amygdala cells were involved in memory by using the immediate early

gene Arc, a gene whose expression is thought to tag cells involved in memory [GMB99]. Mapping

these findings helped us to realize that we needed to identify a phenomenon that captured the idea

that CREB was instrumental in determining which cells were involved in memory. To this end, we

borrowed a term from computer science—memory allocation—and the process of defining this

new neuroscience phenomenon in our research maps also helped us to identify the need for other

methods to measure it [ZWK09].

Research maps also helped us to focus our attention on the mechanisms by which CREB

modulated memory allocation [HKY09, ZWK09] and aided us in defining a research plan to tackle

this new complex problem. Although it is possible that we and others could have arrived at similar

research decisions without the help of research maps, the ability to precisely map information

imparted a degree of clarity that helped us to think through these experiments and develop our
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Figure 3.12: Global research map of experiments in memory allocation and other related work.

past and current research on memory allocation. The concept of memory allocation [FJ15] that

emerged out of these efforts led to a number of research articles [HKY09, ZWK09, SMY13,

KKK14, YMY14] that explored the mechanistic basis of this concept and tested its possible role

in other brain structures, such as the insular cortex [SSZ14] and in processes such as memory

linking [CAS16, RYM16].

When reading new research articles, the underlying mechanisms are not always apparent.

However, in our experience, the process of extracting and formalizing information about possible

connections tested in these articles has always enhanced our understanding of the reported find-

ings. This formalization process also brings the information from disparate articles into a shared

framework that facilitates integration of this information, as well as experiment planning.

Using research maps to visualize our work in memory allocation has also provided insight

into how these experiments are connected to research in related areas. Figure 3.12 shows a research

map of our work in memory allocation and all other research maps of articles that connect to it.

Figure 3.13 shows a bar graph indicating the number of nodes in our ResearchMaps database that

are connected to nodes pertaining to work in memory allocation. Analysis of the data represented

in these two figures suggests that research maps provide a rich platform in which to generate and

evaluate hypotheses about the mechanisms that may be modulating memory allocation.
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3.4 Experiment Planning

With the semantics around representing a superset of causal information established, we seek to

make meaningful discoveries from the biological assertions synthesized into the causal form. One

area we explore is that of experiment planning. Given the prior network of biological relationships

synthesized into causal expressions, we investigate the ability to plan experiments through causal

mechanisms and discovery.

A major goal in science is to identify causal mechanisms. Scientists try to understand, for

instance, how cigarettes cause lung cancer, or how a genetic mutation causes memory loss. As

suggested by the refrain “correlation does not equal causation,” a causal model not only predicts

correlations in a system but also predicts how that system will respond under interventions. This

difference between correlative and causal models is particularly crucial for a physician, who tries to

cure a patient’s disease with a surgical or pharmacological intervention.

In the last few decades, causality has been formalized using mathematics, yielding the

enormously successful model known as a causal Bayesian network, or causal Bayes net [SGS00,

Pea09]. This model represents causality with a causal graph, a network of nodes and directed edges

(e.g., X → Y ) that correspond to the system’s variables and causal relations. Using this model of

causality, researchers have developed causal discovery algorithms, which identify the causal graph

that describes and predicts the behavior of a system’s variables [Ebe17].

There are a variety of causal discovery algorithms that operate on primary data [MD18];

however, there has been relatively little work on the problem of building causal models with only

textual information from scientific communication. This is an important problem because much

of the information that a scientist encounters is free text: research articles, for instance, are often

unaccompanied by primary data but contain aggregate statistics that should inform a scientist’s

understanding of the system.

To address this problem, we present a pipeline for meta-analytic causal discovery: First,

the scientist annotates statistical results in free-text research articles—for instance, using the

representation given in Section 3.3. Next, these annotations are input to an algorithm that identifies

the causal graphs consistent with the annotated results. The scientist can then inspect the consistent
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Figure 3.13: Connectivity characteristics in the global map for memory allocation.

graphs to see which inferences arise out of the synthesis of annotated research articles [MWW17a,

MWW17b]. In our proposed technique, we demonstrate how this meta-analytic approach can

inform not only evidence synthesis but also experiment selection.

In biology, selecting the next experiment often requires causal reasoning. Biologists must

examine the evidence and identify logically consistent explanations, which may agree in some

respects but disagree in others, depending on the amount of evidence. Based on this analysis,

biologists hypothesize a causal mechanism and select an experiment to test it. With the primary data

from studies, biologists can use causal discovery algorithms [Ebe17] to identify causal mechanisms.

These methods have even motivated formal approaches to experiment selection [Mur01, EGS05,

MML05, Ebe08, HG08, HB12, HHE13]. But biologists often do not have access to primary data;

instead, they rely on literature, rendering many of these causal discovery methods unusable.

We seek to generalize a causal discovery method to a meta-analytic technique that can

integrate multiple forms of causal information, including qualitative knowledge from literature. We

allow our method to input annotated empirical results from research articles to automatically derive

every consistent causal interpretation, expressed as a set of causal graphs [SGS00, Pea09]. These

graphs synthesize the causal implications of empirical results and provide a formal, hypothesis-

generating device for selecting experiments: they show precisely which relations are determined,

and which remain underdetermined. We can then use a “degrees-of-freedom” analysis that concisely

visualizes features of these consistent explanations.

Causal graphs are similar to biological pathway diagrams, but they have mathematical

properties that make them more suitable for synthesizing empirical results. Like a pathway diagram,
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a causal graph shows a system’s phenomena and relations between them. But a causal graph also

encodes specifically causal relations and some of their statistical properties; it can thus visualize

a system intuitively while still encoding precise and predictive mathematical relationships—a

feature that is absent in many pathway diagrams. Consider, for example, Figure 3.14, which

shows a pathway diagram from the biological literature. Although it clearly illustrates biological

mechanisms, its edges lack precise mathematical definitions; different edges can have different

semantics, and the overall diagram thus does not provide one clear interpretation. This ambiguity is

compounded if a researcher tries to synthesize multiple pathway diagrams.

Ras

GDP

Ras

GTP

Ral-GDS

Raf

PI3K

NF1GEFs

Microtubules

AC

ATP

cAMP

Figure 3.14: An example of a pathway diagram that has been adapted from the literature [CS03].
This diagram illustrates biological mechanisms, but because the meaning of each edge is not
precisely defined, this diagram cannot necessarily be used to reason causally about the system.

If qualitative pathway diagrams from different articles are simply “stitched” together—by

overlapping common nodes and pooling all the diagrams’ edges—the hybrid diagram may bias

researchers, inviting them to reify specific pathways that the evidence does not support, or that

the evidence even contradicts. For instance, Figures 3.15(a) and 3.15(b) are typical of pathway

diagrams in the biological literature; they are not formal causal graphs but rather illustrations in

which X → Y implies that a change in X was observed to precede a change in Y , ostensibly

implying a causal interaction. Note the consequence of stitching these two diagrams together

(Figure 3.15(c)): through the X → Z edge, it appears as if X can affect Z independently of

Y . But that is not necessarily true. It’s possible, for instance, that in the experiment that led to

Figure 3.15(a), Y was simply unmeasured; in this case, Y still could have mediated X’s effect on

Z, but this mediation may have been unknown to the researchers who instead focused on X and
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Z. This sort of bookkeeping can become quite complicated, even for a small system. And these

diagrams’ imprecise semantics impede the development of an algorithmic solution to this problem.

X Z

X Y Z

X Y Z

(c)

(a)

(b)

Figure 3.15: Pathway diagrams from the literature cannot simply be “stitched” to derive causal
inferences of empirical results. When the nodes and edges from (a) and (b) are simply pooled to
produce (c), this new diagram suggests that, via the X → Z edge, X can effect Z independently of
Y—an interpretation that does not necessarily follow from the empirical evidence that led to (a)
and (b).

In contrast, the theory of causality gives a principled procedure for stitching causal graphs,

ensuring that the hybrid model is consistent with the evidence. This stitching process resembles what

scientists do when they try to synthesize the empirical evidence in research articles. Considering the

enormity of the space of causal graphs, biologists would benefit from software that automatically

computes the causal implications of a set of findings.

In much of the causal discovery literature, it is assumed that an experiment allows scientists

to observe every variable in the system simultaneously. However, this is often infeasible: instead,

scientists perform experiments on subsets of the system’s variables and combine the results from

these subsets analytically—a technique known as piecemeal causal discovery [May11, May14,

May19]. This approach is often required in fields like biology due to technological limitations and

living organisms’ immense complexity. Piecemeal causal discovery often fails to identify the one

true causal graph for the system under investigation, regardless of the number of experiments that

can be performed [May11, May14, May19].

In the context of piecemeal causal discovery, we conceive of experiment selection as encom-

passing two main decisions: (1) the choice of which phenomena—out of all potential phenomena in

a system—will be involved in the experiment, and (2) the choice of which empirical strategy will

be used: either a passive observation or an intervention where one or more of the phenomena are

manipulated. Here we consider studies that each involve two phenomena, where neither or one of

the phenomena is intervened on—a widespread occurrence in molecular and cellular biology as

detailed in Section 3.3. For instance, given the available evidence and a limitation on the number of
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variables that can be observed simultaneously, it may be more informative to intervene on variable

X and observe the response of variable Y than it would be to intervene onX and observe Z; in other

situations—with different evidence available—the opposite may be true. Consider, for example, the

following three causal graphs:

1. X → Y , X → Z

2. X ← Y , X → Z

3. X → Y , X ← Z

If we obtained information that led us to believe the true causal graph was either graph 1 or graph 2,

it would be more informative to intervene on X and observe whether Y covaried, thus allowing us

to determine the relation between X and Y . (Note that graphs 1 and 2 have the same edge relation

between X and Z.) If instead, we obtained information that led us to consider graph 1 and graph 3,

we would then prefer the experiment in which we intervene on X and observe whether Z covaries,

as these two graphs have the same edge relation between X and Y . There are still other situations

where, in the presence of conflicting evidence, it could be most instructive to repeat an experiment.

These decisions are often left to the subjective judgement of the scientist [Ebe10]. A more objective

and systematic approach is achieved by representing empirical results with causal graphs.

Causal discovery algorithms will often return not a single causal graph but a set of graphs,

each of which equally satisfies the constraints imposed by the input data. This set of consistent

causal graphs is known as a (Markov) equivalence class [SGS00]. The size of the equivalence class

indicates the number of causal explanations that remain viable, given what is known; it thus indicates

our degree of ignorance regarding the system. Therefore, an equivalence class not only synthesizes

the causal implications of empirical evidence but also provides a formal, hypothesis-generating

device for selecting experiments: it encodes precisely which causal relations are determined, and

which relations remain underdetermined. For instance, if a set of empirical results is consistent with

more than one causal graph—each with its own configuration of edges—a researcher can assess

which hypotheses are worth pursuing by inspecting exactly which causal relations remain viable.

A causal graph’s underdetermination can thus help researchers to plan experiments by indicating

which experiments are needed to fully determine the causal structure of the system.
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We characterize this underdetermination with a causal graph’s degrees of freedom, which

represent the diversity of edge relations that appear in the graphs of an equivalence class [MWW17a,

MWW17b]. For example, all graphs in an equivalence class may have the same edge relation

between the variables X and Y (e.g., X → Y ), but there may be a diversity of edge relations

between the variables Y and Z (e.g., Y ← Z and Y → Z). In light of these options, potential

experiments can be chosen based on how much information they would provide—specifically, how

much they could distinguish between remaining relations, thus pruning the existing model space of

consistent causal graphs. This analysis must be agnostic to the result of each potential experiment,

which of course cannot be known in advance. With simulations, we show that experiment selection

based on the equivalence class’s degrees of freedom outperforms random experiment selection, in

that fewer experiments are needed to identify causal structures. Within the same computational

framework, we also demonstrate how to categorize a given hypothesis according to its utility for

revealing new causal information regarding the system under investigation.

This approach thus makes the following contributions:

1. Two experiment-selection algorithms with readily interpretable heuristics tailored to meta-

analytic piecemeal causal discovery—a setting that is ubiquitous in the biological sciences

(Sections 3.4.1.1–3.4.1.2);

2. Simulations of the experiment-selection algorithms that demonstrate (1) trade-offs between

computational efficiency and the efficiency of experimentation for causal discovery, as well

as (2) inherent limitations of piecemeal causal discovery involving two-variable experiments

(Section 3.4.2);

3. A hypothesis-categorization algorithm that guarantees whether an experiment designed to

test a given hypothesis could possibly yield new causal information that would further

determine a system’s causal structure, given a knowledge base of existing experimental results

(Section 3.4.1.3);

4. A simulation of the hypothesis-categorization algorithm that demonstrates how the proportion

of informative and uninformative hypotheses changes as causal-structure information is

obtained through experimentation (Section 3.4.2).
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3.4.1 Approach

Given a set of (in)dependence relations expressed as constraints on causal structure, we use the

causal discovery algorithm discussed above to obtain the degrees of freedom for the equivalence

class of causal graphs that are consistent with the constraints. For the case where we assume that

the true causal graph is a DAG, the approach is given by Algorithm 3.4.2 and proceeds as follows.

We define the set K as the set of causal-structure constraints obtained for a system with the set of

variables V. For each {X,Y } ∈ V, we query the SAT solver once for every degree of freedom

that can exist between X and Y . For a given query, we input the constraints in K as well as one

additional set of constraints, which encodes the particular degree of freedom being tested. The

degrees of freedom X → Y , X ← Y , and X · · · Y are encoded by the sets of ASP constraints

{edge(X,Y).}, {edge(Y,X).}, and {-edge(X,Y). -edge(Y,X).}, respectively. The

hyphens ( - ) in the last set indicate negation to signify that neither edge is present between the

nodes. In each run, the SAT solver returns either SATISFIABLE or UNSATISFIABLE, indicating

whether the degree of freedom appears in at least one causal graph that is consistent with the

constraints in K. A system with N variables and three possible relations between each pair of

variables will require 3
(
N
2

)
runs of the SAT solver to fully determine the degrees of freedom.

Therefore, this procedure splits the set of all possible edge relations into two sets: (1) the degrees

of freedom, each of which appears in at least one graph in the equivalence class, and (2) the

relations that have been completely ruled out by the constraints. This procedure can be extended to

consider cyclic causal graphs by including the degree of freedom indicated by the constraint set

{edge(X,Y). edge(Y,X).}.

The degrees of freedom are used as the basis for our experiment-selection methods. We

present two methods: the first is based on the degrees of freedom of the equivalence class; the

second is based not only on the degrees of freedom but also an expectation metric. The first

method is computationally less expensive because it does not require the enumeration of every

causal graph in the equivalence class. The second method requires more computation, but its

suggestions are correspondingly more informed, leading to more efficient causal discovery. Figure

3.16, adapted from [MWW17b], provides an overview of the proposed methods. Because of the
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Algorithm 3.4.1 Deriving the degrees of freedom for an equivalence class
Data: K: set of ASP-encoded causal-structure constraints over the set of variables V
Result: D: set of ASP constraints for the system’s degrees of freedom
D← ∅
for each pair of variables {X,Y } ∈ V do

for each set of constraints, Kd, encoding a potential degree of freedom for {X,Y } do
s← satisfiability of constraint set (K ∪Kd) if s = SATISFIABLE then

D← (D ∪Kd)
end

end
end

1

constraint-based causal discovery algorithm that we use, our approach can readily accommodate

the background knowledge from a domain expert [Ebe17]. For instance, aside from the constraints

obtained from statistical results reported in the literature, a domain expert may be able to articulate

other causal-structure constraints that disallow direct edges between certain classes of variables, or

that require certain paths involving specific subsets of variables. The ASP encoding that we employ

can accommodate virtually any structural constraint that can be imposed on the edges of a causal

graph.

Lastly, we present a method for categorizing hypotheses based on their utility for identifying

a system’s causal structure—a process that is usually infeasible to perform manually yet critical for

conducting research efficiently.

3.4.1.1 Selecting experiments with degrees of freedom

Algorithm 3.4.2 gives an experiment-selection method based on the degrees of freedom. First, for

each pair of variables in the system, {X,Y }, we obtain nX,Y , the number of degrees of freedom in

the equivalence class E for the pair {X,Y }, where nX,Y ≤ 2. Next, for the (X,Y,nX,Y ) three-tuple

with the largest nX,Y , we randomly choose one of the suggested experiments for the pair’s degrees

of freedom, DX,Y , as given in Table 3.3. (If multiple three tuples have the same maximum nX,Y , we

choose one randomly.) The experiments in Table 3.3 are chosen to be maximally informative, given

the degrees of freedom that remain viable. For example, if the relations X → Y and X · · · Y are
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SYNAPTIC PLASTICITY

Hijacking translation in
addiction
Two studies suggest that the reduced activity of a translation initiation

factor called eIF2a might be partly responsible for the increased risk of

drug addiction seen in adolescents.

ALICIA IZQUIERDO AND ALCINO J SILVA

E
xposure to drugs of abuse – such as nic-

otine and cocaine – changes the brain in

ways that contribute to the downward

spiral of addiction. Adolescents are especially

vulnerable since their newly found independence

is often associated with taking more risks

(Spear, 2000). To make matters worse, adoles-

cence is also characterized by an increased sen-

sitivity to natural rewards and drugs of abuse

(Badanich et al., 2006; Brenhouse and Ander-

sen, 2008; Stolyarova and Izquierdo, 2015).

Experiences with illicit substances alter the

genes that are expressed in the brain, and lead

to increased consumption of these substances.

To date much of the work that has characterized

this insidious cycle has focused on changes in

gene activation, or modifications to proteins

that have already been produced (Robison and

Nestler, 2011). By comparison, much less is

known about how changes in protein synthesis

might contribute to addiction.

Exposure to cocaine leads to persistent

changes in the part of the brain that releases the

chemical dopamine. Specifically, alterations to a

part of the midbrain called the ventral tegmental

area (VTA), along with its connections to other

regions of the brain, are thought to mediate the

transition from recreational to compulsive drug

use and subsequently to addiction (Luscher and

Malenka, 2011). Drugs of abuse make the neu-

rons in the VTA more excitable overall. The

drugs do this by altering two opposing pro-

cesses – both of which involve the translation of

messenger RNAs to produce new proteins – in

ways that ultimately strengthen the connections

between neurons (Ungless et al., 2001;

Lüscher and Huber, 2010).

Now, in two papers in eLife, Mauro Costa-

Mattioli from the Baylor College of Medicine

and colleagues report that a protein that regu-

lates translation is also responsible for much of

the increased risk of addiction seen in adoles-

cent mice and humans. The protein of interest is

a translation initiation factor called eIF2a.

In the first paper, Wei Huang, Andon Placzek,

Gonzalo Viana Di Prisco and Sanjeev Khatiwada –

who are all joint first authors – and other

Copyright Izquierdo and Silva.

This article is distributed under the

terms of the Creative Commons

Attribution License, which permits

unrestricted use and redistribution

provided that the original author and

source are credited.
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Neurons may compete against one another for integration into a memory trace.
Specifically, neurons in the lateral nucleus of the amygdala with relatively higher levels
of cAMP Responsive Element Binding Protein (CREB) seem to be preferentially allocated
to a fear memory trace, while neurons with relatively decreased CREB function seem
to be excluded from a fear memory trace. CREB is a ubiquitous transcription factor that
modulates many diverse cellular processes, raising the question as to which of these
CREB-mediated processes underlie memory allocation. CREB is implicated in modulating
dendritic spine number and morphology. As dendritic spines are intimately involved in
memory formation, we investigated whether manipulations of CREB function alter spine
number or morphology of neurons at the time of fear conditioning. We used viral vectors
to manipulate CREB function in the lateral amygdala (LA) principal neurons in mice
maintained in their homecages. At the time that fear conditioning normally occurs, we
observed that neurons with high levels of CREB had more dendritic spines, while neurons
with low CREB function had relatively fewer spines compared to control neurons. These
results suggest that the modulation of spine density provides a potential mechanism for
preferential allocation of a subset of neurons to the memory trace.

Keywords: CREB, amygdala, fear memory, dendritic spines, viral vector

INTRODUCTION
The cAMP Responsive Element Binding Protein (CREB) is an
activity regulated transcription factor that modulates the tran-
scription of genes with cAMP responsive elements (CRE) located
in their promoter regions. Early research in Aplysia (Dash et al.,
1990; Kaang et al., 1993; Bartsch et al., 1995) and D. melanogaster
(Yin et al., 1994, 1995; Perazzona et al., 2004) first implicated
CREB in memory formation. Since that time, the important role
of CREB in memory has been shown across a variety of species
from C. elegans (Kauffman et al., 2010; Lau et al., 2013) to
rats (Guzowski and McGaugh, 1997; Josselyn et al., 2001), mice
(Bourtchuladze et al., 1994; Kida et al., 2002; Pittenger et al.,
2002; Gruart et al., 2012) and humans (Harum et al., 2001) (for
review, see Josselyn and Nguyen, 2005) but see Balschun et al.
(2003). For instance, we (Han et al., 2007), and others (Zhou
et al., 2009; Rexach et al., 2012) previously showed that increas-
ing CREB function in a small portion of lateral amygdala (LA)
neurons (roughly 8–10% of LA principal neurons) was sufficient
to enhance auditory fear memory. Moreover, we observed that
LA neurons with relatively higher CREB function at the time
of training were preferentially included, whereas neurons with
lower CREB function were excluded, from the subsequent LA
fear memory trace (Han et al., 2007, 2009). Conversely, disrupt-
ing CREB function by expressing a dominant negative version of

CREB (CREBS133A)in a similar small percentage of LA neurons
did not affect auditory fear memory, likely because the neurons
expressing CREBS133A were largely excluded from the memory
trace. Furthermore, post-training ablation (Han et al., 2009) or
silencing (Zhou et al., 2009) of neurons overexpressing CREB dis-
rupted subsequent expression of the fear memory, confirming the
importance of these neurons. Together, these data suggest that
neurons with high levels of CREB at the time of training are pref-
erentially allocated to the memory trace because they somehow
outcompete their neighbors (Won and Silva, 2008).

CREB is a ubiquitous transcription factor implicated in many
diverse cellular processes in addition to memory formation,
including regulation of proliferation, survival, apoptosis, differ-
entiation, metabolism, glucose homeostasis, spine density, and
morphology (Bourtchuladze et al., 1994; Murphy and Segal,
1997; Silva et al., 1998; Mayr and Montminy, 2001; Lonze et al.,
2002; Wayman et al., 2006; Aguado et al., 2009; Altarejos and
Montminy, 2011). Which of these CREB-mediated processes
is/are important for memory allocation? Here we investigated
one CREB-mediated process, the regulation of spine density and
morphology.

Dendritic spines are small, highly motile structures on den-
dritic shafts which provide flexibility to neuronal networks. As
an increase in the synaptic strength between neurons is thought
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Abstract

Mouse models with physiological and behavioral differences attributable to differential plasticity of hippocampal and
amygdalar neuronal networks are rare. We previously generated ataxin-2 (Atxn2) knockout mice and demonstrated that
these animals lacked obvious anatomical abnormalities of the CNS, but showed marked obesity and reduced fertility. We
now report on behavioral changes as a consequence of Atxn2-deficiency. Atxn2-deficiency was associated with impaired
long-term potentiation (LTP) in the amygdala, but normal LTP in the hippocampus. Intact hippocampal plasticity was
associated behaviorally with normal Morris Water maze testing. Impaired amygdala plasticity was associated with reduced
cued and contextual fear conditioning. Conditioned taste aversion, however, was normal. In addition, knockout mice
showed decreased innate fear in several tests and motor hyperactivity in open cage testing. Our results suggest that Atxn2-
deficiency results in a specific set of behavioral and cellular disturbances that include motor hyperactivity and abnormal
fear-related behaviors, but intact hippocampal function. This animal model may be useful for the study of anxiety disorders
and should encourage studies of anxiety in patients with spinocerebellar ataxia type 2 (SCA2).
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Introduction

The ataxin-2 (ATXN2) gene belongs to a group of genes, in

which expansion of a translated CAG repeat causes neurodegen-

eration. The function of ataxin-2 is unknown but expansion of the

polyglutamine (polyQ) tract from normally 22 to $32 repeats

causes a late-onset, autosomal dominant ataxia (spinocerebellar

ataxia type 2, SCA2), levodopa-responsive Parkinsonism and

various cognitive deficits involving mainly executive function and

verbal memory [1–4].

Ataxin-2 is a cytoplasmic protein that is expressed throughout

the brain [5]. Structural analysis and experimental data suggest

that ataxin-2 may play an important role in RNA processing.

Ataxin-2 contains Like-SM (LSm) domains which are thought to

be involved in protein-protein and protein-RNA interactions [6,7].

Several lines of experimental evidence also implicate a function of

ataxin-2 in RNA metabolism. These include observations showing

that ataxin-2 is a component of the polysome complex and that it

binds to polyA binding protein 1 (PABP-1) in translation initiation

[8]. Furthermore, ataxin-2 is a component of stress granules and

P-bodies, which are cytoplasmic repositories of untranslated

mRNA during cell stress [9], and it interacts with A2BP1/fox-1,

a known RNA splicing factor [10,11].

Although the mouse ortholog of ataxin-2 is more than 90%

identical to the human protein, it contains only one glutamine at

the site of the human polyQ tract, which suggests that the normal

function of ataxin-2 is not dependent on the polyQ tract [12].

Murine ataxin-2 is widely expressed in both neuronal and

nonneuronal tissues. However, strong murine ataxin- 2 expression

is found in specific neuronal groups such as large pyramidal

neurons and Purkinje cells and in subpopulations of neurons in the

hippocampus, thalamus, and hypothalamus [5]. In non-neuronal

tissues, high levels of ataxin-2 are found in the heart and skeletal

muscle. During mouse development, ataxin-2 is expressed as early

as embryonic day 8 (E8) in mesenchymal cells and the heart, with

a burst of expression at E11 [5]. In humans, high levels of ataxin-2

are found in neurons of the hippocampus and cerebral tissues in

addition to Purkinje neurons [13].

To understand the function of ataxin 2, we previously generated

Atxn2 knockout mice using homologous recombination [14].

Despite widespread expression of ataxin-2 throughout develop-

ment, homozygous Atxn2 knockout mice were viable, fertile and

did not display obvious anatomical or histological abnormalities

[14]. A propensity toward hyperphagia and obesity, when fed a

moderately-enriched fat diet and subtle motor deficits on the

rotarod in late adulthood were observed [14]. These observations

were confirmed in an independently generated Atxn2 knockout

model, which in addition demonstrated insulin resistance in Atxn2-
deficient animals [15].

Several knockout mouse models of other polyQ disease genes

have been generated. These include mice deficient for Atxn1,

Atxn3 and huntingtin (htt) [16–18]. Although htt ko mice were

embryonic lethal [17], mouse knockouts of SCA genes survived

normally into adulthood. Each line, however, exhibited specific

abnormalities such as reduced exploratory behavior and increased

levels of ubiquitinated proteins in Atxn3 ko mice [18], and
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Figure 3.16: This block diagram provides an overview of the proposed method. Experimental
results in the literature are annotated using the research-map schema; these results are converted
into statistical relations in the form of ASP-encoded causal-structure constraints. An ASP-based
causal discovery algorithm then computes the set of causal graphs that maximally accommodate
the evidence. Algorithm 3.4.1 computes the degrees of freedom for the resulting equivalence class.
Algorithm 3.4.2 and Algorithm 3.4.3 are used to identify informative experiments to perform next.
Algorithm 3.4.4 categorizes hypotheses with respect to their utility for identifying a system’s causal
structure.

the remaining degrees of freedom, we do not suggest an intervention on Y , because intervening on

Y would experimentally control the value of Y and thus preclude us from observing a correlation

between X and Y that could arise if an X → Y relation were present in the true causal graph;

intervening on Y effectively removes the X → Y edge, rendering the two degrees of freedom

indistinguishable [Pea09]. The suggested experiments are therefore chosen for their ability to

distinguish between the remaining degrees of freedom for a given pair of variables. Because this

algorithm suggests an experiment given a set of experiments that have already been performed,

additional bookkeeping is done to ensure that the experiments are not repeated unnecessarily (see

the while loop in Algorithm 3.4.2). Within the if statement, the first condition ensures that if we

have multiple competing sets of experiments, we choose the group of experiments that are least well

represented in the set P (considering all the degrees of freedom, with a preference for the pair(s)

of variables with the highest degrees of freedom). The second condition ensures that we choose

an experiment from a pair of variables that has at least one experiment that has yet to be run. We

enforce an explicit preference for experiments with variables that have not previously been selected.

Note that in some edge cases, it is possible for our degrees-of-freedom approach to recommend

only experiments that have already been performed. In these rare cases, we randomly choose an

experiment that has yet to be run from the pool of all unperformed experiments.
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Algorithm 3.4.2 Experiment selection based on degrees of freedom
Data: K: set of ASP-encoded causal-structure constraints over the set of variables V;

P: set of experiments performed to obtain K
Result: s: experiment suggested on the basis of K and P
E← equivalence class (maximally) consistent with K

D← degrees of freedom for each pair of variables in E (Algorithm 3.4.1)

R← ∅
for each pair {X,Y } ∈ V do

nX,Y ← number of degrees of freedom in E for {X,Y } R← R ∪ {(X,Y,nX,Y )}
end
rank R by nX,Y in descending order c← 0 m← 1 while c < m do

for each (X,Y,nX,Y ) ∈ R do
SDX,Y

← set of experiments suggested according to DX,Y (Table 3.3)

m← max({m}∪ | SDX,Y
|)

if | SDX,Y
∩P |≤ c and | SDX,Y

∩P |<| SDX,Y
| then

s← s ∈ (SDX,Y
−P)

return s
end

end
c← c+ 1

end
return random experiment from set of possible experiments not in P

1

3.4.1.2 Selecting experiments with degrees of freedom and expectation

When it is computationally feasible to compute every causal graph in the equivalence class, we

can improve on the efficiency of Algorithm 3.4.2: Algorithm 3.4.3 gives an experiment-selection

method that incorporates an expectation metric. As with Algorithm 3.4.2, this method uses the

degrees of freedom of the equivalence class. But here the intuition is also grounded in expectation

maximization. First, for each pair of variables in the system, {X,Y }, and for each possible degree

of freedom, d, we obtain md
X,Y , the number of graphs in the equivalence class E that assign the

degree of freedom d to the pair {X,Y }. We use this quantity to calculate the empirical probability of

a graph in the equivalence class having that particular degree of freedom:
md

X,Y

|E| . We also calculate

the number of graphs that would be eliminated from the equivalence class if we learned that this

degree of freedom was the actual relation taken by that pair of variables in the true causal graph:
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Degree-of-freedom pattern, DX,Y Suggested experiments, SDX,Y

X Y

X Y

X Y

X Y

X Y

X Y

X Y

1

J = ∅
J = {X}
J = {Y }

X Y

X Y

X Y

X Y

X Y

X Y

X Y

1

J = ∅
J = {X}

X Y

X Y

X Y

X Y

X Y

X Y

X Y

1

J = ∅
J = {Y }

X Y

X Y

X Y

X Y

X Y

X Y

X Y

1

J = {X}
J = {Y }

X Y

X Y

X Y

X Y

X Y

X Y

X Y

1

J = {X}

X Y

X Y

X Y

X Y

X Y

X Y

X Y

1

J = ∅

X Y

X Y

X Y

X Y

X Y

X Y

X Y

1

J = {Y }

Table 3.3: The experiments that would be most informative with respect to a pair of variables, given
their particular degree-of-freedom pattern in an equivalence class. These suggested experiments
inform the experiment-selection method given in Algorithms 3.4.2 and 3.4.3. The set J indicates
which variables are intervened on in each experiment; when J = ∅, a passive observation of the
two variables is performed.

|E| −md
X,Y . This empirical probability,

md
X,Y

|E| , is multiplied by its associated “reward,” |E| −md
X,Y ,

yielding the pair’s expectation for a given d: edX,Y =
md

X,Y

|E| (|E| −md
X,Y ). Next, for the (X,Y,d,edX,Y )

four-tuple with the highest expectation, we randomly choose one of the suggested experiments for

d, as given in the last three rows of Table 3.3. (If multiple four-tuples have the same maximum edX,Y ,

we choose one randomly.) As with Algorithm 3.4.2, additional bookkeeping is performed to ensure

that experiments are not repeated unnecessarily.

3.4.1.3 Categorizing hypotheses by their utility for causal discovery

Given a knowledge base of constraints on causal structure, we define a method for placing a given

hypothesis in one of three categories, with crucial distinctions:
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1. The hypothesis is consistent with none of the causal graphs in the equivalence class. This

kind of hypothesis should be pursued only if we are confident that one or more constraints in

the current knowledge base are incorrect. The hypothesis is then useful insofar as it identifies

which constraints in the knowledge base could be refuted. Otherwise, given the current

knowledge base, we would fail to find even one causal graph that is consistent with this kind

of hypothesis.

2. The hypothesis is consistent with all the causal graphs in the equivalence class. Although

this kind of hypothesis produces accurate predictions about the system, it is equally unhelpful

as the first kind with respect to experiment selection: this hypothesis should not be tested

empirically unless we believe there to be a flaw in our current knowledge base and wish to

refute one or more of its constraints. The reason is that if a hypothesis is consistent with all

the causal graphs in the equivalence class, it already follows logically from the knowledge

base; the logical proposition that expresses the hypothesis is thus true for all solutions (i.e.,

causal graphs). In propositional logic, it is said to be in the backbone of the satisfying formula

[HHE13].

3. The hypothesis is consistent with some (not all) of the causal graphs in the equivalence

class. This kind of hypothesis is most worth pursuing empirically. The experiment’s result—

which the current knowledge base cannot predict with certainty—is guaranteed to prune the

equivalence class, bringing us closer to the true causal graph.

We categorize a hypothesis as follows: First, we express the hypothesis as a formal constraint

that can be encoded in ASP. From Section 3.3.4 we see this can be achieved, for example, by adding

a hypothetical edge to a research map of empirical results. Second, we query the SAT solver to

see whether the hypothetical constraint is consistent with none, all, or some of the causal graphs in

the equivalence class. As with the degree-of-freedom analysis, this procedure does not require the

SAT solver to perform the expensive computation of enumerating every graph in the equivalence

class. Instead, we can simply ask whether the hypothesized constraint is satisfiable, as a binary

condition. If the answer is no, then we know that the hypothesis falls into the first category: it is

consistent with none of the causal graphs in the equivalence class. If the answer is yes, then we must
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Algorithm 3.4.3 Experiment selection based on degrees of freedom and expectation
Data: K: set of ASP-encoded causal-structure constraints over the set of variables V;

P: set of experiments performed to obtain K
Result: s: experiment suggested on the basis of K and P
E← equivalence class (maximally) consistent with K

D← degrees of freedom for each pair of variables in E (Algorithm 3.4.1)

R← ∅
for each pair {X,Y } ∈ V do

for each degree of freedom d ∈ DX,Y do
md

X,Y ← number of graphs ∈ E with degree of freedom d for X,Y

edX,Y ←
md

X,Y

|E| (| E | −md
X,Y )

R← R ∪ {(X,Y,d,edX,Y )}
end

end
rank R by edX,Y in descending order

c← 0

m← 1
while c < m do

for each (X,Y,d,edX,Y ) ∈ R do
SDX,Y

← set of experiments suggested according to d (Table 3.3)

m← max({m}∪ | SDX,Y
|)

if | SDX,Y
∩P |≤ c and | SDX,Y

∩P |<| SDX,Y
| then

s← s ∈ (SDX,Y
−P)

return s
end

end
c← c+ 1

end
return random experiment from set of possible experiments not in P

1

distinguish between whether the hypothesis is consistent with some or all of the graphs. We do this

by querying for the satisfiability of the hypothesis’s negation. If the hypothesis’s negation cannot be

satisfied by any of the graphs, then we know that the hypothesis falls into the second category: it

is consistent with all causal graphs in the equivalence class. If the negation can be satisfied by at

least one graph, then we know that the hypothesis falls into the third category: it is consistent with

some (not all) of the causal graphs in the equivalence class. Therefore, any hypothesis, expressed
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Algorithm 3.4.4 Hypothesis categorization based on logical satisfiability
Data: K: set of ASP-encoded causal-structure constraints over the set of variables V;

h: ASP-encoded constraint that expresses a hypothesis
Result: c: categorization of hypothesis (category 1, 2, or 3 above)
s← satisfiability of K ∪ {h} if s = UNSATISFIABLE then

c← 1 return c
end
if s = SATISFIABLE then

ĥ← logical negation of h s′ ← satisfiability of K ∪ {ĥ} if s′ = UNSATISFIABLE then
c← 2 return c

end
if s′ = SATISFIABLE then

c← 3 return c
end

end

1

as a causal-structure constraint, can be categorized with only one or two queries to the SAT solver

(Algorithm 3.4.4). This categorization of hypotheses can guide experiment selection. Despite the

enormous consequences that this categorization has on experiment planning, it is usually infeasible

for a scientist to manually compute which category a hypothesis belongs to.

3.4.2 Evaluation

The experiment-selection policies given in Algorithms 3.4.2 and 3.4.3 were evaluated using the

following simulation, which is given by Algorithm 3.4.5. First, one of the 543 possible DAGs over

four variables was set as the true graph. Before any experiments were simulated, the equivalence

class trivially contained every possible graph. To simulate how researchers learn about a system

through repeated experimentation, we sampled study designs according to three different policies:

at each iteration, we chose the next experiment (1) randomly, (2) according to Algorithm 3.4.2

(degrees of freedom), and (3) according to Algorithm 3.4.3 (expectation). The correct result of each

experiment was returned by an oracle that assumed causal sufficiency and had access to the true

causal graph. Each experiment’s result was added to a growing list of constraints, yielding—at

each iteration, and for each experiment-selection policy—an equivalence class of consistent causal

graphs. After each experiment, we recorded the number of graphs that remained in each equivalence

class. This process continued until we performed every one of the 48 two-variable studies defined
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Algorithm 3.4.5 Evaluation of experiment-selection policies
Data: GA: all DAGs over N variables;

PA: all experiments over N variables and their results, for each DAG G ∈ GA

Result: SP,G: sequences of experiments;
SE,G: sequences of equivalence class sizes after each experiment

for each DAG G ∈ GA do
equivalence class E← GA

set of performed experiments P← ∅
while |P| < |PA,G| do

s← experiment selected by policy (random, Algorithm 3.4.2, or Algorithm 3.4.3

P← P ∪ {s}
update E based on result of s for G

record s in SP,G

record |E| in SE,G

end
end
compute average SE across every DAG G ∈ GA

1

by the research map schema. This simulation was repeated for every one of the 543 possible DAGs

over four variables, thus showing that the experiment-selection policies are not sensitive to specific

features of the true causal graph, such as the density of its edges. For each policy, we then computed

the average number of graphs in the equivalence class that remained after each iteration (Fig. 3.17).

To show how our hypothesis-categorization method can inform experiment planning, we

repeated the simulation in Algorithm 3.4.5 with an additional step: after each simulated experiment,

we categorized the hypotheses implied by the remaining unperformed experiments and recorded the

number of hypotheses that fell in each category. For instance, after 10 experiments were performed,

38 two-variable experiments remained to be chosen from, each implying its own hypothesis of

independence (or dependence) between two of the variables in the system.3 Given the knowledge

base of constraints derived from the 10 performed experiments, we categorized each of the untested

hypotheses and recorded the number of hypotheses that fell in each category. This process was

3For the simulation, each untested hypothesis assumed an independence relation; had we chosen to assume a
dependence for each hypothesis, the counts for categories 1 and 2 would simply be exchanged. The effect of this choice
is limited by averaging over all DAGs. What is most noteworthy is the proportion of hypotheses in category 3 to the
proportion in either category 1 or 2.
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Figure 3.17: A comparison of three experiment-selection policies: (1) random, (2) Algorithm 3.4.2
(degrees of freedom), and (3) Algorithm 3.4.3 (expectation). This plot shows the results of the
simulation given in Algorithm 3.4.5 for N = 4. The results show the experimental effort that is
saved when each experiment is chosen based on the remaining degrees of freedom in the equivalence
class.

repeated 543 times—once for each true DAG—and the counts of hypotheses in each category were

averaged. The experiments were performed using an Intel Core i5-5250U x64 with 8 GB of RAM.

The results of the simulations given in Algorithm 3.4.5 show that selecting experiments

strategically—that is, on the basis of the equivalence class’s degrees of freedom—can save a

considerable amount of effort in the laboratory: equivalent levels of underdetermination are reached

with far fewer experiments using the suggestions of Algorithms 3.4.2 and 3.4.3 (Fig. 3.17). Table 3.4

shows the number of studies that each experiment-selection policy takes on average to reduce the

equivalence class to various sizes. This table highlights that although Algorithm 3.4.2 and random

selection require only one and two additional studies, respectively, to reach 50 graphs, they require

far more studies to reach the minimum average number of graphs achieved by the simulation.

Compared to the policy of Algorithm 3.4.3, the random policy on average takes 32 additional studies
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Number of studies needed to reach:

Policy < 50 graphs < 10 graphs minimum

Algorithm 3.4.3 5 9 15

Algorithm 3.4.2 6 14 23

Random selection 7 19 47

The number of studies that each experiment-selection policy takes on average to
reduce the equivalence class to a given size.

Table 3.4: Empirical efficiency of experiment-selection policies

Number of ASP models invoked for:

Policy 4 variables 8 variables 14 variables

Algorithm 3.4.3 543 ∼ 1011 ∼ 1036

Algorithm 3.4.2 18 84 273

Random selection 0 0 0

The number of ASP models that each experiment-selection policy requires the solver
to invoke in order to suggest an experiment.

Table 3.5: Computational efficiency of experiment-selection policies

to reach the minimum average value. Algorithm 3.4.3 reaches an equivalence class of fewer than 10

graphs—a reasonable number of graphs for a domain expert to review manually—in less than half

the number of experiments required by the random policy (9 vs. 19).

As expected, Algorithm 3.4.3 (expectation) outperforms Algorithm 3.4.2 (degrees of freedom),

but it does so at the cost of additional computation—a difference that can become quite significant

for larger systems [HEJ14]. To give a sense of this difference, Table 3.5 shows the number of

ASP models that each experiment-selection policy requires the solver to invoke before suggesting

an experiment. Table 3.6 shows the average runtimes required to complete a single run of the

simulations (i.e., for a given true causal graph) presented in Fig. 3.17 and Fig. 3.18, respectively, for

each of the three experiment-selection procedures. Note that these runtimes reflect the interplay

between the speed of each experiment-selection procedure and the additional computation required

to consider varying numbers of causal graphs at each simulation step, as the procedures each reduced

the equivalence classes at different rates. Comparing the runtimes for Algorithm 3.4.2 (degrees of
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Average execution time (s) to determine:

Policy Graphs/equivalence class Hypotheses/category

Algorithm 3.4.3 61.7 246.5

Algorithm 3.4.2 34.0 527.7

Random selection 827.3 1001.5

The average runtimes required to complete a single run (i.e., for a given true causal
graph) of the simulations presented in Fig. 3.17 and Fig. 3.18, respectively, for each
of the three experiment selection procedures.

Table 3.6: Runtimes for experiment-selection and hypothesis-categorization simulations

freedom) and Algorithm 3.4.3 (expectation) to the runtime of random selection demonstrates that

it is worth spending the extra computation time to identify the most informative experiments, in

that far less computation is therefore needed to derive subsequent equivalence classes, which are

appreciably smaller at each step given the informative experiment that is performed.

Fig. 3.18 presents the results of our hypothesis-categorization method’s evaluation, which

consist of the averaged counts of hypotheses in each category; Algorithm 3.4.2 was used as the

experiment-selection procedure in the particular run that is displayed. On average, an appreciable

percentage of the hypotheses fall into categories 1 and 2, which are far less informative than category

3 with respect to the goal of identifying a system’s causal structure. As additional empirical results

are added to the knowledge base—and the causal structure of the system becomes increasingly

determined—the proportion of category-3 hypotheses becomes smaller. In other words, as we

learn more about the system, it becomes harder to find informative hypotheses, and easier to make

experimental predictions. This is to be expected, as the growing body of empirical results increases

our knowledge of the system’s causal structure. A scientist who wishes to determine a system’s

causal structure must therefore search for category-3 hypotheses—those represented by the “some”

data series in Fig. 3.18—which is far more feasible using the hypothesis-categorization method

presented above. Note that the runtimes for the hypothesis-categorization simulation (Table 3.6)

reflect the time needed to categorize every untested, two-variable hypothesis for each of the 48

simulation steps. In real-world applications of the approach, scientists who are deciding whether to

pursue a few different hypotheses could obtain their categories in less time.
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Figure 3.18: The average number of hypotheses that fell into categories 1, 2, and 3 in a run of the
simulation given in Algorithm 3.4.5, in which Algorithm 3.4.2 was used as the experiment-selection
procedure. As each experiment’s result updates the knowledge base of causal-structure constraints,
untested hypotheses may change categories, with important implications for the selection of the
next experiment.

3.4.3 Discussion

The experiment-selection algorithms that we present are grounded in the type of graphical repre-

sentation that many scientists—particularly biologists—already use to express causal mechanisms

[LHM09]. As a result, scientists can readily interpret the algorithms’ rationale for suggested

experiments in the context of the graphical models that they consider to be viable. Although

any experiment, if executed properly, can yield useful information regarding a system, strategic

experiment selection—even if guided simply by heuristics—can save considerable amounts of

work toward identifying a system’s true causal structure. These savings are quantified by the

simulations comparing Algorithms 3.4.2 and 3.4.3 to random experiment selection. Scientists who

are constrained to piecemeal causal discovery can thus use these experiment-selection policies to

avoid redundant experiments and select instructive ones, examining the degrees of freedom after
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each experiment to explore the range of edge relations that remain viable. After each empirical

result is added to the knowledge base, the suggested experiments should be evaluated with respect

to the full diversity of constraints on experiment planning that currently only a human being can

consider, including technological limits, research funding, laboratory resources, and investigators’

interests.

The comparison of Algorithms 3.4.2 and 3.4.3 to random selection does not imply that

scientists are currently selecting their experiments at random. Instead, random experiment selection

is used to establish a baseline of performance against which other methods can be judged; this

approach has precedent in the experiment-selection literature [VJM00, Vat01, KWJ04, VJB06a].

Although scientists do not perform their experiments randomly, scientists in most fields do not plan

their experiments in perfect coordination. These simulations thus highlight the experimental effort

that can be saved when human experiment planning is more globally coordinated and augmented by

computational tools—e.g., the ResearchMaps web application [MWD18] from Section 3.3—which

formalize knowledge in a way that allows for automated inference.

Given that the number of causal graphs grows super-exponentially in the number of system

variables, it is impractical to perform for larger systems the exhaustive simulations that we present

here. Nonetheless, it is instructive to present the exhaustive simulations performed across all possible

true graphs with four variables, as the dynamics of experiment selection can vary tremendously

depending on the true graph; the simulations thus show our methods’ average performance across

all possible cases.

This approach is particularly helpful given that the limitations and optimal strategies for

piecemeal causal discovery have been less well studied compared to the experiment-selection

strategies for the general causal-discovery setting, in which it is assumed that every variable in the

system can be measured in each experiment. In the context of causal discovery, our simulations thus

allow for detailed analyses of the limitations of two-variable experiments, which are ubiquitous in

the biological literature.

The presented experiment-selection procedures are still beneficial for a variety of real-world

research settings. Although scientists regularly study large systems—with hundreds, thousands, or

even millions of variables—experiments are often planned to identify relations between small subsets
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of variables; this is often true, for instance, in molecular and cellular neuroscience: researchers

interested in the enormously complex system of the brain will choose to focus on a relatively small

number of substructures to understand a particular neural circuit. Our approach can thus be applied

iteratively on manageable subsets of variables, allowing researchers to “stitch” together findings to

yield new inferences.

For example, in [MWW17b] we demonstrate how our degrees-of-freedom method can be

used to combine the evidence in two neuroscience articles involving partially overlapping subsets of

seven variables. Merging the results of the individual articles yielded a new inference regarding two

variables that did not appear together in any of the experiments from the two articles; the resulting

inference was deemed plausible by a domain expert.

For large systems, our methods can still render useful results when scientists can afford to

wait relatively long amounts of time for supercomputers to return a solution [Ebe17]. Given that

many experiments in science are very costly, taking months or even years to complete, experiment-

selection methods that can save scientists multiple experiments toward identifying a system’s causal

structure can still be valuable even if they take days, weeks, or even months to return a result. For

yet larger systems that fully exceed the scalability of our experiment-selection methods, researchers

could still use our hypothesis-categorization method to evaluate whether a proposed experiment

can further determine a system’s causal structure, given a knowledge base of experimental results.

Without having to enumerate every graph in the equivalence class, this approach can guarantee

whether a proposed experiment will yield information that would reduce the number of viable

graphs in the equivalence class.

As we demonstrate in [MWW17b], causal-structure information can be latent in the literature,

yielding new inferences only when the right combination of findings are merged analytically. Such

combinations may be difficult to find, making it impractical for a scientist to know with certainty

whether a proposed experiment would yield information that is not already latent in the literature.

Thus, if Algorithm 3.4.4 categorizes a proposed hypothesis in either the none or all categories,

scientists can know with certainty that their existing evidence is sufficient to specify the outcome of

the experiment that would test the proposed hypothesis.
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The results of our simulations illustrate a few key points about the limitations of piecemeal

causal discovery and the importance of planning experiments in light of the causal explanations that

remain viable. It is known that log(N)+1 experiments suffice to identify the true, causally sufficient

DAG overN variables, where in each experiment, scientists can observe every variable in the system,

and intervene on any number of variables in the system. If we are limited to single-intervention

experiments, N − 1 experiments are sufficient and in the worst-case necessary [EGS06, HEH13].

Under these assumptions, log(4) + 1 = 4− 1 = 3 experiments suffice to identify the true DAG over

the four variables considered in our simulations. But the experimental context we consider here is

further constrained: we consider studies in which only two variables are observed simultaneously

and at most one variable can be intervened on per experiment. Thus, on average, between four

and five graphs remain in the equivalence class after every possible two-variable experiment has

been performed. Our policies’ inability to uniquely identify some of the true causal graphs is in

part a manifestation of the limits on piecemeal causal discovery [Ebe13, May14, May19]. In future

work, it would be instructive to better characterize how the efficiency of causal discovery improves

as larger subsets of the system can be observed and intervened on simultaneously. Understanding

exactly how much information is lost due to piecemeal causal discovery could help scientists to

prioritize the development of laboratory equipment, including technologies that would allow for

simultaneous observation of, and intervention on, larger sets of phenomena.

3.5 Piecemeal causal pipeline

Having introduced the details of individual components that can be connected together to facilitate

knowledge discovery, we turn our focus into the formalization of this pipeline. The pipeline starts

with a large corpus of scientific research papers and ends with discoveries made about individual

causal components. Each stage is discussed in the context of an exhaustive dataset and novel

improvements are made where applicable. This pipeline when pieced together can potentially

become the “mind” inside the robot scientist.

Imagine the possibilities of a large collection of robot scientists, working in coordination day

and night, each conducting experiments that will yield the maximal amount of information. In this

setting, we may be able to exponentially increase the rate of scientific discovery. Although this
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vision may sound a bit fantastical, technologies and computational approaches are being developed

that bring us closer to this goal. Indeed, scientists are already working alongside robot scientists:

laboratory robots that can automatically conduct biological experiments and report their findings.

However, robot scientists currently lack a “mind.”

This “mind” must have the ability to acquire all previous knowledge in order to make informed

decisions. Of course, it is not trivial to acquire these disparate fragments of evidence representing

all established knowledge within a field; it may be infeasible to do so. Instead, we focus on a type

of scientific communication that contains much of the knowledge: scientific research articles. We

believe that the most likely artifacts of scientists’ discoveries are published in such documents. Even

inside this subset of knowledge, it is incredibly difficult to obtain and synthesize all the articles,

some of which do not allow public access and thus might require significant financial resources. To

this effect, we narrow our scope further and focus on the set of articles contained in the entirety of

PubMed—a vast collection in order of 106 research papers and abstracts. In our study, the PubMed

article collection becomes the artificial set of all known knowledge. Our robot-scientist “mind” is

applied to the PubMed dataset, but its applicability is not limited to PubMed, nor are its methods

tailored to this particular corpus. The techniques we present are applicable to any form of electronic

publication—one in which we can easily convert the document to text.

Once we have a large set of existing knowledge (such as PubMed), we must synthesize

the information into a representative form. This form must reduce the amount of information,

taking in only what is necessary, while facilitating the discovery of contextual information. We

intentionally focus on the domain of the biological researcher, because, as we detail in Section 3.3,

discoveries can be represented in such a distinct form. Biological experiments commonly involve

only two variables, due to the difficulty of obtaining simultaneous measurements in complex,

living organisms, as well as such experiments’ technical difficulty and cost. A common way to

extract meaningful biological phenomena described in text is to isolate the entities involved in

experiments—typically an agent and a target. Often the text describes how a study—either an active

intervention or passive observation (non-intervention)—provides evidence for an agent’s effect on a

target. Thus, biological knowledge extraction typically involves some syntactical restrictions around

the set: {intervention, agent, target, effect}. This setting leads naturally to the representation of
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E
xposure to drugs of abuse – such as nic-

otine and cocaine – changes the brain in

ways that contribute to the downward

spiral of addiction. Adolescents are especially

vulnerable since their newly found independence

is often associated with taking more risks

(Spear, 2000). To make matters worse, adoles-

cence is also characterized by an increased sen-

sitivity to natural rewards and drugs of abuse

(Badanich et al., 2006; Brenhouse and Ander-

sen, 2008; Stolyarova and Izquierdo, 2015).

Experiences with illicit substances alter the

genes that are expressed in the brain, and lead

to increased consumption of these substances.

To date much of the work that has characterized

this insidious cycle has focused on changes in

gene activation, or modifications to proteins

that have already been produced (Robison and

Nestler, 2011). By comparison, much less is

known about how changes in protein synthesis

might contribute to addiction.

Exposure to cocaine leads to persistent

changes in the part of the brain that releases the

chemical dopamine. Specifically, alterations to a

part of the midbrain called the ventral tegmental

area (VTA), along with its connections to other

regions of the brain, are thought to mediate the

transition from recreational to compulsive drug

use and subsequently to addiction (Luscher and

Malenka, 2011). Drugs of abuse make the neu-

rons in the VTA more excitable overall. The

drugs do this by altering two opposing pro-

cesses – both of which involve the translation of

messenger RNAs to produce new proteins – in

ways that ultimately strengthen the connections

between neurons (Ungless et al., 2001;

Lüscher and Huber, 2010).

Now, in two papers in eLife, Mauro Costa-

Mattioli from the Baylor College of Medicine

and colleagues report that a protein that regu-

lates translation is also responsible for much of

the increased risk of addiction seen in adoles-

cent mice and humans. The protein of interest is

a translation initiation factor called eIF2a.

In the first paper, Wei Huang, Andon Placzek,

Gonzalo Viana Di Prisco and Sanjeev Khatiwada –

who are all joint first authors – and other

Copyright Izquierdo and Silva.
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Neurons may compete against one another for integration into a memory trace.
Specifically, neurons in the lateral nucleus of the amygdala with relatively higher levels
of cAMP Responsive Element Binding Protein (CREB) seem to be preferentially allocated
to a fear memory trace, while neurons with relatively decreased CREB function seem
to be excluded from a fear memory trace. CREB is a ubiquitous transcription factor that
modulates many diverse cellular processes, raising the question as to which of these
CREB-mediated processes underlie memory allocation. CREB is implicated in modulating
dendritic spine number and morphology. As dendritic spines are intimately involved in
memory formation, we investigated whether manipulations of CREB function alter spine
number or morphology of neurons at the time of fear conditioning. We used viral vectors
to manipulate CREB function in the lateral amygdala (LA) principal neurons in mice
maintained in their homecages. At the time that fear conditioning normally occurs, we
observed that neurons with high levels of CREB had more dendritic spines, while neurons
with low CREB function had relatively fewer spines compared to control neurons. These
results suggest that the modulation of spine density provides a potential mechanism for
preferential allocation of a subset of neurons to the memory trace.

Keywords: CREB, amygdala, fear memory, dendritic spines, viral vector

INTRODUCTION
The cAMP Responsive Element Binding Protein (CREB) is an
activity regulated transcription factor that modulates the tran-
scription of genes with cAMP responsive elements (CRE) located
in their promoter regions. Early research in Aplysia (Dash et al.,
1990; Kaang et al., 1993; Bartsch et al., 1995) and D. melanogaster
(Yin et al., 1994, 1995; Perazzona et al., 2004) first implicated
CREB in memory formation. Since that time, the important role
of CREB in memory has been shown across a variety of species
from C. elegans (Kauffman et al., 2010; Lau et al., 2013) to
rats (Guzowski and McGaugh, 1997; Josselyn et al., 2001), mice
(Bourtchuladze et al., 1994; Kida et al., 2002; Pittenger et al.,
2002; Gruart et al., 2012) and humans (Harum et al., 2001) (for
review, see Josselyn and Nguyen, 2005) but see Balschun et al.
(2003). For instance, we (Han et al., 2007), and others (Zhou
et al., 2009; Rexach et al., 2012) previously showed that increas-
ing CREB function in a small portion of lateral amygdala (LA)
neurons (roughly 8–10% of LA principal neurons) was sufficient
to enhance auditory fear memory. Moreover, we observed that
LA neurons with relatively higher CREB function at the time
of training were preferentially included, whereas neurons with
lower CREB function were excluded, from the subsequent LA
fear memory trace (Han et al., 2007, 2009). Conversely, disrupt-
ing CREB function by expressing a dominant negative version of

CREB (CREBS133A)in a similar small percentage of LA neurons
did not affect auditory fear memory, likely because the neurons
expressing CREBS133A were largely excluded from the memory
trace. Furthermore, post-training ablation (Han et al., 2009) or
silencing (Zhou et al., 2009) of neurons overexpressing CREB dis-
rupted subsequent expression of the fear memory, confirming the
importance of these neurons. Together, these data suggest that
neurons with high levels of CREB at the time of training are pref-
erentially allocated to the memory trace because they somehow
outcompete their neighbors (Won and Silva, 2008).

CREB is a ubiquitous transcription factor implicated in many
diverse cellular processes in addition to memory formation,
including regulation of proliferation, survival, apoptosis, differ-
entiation, metabolism, glucose homeostasis, spine density, and
morphology (Bourtchuladze et al., 1994; Murphy and Segal,
1997; Silva et al., 1998; Mayr and Montminy, 2001; Lonze et al.,
2002; Wayman et al., 2006; Aguado et al., 2009; Altarejos and
Montminy, 2011). Which of these CREB-mediated processes
is/are important for memory allocation? Here we investigated
one CREB-mediated process, the regulation of spine density and
morphology.

Dendritic spines are small, highly motile structures on den-
dritic shafts which provide flexibility to neuronal networks. As
an increase in the synaptic strength between neurons is thought
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Abstract

Mouse models with physiological and behavioral differences attributable to differential plasticity of hippocampal and
amygdalar neuronal networks are rare. We previously generated ataxin-2 (Atxn2) knockout mice and demonstrated that
these animals lacked obvious anatomical abnormalities of the CNS, but showed marked obesity and reduced fertility. We
now report on behavioral changes as a consequence of Atxn2-deficiency. Atxn2-deficiency was associated with impaired
long-term potentiation (LTP) in the amygdala, but normal LTP in the hippocampus. Intact hippocampal plasticity was
associated behaviorally with normal Morris Water maze testing. Impaired amygdala plasticity was associated with reduced
cued and contextual fear conditioning. Conditioned taste aversion, however, was normal. In addition, knockout mice
showed decreased innate fear in several tests and motor hyperactivity in open cage testing. Our results suggest that Atxn2-
deficiency results in a specific set of behavioral and cellular disturbances that include motor hyperactivity and abnormal
fear-related behaviors, but intact hippocampal function. This animal model may be useful for the study of anxiety disorders
and should encourage studies of anxiety in patients with spinocerebellar ataxia type 2 (SCA2).
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Introduction

The ataxin-2 (ATXN2) gene belongs to a group of genes, in

which expansion of a translated CAG repeat causes neurodegen-

eration. The function of ataxin-2 is unknown but expansion of the

polyglutamine (polyQ) tract from normally 22 to $32 repeats

causes a late-onset, autosomal dominant ataxia (spinocerebellar

ataxia type 2, SCA2), levodopa-responsive Parkinsonism and

various cognitive deficits involving mainly executive function and

verbal memory [1–4].

Ataxin-2 is a cytoplasmic protein that is expressed throughout

the brain [5]. Structural analysis and experimental data suggest

that ataxin-2 may play an important role in RNA processing.

Ataxin-2 contains Like-SM (LSm) domains which are thought to

be involved in protein-protein and protein-RNA interactions [6,7].

Several lines of experimental evidence also implicate a function of

ataxin-2 in RNA metabolism. These include observations showing

that ataxin-2 is a component of the polysome complex and that it

binds to polyA binding protein 1 (PABP-1) in translation initiation

[8]. Furthermore, ataxin-2 is a component of stress granules and

P-bodies, which are cytoplasmic repositories of untranslated

mRNA during cell stress [9], and it interacts with A2BP1/fox-1,

a known RNA splicing factor [10,11].

Although the mouse ortholog of ataxin-2 is more than 90%

identical to the human protein, it contains only one glutamine at

the site of the human polyQ tract, which suggests that the normal

function of ataxin-2 is not dependent on the polyQ tract [12].

Murine ataxin-2 is widely expressed in both neuronal and

nonneuronal tissues. However, strong murine ataxin- 2 expression

is found in specific neuronal groups such as large pyramidal

neurons and Purkinje cells and in subpopulations of neurons in the

hippocampus, thalamus, and hypothalamus [5]. In non-neuronal

tissues, high levels of ataxin-2 are found in the heart and skeletal

muscle. During mouse development, ataxin-2 is expressed as early

as embryonic day 8 (E8) in mesenchymal cells and the heart, with

a burst of expression at E11 [5]. In humans, high levels of ataxin-2

are found in neurons of the hippocampus and cerebral tissues in

addition to Purkinje neurons [13].

To understand the function of ataxin 2, we previously generated

Atxn2 knockout mice using homologous recombination [14].

Despite widespread expression of ataxin-2 throughout develop-

ment, homozygous Atxn2 knockout mice were viable, fertile and

did not display obvious anatomical or histological abnormalities

[14]. A propensity toward hyperphagia and obesity, when fed a

moderately-enriched fat diet and subtle motor deficits on the

rotarod in late adulthood were observed [14]. These observations

were confirmed in an independently generated Atxn2 knockout

model, which in addition demonstrated insulin resistance in Atxn2-
deficient animals [15].

Several knockout mouse models of other polyQ disease genes

have been generated. These include mice deficient for Atxn1,

Atxn3 and huntingtin (htt) [16–18]. Although htt ko mice were

embryonic lethal [17], mouse knockouts of SCA genes survived

normally into adulthood. Each line, however, exhibited specific

abnormalities such as reduced exploratory behavior and increased

levels of ubiquitinated proteins in Atxn3 ko mice [18], and
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Figure 3.19: An updated pipeline (Figure 3.16) for the synthesis of causal text corpora into the
selection of future experiments.

variables and relationships using a graph, where each node represents a biological entity, and each

edge represents a relationship between entities.

With the semantics of representational knowledge established, we focus on determining which

next experiment will yield the most information. To discover this informative experiment, we must

first define a metric for information. For context consider the relationship between an agent and

a target: If an agent and target are related, we can use the edge connecting their corresponding

variables in a graph to specify their type of relation. For example, a target may increase whenever

a connected agent is experimentally increased. In this case, we would say the entities have an

excitatory relation. However, different researchers may report different conclusions for the same

agent–target pair. Therefore, we must consider the true nature of an agent–target relationship to be

a latent distribution over the class of all possible relations. Each reported finding is then a sampling

from this distribution. Thus, we take information to represent an inferential calculation of this

hidden variable at a given time x. In this model, every known agent and every known target are

connected, with most connections having an information score equivalent to that of an uninformative

prior. If we take the best experiment to perform next to be the one whose expected output yields the

largest information gain, in the context of a hidden discrete distribution, this can be the experiment

that causes the largest summation of each agent-target distribution divergence before and after the

experiment.

In searching the experiment with the highest information gain, we uncover other potential

avenues for knowledge discovery. For example, it may also be interesting to scientists to discover a

previous unestablished relationship. For these discoveries, we can use graph-mining techniques
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to recommend a highly likely related agent–target pairs—which may or may not be the highest

information-yielding experiment. We also explore discovering observed effects due to confounding

variables—situations in which two variables appear to be related, but when all confounding variables

are removed, they do not exhibit a previously established effect.

Together, these pieces compose the “mind” of the robot scientist. This pipeline, visualized by

Figure 3.19, starts with aggregating all known sources of information and ends with a recommended

experiment to perform. The recommended experiment to perform would then theoretically be used

as input into the robot scientist, which would then feed the results back to the pipeline. Then, the

pipeline would update the information about the known world and use this updated information to

make an even more informed experiment recommendation. This self-enforced loop can result in a

more refined implementation of the scientific method. By using more context than the human mind

can process, and by performing calculations faster than the bare mathematician, we can elevate not

only the robot scientist but the human scientist as well.

3.5.1 Components

We explain in more detail each of the processes representing the pipeline that makes up the robot

scientist’s “mind.” First, we discuss the PubMed dataset, its aggregation, and meta-analysis. Next,

we describe each component of the pipeline from start to finish. For each component, we present

experiments and findings using PubMed and other datasets as input. We also discuss additional

research areas related to each method and some potential improvements that can be investigated in

future work.

3.5.1.1 PubMed dataset

PubMed is a collection of articles and abstracts comprising various sources. These sources include

the MEDLINE database, online books, and other life-science journals. The retrievable subset of

textual data exists in PubMed Central (PMC). As of the time of this writing, the PMC repository

comprises 6.9 million articles, mostly from 10,644 journals. However, due to the difficulty and

time in obtaining the complete set, the realized numbers differ. The dataset was downloaded via

the file transfer protocol (FTP) over several months using a modest internet download speed. The
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Figure 3.20: A visual representation of the process for causal extraction from the PubMed dataset.

FTP data was organized into partitions representing: older articles with text blobs obtained via

optical character recognition, manuscripts in extensible markup language (xml) and raw text, bulk

collections of journal articles in a unique scientific literature-based xml format (nxml) and raw text,

where each article is packaged together with the original pdf, nxml extract, and images used in the

articles—and lastly just the articles as their submitted pdf. There is some overlap between these

described partitions; however, we obtained all the data described above for completeness.

3.5.1.2 Causal extraction

As we described in Section 3.2, OpBerg is an effective technique to extract causality when we do

not have a large set of labeled input data, and when the candidate output set is large. The PubMed

collection surely satisfies this latter requirement. The ResearchMaps database also provides a

modest set of labeled data. However, each labeled data represents only one labeling for a particular

way to describe causality. Thus, we have a minuscule set of labeled input data for each causal

statement. The existing dataset represents the ideal conditions for OpBerg, and indeed the potential

number of causal assertions can be significantly increased.

Another advantage of using OpBerg lies in the nature of comparing sequences. Given that

we will match, mismatch, insert, or delete each character in an alignment, we can easily determine

the constituent parts of the labeled input and match these with the found sequence. For instance,

consider the following sentence:
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The preferential distribution of Arc+ nuclei in neurons with higher CREB function was also

observed immediately after training.

After changing this sentence into the POS mapping of:

DT-JJ-NN-IN-NNP-NNS-IN-NNS-IN-JJR-NN-NN-VBD-RB-VBN-RB-IN-NN

we can match the NNP (Arc+), JJR (higher) and NN (CREB) in the labeled data with the candidate

sentence. These matches allow us to build the corresponding biological representation.

To extract the labeled data’s necessary parts requires OpBerg to match or mismatch on the

same or similar POS tags in the candidate fragment. As the algorithm is given, this will not always

be the case. Since it is discovering the optimal amount of breakpoints and then performing local

alignments over those breakpoints, there is no guarantee that a labeled set of important POS tags

will be matched or mismatched. In order to enforce these requirements, we must add additional

matrices to hold states of where the current alignment is. Each time two selected POS tags are

compared, we can then transition to the next state. The result then lies in the final comparison

matrix. In the Arc+ example in which Arc+ leads to an increase in CREB, we would first start in an

initial state S0. Then, when we compare two NNP tags, we would transition to S1, and after two

JJR tags, we would go from S1 to S2, and finally, two NN tags would take us from S2 to S3. The

final result lies in the max matrix cell of S3.

NNP

.

.

. NNP . . . ..𝑆0

.

.

.

.

JJR

.

.

. JJR. . . ..𝑆1

.

.

.

.

NNP

.

.

. NNP. .. ..𝑆2

.

.

.

.

.

.

. . . . ..𝑆3

.

.

.

.

.

.

We must add these additional matrices and recurrent relations as a function of the necessary

sequence length N for sequence C1C2 . . . CN . The initial state (S0) resembles the original equation

form, while each additional state must be reflected in the original equations’ matrices. The necessary
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addition to Equation 3.45–Equation 3.60 is given as: For state S0

δ(i,j)S0 = Max



0

LI,S0(ip, jp) + S(ai,bj)

LG,S0(ip, jp) + S(ai,bj)

LD,S0(ip, jp) + S(ai,bj)


(3.94)

and for each state u from 1 to 3:

δ(i,j)S′u = Max



0

LI,Su(ip, jp) + S(ai,bj)

LG,Su(ip, jp) + S(ai,bj)

LD,Su(ip, jp) + S(ai,bj)


(3.95)

δ(i,j)S′′u = Max



0

LI,Sp(ip, jp) + S(ai,bj)

LG,Sp(ip, jp) + S(ai,bj)

LD,Sp(ip, jp) + S(ai,bj)


(3.96)

δ(i,j)S′′′u = Max


δ(i,j)S′u

δ(i,j)S′′u

 (3.97)

δ(i,j)Su =


δ(i,j)S′′′u if ai = bj

δ(i,j)S′u otherwise
(3.98)
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We take the shorthand p to represent the previous item (ip = i− 1); S is a scoring matrix for two

POS tokens, and each L is a matrix representing a match/mismatch, insertion or deletion. More

details are presented in Section 3.2.1. Under these new equations, we can find the OpBerg alignment

that crosses through each sequence in C.

The other consideration OpBerg must make is the massive number of candidate sentences

to consider. The expected running time is in the order of days, so any improvement can be quite

impactful. We take the approach of running OpBerg concurrently. We can do this most simply by

splitting the labeled input set between processes running on different clients. However, we still need

synchronization for processing the PubMed data, such as uncompressing files or extracting textual

data from a pdf. To avoid unnecessary disk usage, we keep many individual compressed files in

their original form and extract them only during processing. When the uncompressed files are not

in use, they are deleted to save space. To keep them uncompressed was determined to be infeasible

given their collective size. We take the approach of having one agent in charge of processing each

PubMed data item. After preparing the PubMed item for consumption, a number of agents running

across a compute cluster then consume the formatted text. After consumption, the data item is

marked ready for deletion, and a cleanup agent then removes the already processed items. To ensure

synchronization and to handle any possible errors, a controller agent communicates to each process.

In the event of an error, the controller will respawn the necessary agents. Each cluster actually hosts

a spawn agent that creates a process that will run, and is also in communication with the controller

agent. The entire process flow is given in Figure 3.20.

3.5.1.2.1 Experimental Setup

A six-compute cluster was set up to process the entirety of the PubMed dataset. In the first stage

of processing, we start with the ResearchMaps dataset and retrieve the corresponding free text for

each edge. In order to find the free text, we first find the matching PubMed data item. This is no

easy task given the PubMed data item may not always have a title, or might not label a block of

text as being the title. Additionally, the text from the ResearchMaps dataset may be different or

contain spelling errors. For PubMed articles that were well-formed, such as some xml articles, we

can easily take the section labeled as the title and perform a local alignment over the ResearchMaps
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title, which is well-formed but might contain spelling errors. Other PubMed articles are given as

blobs of texts that do not easily identify the title. In these cases, we take the first half of the text

blob and run a local alignment over the characters. We take this notion because we assume with

very high probability the first half will both contain the title, and not contain the references section.

We also take the assumption that the title is unique enough so that it is not commonly used in free

text. Since we cannot guarantee this uniqueness, we end up keeping the top 10,000 highest scoring

matches against each title.

Figure 3.21: An extracted relation connect-
ing two ResearchMaps fragments.

galanin

p53 osteoclastogenic_activity

mdm2

Figure 3.22: A piecemeal connected graph
of extracted causal relations.

Another consideration must be made in comparing a ResearchMap title with a relatively small

amount of characters to half a published PubMed article with a large amount of characters. With

the expansive size of the PubMed dataset we must consider faster ways to make a comparison.

To obtain this efficiency goal we consider comparing words rather than only characters—with the

assumption that the words (W ) compared will be significantly less than the number of characters

(C) compared. To allow for spelling mistakes among the same word we tweak our scoring matrix to

score matches as words that are similar to each other. We define similar as having a finite set of

insertions, deletions, or mismatches in a global alignment. By limiting the number of non-matches

we can compare two sequences both of size N in O(N) time. This will reduce our title matching

running time from O(W 2C2) to O(W 2C).

After the title matching, the next task is to extract the causal statements representing each

research map. Since we do not know exactly where the map is represented in the text, we assume
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Sentence Edge

The inhibition of Mdm2 by nutlin-3 increased the basal p53 protein level
and rescued its tetanization-induced depletion, which suggested the
involvement of Mdm2 in the control over p53 during LTP [PLS15]

mdm2 p53

In addition, galanin inhibited the Abeta(25-35)-induced dysregulation of
p53, Bax, and MAP2 in rat hippocampus [CY10]

galanin p53

On the other hand, p53 deficient osteoblasts show enhanced
osteoclastogenic activity compared to normal osteoclasts [WL07]

p53 osteoclastogenic_activity

The finding that the interactions between mutant SOD1s and chromogranin
A&B leading to secreted mutant SOD1s that in turn can act on microglia to
cause inflammation could be responsible for the non-cell autonomous
effect of the toxicity [SCL14]

microglia inflammation

Table 3.7: The sentence, publication, and piecemeal causal graph fragment of extracted causal
relations from the PubMed dataset.

that this assertion must be specified in a sentence. To this end, we split the body and abstract of the

article into its constituent sentences using the established sentence parser in the Stanford CoreNLP

package [Man14]. We then search for sentences that contain both the agent and target for an edge.

If there exists more than one sentence, we submit these for manual review.

With our labeled data established, we seek to find similar POS sentences used throughout

the PubMed dataset. We process each PubMed article in a pipeline fashion previously described

using the computing cluster. Each labeled data is previously broken into its POS tags, again using

the Stanford CoreNLP package, and compared against a text blob by taking the original articles

and breaking them into sentences, then each sentence into a POS sequence of tokens. The tokens

are compared using Equations 3.94–3.97. For each labeled input item, we record the top 10,000

matches for further analysis. Additionally, we record the top 10,000 matches for both raw character

matches as well as word similarity matches computed by comparing embeddings.

After the entire PubMed dataset is searched, we refine the best 10,000 matches for each labeled

input item. Then, we filter out candidates whose matching POS tokens to the agent and target are not

in a database of known biological entities. This database was constructed using existing ontologies,

such as the Neuroscience Information Framework (NIF) Standard Ontology [NIF], combined with
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a database of representations from Section 3.3 consisting of agents and targets. We then seek to

find matches that have similar verb token alignments. We take similar to be within a threshold of

distance between embeddings for a particular word.

3.5.1.2.2 Experimental Results

We show the results of some example sentences and their corresponding research map causal

representation in Table 3.7. Additionally, we map all the found edges in the global causal graph

shown in Figure 3.24(b). The results shown have the potential for impactful discoveries in the

biological domain. As shown in Figure 3.22, we can suggest discoveries that are implied to be

true. In this case, the figure shows that osteoclastogenic activity has an excitatory response to

MDM2. We invite the biological researcher to evaluate this claim—that is, to design an experiment

where a change in MDM2 is introduced experimentally or observed passively, and the effect

on osteoclastogenic activity is observed. We can also use this approach to discover potential

treatments that may not be stated explicitly in the literature. For example, by connecting microglia

to inflammation, as in Figure 3.21, we can immediately deduce diphtheria toxic administration as a

treatment candidate for autism spectrum disorder. Of course, these deductions must be scientifically

validated, but any one of them could lead to meaningful treatments. Table 3.7 gives a brief list of

such deductions, and we show a larger set of connections in Figure 3.23.

3.5.1.3 Graphical representation

With the causal declarations extracted, as shown in the previous section, we can now combine these

with existing knowledge bases and seek to synthesize the information down into a form more suitable

for knowledge discovery. For the task of mapping biological discoveries, we are somewhat limited

to knowledge bases that have cataloged relations as described in Section 2.1.1.1. Nevertheless,

some do exist, while others have been obtained through manual annotations. A more extensive set

exists when we seek to catalog only causal relations. While not as expressive as the full biological

relationship semantics, causality can still be tremendously valuable for experiment selection or

recommendation tasks. This relaxed constraint allows us to include many other established datasets

alongside the sets used for biological relationships. We describe the sets used in Table 3.8.
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Figure 3.23: The causal network of a subset of relations discovered in the experiment described in
Section 3.5.1.2.

Alongside the relationship type between an agent and target, we seek to express a measure

about that relationship. For biological relationships, this was already established in Section 3.3.3—

the main idea is that an experimental observation is just a sampling from a latent distribution over

the possible relationships. For biological relationships, we assume a generative model of:

1: Choose θr ∼ Dir(αr)

2: for c ∈ {↑,∅↑,∅↓, ↓} do

3: Choose θc ∼ Dir(αc)

4: end for

5: for t← 1 to∞ do

6: Choose c ∼ Multinomial(θr)

7: Choose et ∼ Multinomial(θc)
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Name Description Classes Sentences

RM46 ResearchMaps collection of 46 neuroscience articles 2,4,7 200

LLL05 Causal sentences and papers extracted from the LLL05 Challenge 2 131

NDE27 Non-domain experts labeling of various PubMed articles 2 1,025

BioCause The biomedical discourse causality corpus and corresponding articles 2 1,000

RM6 Domain expert labeled set of articles from ResearchMaps 2,4,7 356

RM The entire ResearchMaps database mapped 2,4,7 8,693

PUB Extracted piecemeal causal statements from PubMed found in Section 3.5.1.2 2 713

Table 3.8: Datasets used in the graphical representation of the global causal graph.

aphtt 0.125 ∅↑

long-term_facilitation

0.125 ↓
5-ht

0.0625 ↑

vglut3

bapta_before_5-ht

0.0625 ↑

apcrnf

0.0625 ↑

gelonin_before_5-ht

0.0625 ↑

cap_analog_(m7gpppg)_before_5-ht

0.0625 ↑

(a) (b) (c)

Figure 3.24: A example causal map from the ResearchMaps database (a) alongside the global
graph—a graphical representation of the entirety of our aggregated piecemeal causal information
(b) and a subset the global graph showing clearly formed communities (c).

8: end for

From the observations, we score the edge as the maximum posterior probability over all classes

and relations—an expression of the concepts known as consistency and convergence. Consistency

refers to the obtaining of evidence for a particular relation using repeated iterations of the same

experimental method. Convergence refers to the obtaining of evidence of a particular relation using

different methods. This approach thus mirrors the epistemic principles, detailed in Section 3.3, that

biologists use to evaluate the strength of the evidence for a relationship.

We seek to develop a similar scoring approach for causal-only biological relationships (instead

of the more elaborate taxonomy used in research maps). For each biological entity pair A and B,

we take the above generative model as a guide and assume a latent distribution over two classes:

A→ B and A ⊥⊥ B. Each experiment that implies a causal relationship is then just a draw from
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this distribution. For shorthand, we will represent these classes as: → and ⊥⊥ respectively with a

third notation,←, fully expressed as A← B, equivalent to B → A.

We reiterate that we limit the scope of relationships to include only pairs of variables—an

ubiquitous experimental setting in much of the biological sciences, given the cost and complexity of

such experiments. Likewise, we reiterate that we are assuming causality has already been implied.

Our method thus picks up where rigorous statistical and numerical analysis is already assumed to

have been performed, and the result is published.

The causal-only generative model becomes much more straightforward than the fully expres-

sive biological-relationship model for the set of relations, however to accommodate for a more

general set of input data we add an additional experiment class representing an unknown intervention

(∅). The generative model thus takes the form of Equation 3.74–Equation 3.78 with C and R as{
↑,∅↑,∅↓, ↓,∅

}
and {→,⊥⊥} respectively. With the causal class substitutions of C and R we can

arrive at the causal equivalent of Equation 3.86, referred to as the causal-only piecemeal causal

evidence index (CPCEI).

With the scoring method set between a relationship, we seek to represent relationships

in a meaningful way. ResearchMaps created the foundation for this work regarding biological

relationships by representing a biological finding as an agent acting (or not acting) on a target. This

representation takes the form of a graph where biological entities are nodes and their relationships

are edges. A score on the edges represents a measure of the strength of the relationship. A visual

example is given in Figure 3.24(a). Each edge type represents the highest-scoring categorical

relationship denoted as a conclusion, and the edge identifies the type of experiment performed. Note

that an agent and target can have multiple types of experiments performed between them. In this

case, we append the type of experiment onto the edge.

We seek an analogous approach for describing causal relationships. We model each agent

and target as nodes and edges, denoting the maximally likely causal class. At time 0, we assume

a non-informative prior and take ⊥⊥ as the assigned class. We choose a no-dependence class as

the initial class because we believe this most accurately represents the relationship between two

randomly chosen biological entities. When stitched together, the set of all biological entities and

their relationships form a massively connected graph. We can then use data-mining and graph-
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analysis techniques to discover knowledge about the known biological world. Since we draw an edge

between an agent and target that is initialized as ⊥⊥, the graph becomes a complete graph—though

we can easily change the edge types to suit whatever data-mining task we are performing, such as

assuming the absence of an edge represents a ⊥⊥ edge.

3.5.1.4 Experimental Setup

To show our complete known biological causal world, we synthesize all of our causal biological data

sources (Table 3.8) into our graph representation described above. We leave out the no-connection

edge type to illustrate the complex nature of causal biological networks.

3.5.1.5 Experimental Results

Figure 3.24(b) shows the entirety of our collected sources as a causal network. As we can see, this

world is quite complex. It is interesting to see how many variables are related to each other and the

scope of the documented biological world. Alongside the complete causal network, we highlight an

interesting find about communities. Using modularity [BGL08, LDB08], we can see that there does

exist distinct communities that involve many different biological entities, shown in Figure 3.24(c).

As we show later in our discussion on experiment recommendation, these networks can help guide

which experiments to conduct and may be helpful in other knowledge discoveries as well.

3.5.1.6 Experiment Selection

Given a causal graph with nodes representing biological entities, and edges representing relationships

among these entities, we seek to develop an approach to acting upon this representation in an

experimental setting. We presume it is the biologist’s implicit desire to perform an experiment

that yields the most information. But what does yielding the most information translate to in the

setting of a causal graph? We submit that this concept entails determining the true causal structure

of the graph as completely as possible. For the purpose of intuition and simplicity, we begin this

discussion by making a few simplifying assumptions about the causal world.

As described in the previous section, when any biological element, A, influences another

element, B, we model this effect as A→ B. This implies a causal relationship of A having a causal
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effect on B. A natural extension to the graphical representation is a directed acyclic graph (DAG),

with an edge departing from the A node and directed to the B node. We also trivially model the

absence of a direct causal relationship between A and B as the absence of an edge connecting the

two nodes (⊥⊥ edge). Furthermore, we can simplify the DAG representation by assuming constraints

of piecemeal causality. One example constraint would be: if A → B and B → C then A → C

or alternatively expressed as A 6⊥⊥ C |B ||∅. A more detailed discussion on piecemeal causal

constraints is given in [MWW17b, Mat17, MWW21]. Considering the transitive closure for our set

of edges (E) as E+, the simplified representation of our graph can be formalized as:

C1(a,t,E) =


1 if a 6= t ∧ (t,a) 6∈ E+

0 otherwise
(3.99)

C2(a,t,E) =


1 if (di,t) ∈ E+ ∀di ∈ {(d, a) | (d,a) ∈ E+}

0 otherwise
(3.100)

Cx(a,t,E) =


1 if C1(a,t,E) = 1 ∧ C2(a,t,E) = 1

0 otherwise
(3.101)

V = {all biological entities} (3.102)

G = (V,E) (3.103)

E ⊆ {{a, t} | a, t ∈ V 2 ∧ Cx(a,t,E) = 1} (3.104)

And a formal desideratum of: Given a set of vertices V of size z and possible edges E∗z , the scientist

is to determine the true casual graph G′z.

In our theoretical setting, the discovery ofG′z is a sequential process whereby each experiment

is conducted at time i which adds the agent and target pair, (ai, ti), subjected to the existing causal

constraints, to E, the set of experiments performed so far. Each experiment’s outcome is considered

an observation from a hidden variable, and the result allows us to construct all possible causal

graphs consistent with the information at time i. Alternatively, we can view this as eliminating a set
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Figure 3.25: An example of different experiment selections leading to different number of experi-
ments needed to find G′.

of graphs from the existing possible graph set at time i. Discovering the true graph G′z is equivalent

to eliminating all but one graph from the set of all possible DAGs of size z, G∗z. Using the shorthand

for the powerset as P we write this more formally:

E∗0 = {∆ ∈ {P(V )× P(V )} | Cx(a,t,∆) = 1 ∀{a, t} ∈ ∆} (3.105)

E∗n = {∆ ∈ E∗n−1 | {an, tn} ∈ ∆} (3.106)

E ′ = {{a, t} ∈ ∆ | ∆ ∈ E∗k ∧ |E∗k | = 1} (3.107)

G′ = (V,E ′) (3.108)

For simplicity, we assume the biologists to operate under a naive model whereby each experiment

is chosen randomly. We assume a generative model for the process a scientist takes for causal graph

discovery as:

1: E∗ ← Set of all possible edges

2: while |E∗| > 0 do

3: Choose ei ∼ Uniform(E∗)

4: r ← Bernoulli(pei)

5: if r = 1 then

6: E− ← {∆ ∈ E∗ | ei ∈ ∆}
7: else

8: E− ← {∆ ∈ E∗ | ei 6∈ ∆}
9: end if
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10: E∗ ← E∗ \ E−

11: end while

Given this random science model (Random), we seek improvement by solving a simple problem:

discovering the casual graph G′z from E∗z such that the number of experiments performed, k, is

minimized. We denote this as E ′′ defined as:

E ′′ = min
∀k∈W
{{a, t} ∈ ∆ | ∆ ∈ E∗k ∧ |E∗k | = 1} (3.109)

The optimal algorithm thus chooses the smallest possible k, which leads to G′z, or equivalently the

smallest set of experiments (e′′) that lead to E ′′. But what is the minimal k? Although this is not an

easy question, we prove k to be bound by the following constraint: |V | − 1 ≤ k ≤ |V | · (|V | − 1).

Theorem 3.5.1. |V | − 1 ≤ k ≤ |V | · (|V | − 1)

Lemma 3.5.2. k ≤ |V | · (|V | − 1)

Proof. Given each edge e corresponds to a casual relationship, and each experiment x either

implies or denies a causal relationship of the form a → t, we either eliminate {∆ ∈ E | e 6∈ ∆}
if the experiment is true or {∆ ∈ E | e ∈ ∆} if the experiment is false. Since the total edge

directionality is 3, this implies in the worst case 2 experiments, since after 2 experiments, the total

size is 1 and thus the result can be inferred.

Lemma 3.5.3. |V | − 1 ≤ k

Proof. Proof by induction:

Base case. Let (v1, v2) = V , then there must be at least one experiment conducted since no result

can be inferred a priori.

Induction step. Given G′z for which we assume z − 1 ≤ k. Let vz+1 be a newly added node to

G′z, if we represent G′z as a node, vG, where (vz+1, vG, e ∈ {→,←}) =⇒ {(vz+1, v, e) | v ∈ V ′z}
and (vz+1, vG,⊥⊥) =⇒ {(vz+1, v,⊥⊥) | ∀v ∈ V ′z} then by the base case we need at least one

experiment to perform.

Now that we have the bounds of our optimal set how do we go about discovering it? An

intuitive approach may be what was formulated in Section 3.4.1.1: For each time step, choose the
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experiment with the highest amount of entropy [MWW17a, VJM00, MWW21]. The experiment

with the highest entropy will most likely reduce the overall entropy of the graph and converge to the

most certain outcome of a single graph at a higher rate than random. We discover entropy to be a

matter of looking at degrees of freedom for each possible node and each possible outcome (DOF).

Each node pair (v1, v2) initially contains three degrees of freedom, 1 for v1 → v2, 1 for v2 ← v1

and the third for v1 ⊥⊥ v2 (no relation). Initially, the degrees-of-freedom heuristic will choose an

experiment at random, perform it, then choose the next experiment based on minimizing entropy.

We formalize this as:

1: E∗ ← Set of all possible edges

2: Choose e0 ∼ Uniform(E∗)

3: r ← Bernoulli(pei)

4: if r = 1 then

5: E− ← {∆ ∈ E∗ | ei ∈ ∆}
6: else

7: E− ← {∆ ∈ E∗ | ei 6∈ ∆}
8: end if

9: while |E∗| > 0 do

10: Choose ei ∼ Entropy(E∗)

11: r ← Bernoulli(pei)

12: if r = 1 then

13: E− ← {∆ ∈ E∗ | ei ∈ ∆}
14: else

15: E− ← {∆ ∈ E∗ | ei 6∈ ∆}
16: end if

17: E∗ ← E∗ \ E−

18: end while

More details about the entropy calculation are given in Section 3.4.1. Although this approach seems

better suited than choosing an experiment at random, there may be room for improvement.
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Our previous work in Section 3.4.1.2 outlines another approach that involves quantifying

expectation and making the choice that maximizes this metric (DOF+E). This expectation is a

balance between the number of graphs eliminated by taking a particular decision, and the amount of

information gained by a particular outcome. The particular outcome’s gain is then multiplied by the

probability of that outcome to obtain the expected value. The expectation algorithm is identical to

the entropy-based approach, with the exception of using the expectation calculation as opposed to

the entropy calculation.

Experiment 3.4.2 shows us that both of these approaches yield more information to the

discovery of the complete causal graph G′z quicker than random experiment selection. However,

they are not optimal approaches. Instead, we suggest a third alternative to random selection based

on a concept we introduce as inference potential. We take the approach of fragmenting the node set

into a set of connected graphs by naively selecting a non-intervention experiment to be performed

for each edge. As with DOF and DOF+E, this is not the most optimal approach, rather it provides

intuition for the techniques we use later in a more natural setting while outperforming the entropy

approaches. By performing a non-intervention experiment against each edge, we can imply a causal

relation among all edges and separate graph fragments which are not connected. The causally related

edges are initially constructed as undirected and will become more directed as more experiments

are performed. The first phase partitions the graph into a set of independent graphs that are all

connected. We seek to find an edge pair (v1, v2) for each connected graph that implies a connection

among a set of nodes. For all nodes downstream of v1 (D) and upstream of v2 (U ) if v1 → v2,

then this implies d ∈ D → u ∈ U . Thus, we can make inferences about the causal nature of the

graph without the need for experimentation. In combination with the phase 1 non-intervention

determination, the edge inference should theoretically save the scientist from performing some

experiments. By maximizing the number of experiments not performed, we can arrive at a true

causal graph G′z in a smaller number of total experiments. An algorithmic description for scoring

an edge set is given by Algorithm 3.5.1.

Upon further inspection, this greedy approach can be further improved by noticing that we

can improve upon our selection by uncovering more important inference nodes. To introduce this

intuition we give a small case study:
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Figure 3.26: A comparison between baseline methods and Equation 3.117 showing the decreasing
function of G′(a) and the total number of experiments needed to find G′ in a 5,000 graph sample set
over G∗5.

3.5.1.6.1 Inference edge selection

We assume the causal graph we are working with contains 4 variables with the given true causal

form as the first graph given in Figure 3.25. We run phase 1 of Algorithm 3.5.1 on the input set to

get the dependent graph. The results of phase 1 leave us with the second graph given in Figure 3.25.

From here we diverge on two possible sets of choices. One set chooses to examine a side

edge (top) which leads to the fourth graph. The other one chooses the middle graph which ends up

relaying more information than the top choice. The reason being is that we can make inferences on

the graph about upstream and downstream nodes. Since we know that no cycle can occur, and we

know there is a causal relationship, we can assume the direction of the edge in the second graph of

the bottom split whereas we cannot make any reducing assumptions in the top split.

The nature of the DAG also allows for another type of inference to be made related to cycles.

If we can determine that a particular experiment would lead to a cycle, we can then eliminate that

experiment. We propose another algorithm to prefer selecting experiments that would allow us to

make eliminations based on this cycle constraint. This algorithm favors edge pairs contained in

the highest number of cycles (given that some edge pairs are undirected). After calculating the

number of cycles for each edge pair, we determine the causal relation for the edge pair contained

in the highest number of cycles. We then repeat this process until the graph G′z is discovered. To

discover the number of cycles an edge pair (v1,v2) belongs to, we traverse all outgoing edges from

v2 using any graph traversal algorithm and count the number of times we arrive at v1. However,

in order to count the total number of cycles contained in (v1, v2) we must make a slight change to
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the graph traversal algorithm to allow for visiting the same node twice. This results in an O(n2)

running time. We store this number in the edge (v1, v2), choose the next edge, and repeat until

all edges have been counted. The pseudo-code scoring algorithm is given in Algorithm 3.5.2. As

given, Algorithm 3.5.2 is non-polynomial in execution time. To mitigate this, we select a threshold

value for the max number of cycles to uncover and randomly choose among edges that meet the

threshold—or the highest scoring edge, if no edges are above the threshold.

Both algorithms are combined, and the max scoring edge represents the next selected ex-

periment. We refer to this combined algorithm as the max-cyclic-inference (MCI) algorithm. We

seek a simple threshold (ψ) combination for the total score to combine both scoring methods. We

assume to have a function A+ that takes as input an edge pair e = (a, t), a graph G, and returns

all the paths in G starting from a and ending with t and vice-versa. The ancillary function A will

return each θce for each edge in A+ and c in the set of possible edge directions. With our assumed

functions together with the transitive closure of G, G+, we can express our combined scoring metric

as follows:

ei = (ai, ti) (3.110)

G−i = {d ∈ V | (d, ai) ∈ G+} (3.111)

G−i = {u ∈ V | (ti, u) ∈ G+} (3.112)

fdi = A(d, ai, θ, G) (3.113)

fui = A(ti, u, θ, G) (3.114)

Mi(ei|G, θ) =
∑
d∈G+

i

∑
u∈G−i

∏
φ∈fdu

φ
( ∏
ω∈fui

ω
)
Mi(ei|G, θ) =

Mi(ei|G, , θ)∑
e∈EMi(e|G, θ)

(3.115)

Mc(ei|G, θ) = |A(ai, ti, θ, G)|Mc(ei|G, θ) =
Mc(ei|G, , θ)∑
e∈EMc(e|G, θ)

(3.116)

M(ei|G, θei) = ψMi(ei|G, θ) + (1− ψ)Mc(ei|G, θ) (3.117)

To show the utility of the MCI algorithm, we set up a simple experiment where we construct a

true causal graph from the set of all causal graphs and run MCI against the three baseline algorithms
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Algorithm 3.5.1 Max-Inference Scoring
Input: Connected graph G = (V,E).
Output: A weighting for each Experiment e

procedure UPSTREAM((v1,v2), E)
enqueue (v2,{v1}) into q
u← ∅
while |q| > 0 do

(vc, s)← dequeue from q
if {vx | (vc, vx ∈ E ∧ vx 6∈ s} = ∅ then

u← u ∪ (s0,s1, . . . ,sk,vc)
else

for vi ∈ {vx | (vc, vx ∈ E ∧ vx 6∈ s} do
enqueue (vi, (s0,s1, . . . ,sk,vc)) into q

end for
end if

end while
return u

end procedure
procedure DOWNSTREAM((v1,v2), E)

return equivalent to Upstream with the vertex positions swapped
end procedure
procedure PATHSCORE(d, u, E)

Σ← 0
for i← |d| to 0 do

pd ← 1
for si ∈ (di,di−1, . . . ,d0) do

if (si,si−1,→) 6∈ E then
pd ← pd × 0.5

end if
end for
for (u0,u1, . . . ,uk) ∈ u do

pu ← 1
for j ← 0 to k do

if (uj ,su+1,→) 6∈ E then
pu ← pu × 0.5

end if
Σ← Σ + pd × pu

end for
end for

end for
return Σ

end procedure
procedure SELECT(E)

w ← ∅
for (v1,v2) ∈ E do

ur ← Upstream((v1,v2), E)
dr ← Downstream((v1,v2), E)
ul ← Upstream((v2,v1), E)
dl ← Downstream((v2,v1), E)
w ← w ∪ {(v1, v2,PathScore(ur, dr, E) + PathScore(ul, dl, E))}

end for
return w

end procedure

1
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Algorithm 3.5.2 Max-Cycle Scoring
Input: Connected graph G = (V,E).
Output: A weighting for each Experiment e

procedure DFSCYCLE((v1,v2), r, E, S)
c← 0
for (v2, vx) ∈ E do

if vx = r then
c← c+ 1

else if vx 6∈ S then
c← c+ DFSCycle((v2,vx), r, E, S ∪ {vx})

end if
end for
return c

end procedure
procedure CYCLES(E, v1, v2)

if (v1,v2,→) ∈ E then
return (DFSCycle((v1,v2), v1E,∅), 0)

else if (v1,v2,←) ∈ E then
return (0,DBFSCycle((v2,v1), v2, E,∅))

else
return (DFSCycle((v1,v2), v1, E,∅),DFSCycle((v2,v1), v2, E,∅))

end if
end procedure
procedure SELECT(E)

w ← {}
for (v1,v2) ∈ E do

w ← w ∪ {(v1,v2),Cycles(E, v1,v2)}
end for
return w

end procedure

Algorithm 3.5.3 Experiment Selection
Input: Set of piecemeal causal variables V , weighting parameter ψ.
Output: Experiment e

procedure SELECT(V ,ψ)
w ← {}
G∗ ← {}
for i← 1 to |V | do

for j ← i+ 1 to |V | do
r ← Result of experiment (vi, vj , 6↔)
if r = 1 then

Gi,j ← {Gk ∈ G∗ | vi ∈ Vk ∨ vj ∈ Vk}
if |Gi,j | > 0 then

Vi,j ← Vi,j ∪ {vi, vj}
Ei,j ← Ei,j ∪ {(vi, vj , 6↔)}

else
G∗ ← G∗ ∪ ({vi, vj}, {vi,vj , 6↔})

end if
end if

end for
end for
for Gk ∈ G∗ do

for (v1,v2) ∈ Ek do
wi ← wi ∈ Max-Inf(E, v1,v2)}
wc ← wi ∈ Max-Cycle(E, v1,v2)}
w ← w ∪ {(v1,v2), ψwi + (1− ψ)wc}

end for
end for
return max{wm ∈ w}

end procedure
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(Random, DOF, DOF+E) and count the number of experiments conducted in order to discover G′.

We then repeat this experiment for all g ⊂ G∗5.

3.5.1.6.2 Experimental Setup

We choose an entity size of five nodes and randomly select 5,000 graphs from the total set of graphs

in G∗5. The total set comprises 29,281 graphs as the number of graphs follows from the following

equation:

|G∗z| =
z∑

m=1

(−1)m−1

(
z

m

)
2m(z−m)|G∗z−m| (3.118)

For each G′ ∈ {g ⊂ G∗5} we run the random algorithm (Random) against the degrees of freedom

(DOF), expectation (DOF+E), and max-cyclic-inference (MCI) algorithms. For each algorithm, we

count the number of experiments used to determine the true casual graph G′.

3.5.1.6.3 Experimental Results

The results of the experiment are visualized in Figure 3.26. Figure 3.26 (left) demonstrates the

advantage of the MCI approach by comparing the average number of graphs set at time x against

the baseline methods. To emphasize a small subset of possible graphs, we invert and scale the count

of graphs less than 10. As we can see from Figure 3.26 (left), MCI initially takes longer to reduce

possible graphs size; but after an initial lagging, it drastically outperforms all the other algorithms.

This outperformance can be seen in the inverted portion of the horizon plot, which shows that the

number of experiments needed to obtain a small set of possible graphs is significantly lower than

that of the other methods. Moreover, when it reaches the inversion threshold, it reduces to a smaller

possible set size than the other methods.

As shown in Figure 3.26 (right), the other result we compare is the total number of experiments

performed for each causal graph in G′. An interesting finding is that the expectation algorithm

is marginally better than Random, and less better than the degree-of-freedom (DOF) approach.

This finding differs slightly from the results in Experiment 3.4.2. We hypothesize this result

is due to the increase in the graph dimension size of G∗5, suggesting that DOF may be a more

informative algorithm than the expectation-based approach. Out of all the algorithms, MCI once
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again outperforms the baseline methods by a large margin. This result implies our algorithm may

be useful to help guide scientists in selecting subsequent experiments, given a partial causal graph.

3.5.1.7 The Global Causal Graph

So far, our discussion on experiment selection has made some basic assumptions about the casual

world: e.g., that a causal relation exists distinctly in one of three classes, and that there are no causal

cycles in the true graph. In the actual biological setting, things are not so simple—we may indeed

observe conflicting results across two iterations of the same experiment, under ostensibly identical

conditions. Conflicting evidence may lead to uncertainty about the edge relationship, including

whether cycles govern the system’s behavior. We propose a remedy for these scenarios is given by

leveraging the CPCEI.

We can take each experiment as an observation from a hidden variable, which we update

using Bayesian analysis (CPCEI). This method also allows us to formulate a measure of certainty,

which is the probability of a given edge belonging to a particular class. Initially, each probability

is given an uninformative prior and is updated as we record observations. Under this model, each

edge becomes a probability distribution, and we permit cycles. This concept of a probability for a

causal outcome with cycles leads to the interesting extension of piecemeal causal decay.

Definition: piecemeal causal decay. Piecemeal causal decay (PCD) is the likelihood that two

biological entities have a causal effect on each other given the set of known paths with the same

causal effect, originating from v1 and ending at v2. For example, if at a moment in time, the entirety

of the known world exists such that there is a causal relationship of A→ B → C → D, then we

can imply a stronger casual likelihood of A→ C than A→ D.

Given our assumption of a biological decay associated with the path length of a causal chain,

we model this as a joint probability distribution. In the example above, if the p(A → B) is 0.5

and the p(B → C) is 0.75 then we take the p(A→ C) as 0.5× 0.75 = 0.375. Under this model,

the likelihood of an association is a naturally decreasing function that we assume mimics what is

found in the scientific setting. This model also adds an interesting property to that of measuring

the strength of information about a particular causal pair: that any observed causal experiment’s

result is an observation of not only the two edge pairs being studied but for every causal chain that
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contains v1 and v2. We can thus update not only the score between v1 and v2 but every downstream

biological entity. Biological and piecemeal casual decay leads us to another interesting concept:

potential piecemeal causation.

Definition: potential piecemeal causation. For each element along a causal chain that is not

previously studied, we can apply the concept of PCD to imply a causal relationship for a pair of

variables. This implied causal relationship represents the potential for causation, an assertion we

have tangential knowledge for, but needs to be verified experimentally.

Much like the score we arrive at for piecemeal causation between two studied entities, we

can calculate the potential piecemeal causation (PPC) as a likelihood defined by the PCD of each

element. This calculation then becomes product of CPCEI values along each path:

Pi,j = {vi,vi+1, . . . ,vj} (3.119)

L((vi, vj, c) | E) =
∏
v∈Pi,j

αv + nv,cx∑J
i αi + nv,cx

(3.120)

Even though potential causation is supported only by tangential evidence, we take direct

evidence to be much stronger. Because we value direct evidence much stronger, we must determine

a correct mechanism for assigning a stronger weight to such evidence. An interesting observation of

potential causation’s calculation leads to the natural weighting of direct versus tangential evidence.

The multiplication of probabilities along each edge pair will decrease significantly, allowing direct

evidence to receive a more considerable weight. Again, we think that this mirrors the scientific

setting.

To factor causal potential into the score, we take the sum total of potential causation plus the

score given by the CPCEI as the value of a given casual strength and likelihood, but this becomes a

recurrent relationship. As a given score changes, so too does downstream and upstream scores. One

approach to take is to use an iterative algorithm to calculate the score. At time x0, we set the scores

to the direct causal score given in the CPCEI. Then for each edge pair and time x, we calculate the

given score by multiplying the scores derived at time x− 1 on the edges for each path that passes

through (v1, v2). The next time step continues the same calculation until the values converge.4

4For simplicity, in our experimentation we limit the the number of timesteps to 2.
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Figure 3.27: Loess smoothed regression and 95% confidence intervals describing the likelihood of a
causal observation given an observed path length.

To help illustrate the usefulness of our probabilistic scoring for experiment selection, we give

a case study using a small study of published research papers over a period of 17 years.

3.5.1.7.1 Case Study

We take a small set of papers consisting of 5 research papers published from 1997 to 2011. From

these papers, we extract out a sequence of experiments that connect a later research paper. The

papers are given in the following table: The sequence of experiments yielded, in order, the edges

Agent Target Year

NF1 Spatial learning (SL) 1997 [SFM97]

SL PERK 2005 [KEM05]

PERK LTP 2006 [COG06]

LTP Arc 2011 [KF11]

Arc Spine density (SD) 2011 [KF11]

NF1→ SL [SFM97]→ PERK [KEM05]→ LTP [COG06]→ Arc [KF11]→ SD [KF11]. We can
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use our calculation to place a more likely causal association between NF1 and LTP than between NF1

and SD, which indeed was suggested by empirical evidence in 2013 for both assertions [SHM13].

This example highlights a specific instance where our model correctly predicts the outcomes

of experiments, but it is worth investigating whether this is generally likely. To investigate this, we

set up the following experiment.

3.5.1.7.2 Experimental Setup

From our entire aggregation of piecemeal causal assertions, we find every path of length n ≤ 10

and record the result of the experimental assertion, with the start of the path being the agent and the

end of the path being the target. We then record the average number of causal observations.

3.5.1.7.3 Experimental Results

The average number of causal observations (µ) are plotted alongside the path length in Figure 3.27.

We also record the 95% confidence interval for each µ. To show the general trend, we use a

loess-based regression smoothing. As we can see from the figure, there is a general downward trend.

As we increase the path length, we tend to see less causal relationships. Although these results are

somewhat complicated by the assumption that a no relationship result is less likely to be reported,

they nevertheless support our concepts of PCD and PPC.

So given the concept of a causal score, casual decay, and potential causation coupled with a

partially constructed view of the causal world, an interesting area to investigate is that of experiment

selection. Given a large set of possible experiments to take, what should be the next experiment

chosen? This question is indeed important as experiments in the biological setting can be arduous,

expensive, and time-consuming. One simple approach would be techniques that mimic entropy and

entropy expectation, as discussed in Section 3.5.1.6. However, we may benefit in the same manner

by choosing an experiment taken from scores provided by a combination of the CPCEI and PPC

(CPCEI-P). We take this combination to be a simple addition of values returned by each metric:

s((vi, vj) | c, E, θci,j) = E[θci,j | ni,j,cx , αi,j] + L((vi, vj, c) | E) (3.121)
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We seek to develop an analogous approach to Equation 3.117. But this is a bit challenging

due to the relaxed constraints of distribution edge scoring and cycles. For the purpose of discovering

the next experiment to take, we factor into the model a set of independent graphs in our global

causal graph. We can declare a non-edge to be an edge where the evidence is not existing. With

each sub graph we can isolate each individual class and calculate the amount of score to be gained

as in Equation 3.117. We then take total value to be that of the calculated score returned by

Algorithm 3.5.1.6.1. We can formulate an adaption of the MCI that seeks out the maximum score

gained, where the score is calculated using Equation 3.121. This equation is given as (ei is defined

in Equation 3.110):

θc,1ei = E[θcei | nei,cx + 1, αei ] (3.122)

gc(ei|G, θcei) = |s(ei|c, E,θc,1ei )− s(ei|c, E,θcei)| (3.123)

We can further our existing approach by considering the nature of our causal world—that

is, a set of massively connected graphs. To fully discover the true nature of these graphs requires

a tremendous amount of experiments to be conducted. And due to the constraints of conducting

experiments, it is not feasible for any team of scientists, human or robot, to discover the true global

graph in totality. We must therefore consider the effect an experimental result makes on the set of

causal graphs. An interesting observation can be made that improving the causal knowledge of an

existing edge pair can affect connecting edges to either biological element (node) score calculation.

In other words, if the result of an experiment e1 yields a particular result then another connected

experiment e2 may become more advantageous to take than before conducting e1. This leads to a

realization that two edge pairs (v1, v2) and (v3, v4) with the same initial score may not be equal in

terms of being a preferable choice. If (v1, v2) leads to a causal graph where another highly valued

edge pair (v5, v6) increases in value to a value higher than any other edge pair after choosing (v3, v4),

we would prefer to choose (v1, v2)—given only two choices to make. We submit that there is a

potential for a cascading effect—in more detail: choosing one experiment may result in another

experiment being more attractive than before the first experiment was selected.
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Though it may be an exponential solution to solve optimally, we provide a heuristic algorithm

for choosing the next best edge pair, which can be interpreted as the next best experiment to perform

in the context of piecemeal causal discovery. Given all calculated scores for all edge pairs in a

causal graph for class c, we place the edge weights into a modified edge-based PageRank. We then

run the PageRank algorithm until convergence and record all the values. We repeat this process for

all classes and record an edge score for each edge as the sum of all PageRank values for each class

normalized by the number of classes. Our modified PageRank algorithm is calculated as:

R(vj) =
1− d
|V | + d ·

∑
vi∈I(vj)

G(vi,vj)∑
vo∈O(vi)

G(vi,vo)
·R(vi) (3.124)

Where d is a damping factor, I(vj) the set of incoming nodes into vj , O(vi) the set of outgoing

nodes from vi, and G(vi, vj) = gc(eb|G, θceb) from Equation 3.123 with eb being the edge between

(vi, vj). After the final scores for each edge are calculated, we take the highest-scoring edge; if

there are multiple high-scoring edges, we randomly choose among the highest-scoring edges. After

conducting the experiment, we update the scores of the graph and rerun Equation 3.124. The full

algorithm is shown in Algorithm 3.5.4.

Given our approaches to determine the next best experiment, we demonstrate the choices

of the different approaches on our existing snapshot of the casual world. We use the causal graph

described in Section 3.5.1.4, and the algorithms in Section 3.5.1.6 and Algorithm 3.5.4 to determine

and report the experiments we recommend biologists pursue.

3.5.1.7.4 Experimental Setup

We build our causal graph from the entire ResearchMaps database coupled with the causal datasets

described in Table 3.2 and the discovered relationships from Experiment 3.5.1.2.1. The edge weights

are restricted to only the evidence gathered, and initially do not factor in potential causation. With

the initial state of the causal graph representing our best guess of the causal world, we score each

edge with the algorithms described in Section 3.5.1.6 and Algorithm 3.5.4 to determine the next

best experiment to conduct.
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Algorithm 3.5.4 Experiment Selection
3.5.4 Input: Causal graph G.
Output: Next best experiment E

procedure SCORE(G,(e1,e2),p)
su→ ← DirScore(G, (e1,e2),→, s(e1,e2))
sd→ ← RevScore(G, (e1,e2),→, s(e1,e2))
su← ← DirScore(G, (e1,e2),←, s(e1,e2))
sd← ← RevScore(G, (e1,e2),←, s(e1,e2))
p∗ ← −→s according to Equation 3.121
su∗→ ← DirScore(G, (e1,e2),→, p∗)
sd∗→ ← RevScore(G, (e1,e2),→, p∗)
su∗← ← DirScore(G, (e1,e2),←, p∗)
sd∗← ← RevScore(G, (e1,e2),←, p∗)
if p =→ then

return p× |(su→ + sd→)− (su∗→ − sd∗→)|
end if
if p =← then

return p× |(su← + sd←)− (su∗← − sd∗←)|
end if
δ1 ← p× |(su→ + sd→)− (su∗→ − sd∗→)|
δ2 ← p× |(su← + sd←)− (su∗← − sd∗←)|
return p× (δ1 + δ2)

end procedure
procedure DIRECTIONALITY(−→s )

pm ← max(−→s )
if p 6↔ = pm then

return 6↔
end if
if p→ = pm then

return→
end if
return←

end procedure
procedure NEXT(G)

for (e1, e2) ∈ G do
Calculate −→s according to Equation 3.121
Directionality← Directionality(−→s )

end for
ms ← 0
me ← ∅
for (e1, e2) ∈ G do

for p ∈ θw do
s← Score(G, (e1, e2), p)
if s > ms then

ms ← s
maxe ← (e1, e2, p)

end if
end for

end for
return me

end procedure

3.5.1.7.5 Experimental Results

We display the top seven experiments to conduct in Table 3.9 for Equation 3.124 and Algorithm 3.5.4.

We can see a slight difference between the two scoring metrics and expect Equation 3.124 to be the

most impactful. However, we hope that the biological community can confirm this presumption.
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Algorithm 3.5.5 Edge Scores
Input: Causal graph G.
Output: Next best experiment E

procedure DIRSCORE(G,(e1,e2),d,δ)
mark e2 as visited
sum← −δ
enqueue (e1,∅, δ into q
while |q| > 0 do

(n, , s)← dequeue from q
if s < λ then

continue
end if
sum← sum+ s
mark n as visited
for unvisited ei ∈ {(n, ei) ∈ G ∪ {n, ei} ∈ G} ∧ (n,ei) = d do

enqueue (ei, n, s× s(n,ei)
) into q

end for
end while
return sum

end procedure
procedure REVSCORE(G,(e1,e2),d,δ)

mark e2 as visited
sum← −δ
enqueue (e1,∅, δ into q
while |q| > 0 do

(n, , s)← dequeue from q
if s < λ then

continue
end if
sum← sum+ s
mark n as visited
for unvisited ei ∈ {(ei, n) ∈ G ∪ {ei, n} ∈ G} ∧ (ei, n) = d do

enqueue (ei, n, s× s(ei,n)) into q
end for

end while
return sum

end procedure

The experiment above highlights the best experiment to take to increase the overall knowledge

of our casual world, but we can use similar techniques for other types of knowledge discovery. We

demonstrate this in the discovery of likely causal associations.

3.5.1.7.6 Experimental Setup

Using the same approach as described in Experiment 3.5.1.7.4, after the scoring of the graph is

complete using Algorithm 3.5.4, we modify our search to only elements with no direct observations.

We perform the search for each of the three types of causal classes.
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Equation 3.124 Algorithm 3.5.4

Agent Target Score Agent Target Score

sharp-wave ripples oAβ 8.86e-4 glutamate release mGluR7 3.5e-3

myosin motor proteins actin cytoskeleton 4.91e-4 contextual conditioning HIV Tat 3.5e-3

AMPAR memory retrieval 4.75e-4 CRE NMDA 3.35e-3

pSer845 memory retrieval 4.64e-4 CDK5 NMDA 3.12e-3

PGE2 generation TNFR1 activation 4.56e-4 glutamate release NF1 2.9e-3

TTR spatial memory 4.26e-4 hippocampal memory KIF17 2.8e-3

presynaptic GABA release mGluR7 4.25e-4 pERK pSynapsin I 2.62e-3

TNF-α PGE2 generation 4e-4 TORC1 pCREB 2.6e-3

proBDNF microglia 3.93e-4 BDNF GP120 2.32e-3

Table 3.9: Experiment recommendations and scores for the most informative experiment to select
for Equation 3.124 and Algorithm 3.5.4.

3.5.1.7.7 Experimental Results

We show the results of our search in Table 3.10. We believe the top-scoring biological elements,

shown in Table 3.10, to most likely yield a causal relationship if tested directly. Discovering these

types of associations may be more meaningful to biologists as it has the potential for the discovery

of new treatments and therapies.

Another interesting discovery we can make is that of the likelihood of direct causation. That

is, given an observation of causation between two elements (v1, v2), how likely is the effect being

shown due to a direct association between the two elements versus confounding variables? Although

this is a difficult question to answer, we posit the evidence of such a claim can be demonstrated

by examining upstream and downstream elements connected to ei = (ai,ti). For example if we

are given that v1 → v2 and also v1 → v3, if v3 6→ v2 then this is evidence of a direct connection.

Of course we do not have singular assignments of any causal class so we take the probability of

causation as the assignment. If we take the aggregate over all elements we can rank the edges by the

highest score and take these to be most likely of association. Conversely the lowest ranking score
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Most likely to observe a relation Most likely directly connected Least likely directly connected

CXCR4→ spatial learning IFN-γ→ IDO1 pCRTC1→ contextual conditioning

TORC1→ pCREB FLNA→ dendritic complexity TSC2→MAPK

BDNF mRNA→ pCREB GRIN2B→ hippocampal memory intracellular calcium→ CREB-dependent transcription

PKA→ CTA BDNF→ pTrkB CaMKII→ spatial learning

NF1→ glutamate release CCR5→MAPK-CREB signaling pCRTC1→ cFos

NF1→ pERK insomnia→ depression TSC2→ UCP2

c-Fos→ mTOR pERK2→ pCREB MEK→ pERK

NDDs→ cortical patches CREB→ 14.3.3 eta FMRP→ protein synthesis

TNF-α release→ CXCR4 RAS→ RAF kinase TSC2→ mTOR

Table 3.10: Agent and target pairs that we suggest are most likely to reveal a causal relation (left),
most likely to be directly connected (middle) and most likely for the observed causal effect to be
due to confounding variables (right).

elements are either elements without a lot of evidence, indicating the need for more experimentation,

or have contrary evidence. We quantify this in the following equation, given G+ as the transitive

closure of G:

U c
i = {θcj | (ai, j) ∈ G+ ∧ (j, ti) ∈ E} (3.125)

Dc
i = {θcq | (q, ai) ∈ G+ ∧ (q, ti) ∈ E} (3.126)

Ms(ei|G, θci ) = θci −
( ∑
h∈Uc

i

h+
∑
l∈Dc

i

l
)

(3.127)

From the highest-scoring contrarian evidence, we posit these elements as evidence of no direct

association—that is, elements that may lead to an observed effect, but due more to confounding

variables than to a direct connection among themselves.

3.5.1.7.8 Experimental Results

For each edge in our global causal graph with a direct observation, we score the edge given by

Equation 3.127. We score each causal class and report the results in Table 3.10. This experiment

relays another interesting area for scientists to look at, as it may be useful to target these specific

nodes (target) when investigating an effect of an agent. Likewise, we examine the lowest scoring

edge pairs as another avenue for investigation. If a scientist knows that two elements, while on

the surface providing evidence of causation, are due to a confounding variable, the scientist can
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search for that confounding variable, disconnect it from the casual chain, and test the causal relation

between the original two elements and confirm or deny the supposition. This type of discovery is

equally valuable since it can improve upon existing drugs and therapies aimed at the agent, which

may not be as effective as targeting another agent.

3.5.2 Discussion

Here we present a pipeline that can serve as the “mind” of a robot scientist. We demonstrate the

utility of this pipeline when applied to the PubMed Central corpus, though the techniques should

remain useful in other datasets and domains. Since causality is prevalent in most areas of science, it

is conceivable that our methods could also apply to these areas.

Although we demonstrate how the causal pipeline can improve scientific experimentation, our

method is far from complete, with many areas that can be improved. One such area is the extraction

of causal statements: our method aligns candidate sentences with a smaller labeled data set. An

overview of improvements on our alignment method is discussed in Section 3.2.3. Another area

of future research is the improvement of our probabilistic graph-scoring calculation. Our existing

method assumes that any reported association is of equal strength. However, this assumption is

not valid in the scientific setting, where some relationships may be demonstrated using a more

statistically robust study. In this regard, it may be interesting to incorporate reported strengths of

assertion, such as p-values.

Future work could also improve upon our experiment-selection algorithms. Even in our given

setting, we make no claim of optimality—leaving open the possibility of improvements, which are

likely to have a significant impact in the biological domain. There may also be other interesting

areas to discover in regards to our causal graph. One area we did not address here was ranking the

importance of a node in a causal network. It could be possible to apply a PageRank type algorithm

to a causal subgraph to determine the most important node—and then this important node could be

the focus of experimentation which could yield improved treatments.

This work explores a knowledge-synthesis, causal-discovery, and experiment-selection

pipeline, which we propose as the “mind” for a robot scientist. We demonstrate the utility of

the pipeline by applying it to the PubMed dataset. Our pipeline consists of a combination of
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established techniques, together with some novel improvements. Starting with the extraction of

causal information, we feed this data into a technique that represents the information graphically.

With a causal graph constructed, we can use graph-based knowledge discovery together with a novel

scoring approach to yield findings that may be tremendously useful and impactful to the biological

scientist. Our main contribution is demonstrating experimentally the benefit of adopting such an

approach. When provided real-life data, the pipeline can produce interesting findings. We share

the knowledge discovery demonstrated by our pipeline with the intention of providing immediate

benefit to the biological research community.
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CHAPTER 4

Topic Interpretability and Labeling

Existing approaches to Bayesian topic modeling are often based off Latent Dirichlet allocation

(LDA) [BNJ01] and involve analyzing a given corpus to produce a distribution over words for each

latent topic and a distribution over latent topics for each document. The distributions representing

topics are often useful and generally representative of a linguistic topic. Unfortunately, assigning

labels to these topics is often left to manual interpretation.

Identifying topic labels is useful in summarizing a set of words comprising a topic. For

example, words of a topic, such as the words pencil, laptop, ruler, eraser, and book can be mapped to

the label “School Supplies.” Adding descriptive semantics to each topic can help people, especially

those without domain knowledge, to understand topics obtained by topic modeling.

A motivating application of accurate topic labeling is to develop summarization systems for

primary care physicians, who are faced with the challenges of being inundated with too much data

for a patient and too little time to comprehend it all [MRD06]. The labels can be used to more

appropriately and quickly give an overview, or a summary, of patient’s medical history, leading

to better outcomes for the patient. This added information can bring significant value to the field

of clinical informatics which already utilizes topic modeling without labeling [AEB10, BLF11,

SOA16].

Existing approaches in labeling topics usually do their fitting of labels to topics after com-

pletion of the unsupervised topic modeling process. A topic produced by this approach may not

always match well with any semantic concepts and would therefore be difficult to categorize with a

single label. These problems are best illustrated via a simple case study.
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4.0.0.1 Case Study

Suppose a corpus of a news source that consists of two articles is given by documents d1 and d2,

each with three words:

d1 - pencil, pencil, umpire

d2 - ruler, ruler, baseball

LDA (with the traditionally used collapsed Gibbs sampler, standard hyperparameters and the

number of topics (K) set as two) would output different results for different runs due to the inherent

stochastic nature. It is very possible to obtain the following result of topic assignments:

d1 - pencil1, pencil1, umpire2

d2 - ruler2, ruler2, baseball1

But these assignments to topics differ from the ideal solution that involves knowing the context

of the topics in which these words come from. If the topic modeling was to incorporate prior

knowledge about the topics “School Supplies” and “Baseball”, then a topic modeling process will

more likely generate the ideal topic assignments of:

d1 - pencil2, pencil2, umpire1

d2 - ruler2, ruler2, baseball1

and assign a label of “School Supplies” to topic 1 and “Baseball” to topic 2. Furthermore, it is

advantageous to incorporate this prior knowledge during the topic modeling process. Consider the

following table displaying four different mapping techniques of the first result using the Wikipedia

articles of “School Supplies” and “Baseball” as the prior knowledge ([same] means that in different

runs the labels for Topic 1 and Topic 2 changed, however they were always equal to each other):

Applying this labeling post topic modeling can lead to problems dealing with the topic themselves.

This is not so much a problem of the mapping techniques but of the topics used as input. By

separating the topics during inference this problem of combining different semantic topics can be

avoided. Equally important to the task of accurately labeling topics is that the most assigned words
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Technique Topic 1 Topic 2

JS Divergence Baseball Baseball

TF-IDF/CS [same] [same]

Counting Baseball Baseball

PMI [same] [same]

in the labeled topic are semantically related to the label. The semantic relatedness of the words

most represented in the topic is referred to as topic interpretability. An approach that improves topic

labeling and topic interpretability is an ideal of our topic model—a desiderata that is much more

important than predictability when the topic model distributions are to be consumed by humans.

To label topics and increase interpretability, one may take a weakly-supervised approach

that incorporates prior knowledge into the topic modeling process to improve the quality of token

assignments and more effectively label topics. However, existing supervised approaches [SSC11,

HRS13, JIU12] are either too lenient or too strict. For example, in the Concept-topic model

(CTM) [SSC11], a multinomial distribution is placed over known concepts with associated word

sets. This pioneering approach does integrate prior knowledge, but does not take into account word

distributions. For example if a document is generated about the topic “School Supplies” it is much

more probable to see the word “pencil” than the word “compass,” even though both words may be

associated with the topic “School Supplies.” This technique also requires some supervision which

requires manually inputting preexisting concepts and their bags of words.

Another approach, given by Hansen et al. as the explicit Dirichlet allocation (EDA) [HRS13],

incorporates a preexisting distribution based off Wikipedia articles but does not allow for variance

from the Wikipedia article distribution (formed by the word-count histogram). This approach fulfills

the goal of incorporating prior knowledge and their distributions, but assumes a subset of topics

in the generated corpus (corpus for which we are to perform topic modeling) strictly follow the

Wikipedia word distributions.

To allow for more flexibility while leveraging the influence from weakly-supervised word

distributions, we propose the Source-LDA model which is a balance between the CTM and EDA.

The goal is to allow for simultaneous discovery of both known and unknown topics. Given a
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Figure 4.1: Plate notation Source-LDA.

collection of known topics and their word distributions, Source-LDA is able to identify the subset

of these topics that appear in a given corpus. It allows some variance in word distributions to the

extent that it optimizes the topic model.

4.1 Source-LDA

Source-LDA is an extension of the LDA generative model. In Source-LDA, after a known set

of topics are determined, an initial word-to-topic distribution is generated from corresponding

Wikipedia articles. The desiderata is to enhance existing LDA topic modeling by integrating prior

knowledge into the topic modeling process. The relevant terms and concepts used in the following

discussion are defined below.

Definition 1 (Knowledge source). A knowledge source is a collection of documents that are focused

on describing a set of concepts. For example the knowledge source used in our experiments are

Wikipedia articles that describe the categories we select from the Reuters dataset.

Definition 2 (Source Distribution). The source distribution is a discrete probability distribution

over the words of a document describing a topic. The probability mass function is given by

∀wi ∈ W, f(wi) =
nwi∑G
j nwj

where W is the set of all words in the document, G = |W |, and nwi
is the number of times word wi

appears in the document.
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Definition 3 (Source Hyperparameters). For a given document in a knowledge source, the knowledge

source hyperparameters are defined by the vector (X1, X2, . . . , XV ) where Xi = nwi
+ ε and ε is a

very small positive number that allows for non-zero probability draws from the Dirichlet distribution.

V is the size of the vocabulary of the corpus for which we are topic modeling, and nwi
is the number

of times the word wi from the corpus vocabulary appears in the knowledge source document.

We detail three approaches to capture the intent of Source-LDA. The first approach is a simple

enhancement to the LDA model that allows for the influencing of topic distributions, but suffers

from needing more user intervention. The second approach allows for the mixing of unknown

topics, and the third approach combines the previous two approaches. It moves toward a complete

solution to topic modeling based off prior knowledge sources.

4.1.1 Bijective Mapping

In the simplest approach, the Source-LDA model assumes that there exists a 1-to-1 mapping between

a known set of topics and the topics used to generate a corpus. The generative model then assumes

that instead of selecting topic-to-word distributions from a sampling from the Dirichlet distribution,

a set of K distributions are given as input and sampled from after each topic assignment is sampled

for a given token position. The generative process for a corpus adapted from the traditional LDA

generative model during the construction of the φ distributions is as follows (for brevity only the

relevant parts of the existing LDA algorithm given in Section 2.2.1.2 are shown):

1. For each of the K topics φk:
2. δk ← (Xk,1, Xk,2, . . . , Xk,V )

3. Choose φk ∼ Dir(δk)

Where (Xk,1, Xk,2, . . . , Xk,V ) represents the knowledge source hyperparameters for the kth knowl-

edge source document. The generative model only differs from the traditional LDA model in

how each φ is built. Therefore the derivation for inference requires only a simple modification.

To approximate the distributions for θ and φ, a collapsed Gibbs sampler can approximate the z

assignments as follows:

P (wi|zi=j,z-i,wi) ∝ P (wi|zi=j, z-i,w-i)P (zi=j|z-i) (4.1)
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Following the Bayesian model (Figure 4.1), the following equations can be easily be generated

P (wi|zi=j,z-i,w-i)=

∫
P (wi|zi=j, φj)P (φj|z-i,w-i)dφj (4.2)

with

P (φj|z-i,w-i) ∝ P (w-i|φj, z-i)P (φj) (4.3)

P (φj|z-i,w-i) = Dir(δi,j + nw-i,j) (4.4)

P (wi|zi=j, φj) = φwi,j
(4.5)

P (wi|zi=j,z-i,w-i)=Dir(δi,j + nw-i,j)

∫
φwi,j

dφj (4.6)

P (wi|zi=j,z-i,w-i)=
nwi

-i,j + δi,j

n
(·)
-i,j +

∑V
a δa,j

(4.7)

nw and nd in this and the following equations represent a count matrix for the number of times a

word is assigned to a topic and the number of times a topic is assigned to a document respectively.

For brevity since the prior probability is unchanged in the “Bijective Mapping” model we will

skip the derivation which is well defined in other articles [GS04, Dar11, Gri02]. The derived prior

equation is given as:

P (zi=j|z-i)=
ndi-i,j + α

n
(di)
-i +Kα

(4.8)

Putting the two equations together gives the final Gibbs sampling equation:

P (zi=j|z-i,w) ∝
nwi

-i,j + δi,j

n
(·)
-i,j +

∑V
a δa,j

ndi-i,j + α

n
(di)
-i +Kα

(4.9)

Given the approximation to the topic assignments, the θ and φ distributions are calculated as:

φw,t =
nw,t + δw,t

nt +
∑V

a δa,t
(4.10)

θt,d =
nd,t + α

nd +Kα
(4.11)
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Figure 4.2: Box plots [Bec14] showing the Jensen-Shannon divergence (the JS divergence measures
the distance or similarity between probability distributions) of 1000 Dirichlet samples parameterized
by source hyperparameters for a subset of knowledge source topics. The topics were derived from
Wikipedia pages.

In the case when all topics are known, this model has the advantage of conforming the φ

distributions to the source distributions, but has three drawbacks. First, even though there is some

variability between the φ distribution and source distribution, as illustrated by Figure 4.2, there

may be cases in which this constraint should be relaxed even further. This is because it is entirely

possible to generate a corpus about a known topic without exactly following the frequencies at

which the topic is discussed in its respective knowledge source article. This model also requires

the user to input the known labeled topics, and other possible supervised approaches may be better

suited to the task [BM07, LSJ08, RHN09]. The third drawback is that we are not allowing the

possibility that the corpus was generated from a mixture of known topics (labeled topics influenced

by a knowledge source topic) and unknown topics, which is a more realistic scenario for an arbitrary

corpus. The next model aims to resolve this last deficiency.

4.1.2 Known Mixture of Topics

The next model assumes the topic model is given how many topics are known topics (as well as their

word distributions) and how many are unknown topics. The previous approach (bijective mapping)
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works quite well in this situation in that an unknown topic will have a symmetric beta parameter

which will capture assignments which were unallocated due to a low probability in matching any

known topic.

The resulting model helps to solve the existing problems of the bijective model and only

requires a minor input to the bijective model’s generative model. The model changes as shown

below with a minor change to the generative algorithm and the collapsed Gibbs sampling.

1. For each of the K topics φk:
2. if k ≤ T then
3. Choose φk ∼ Dir(β)

4. else
5. δk ← (Xk,1, Xk,2, . . . , Xk,V )

6. Choose φk ∼ Dir(δk)

Where T is the total number of non-source (short for non knowledge source) topics. The change

required to the collapsed Gibbs sampling is then:

P (zi=j|z-i,w) ∝
nwi

-i,j + β

n
(·)
-i,j +Wβ

ndi-i,j + α

n
(di)
-i +Kα

, ∀i ≤ T (4.12)

and

P (zi=j|z-i,w) ∝
nwi

-i,j + δi,j

n
(·)
-i,j +

∑V
a δa,j

ndi-i,j + α

n
(di)
-i +Kα

, ∀i > T (4.13)

This approach gives the benefit of allowing a mixture of known topics and unknown topics, but

problems still arise in that the Dirichlet distributions for the source distribution may be too restricting.

4.1.3 Unkown Mixture of Topics

By using the counts as hyperparameters, the resultant φ distribution will take on the shape of the

word distribution derived from the knowledge source. However, this might be at odds with the aim

of enhancing existing topic modeling. With the goal to influence the φ distribution, it is entirely

plausible to have divergence between the two distributions. In other words, φ may not need to

strictly follow the corresponding knowledge source distribution.
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4.1.3.1 Variance from the source distribution

To allow for this relaxation, another parameter λ is introduced into the model which is used to

allow for a higher deviance from the source (short for knowledge source) distribution. To obtain

this variance each source hyperparameter will be raised to a power of λ. Thus, as λ approaches 0,

each hyperparameter will approach 1 and the subsequent Dirichlet draw will support all discrete

distributions with equal probability. As λ approaches 1, the Dirichlet draw will be tightly conformed

to the source distribution.

The addition of λ changes the existing generative model only slightly and allows for a

variance for each individual δi—which frees us from an overly restrictive binding to the associated

knowledge source distribution. The λ parameter acts as a measure of how much divergence is

allowed for a given modeled topic from the knowledge source distribution. Figure 4.3 shows how

the Jensen-Shannon (JS) Divergence changes with changes to the λ parameter. The change needed

to the general model is given as:

5. δk ← [(Xk,1)λ, (Xk,2)λ, . . . , (Xk,V )λ]

With the introduction of λ as an input parameter, the new topic model has the advantage of

allowing variance and also leaves the collapsed Gibbs sampling equation unchanged. However, this

also requires a uniform variance from the knowledge base distribution for all latent topics. This can

be a problem if the corpus was generated with some topics influenced strongly while others less so.

To solve this we can introduce λ as a hidden parameter of the model.

4.1.3.2 Approximating λ

In the ideal situation, λ will be as close to 1 for most knowledge source based latent topics, with the

flexibility to deviate as required by the data. For this we assume a Gaussian prior over λ with the

mean set to µ. The variance then becomes a modeled parameter that conceptually can be thought

of as: how much variance from the knowledge source distribution we wish to allow in our topic

model. In assuming a Gaussian prior for λ, we must integrate λ out of the collapsed Gibbs sampling

equations (only the probability of wi under topic j is shown, the probability of topic j in document

d is unchanged and omitted).
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Figure 4.3: Box plots showing how the JS
divergence between a source distribution and
a Dirichlet sample parameterized by source
hyperparameters raised to λ changes with
changes to λ without smoothing.
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P (zi=j|z-i,w) ∝
∫

nwi
-i,j + (δi,j)

λ

n
(·)
-i,j +

∑V
a (δa,j)λ

N (µ, σ)dλ (4.14)

φ then becomes

φw,t =

∫
nw,t + (δw,t)

λ

nt +
∑V

a (δa,t)λ
N (µ, σ)dλ (4.15)

Unfortunately, closed form expressions for these integrals are hard to obtain, so they must be

approximated numerically during sampling.

Another problem arises in that the change of λ is not in par with the change of the Gaussian

distribution, as can be seen in Figure 4.3. To make the changes of λ more in line with what would

be expected from the Gaussian PDF, we must map each individual λ value in the range 0 to 1 with a

value which produces a change in the JS divergence in a linear fashion. We approximate a function,

g(x) with a linear shape, shown in Figure 4.4. The approach taken to approximate g(x) is by linear

interpolation of an aggregated large number of samples for each point taken in the range 0 to 1. Our

collapsed Gibbs sampling equations then becomes:

P (zi=j|z-i,w) ∝
∫

nwi
-i,j + (δi,j)

g(λ)

n
(·)
-i,j +

∑V
a (δa,j)g(λ)

N (µ, σ)dλ (4.16)
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φw,t =
nw,t + β

nt + V β
, ∀t ≤ T (4.17)

and

φw,t =

∫
nw,t + (δw,t)

g(λ)

nt +
∑V

a (δa,t)g(λ)
N (µ, σ)dλ, ∀t > T (4.18)

4.1.3.3 Superset Topic Reduction

A third problem involves knowing the right mixture of known topics and unknown topics. It is

also entirely possible that many topics derived from the knowledge source may not be used by the

generative model. Our desire to leave the model as unsupervised as possible calls for input that is a

superset of the actual generative topic selection in order to avoid manual intervention. In the case of

modeling only a specific number of topics over the corpus, the problem becomes how to choose

which knowledge source influence topics to allow in the model versus how many unlabeled topics

to allow.

The goal is to allow for a superset of knowledge source topics as input and then during the

inference to select the best subset of these with a mixture of unknown topics where the total number

of topics is given as input K. The approach is to initialize a mixture of K unlabeled topics alongside

the labeled knowledge source topics. The total number of topics to start the model then becomes

T . During inference, we eliminate topics which are not assigned to any documents. At the end of

the sampling phase, we can use a clustering algorithm (such as k-means, JS divergence) to further

reduce the modeled topics to return a total of K topics. The full collapsed Gibbs sampling algorithm

is given in algorithm 1.1.1. The complete generative process is shown in Figure 4.1 and described

below:

1: For each of the T topics φt:
2: if t ≤ K then
3: Choose φt ∼ Dir(β)

4: else
5: Choose λt ∼ N (µ, σ)

6: δt ← [(Xt,1)g(λt), (Xt,2)g(λt), . . . , (Xt,V )g(λt)]

7: Choose φt ∼ Dir(δt)
8: For each of the D documents d:
9: Choose Nd ∼ Poisson(ξ)
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10: Choose θd ∼ Dir(α)

11: For each of the Nd words wn,d:
12: Choose zn,d ∼ Multinomial(θ)
13: Choose wn,d ∼ Multinomial(φzn,d

)

4.1.3.4 Analysis

By using a clustering algorithm or thresholding the topic document frequency, the collapsed Gibbs

algorithm is guaranteed to produce K topics. The running time is a function of the number of

iterations I , average words per document Davg, number of documents D, number of initial topics T

and number of approximation steps A (from Equation 4.15), and isO(I ×Davg×D×T ×A). This

differs only from the traditional collapsed Gibbs sampling in LDA by an increase of (T −K)A.

But since we have built the approach to potentially have a large T −K this difference can have a

significant impact on running times.

Approaches exist that can parallelize the sampling procedure, but these are often approxi-

mations or can potentially have slower than baseline running times [WBS09, NAS07, PNI08]. We

present two modifications to the original algorithm that allow for inference while guaranteeing the

exactness of the results to the original Gibbs sampling. The first one makes use of prefix sums

rules [Ble90] and guarantees a running time of:

O(I ×Davg ×D × A×Max[T/P,P ]) (4.19)

with P being the number of parallel units. This algorithm is given by Algorithm 1.1.2. This

algorithm is practical in situations where T −K is large, but suffers from the limitations of the

number of context switches required for the threads to wait at their respective barriers. A simpler

implementation approach that reduces the number of context switches is to add the sums for each

thread then wait for a barrier. When the barrier is released we add the end values together and then

in parallel add the remaining necessary items. This approach is given in Algorithm 1.1.3. The
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Algorithm 1.1.1 Collapsed Gibbs
Input: Dirichlet hyperparameters α, β, a corpus C, vocabulary V , unlabeled topic count K, total topic count T , a set of source topics S, mean µ,
variance σ, and iteration count I .
Output: θ, φ

procedure COLLAPSED GIBBS(α, β, C, V , T )
for t = K + 1 to T do

Calculate gt
end for
Initialize Ctopics to random topic assignments
Update nw and nd from Ctopics
for iter = 1 to I do

for i = 1 to C do
for j = 1 to |Ci| do

Ctopicsi,j ← Sample(i,j)

end for
end for

end for
Calculate θ according to Equation 1.11
Calculate φ according to Equation 1.18
return θ, φ

end procedure

procedure SAMPLE(i, j)
Decrement nw and nd accordingly
for t = 1 to K do

Calculate pt according to Equation 1.13
end for
for t = K + 1 to T do

Calculate pt according to Equation 1.16
end for
topic ∼ Multinomial(p)
Increment nw and nd accordingly
return topic

end procedure

running time remains the same as the prefix sums running time as:

O(I ×Davg ×D × A×Max[T/P,P ]) (4.20)

These two algorithms allow for mitigation of the increase in the number of topics and should

approach running times similar to those of standard LDA runs. They are also very extensible and

can be used in other optimization algorithms.

4.1.3.5 Input determination

Determining the necessary parameters and inputs into LDA is an established research area [WMS09],

but since the proposed model introduces additional input requirements, a brief overview will be

given about how to best set the parameters and determine the knowledge source.
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Algorithm 1.1.2 Prefix Sums Parallel Sampling
procedure SAMPLE(i, j)

Decrement nw and nd accordingly
for i from 0 to T − 1 in parallel do

if i ≤ K then
Calculate pi according to Equation 1.13

else
Calculate pi according to Equation 1.16

end if
pi ← pi−1 + pi

end for
for d from 0 to (lnT )− 1 do

for i from 0 to T − 1 by 2d+1 in parallel do
p(i+2d+1−1) ← p(i+2d−1) + p(i+2d+1−1)

end for
end for
p(T−1) ← 0
for d from (lnT )− 1 down to 0 do

for i from 0 to T − 1 by 2d+1 in parallel do
h← p(i+2d−1)
p(i+2d+1−1) ← p(i+2d+1−1)
p(i+2d+1−1) ← h+ p(i+2d+1−1)

end for
end for
topic← Binary Search(p)
Increment nw and nd accordingly
return topic

end procedure

Algorithm 1.1.3 Simple Parallel Sampling
procedure SAMPLE(i, j)

Decrement nw and nd accordingly
for i from 0 to T − 1 in parallel do

if i ≤ K then
Calculate pi according to Equation 1.13

else
Calculate pi according to Equation 1.16

end if
pi ← pi−1 + pi

end for
for i from 0 to T − 1 by T/P do

pi ← p(i−T/P ) + pi
endsi ← pi

end for
for i from 0 to T − 1 in parallel do

diff ← pend − endsi
pi ← diff + pi

end for
topic← Binary Search(p)
Increment nw and nd accordingly
return topic

end procedure

4.1.3.5.1 Parameter selection

To determine the appropriate parameters, techniques utilizing log likelihood have previously been

established [GS04]. Since these approaches generally require held out data and are a function

of the φ, θ, and α variables, the introduction of λ and σ will not differentiate from their original
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equations. For example, the perplexity calculations used for Source-LDA are based off importance

sampling [WMS09], or latent variable estimation via Gibbs sampling [Hei08]. Importance sampling

is only a function of φ given by Equation 4.18, and estimation via Gibbs sampling can made using

Equation 4.18 and the following equation (z̃, w̃, and ñ represent the corresponding variables in the

test document set):

P (z̃i=j|z̃-i,w̃) ∝
nwi
j + ñwi

-i,j + β

n
(·)
j + ñ

(·)
-i,j +Wβ

ñdi-i,j + α

ñ
(di)
-i +Kα

, ∀i ≤ T (4.21)

and

P (z̃i=j|z̃-i,w̃) ∝
nwi
j + ñwi

-i,j + δi,j

n
(·)
j + ñ

(·)
-i,j +

V∑
a

δa,j

ñdi-i,j+ α

ñ
(di)
-i +Kα

, ∀i > T (4.22)

It is recommended to set the parameters so as to maximize the log likelihood. Further analysis

such as whether or not the parameters can be learned a priori from the data are not the focus of this

work and are thus left as an open research area.

4.1.3.5.2 Knowledge source selection

Source-LDA is designed to be used only with a corpus which has a known super set of topics which

comprise a large portion of the tokens. An example of such a case is that of a corpus consisting

of clinical patient notes. Since there are extensive knowledge sources comprising essentially all

medical topics, Source-LDA can be useful in discovering and labeling corpora from this domain.

In cases where it is not so easy to collect a superset of topics, traditional approaches may be more

useful.

4.1.4 Evaluation

To test the results of the Source-LDA algorithm, we set up experiments to test against competing

models. The most similar models to our proposed approach were used in comparison. These are:

latent Dirichlet allocation (LDA) [BNJ01], explicit Dirichlet allocation (EDA) [HRS13], and the

Concept-topic model (CTM) [SSC11]. Other approaches such as supervised latent Dirichlet alloca-

tion (sLDA) [BM07], discriminative LDA (DiscLDA) [LSJ08], and labeled LDA (L-LDA) [RHN09]
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(a)

(b)

Figure 4.5: A graphical representation of topics containing 1 word for the cell locations of row and
column vectors in a 5 x 5 picture (a) and their augmented topics after swapping a random assigned
word (pixel) with a random topic’s assigned word (b).

Figure 4.6: Results from running Source-LDA for a corpus generated from topics in Figure 4.5(b)
using a knowledge source of topics corresponding to Figure 4.5(a). Four separate runs are plotted to
show the similarity of the log-likelihood relation to the iteration between the runs. The topics are
shown visually at iteration 1, 20, 50, 100, 150, 200, 300 and 500 for a single run.

are not used since a main desideratum of Source-LDA is to require much less supervision than what

is needed by these methods. Likewise, hierarchical methods [KML12] are omitted because there is

no established hierarchy in the knowledge source data for this model. We describe in more detail

below the experimental setups and metrics used to compare results.
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4.1.4.1 A Graphical Example

Following a previously established experiment [GS04], we show the utility of Source-LDA by

visualizing topics created with words that correspond to the pixel locations in a 5×5 picture—but we

add a key difference. The original topics are augmented, used to generate a corpus, and then hidden.

Only the non augmented topics are given as input with the goal of discovering the augmented topics

using the corpus and their original topics.

4.1.4.1.1 Experimental Setup

We start by creating ten topics with the vocabulary being the set of pixel locations in a 5× 5 picture.

The vocabulary (V ) and bag of words representation of a topic (Ti) are defined as:

V = {xy | 0 ≤ x < 5 ∧ 0 ≤ y < 5}

Ti =


xy | y = i ∧ 0 ≤ x < 5, if 0 ≤ i < 5

yx | y = i ∧ 0 ≤ x < 5, otherwise

The topics are shown by Figure 5(a) with the intensity (I) of a pixel corresponding to word w in

topic t equal to:

I(w, t) = Max[5× P (w|t), 1]

The representation of topics in this manner leads to a total of 10 topics. These original topics

are then augmented by pairing each topic with a random different topic and swapping a random

word (pixel). Figure 4.5(b) shows the augmented topics which represent a 20% augmentation rate

between the original topics. From the set of augmented topics, we generate a 2,000 document corpus

using the generative model of LDA. Each document consists of 25 words with topic assignments

drawn from a distribution sampled from the Dirichlet distribution parameterized by α = 1. With the

knowledge source consisting solely of the original non augmented topics, we run Source-LDA on

the corpus hoping to discover and properly label the augmented topics. For comparative analysis

we also run EDA and CTM against the same data set.
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Figure 4.7: Classification accuracy and perplexity values for fixed values of λ compared against
the baseline values generated from a dynamic λ with a normal prior. The baseline values shown as
lines represent the classification percentage of 25.7 and perplexity value of 1119.9

4.1.4.1.2 Experimental Results

As shown in Figure 4.6, Source-LDA discovers the augmented topics given the set of original topics.

Not only is Source-LDA able to find the topics correctly to the augmented distributions used in

the generation of the corpus, but it is also able to match them to their respective non augmented

knowledge source distributions. This simple experiment highlights a big advantage of Source-

LDA—which is the ability to discover topics that differ from their respective weakly-supervised

input set. Other models such as EDA and CTM are unable to label the augmented topics correctly

due to the topics containing a word (pixel) not in the original distribution. The comparative average

JS divergence was 0.012, 0.138, and 0.43 for Source-LDA, EDA, and CTM respectively.

4.1.4.2 Integrating λ

A reasonable assumption of a corpus in which some topics are generated from a knowledge source

is that the topics used in the corpus are going to deviate (more or less similar) from their respective

knowledge source distributions, and that each individual topic is going to deviate at a different rate
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than other topics. The introduction of λ to Source-LDA as a parameter to be learned by the data

allows the flexibility of different topics to be influenced differently by λ, but comes at an increase in

computation cost. To show that in certain cases this flexibility is needed to obtain more accurate

results, we derive an experiment consisting of topics with different deviations from their respective

source distributions.

4.1.4.2.1 Experimental Setup

A synthetic 500 document corpus is generated from a knowledge source of 100 randomly selected

Wikipedia topics. The corpus is generated using the bijective model of Source-LDA as outlined in

Section 4.1.1, consisting of 100 topics, an average word count per document of 100 words, µ = 0.5,

σ = 1.0 and α = 0.5. Furthermore, even though for each topic λ was drawn from N (µ, σ2), we

bound the value drawn to the interval [0,1] for comparative analysis. We then run Source-LDA

under the bijective model for a baseline of µ = 0.5, σ = 1.0 against 10 runs of Source-LDA with λ

fixed. After each run we compare the classification accuracy and perplexity values.

4.1.4.2.2 Experimental Results

For all fixed λ runs the baseline approach of varying λ in accordance with the normal distribution

results in a higher classification accuracy. By allowing λ to deviate, the model can make up

for less accurate parameter determination based on maximizing perplexity. As shown in Figure

4.7, classification accuracy is not perfectly correlated with perplexity. This is shown by the

baseline method reporting a higher perplexity value than the fixed λ = 1 value while maintaining a

higher classification accuracy. Even though we still recommend perplexity or other log-likelihood

maximization approaches to set the parameters in any unknown data set, maximizing log-likelihood

has been shown to be a less than perfect metric for evaluating topic models [CBG09, AOC16].

In this experiment and the remaining experiments we take classification accuracy to be a more

appropriate measurement for evaluating topic models.
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Source-LDA IR-LDA Concept Topic Model

Inventories
inventory systems sales
cost products year
stock said sold
accounting information retail
goods technology given
management company place
time data marketing
costs network improved
financial kodak passed
process available addition

Natural Gas
gas corp gas
natural contract said
used company total
water services value
oil unit near
carbon subsidiary natural
cubic completed properties
energy work california
fuel dlr wells
million received future

Balance of Payments
account said said
surplus public june
deficit state april
current private beginning
balance planned great
currency reduce later
trade local remain
exchange added reserve
capital make equivalent
foreign did imported

Table 4.1: Topics and their most probable word lists for Source-LDA, IR-LDA, and CTM.
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4.1.4.3 Reuters Newswire Analysis

To show the type of topics discovered from Source-LDA, we run the model on an existing dataset.

This collection contains documents from the Reuters newswire from 1987. The dataset contains

21,578 articles, spanning a large set of categories. One important feature of the dataset is a set

of given categories that we can use for our topic labeling. These include broad categories such

as shipping, interest rates, and trade, as well as more refined categories such as rubber, zinc, and

coffee. Our choice to apply Source-LDA to this dataset is due to the fact that the Reuters dataset is

widely used for information retrieval and text categorization applications. Due to its widespread

use, it can considerably aid us in comparing our results to other studies. Additionally, because it

contains distinct categories that we can use as our known set of topics, we can easily demonstrate

the viability of our model.

4.1.4.3.1 Experimental Setup

Source-LDA, LDA, and CTM were run against the Reuters-21578 newswire collection. Since EDA

does not discover new topics, nor does it update the word distributions of the input topics, we did not

include EDA in this experiment. From the original 21,578 document corpus we select a subset of

2,000 documents. The Source-LDA and CTM supplementary distributions were generated by first

obtaining a list of topics from the Reuters-21578 dataset. Next, for each topic, the corresponding

Wikipedia article was crawled and the words in the topic were counted, forming their respective

distributions (counts for each word divided by the total word count). Querying Wikipedia resulted

in 80 distinct topics as our superset for the knowledge source. Out of the 80 crawled available

topics, only 49 topics appear in the 2,000 document corpus. This represents the ideal conditions

in which Source-LDA is to be applied—that of a corpus in which a significant portion of tokens

are generated from a subset of a larger and relatively easy to obtain topic set. For all models, a

symmetric Dirichlet parameter of 50/T (where T is the number of topics) and 200/V (where V

is the size of the vocabulary) was used for α and β respectively. For Source-LDA, µ and σ were

determined by experimentally finding a local minimum value of perplexity, which resulted from

the parameter values of 0.7 for µ and 0.3 for σ. The bag of words used in the CTM were taken
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from the top 10,000 words by frequency for each topic. The models showed good convergence

after 1,000 iterations, so the number of iterations parameter was set to 1,000. After sampling

was complete for LDA, the resulting topic-to-word distribution was mapped using an information

retrieval (IR) approach. The IR approach was to use cosine similarity of documents mapped to term

frequency-inverse document frequency (TF-IDF) vectors with the TF-IDF weighted query vectors

formed from the top 10 words per topic.

4.1.4.3.2 Experimental Results

After the LDA model converged, we label the topics using the IR approach described above (we

referred to this topic labeling method as IR-LDA). Given similar labels from the models, it is an

intuitive approach to compare the word assignments of each topic model. Example comparisons

are shown in Table 4.1. The label assignments generated from Source-LDA show a more accurate

assignment of labels to topics than both IR-LDA and CTM. IR-LDA appears to suffer from the

mixing of different concepts into a single topic, for example with the topic “Inventories,” the topic

assignments could possibly be the combination of “Inventories” and “Information Technology”. The

CTM seems to assign more weight to less important words. One approach to rectify this problem

is to use a smaller number of words for the bag of words, but this leads to significant dropout and

no labeled topics are passed through. Out of the total 100 returned topics, CTM only discovered 6

labeled topics, with Source-LDA discovering 15. Since the IR approach forces all topics to a label

regardless of the quality of the label, IR-LDA returned 100 labeled topics. Out of the 6 labeled

CTM topics only 3 were overlapping with Source-LDA and IR-LDA and are shown in Table 4.1.

The remaining 3 CTM topics were bad matches for the label with an average of 86% of words not

appropriate for the label as determined by human judgment (we acknowledge the potential for bias).

Meanwhile Source-LDA mismatched at a rate of 36%, with IR-LDA at a rate of 77%. The top

words from topics discovered by Source-LDA are more consistent with the meaning of the topic as

opposed to what words you may find in a topic discovered by LDA, which can be generally applied

to many concepts.
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4.1.4.4 Wikipedia Corpus

A comparison of Source-LDA against EDA, and CTM is made using a corpus generated using a

known knowledge source corresponding to medical topics extracted from MedlinePlus1 (a consumer-

friendly medical dictionary). We evaluate the strength of Source-LDA under different models

proposed in Section 4.1 using the metrics of classification accuracy, JS divergence and Pointwise

mutual information (PMI).

PMI is an established evaluation of learned topics which takes as input a subset of the most

popular tokens comprising a topic and determines the frequency of all pairs in the subset occurring

at a given input distance from each other in the corpus. The more that these pairs occur close to

each other then the better the learned topics. PMI differs from the JS divergence evaluation for this

experiment in that PMI will tell us how good our topics are, where as the JS divergence will tell us

how good our distribution over topics for each document is.

4.1.4.4.1 Experimental Setup

A corpus of Wikipedia vocabulary articles was generated by following the steps of the generative

model for Source-LDA, where the chosen K topics are a subset of a larger collection of Wikipedia

topics (topics formed from Wikipedia articles). The topics consisted of 578 Wikipedia articles

representing corresponding articles from MedlinePlus. The number of topics (K) was given as 100,

chosen from the entire collection of 578 topics (B), the number of documents (D) was given as 2000

and the average document word count (Davg) as 500, µ and σ were set to 5.0 and 2.0 for the bijective

evaluation, and 0.7 and 0.3 for the Source-LDA model respectively. After these 2000 documents

were generated, the topic assignments were recorded and used as the ground truth measurement. The

first round of topic models consisted of comparing Source-LDA, EDA, and CTM. For Source-LDA

µ and σ were set to match that of the generative model. For all models, a symmetric Dirichlet

parameter of 50/T and 200/V was used for α and β respectively. After convergence of the models

they were evaluated against the ground truth measurement. In the second round of experiments each

1https://www.nlm.nih.gov/medlineplus/
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Figure 4.8: Results showing the number of correct topic assignments in the mixed model (a) and
bijective model (b) and sum total of the JS divergences of θ in the mixed (d) and bijective models
(e). Sorted PMI analysis for a Wikipedia generated corpus inferred by the exact bijective model and
mixed model is shown by (c). Performance benchmarking is given in (f).

topic model was run under the bijective model, that is they only considered topics which were used

in the ground truth assignments.

To compare Source-LDA against LDA using PMI, 5 corpora were generated under the

bijective model with the number of topics K ranging from 100 to 200. B, D, Davg, µ, and σ were

set to 100, 578, 200, 300, 1.0 and 0.0 respectively. The parameters for Source-LDA followed the

generative model and all other parameters are the same as the previous experiments. After 1000

iterations the top 10 words given for each topic were used in the PMI assessment.

4.1.4.4.2 Experimental Results

The topic assignments for each token in the corpus were recorded for all models and the results

compared against each other. Since we know a priori the correct topic assignment for each token, we

use the number of correct topic assignments to be an appropriate measure of classification accuracy.

Note that in evaluations where the ground truth is known, classification accuracy is a much better
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determination of the goodness of a model than log likelihood maximizations such as perplexity and

therefore we do not evaluate the model using perplexity. In Figure 4.8, all topic models run under

the full Source-LDA (mixed) model are tagged with an “Unk” label, and likewise topic models run

under the bijective model are tagged with “Exact”. The overall number of correct topic assignments

for each model are shown in Figure 4.8(a) for the mixed model and Figure 4.8(b) for the bijective

model. Since the LDA model has unknown topics, JS divergence was used to map each LDA

topic to its best matching Wikipedia topic. As expected the Source-LDA model (SRC-Unk and

SRC-Exact) had the best results amongst all other topic models for classification accuracy.

In the second analysis the topic to document distributions were analyzed using sorted JS

Divergence, and is irrespective of any unknown mapping. The results again show the Source-

LDA model to be effective in accurately mapping topics to documents in both the case where the

topics used in the generative model are unknown (Figure 4.8[d]) and where the topics are known

(Figure 4.8[e]). Even though an accurate alignment of θ by itself does not lend much weight to any

one model being superior, we do find it important to demonstrate how θ is being affected by the

different algorithms.

The PMI analysis detailed by Figure 4.8(c) show that by PMI, Source-LDA provides a better

mapping of labels to topics over the input corpora. This is an encouraging result, even though

the differences are not large, since LDA is a function of topic proximity in a document and word

frequency in a topic, whereas Source-LDA is a function of the same plus the likelihood of a word

being in an augmented source distribution.

4.1.4.5 Performance Benchmarking

To show the performance gains used by the parallel sampling algorithm an experiment was set up

to generate topics randomly from a given vocabulary. The corpus was generated using the same

parameters as in Section 4.1.4.2, but with B ranging from 100 to 10000. The benchmarking is

visualized by Figure 4.8(d). It clearly demonstrates that Source-LDA is linearly scalable and easily

parallelized.
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4.1.5 Discussion

Source-LDA represents a novel methodology for weakly-supervised topic modeling to discover

labeled interpretable topics. Additionally, this work provides parallel algorithms to speed up the

inference process. This methodology uses prior knowledge sources to influence a topic model

in order to allow the labels from these external sources to be used for topics generated over a

corpus of interest. In addition, this approach results in more interpretable topics generated based

on the quality of the external knowledge source. We have tested our methodology against the

Reuters-21578 newswire collection corpus for labeling and Wikipedia as an external knowledge

source. The analysis of the quality of topic models using PMI show the ability of Source-LDA to

enhance existing topic modeling interpretability.

4.2 ReSource-LDA

Source-LDA represents a pioneering and novel approach to labeling interpretable topics in a single

topic model, however it is not infallible. One such drawback is represented by n-grams which do

not belong to the input knowledge source. For these sets of tokens, the model assumes a token

assignment that is uniform across knowledge source topics. In the event a token from a corpus does

not exist in the knowledge source, it may be advantageous to leverage neural networks to detect

whether the unseen word linguistically resembles the existing tokens that make up a particular

knowledge source topic.

Deep neural networks have been established as an effective technique to pattern recognition

and machine learning [dee12, Kri12, CW08]. A subclass of these models is the recurrent neural

network (RNN), which utilizes previous states in training of the current state. An interesting effect

to training these models is the ability to generate sequences of data on a diverse range of input. The

RNN is particularly interesting in its ability to capture and generate the appropriate context. This

is due to the model in which it is trained. For each time-step the hidden layer is influenced by the

input axons as well as axons from previous hidden layers. This allows the model to learn not only

the current pattern, but previous occurrences as well. In the generation phase, it is easy to predict

the next output by sampling from the model’s predictive distribution. A series of predictions can
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then be chained together giving an entire sequence of predicted output. When put all together, the

stochastic sampling produces output which is often referred to as a product of dreaming.

Although there are applications that utilize these generated sequences [Gra13, War00, SZ14,

GDG15] they often rely on isolated sequences. The ability to connect sequences would have

tremendous utility in areas such as anonymization of private data where a foolproof way to guarantee

anonymization is to generate a representation of the data that does not share any of the original data.

This however is not a trivial task. In this paper, we work towards the goal of incorporating

context around generated segments by integrating into the RNN model information acquired from

topic modeling. Because topic modeling is most naturally used in text, we restrict the methods to

those applied in text—and because we are interested in applications where a new word is generated,

we focus on character level generation.

Given topic models are used at the word level it may be a natural inclination to seek a

combination with a word-based RNN. However, we are interested in utilizing the RNN for words

that do not belong to a given input vocabulary (such as anonymization of patient data). A word-based

RNN would simply not work. Additionally, word-based RNN’s can be problematic due to a large

input size. For input layers such as one-hot encoding the size of each input equals the size of the

vocabulary. For large corpora this can degrade computation time and predictive power [Gra13].

This directionality is not only limited to the topic model influencing the RNN. Just as

the ability of topic modeling features used in the RNN helps to add context and thus improve

performance, performance gains can also be realized by adding the RNN model into the topic

modeling process. The second part of this work investigates the utility of adding a character level

RNN into a previously established topic model.

Probabilistic topic models have long been established as an effective means of discovering

underlying semantic themes in a set of input [BNJ03, GS04, RGS04]. The current state of the art

topic models are derived from latent Dirichlet allocation (LDA) [BNJ03]. LDA makes a simplifying

assumption about how a corpus is generated. Since it is too hard to mathematically model the

precise steps a human generates a corpus, LDA assumes that words and topics are selected from

sampling of distributions and repeated for the length of the corpus.
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Traditional LDA suffers from the problem of topic interpretability [SSC11]. That is, given

the output from the topic model, by just looking at the topic to word distributions, it is often hard

to identify a single n-gram for which this topic is referring to. To help mitigate this problem

different approaches have been proposed which either label the topic with a best guess after topic

modeling [MSZ07, Mei06, MZ05, MZ06], or as we show in Section 4.1, somehow incorporate

existing information into the topic model during inference [WTW17, Han13, SSC11].

To the best of our knowledge, no one has yet to leverage RNNs into the topic modeling

process to help in topic interpretability, topic labeling, and potentially improve the overall perplexity

of a given topic model—existing work focuses on improving the non-labeled topics [DWG17].

Given that the RNN is a supervised model, and there exist weakly-supervised topic models aimed at

identifying and aiding traditional topic modeling, it is an intuitive approach to add the RNN into

the weakly-supervised part of the topic model. By doing this, relevant context can be applied that

can enhance the existing weakly-supervised portion of the topic model. Our approach is to train

the weakly-supervised input with an RNN and use the RNN’s predictive power to influence the

probability of a given topic assignment to a token during inference.

While there continues to be progress in other approaches of text mining, such as the Trans-

former [DCL19], or convolutional neural network (CNN) based approaches [Luo19], the RNN is

still incredibly important. The authors estimate that RNNs comprise 25% of current deep learning

publications (based on a Google Scholar search for papers published in 2019). Additionally, our

approach is not only limited to text mining. We envision our technique of combining topic modeling

to RNNs to be useful in data sets used with RNNs where topic models form meaningful clusters.

This work also contributes to the sub-fields of topic labeling, topic interpretability and their

applications. For example, improving the labels of topics can result in a better understanding of

protein function [Liu17], aid the synthesis of data for biologists [Liu16], and help end-users browse

large textual databases [Vel]. Aside from the known applications of topic labeling, the theoretical

possibilities are equal as important. One such application would be the automatic labeling of

patient records. The labels would act as summarizations which could then be given to primary care

physicians who are faced with too much information to process in not enough time [Mar06].
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4.2.1 Approach

The ability to combine RNNs and topic models can result in a beneficial outcome for both, but

the best approach is not so intuitive while maintaining the restriction of using a character level

RNN. For consistency in measurement, we choose the same parameters for all models. For all

RNNs we choose maximum likelihood estimation for the loss function and backpropagation through

time (BPTT) [Wer90] as the technique to minimize loss. We explore different methods of adding

the topic modeling information into the RNN. Each technique is illustrated in Figure 4.9. We

then describe in more detail our method to add the RNN into the weakly-supervised topic model,

Source-LDA, to improve upon the labeling of topics and topic interpretability.

4.2.1.1 RNNs with topic models

4.2.1.1.1 Topic input vocabulary

In the simplest approach, we employ a character-level RNN to generate character sequences (Π-

RNN). This is done by appending topic modeling information into the existing input. The change to

the existing RNN model is at the input layer. Before training the RNN on the data, we generate

a mapping of tokens to topics using an existing topic model. We then take the input set to be the

Cartesian product of the character input set and the topic set.

Since the change is only made in the input itself, no differences are made to the corresponding

forward and back propagation equations.

4.2.1.1.2 Two-hot encoding

To reduce the input size of the topic input vocabulary approach, it is possible to give as input the

character to train as well the topic as a two-hot encoded vector (2-RNN). This serves to shrink the

input from size C ×K down to size C + K. With C being size of the character vocabulary (Π),

and K the total number of topics. In this model the forward and back propagation equations remain

unchanged. The execution time and memory are thus reduced from C ×K to C +K in the big O
notation for Π-RNN.
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Figure 4.9: Four different ways of combining topic models and RNNs—the first way involves
encoding both the topic and character into the input (a), or these input can be added independently
to reduce the total input size (b). If we connect the topic layer from (b) to the output layer we can
construct the context dependent RNN (c). Lastly, Topic-RNN (d) connects K different character
RNNs with one RNN independent of any topics.

4.2.1.1.3 Context dependent

If we interpret the K input layer in the two-hot encoding approach to be independent of the C input

layer, and allow a direct influence on the output layer from the K input layer, then we form the

basis of the context dependent RNN [MZ12] (CD-RNN). This model includes the influence from

the K input layer in both the hidden layer calculations as well as the output layer. Given a sequence

of input vectors (x1, ..., xT ), the RNN predicts the output sequence (ŷ1, ..., ŷT ) using the following

equations:
−→
ht = tanh(W hx ×−→xt +W hh ×−−→ht−1 +W hk ×−→kt +

−→
bh) (4.23)

−→̂
yt = softmax(W yh ×−→ht +W yk ×−→kt +

−→
bo ) (4.24)

Where ht is the high-dimensional hidden state at the time-step t, W hx, W hh, and W yh are the

weight matrices connecting the input to the hidden layer, the previous hidden layer to the current

hidden layer, and the hidden layer to the output layer respectively. The vectors bh and bo are the

biases. The new weights must also be factored into BPTT. The additional updates are:

∆W yk
pz = η ×

T∑
t=1

δt,p × kt,z (4.25)
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∆W hk
jz = η ×

T∑
t=1

δt,j × kt,z (4.26)

With z corresponding to a binary topic input at time t, η is the learning rate and δ are the respective

gradients from BPTT. Since we are adding an additional edge set to the output, this increases the

time and memory for prediction as O(C ×H +K ×H +H2 +K ×C) with H defined as the size

of the hidden layer. The training execution time and memory size will be multiplied by the total

number of characters in the corpus (D) and the number of time steps to unroll (U ) respectively.

4.2.1.1.4 Topic-RNN

While the context dependent RNN effectively uses topics to help the predictive power of the RNN, it

is our hypothesis that better results can be achieved by separating topics and their predictions. That

is, each topic is given its own RNN and the model overall encompasses these K RNNs. Then the

current topic can dictate the entire model’s output. Given an additional input of topic assignments,

the change needed to the loss function, forward propagations, and backward propagations are to add

an extra dimension for each topic in the set of topics as follows:

−→
ht,s = tanh(W hxs ×−→xt +W hhs ×−−−→ht−1,s +

−→
bhs) (4.27)

−→̂
yt,s = softmax(W yhs ×−→ht,s +

−→
bos) (4.28)

E = − 1

T
×

T∑
t=1

ln(ŷt,s,p) (4.29)

δt,s,p = − ∂E

∂ŷt,s,p
× ∂ŷt,s,p
nett,s,p

= − 1

N
× (1− ŷt,s,p) (4.30)

δt,s,j =
∑
p

δt,s,p ×W yhs
pj ×

∂ht,s,j
∂nett,s,j

=
∑
p

δt,s,p ×W yhs
pj × (1− h2

t,s,j)

(4.31)
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δt−1,s,m =
∑
j

δt,s,j ×W hhs
jm ×

∂ht−1,s,m

∂nett−1,s,m

=
∑
j

δt,s,j ×W hhs
jm × (1− h2

t−1,s,m)

(4.32)

∆W yhs
pj = η ×

T∑
t=1

δt,s,p × ht,s,j (4.33)

∆W hhs
jm = η ×

T∑
t=1

δt,s,j × ht−1,s,m (4.34)

∆W hxs
ji = η ×

T∑
t=1

δt,s,j × xt,s,i (4.35)

With s being the topic at time t (also time t− 1).

The intuition behind Topic-RNN is a combination of specialization and the addition of

learning from a different type of context. A parallel example of why specialization works would be

if one patient is suffering from a skin condition and another patient from a heart condition, then

there may be better outcomes if the first patient is seen by a dermatologist and the second by a

cardiologist—rather than if both are seen by the same specialist in family medicine. RNNs also

only consider one type of context, which is the previous input. Along with considering the previous

input, Topic-RNN also considers the topic of the word, which adds a new type of context—only the

makeup of words of the topic.

To evaluate the effectiveness of prediction, we consider the case when each word (v) in the

non-trained data is reflected in φ and the opposite case—where φ is the topic to word distributions

from topic modeling. In the case where v is reflected in φ, then we simply take the output of the

current s-dimension RNN (Topic-RNN-φ). However, when v is not already considered in φ, it may

not always be the best decision to use the s-dimension topic model as output. In more detail: if v

does not exist in φs, then this is similar to asking an untrained RNN for its prediction. In such cases

it may be better to use a vanilla character RNN (Char-RNN), which contains context over every

word in the corpus (not just words specific to a topic).

The difficulty in this approach is knowing when to use the Topic-RNN-φ and when to use

the Char-RNN. Since we are predicting at the character level, we do not know the word of the
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current character. We do however know the previous characters. In this way we can ask each

Topic-RNN-φ how well it can predict the next character given the existing input characters for

all prefix matching words after training. With a word vocabulary of Υ, and
−→
l being the prefix

(c1, ..., ct−1) this formalizes as:

Ak
t,ct,
−→
l

= Ek

t,ct,
−→
l

: ∀(c1, ..., ct) v v ∈ Υ (4.36)

Additionally, we can ask the Topic-RNN-φ how certain it is of its prediction. In cases where

the Topic-RNN-φ is very certain then this may be reflective of a “good” guess. For certainty we

measure entropy, defined as:

Nt = −
∑
i

ŷt,i × log (ŷt,i) (4.37)

We can also measure how similar the prediction is to the Char-RNN. Since the Char-RNN is a

“good” baseline guess, then something that agrees with that may also be good and may be even

better. We choose Jensen-Shannon distance as our similarity metric:

Ĵt(
−→
ŷ′t ,
−→
ŷ′′t ) =

1

2
×
∑
i

ŷ′t,i ×
(

ln ŷ′t,i − ln
ŷ′t,i + ŷ′′t,i

2

)
(4.38)

Jt =

√
Ĵt(
−→
ŷ′t ,
−→
ŷ′′t ) + Ĵt(

−→
ŷ′′t ,
−→
ŷ′t ) (4.39)

Jt, Nt, and At become the features that we use to decide when to choose between Char-RNN and

Topic-RNN-φ. But we must also consider the location of the current input. In cases where the input

is the first character of a word it may always be preferable to use Char-RNN, which has more context

than Topic-RNN-φ. Because context and location are important, we choose to feed the input features

into an RNN (E-RNN) to help decide which model to use. If we assume the hidden layer size to be

equal between Char-RNN, Topic-RNN-φ, and E-RNN, V to be the size of Υ, and ζ to be the max

length word in Υ, then the memory needed would be O(K × [U × (C ×H +H2) + C × ζ × V ])

and the training execution becomes O(K × [S × (C ×H + H2) + C × ζ × V ]). In this model,

the extra cost of memory and training execution time are somewhat alleviated by the prediction

execution time which is O(C ×H +H2).
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4.2.1.2 Topic models with RNNs

Just as the addition of topic modeling features into the recurrent neural network can increase the

utility of the RNN model, so too does adding the RNN to topic modeling. As noted before, the RNN

has the ability to dream up sequences; that is, to create new unseen sequences with a resemblance

of what the model was originally trained on. To utilize the benefits of this dreaming capability in

topic modeling, the approach is to train the RNN on supervised data to help discover associations of

words to topics not originally found in this supervised data. A natural fit for this approach is that of

Source-LDA, which combines the existing unsupervised topics of LDA with weakly-supervised

topics based off a pre-established knowledge source.

4.2.1.2.1 RNN enhanced Source-LDA

As outlined in Section 4.1.3, the theoretical generative model of Source-LDA was a natural extension

to the original LDA model in that for some topics the generator goes through the original process

of drawing a discrete distribution from the Dirichlet distribution parameterized by β, but for other

topics the generator was assumed to be reading topics from a knowledge source and then generating

a discrete distribution based off these knowledge source topics. In the RNN enhanced Source-LDA

(ReSource-LDA), we assume that the generator gets so tired after spending so much time reading

the topics from the knowledge source that it falls asleep a certain percentage of the time and dreams

up words that belong to the current knowledge source topic.

By modeling the generative model in this way, the desideratum is to assign a higher likelihood

to words that should be assigned to a certain source distribution, even though they do not show up

in that source (short for knowledge source) distribution. An incomplete assumption of Source-LDA

and any weakly-supervised labeling topic model is that a given source distribution for a topic

contains every word that may be used when describing this topic in a corpus. This is an even looser

assumption in Source-LDA where the source distributions are often based off an easy to obtain

knowledge source such as Wikipedia.

The main component of ReSource-LDA is derived from the ability of the RNN to assign a

higher probability to words that should belong to a knowledge source topic even though they are
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Figure 4.10: ROC plot showing the ability of the RNN to classify unseen words.

not originally contained in the topic. But what does it mean that a word should be assigned to a

knowledge source topic? And can an RNN even make this prediction? We illustrate that the RNN

does indeed have the potential to assign a higher probability to words that should belong to a topic

via a simple case study.

Case study

A set of topics was generated by iterating through the Reuters-21578 newswire collection. For

each topic, Wikipedia was queried and the resultant source distribution was constructed. This

resulted in a knowledge source consisting of 80 topics and their respective articles. From this

knowledge source, we train a Char-RNN on a subset of 50 randomly selected articles. After training,

we compare the top 100 most common words in an article from the Reuters-21578 Wikipedia

topics that do not belong in the 50 topic subset with the top 100 most common words in an article

from the MedlinePlus medical collection that also do not belong in the 50 topic subset. With the

objective to classify whether a word is a non-medical term, or equivalently, whether it came from

the Reuters-21578 topic set. We determine the probability (ỹ) of each word using Topic-RNN with

the following equation:

ỹv =
∑
t

ŷvt ÷ |v| (4.40)
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Once the probability value has been determined for each of the 200 words, we sort the values

and use each probability value as a threshold for classification. The resultant ROC curve, given by

Figure 4.10 shows the RNN to be useful in classification of words that should belong to the training

set (are non-medical terms).

With the ability of the RNN to identify words that belong to a source topic even though

they are not in the initial source topic article, it is a natural approach to integrate this feature into

Source-LDA. The proposed approach is to use a metric derived from an RNN that is trained over the

knowledge source to influence the model into determining which knowledge source topic a word

belongs to.

The key components to building this model are when to use the RNN influence over the

existing knowledge source influence, how best to derive a metric from the RNN to give weight to a

word assignment, and how to apply this metric. As is shown by Figure 4.10, the results of the RNN

to appropriately classify an unseen word are useful but not great. With such a low AUC, we take the

approach to only use the RNN influence when no alternative is available, so we restrict the RNN to

being applied only to those words which do not belong to any knowledge source topic.

Description Documents Words

MedlinePlus A consumer-friendly medical encyclopedia 961 136,000

Reuters-21578 [reu] Manually labeled documents from the 1987
Reuters newswire

21,578 2,600,000

20-Newsgroups Usenet articles taken from 20 different
newsgroups

20,000 5,300,000

Sent-Web [KDF15] A collection of sentiment labeled sentences 3,000 38,500

Table 4.2: Datasets used for evaluation of perplexity.

For the weight of a word to a topic, we can simply use predicted probability as given by

Equation 4.40. To determine the best way to apply the metric from the RNN, we take the approach

that fits simply and smoothly into the existing topic model. The approach used is to take the existing

metric to use as hyperparameters to the Dirichlet distribution in the same way that Source-LDA

uses the counts from the knowledge source topics. Source-LDA will then remove the unseen

words for all knowledge source topics from its set of hyperparameters. This in effect creates two
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Description Topics

MeSH [mes] Medical subject headings 130

PhySH [phy] Physics Subject Headings 36

ACM-2012 [acm] ACM computing classification system 4

OAD-Wiki [oad] Outline of academic disciplines 70

Table 4.3: Datasets used for evaluation of topic quality.

Description Documents Topics

Reuters-21578 Manually labeled documents from the 1987
Reuters newswire

21,578 2,700

RE3D [re3] A set of labeled relationship and entity
extraction documents

98 2,200

Wiki-20 [MWM] 20 Computer Science papers annotated from
Wikipedia articles

20 564

FAO-30 [KMK10] Manually annotated documents from the Food
and Agriculture Organization of the UN.

30 650

Table 4.4: Datasets used for evaluation of topic labeling.

distributions for each labeled topic. One which comes from the knowledge source and one from the

RNN. It is important to point out that the intersection of the two vocabularies for these distributions

is the empty set. This approach has the advantage of fitting smoothly into the derivations of

the Gibbs sampler and does not increase the order of execution or memory requirements during

inference. However, the distribution of unknown words must be built prior to inference. If Dm is

the max length document in the knowledge source then the pre-inference execution time becomes

O(Dm × ζ ×B × [C ×H +H2]) and a memory requirement of O(ζ × [C ×H +H2]).

The change required to the Gibbs sampling equations are (for brevity only the affected

equations are shown):

P (vi|zi=j,z-i,v-i)=

∫
nvi-i,j+(δi,j)

g(λ)

n
(·)
-i,j+

V∑
l

(δl,j)g(λ)

N (µ,σ)dλ, ∀vi∈Υk (4.41)
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Figure 4.11: Plate notation for ReSource-LDA with Source-LDA inside the dashed box.

and

P (vi|zi=j,z-i,v-i) =
nvi-i,j + ỹvi

n
(·)
-i,j + 1

, ∀vi ∈ Υr (4.42)

where Υk is the vocabulary of knowledge source words, and Υr is the difference between the

vocabulary of the corpus (Υc) and Υk.

As shown in Figure 4.11, the generative model must determine when to draw a word from

the knowledge source vocabulary and when to draw from the RNN vocabulary. For this a new

variable is introduced, p, which represents the probability of a knowledge source word draw from

the Bernoulli distribution. In practice this p variable does not change the inference much since it is

easily observed.

By modeling ReSource-LDA in this way, it is important to realize that we are intentionally not

capturing all context. Since we train each RNN over the knowledge source article in a bag-of-words

manner, we are loosing the connection between words. This is done because we are not guaranteed

the corpus is writing about a topic the same way which it is done in the corresponding knowledge

source article.
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4.2.2 Evaluation

4.2.2.1 Perplexity

To test the predictive power of the various topic model based RNNs, we create an experiment

to determine the ability of each RNN to correctly guess the next character given a set of input

characters from a corpus.

MedlinePlus Reuters-21578 20-Newsgroups Sent-Web
Topic-RNN 0.98 1.99 2.31 1.5
Topic-RNN-φ 0.276 0.284 0.34 0.24
CD-RNN 1.72 2.32 2.42 1.72
2-RNN 1.32 2.31 2.4 1.7
Π-RNN 8.42 8.65 8.84 8.52
Char-RNN 1.6 2.28 2.4 1.65

Table 4.5: Topic-RNN compared against baseline methods for the prediction of characters.

4.2.2.1.1 Experimental Setup

Each corpus is split into a training and test set in a ratio of 80/20. All models are then built off the

training set. After 50 epochs of training, we feed characters from the test set into the models and

compare the error (E) of each model. We choose 50 epochs because the error rate in the training set

appears to converge, which also matches a standard used in other research [Sai11, Tam17]. To show

the extensibility with more complicated cells, we repeat the experiment using only Char-RNN as a

baseline for GRU and LSTM cells. We choose only Char-RNN because it is the most competitive

among the baseline methods.

4.2.2.1.2 Experimental Results

The average error for each model and dataset is shown in Table 4.5. The best results come from

Topic-RNN when each test word is already a part of φ. However, even when the test word is not

known, Topic-RNN outperforms the other models. It is our contention that the vocabulary-based

model is constrained by having too many outputs, while the two-hot encoding and context dependent
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models do not specialize. Topic-RNN can specialize while not overcomplicating the predictions

and therefore leads to the best results.

The effect of input and output size seems to be substantial. Π-RNN far underperforms the

others models and also has largest input and output size—while the other models have sizes more

or less the same. Topic-RNN also demonstrates that specialization can improve the predictive

power of RNNs, as opposed to asking a single model to learn the entire input set. The results are

also promising for LSTM and GRU cells. Figure 4.12 shows the total error for all datasets when

Topic-RNN and Char-RNN use LSTM and GRU cells. The results are consistent with the basic cell

results and show our technique is likely applicable across different cells.

4.2.2.2 Word Prediction

Given the ability of Topic-RNN to accurately predict the next character, we aim to discover whether

it can predict words as well. We compare this against a word-level RNN (Word-RNN) to highlight

the effectiveness of Topic-RNN.

4.2.2.2.1 Experimental Setup

As with the previous experiment, the corpora are split 80/20 into a train and test set. Word-RNN

is trained against the words and Topic-RNN against the characters and topics. After training, we

determine the proportional probability of a word under the Topic-RNN model by using a simple

Figure 4.12: LSTM and GRU cells used in Topic-RNN compared against a vanilla Char-RNN.
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average probability for each character. Given the two distributions, we can determine the error for

both models.

4.2.2.2.2 Experimental Results

The results of all datasets are given by Table 4.6. Surprisingly, Topic-RNN gives better predictive

error in most datasets than Word-RNN. In the other sets, such as the MedlinePlus data set, Word-

RNN only does marginally better. We hypothesize Word-RNN is outperformed by Topic-RNN

mainly because it is hindered by large input and output sizes; additionally, the inclusion of topics

to specialize give Topic-RNN increased gains. This experiment underscores the effectiveness of

adding topic modeling into RNN predictions.

MedlinePlus Reuters-21578 20-Newsgroups Sent-Web

Topic-RNN 7.867 9.97 10.64 8.09

Topic-RNN-φ 7.175 8.366 8.85 6.786

Word-RNN 7.53 15.53 17.42 9.318

Table 4.6: Topic-RNN compared against baseline methods for the prediction of words.

ReSource-LDA Source-LDA EDA CTM

Γ Λ% Γ Λ% Γ Λ% Γ Λ%

MeSH 925.8 62.9 4368.9 50.1 20390 42 2038.5 31.3

PhySH 48.1 77.4 7282.4 50.1 14449.3 41.5 984.7 40.5

ACM-2012 3.6 49.9 7637 49.9 1481.9 49.9 200.6 49.9

OAD-Wiki 204.5 76 25478 51.8 11375 37 1196.2 15.3

Table 4.7: The classification accuracy of token assignments (Λ) and perplexity values (Γ) for
ReSource-LDA, Source-LDA, EDA, and CTM.

4.2.2.3 Topic Quality

As in the ability to improve the RNN model by incorporating topic modeling, the reverse process

has the same capability. The Topic-RNN is added into the Source-LDA model to help in assigning
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meaningful labels when words appear in the corpus that do not occur in the predetermined knowledge

source topics. The corpora used are detailed in Table 4.3.

4.2.2.3.1 Experimental Setup

For each hierarchical corpus, we crawl Wikipedia for the resultant source topic documents. From

this set we randomly select a set of parent topics which contain at least two direct children in the

found topics (we are able to determine this from the hierarchical corpus). We take two random

direct children from the parent topics. We then train the Topic-RNN on only the parent topics.

Next we run a modified version of the generative model for the bijective model of Source-LDA

with parameters of α β, µ, σ, as 50/K, 200/V , 5.0, and 0.0 respectively. The modification is for

each word we flip an unbiased coin to decide if we are to sample from the parent topic under the

Source-LDA parameters, or from the raw child distributions. This results in a close to 50/50 split

between a word coming from the parent or from the child. For each child word, we mark the topic

assignment as that of the parent, and keep the parent word as assigned to the parent topic. We then

run ReSource-LDA in comparison with Source-LDA, Explicit Dirichlet Allocation (EDA) [Han13],

and the Concept Topic Model (CTM) [SSC11]. The goal is to determine which topic each word

belongs to.

4.2.2.3.2 Experimental Results

After 1,000 iterations, we compare the perplexity and classification accuracy as a measure of

goodness between the models. As is shown in Table 4.7, ReSource-LDA outperforms Source-

LDA and the other models in terms of correctly assigning each word to the correct label, as well

as perplexity. The baseline models are all limited in being restricted by its knowledge source

distribution which leads to a low probability of a word being assigned to the topic when it is not in

the knowledge source topic. ReSource-LDA rectifies this deficiency by its ability to predict words

that are similar to its trained sequence, as is shown by the case study in the previous section.
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4.2.2.4 Topic Labeling

Given the ability of ReSource-LDA to improve the classification of topic assignments we show how

to use this improvement in identifying topics from different corpora.

4.2.2.4.1 Experimental Setup

From each corpus we take the entire set of topics associated with any article as the knowledge

source. The knowledge source is constructed by taking the topic strings and querying Wikipedia for

the corresponding articles. A subset of articles is randomly selected from the entire dataset to be

used as the corpus. For each subset article, we also record the topics associated with that article.

The topics corresponding to the article subset comprises a subset of articles out of the knowledge

source. We run ReSource-LDA on the corpus with α, β, µ, σ and K set to 0.5 (50/K), 200/V , 0.7,

0.3 and 100 respectively; with V representing the size of the vocabulary. The baseline methods

used consisted of Source-LDA with parameters the same as above, EDA, and the CTM. We run

each model for 1,000 iterations and then compare the labeling of the inferred topics.

4.2.2.4.2 Experimental Results

After the iterations were completed, we count the number of labeled topics found that appear in

the topic key of the corpus. Figure 4.13 shows the recall for each model. ReSource-LDA mostly

outperforms all models finding up to roughly one third of all topics found in the key. The CTM and

EDA perform poorly on this task due to their rigid nature, while Source-LDA does well because it
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Figure 4.13: Recall demonstrating the ability of Topic-RNN over baseline methods to better retrieve
the appropriate labeled topics in different corpora.
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can allow for more variation. Since ReSource-LDA has the same flexibility of Source-LDA, the

improvement of ReSource-LDA over Source-LDA comes from the RNN’s contribution. If we take

Source-LDA to be the baseline and ReSource-LDA to be the alternate variant, then the resultant

p-value is 0.0551 with significance at the 0.1 level. To give the reader an idea of what it means to

label a topic we select 5 different topics, their discovered label along with their top ten words and

display this information in Table 4.8.

Fertilization Animal Diseases Statistical Methods Poultry Disease Surveillance
sperm medicine experiments chickens influenza
cells vet error domesticated outbreak

embryo veterinarians errors fowl pathogenic
tissue horse theory domestication infectious

reproduce horses bayesian duck epidemiology
proteins medical squares goose alert
initiate profession statistic weeks outbreaks
oocytes london distributions japanese epidemic
mating gl tests chinese emerging

dna compilation false turkey appropriately

Table 4.8: Example topics and their top 10 words found after running ReSource-LDA on the FAO-30
dataset.

4.2.3 Discussion

For the goal of improving RNNs by leveraging topic models, we show that this combination results

in improved performance for the recurrent neural network. Training input from the RNN with the

addition of topic modeling input can improve prediction of held out data. Although the evaluation

focused on perplexity, there remains other areas worthy of investigation. We hypothesize our

approach of adding topic modeling into the RNN would be useful to other tasks such as machine

translation. Empirical evaluation is left as an aim in future work.

For the task of assigning meaningful labels to topics, the RNN can improve upon the perfor-

mance of existing methods, especially when there exist a large portion of words not found in the

weakly-supervised input set. An open area of interest would the addition of existing work which

focuses on the non-labeled topics [DWG17, Ngu15] to see if these changes propagate to the labeled

topics as well. We validate our approach of aiding topic labeling experimentally as presented in this

paper.
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This work is an investigation into the utility of combining RNN and topic models. We

show that this combination results in improved performance for both models. Training input

from the RNN with the addition of topic modeling input can improve prediction of held out data.

Likewise, for the task of assigning meaningful labels to topics, the RNN can improve upon the

performance of existing methods, especially when there exist a large portion of words not found

in the weakly-supervised input set. Topic-RNN represents a novel and outperforming method of

combining topics with the recurrent neural network. Our analysis shows the advantage of learning

from both previous data as well as data partitioned by topic. Topic-RNN’s improvements over

existing topic-based methods have been validated experimentally. Under these experiments, and

likely others the combination of topic models and RNNs leads to improvement in both models.

4.3 KnowledgeRank

Another deficiency of Source-LDA is the increase of execution time proportional to the size of the

knowledge source. Indeed, when the input approaches the order of 103 knowledge source topics

the model becomes unfeasible to run. We approach this problem from the angle of pre-inference

filtering. The technique we develop utilizes rankings to eliminate knowledge sources a priori. We

also discover this ranking can improve the model much like ReSource-LDA.

Although lately topic modeling research seems to be directed towards neural topic modeling

(NTM) [Dua21, Che21a, Rez20], traditional, Bayesian based topic models (BTM) offer a viable

alternative to deep learning approaches. Bayes approaches may be preferable when (1) using

commodity or legacy hardware, as the NTM often requires a more complex setups (such as

utilizing a GPU), (2) a document-to-topic (θ) distribution is needed, since for the NTM, θ is often

associated with a batch parameter and reused for multiple documents [Dua21, Che21a, Rez20],

and (3) for more interpretable topics [DB21, CBG09] since the high perplexity of the NTM

may lead to lower interpretability [CBG09], and the recent work challenges the goodness of

traditional pointwise mutual information (PMI) based interpretability scoring often reported in

NTM results [DB21, Geo21]. The latter scoring method [Geo21] may be the preferred approach to

take for estimating interpretability of topic models, however we take direct human based scoring to

be a stronger approach to evaluate interpretability.
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As demonstrated in Figure 4.15 (with the variables described in Table 4.9 and Table 4.10),

the traditional probabilistic topic model outputs a distribution of numeric topics for each document

and a distribution of words for each numeric topic [BNJ03]. These latter distributions comprise

the “topics” in topic modeling. As such, a “topic” is just a distribution over words with a numeric

label. However, the numeric label fails to summarize the distribution semantically. As we can see

from Experiment 4.1.4.3, semantically labeling each topic gives the end user a quick understanding

of what each topic represents, improving the interpretability. These labels can also be used in

downstream processes such as graph-based summarization systems [Ble12, AOC16], consensus

building [LGY20] and scene identification [ZGX21]. However, assigning an accurate label to a

topic is no trivial task.

To assign semantic labels to topics, one can run an unsupervised topic model and then choose

labels after inference [LGN11, MSZ07, MMZ12, SXW15, MCN13, HHK13, Pec10]. However,

this can lead to problems with the topics themselves as the clusters tend to combine two or more

semantically different topics [WTW17]. An example of this given by Case Study 4.0.0.1.

As previously discussed, a second approach to semantic topic labeling involves using a

supervised input set and has shown the ability to label the topic as necessary [JIU12, BM07, LSJ08,

RHN09]. This approach requires many labeled input that may be time-consuming or expensive to

acquire. A compromise between automatically assigning labels while requiring little effort to obtain

a labeled input is given by Source-LDA in in Section 4.1.3. Source-LDA is part of a larger class

of models, referred to as weakly-supervised topic models. To allow for a labeled input set that is

easier to obtain, weakly-supervised topic models [WTW17, Han13, SSC11, SGP20, GKM21] use

existing knowledge sources as the weakly-supervised input to label topics. The knowledge sources

consist of articles turned into distributions and can be transformed into knowledge source topics

(φ̂). A formal definition of knowledge source knowledge source topics, and weakly-supervised topic

modeling is given in Section 2.2.6. To further illustrate the concepts of weakly-supervised topic

modeling, consider the following simple example.
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4.3.0.1 Wikipedia Case Study

At the time of this writing, if we open a web browser and go to Wikipedia2 and search for “grape,”

the returned article (Â) would start with the following text:

A grape is a fruit, botanically...

If we take the above to be the full article, then the knowledge source topic (X̂) for “grape” can be

formed by taking a count of each word (ŵ) in the article and dividing each word by the total number

of words. For the “grape” example, the knowledge source topic is the probability vector [2
6
,1
6
,1
6
,1
6
,1
6
]

with the index of the probability vector mapped to the word vector [a, grape, is, fruit, botanically].

If we continue the above for a set of articles from Wikipedia, the set of articles becomes

the knowledge source (KS). We follow the above procedure from the knowledge source to get

a set of knowledge source topics. These knowledge source topics are then used in the corpus’s

theoretical generative model. Before generating the corpus, we determine the total number of topics

(K) and vocabulary size (V ). For each topic, we sample from a Dirichlet distribution that may

or may not be influenced by an individual knowledge source topic. If a knowledge source topic

influences the topic, the topic label becomes the article’s title from which the knowledge source

topic was created (L̂). Each document in the corpus is generated by first sampling a topic from

a discrete distribution of size K. After the topic is sampled, a word is chosen by sampling from

the topic’s discrete distribution (φ) of size V . During inference, the topic model takes as input a

set of knowledge source topics that may or may not be used in the final output of topics. Because

the output is dependent on a subset of labeled data, we refer to this type of topic modeling as

weakly-supervised topic modeling.

One drawback of weakly-supervised topic modeling is the excess knowledge source topics

used as input. Since there is a more relaxed constraint of not needing to know precisely which

knowledge source topics are relevant to a corpus, there tend to be many knowledge source topics

ultimately discarded. Existing approaches used to determine which topic to discard are based on

counting or some form of clustering. However, counting is problematic because it is too simple and

often discards important knowledge source topics due to not having a high count. In this context

2https://en.wikipedia.org/w/index.php?title=Grape&oldid=908871054
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we take important topics to be topics which are used in the generative model of the corpus. Even

worse is clustering, which only considers some distance metric between the topics and does not

consider how many assignments of words have been made to the topic. We illustrate these concepts

in another simple case study.

4.3.0.2 EHR Case Study

We are given the task of labeling patient notes from a small set of electronic health records. Given

that we know we are in the medical domain, we suppose all possible and relevant topics for any

patient note to be in the following set:

Â1 - Cancer, cancer, tumor, chemotherapy

Â2 - Heart attack, heart, attack chest

Â3 - Dementia, brain, memory, dementia

Â4 - Diabetes, blood, sugar, insulin

Next, we wish to obtain topics and corresponding labels for a corpus of two documents d1 and d2,

given as:

d1 - cancer, chest, attack

d2 - tumor, heart, chemotherapy

A good weakly-supervised topic model would start by considering the entire knowledge source of

(Â1,Â2,Â3,Â4) but would eventually end up with document-token to topic assignments of:

d1 - cancer1, chest2, attack2

d2 - tumor1, heart2, chemotherapy1

With topic 1 (after the topic model interference is complete) mapped to Â1 and topic 2 mapped

to Â2. Since Â1 and Â2 are referenced in the final document-token assignment, we consider

these relevant or important topics. Additionally, since Â3 and Â4 were not referenced by any

document-token assignment to topic, we delegate these to be discarded topics.

It is essential for the weakly-supervised topic model to determine which topics are relevant

and which topics to discard. What is needed is some way to rank the topics by order of importance
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to a corpus. A better ranking of topics can select the relevant topics and discard the less important

ones. Counting can be used for ranking, but this leads to the problems discussed previously. One

method for ranking which has already shown promising results is PageRank [PBM99]. PageRank

finds the importance of a node by considering the importance of the connecting neighbors in a

recursive fashion. This approach helps determine the importance of websites in the world wide web.

With the success of PageRank in the world wide web, it is a natural approach to apply the

techniques of PageRank to other ranking problems, such as the ranking of article-topics. The main

obstacle of using PageRank for knowledge source rankings is representing the knowledge source as

a graph consisting of nodes and edges. In most cases, a knowledge source consists of a collection

of articles, i.e., Wikipedia articles corresponding to MedlinePlus3 headings. However, there are

knowledge sources that already take the form of a graph, such as the Unified Medical Language

System (UMLS)4. Ontologies and other compendia exist that take the form of entities as nodes and

relationships among entities as edges. For these cases we still need to determine a way to effectively

rank the nodes and edges which is applicable in the context of weakly-supervised topic modeling.

Still, with the desiderata to increase applicability, we must consider how to rank existing

article-based knowledge sources. This work presents a novel way to aid topic models that already

have a knowledge source associated with the corpus (weakly-supervised topic models). Our

technique applies to both graph-based and article-based knowledge sources. When we have both a

graph and article-based knowledge source, we can take the topic labels from the article headings

and emphasize these nodes in the graph-based knowledge source. When comparing the results after

ranking, we can select the subset of nodes corresponding to article labels. We also formulate similar

approaches for article-only and graph-only knowledge sources.

Ranking the article-topics allows weakly-supervised topics models to take any input knowl-

edge source regardless of size. Currently, as validated in Experiment 4.1.4.5, for our weakly-

supervised topic model, a knowledge source input size of just 1,000 article-topics results in inference

iteration times that are too high to be practical. Our solution is to rank the article-topics using our

ranking method pre-inference and filter out low scoring article-topics. We can then input the filtered

knowledge source into the weakly-supervised topic model and proceed as usual.

3https://www.nlm.nih.gov/medlineplus/
4https://www.nlm.nih.gov/research/umls/
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Knowledge source rankings are not only limited to preprocess filtering. The rankings are also

applicable during topic modeling inference to help existing weakly-supervised algorithms determine

which topics should be removed. We can also use knowledge source rankings in a stand-alone topic

model or in the generative model alongside existing weakly-supervised topic models.

The intuition behind our ranking method is like that of TextRank [MT04]. This established

method ranks sentences in a document to determine a sentence used to summarize the document.

Similarly, and with some modifications, we should be able to develop a technique to determine a

ranking of article-topics relevant to a corpus. Additionally, knowledge source preprocess filtering

has already been shown to improve text-related tasks [KDA20], while utilizing outside text-based

information and graph representations are shown to yield improved results as well [AG18, OEA20,

AMC19].

4.3.1 Motivating Examples

We provide a few small examples to help understand the intuition behind using ranking algorithms

for weakly-supervised topic models.

4.3.1.1 Graph-based knowledge sources

The proposed ranking algorithm allows for the inclusion of graph-based knowledge sources into the

weakly-supervised topic modeling process. We can see from Section 4.1, Source-LDA only allows

for article-based knowledge sources. This same limitation is intrinsic to other weakly-supervised

models as well [Han13, SSC11]. The addition of an extra source of outside knowledge should serve

to enhance existing weakly-supervised methods. For example, suppose we are working with a corpus

of PubMed5 articles, and we observe the word acetylsalicylic acid (commonly known as aspirin).

We are now trying to classify this word as belonging to either Cerebral infarction or Alzheimer’s

disease using an article-based knowledge source derived from Wikipedia. However, neither the

article for Alzheimer’s disease nor Cerebral infarction contains the word acetylsalicylic acid67 (as

well as aspirin), leaving the model to choose the topic assignment from outside the knowledge

5https://www.ncbi.nlm.nih.gov/pubmed/
6https://en.wikipedia.org/w/index.php?title=Cerebral infarction
7https://en.wikipedia.org/w/index.php?title=Alzheimer%27s disease
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source. However, suppose we were to leverage the graph-based knowledge source UMLS. In that

case, we have a direct connection8 between Cerebral infarction and acetylsalicylic acid—whereas

none exists between acetylsalicylic acid and Alzheimer’s disease. This extra information can help

to classify acetylsalicylic acid to Cerebral infarction over Alzheimer’s disease at a more accurate

percentage9

4.3.1.2 Overlapping topics

Another advantage of weakly-supervised topic ranking comes from leveraging information from

overlapping topics. In this example, suppose we try to classify w1 as belonging to t1 or t2, and

w1 is not in either t1 or t2’s knowledge source article. However, a third topic, t3, contains w1 and

w2, which t1 shares. Furthermore, t2 does not share any words with t3. Thus, ranking can help

prefer t1 over t2 as the score is propagated based on distance. However, other methods: counting,

Gibbs-based, etc., cannot give such an advantage.

4.3.1.3 Discarding topics

At some point, the topic model must choose to discard topics assumed not to be used in the generative

model. Existing methods use counting, assuming that if a topic was used in the generative model,

then there will be more word assignments to that topic than a topic not used in the generative

model. However, this may not be the best way to eliminate topics. Consider the example shown in

Figure 4.14. Here we have modeled assignments of words to topics as a graph with a word having

an outgoing edge to a topic if that word is assigned to that topic. If we must discard one topic out

of the existing topic set, counting would choose t4. However, a better topic to discard would be t1

since the words assigned to t1 are shared words that could easily be from other topics. Ranking

would consider the context of the words assigned to t4 to choose to keep t4 over t1.

8C0007785 RO/may be prevented by C0004057
9Based on a PubMed MeSH term search of acetylsalicylic acid and cerebral infarction versus acetylsalicylic acid

and alzheimers disease, yielding 488 to 58 results respectively.
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Figure 4.14: An example graph representation
of word and topic assignments.

Figure 4.15: Plate notation for Rank-LDA
with the dashed box representing
Source-LDA. All variables are described
in Table 4.9 and Table 4.10

4.3.1.4 Research objectives

Section 4.1.4 shows us that weakly-supervised topic models, in particular Source-LDA, have the

ability to improve upon traditional topic modeling in two ways: (1) an increase in interpretability

and (2) the labeling of topics. So then why hasn’t weakly-supervised topic models been widely

adopted as a standard for all Bayesian topic modeling? By design, the weakly-supervised input is

effortless to obtain for most corpora. With a model that is easily adaptable to all Bayesian topic

models, why not have more interpretable topics that are labeled? It seems that in most applications

of topic modeling, this could only help. One reason may be due to the high execution time. At large

weakly-supervised input sizes, the model running times become unfeasible. It is our objective to

resolve this inadequacy. By removing the burden of high execution times while still maintaining the

benefit of weakly-supervised models, we hope this topic modeling technique takes a step toward

being the approach used in all topic modeling. Additionally, we seek to use the same techniques to

speed up the execution of weakly-supervised topic models to further improve the interpretability

and perplexity of these models. The desiderata of this work is to give existing consumers of

weakly-supervised topic models another tool that can improve execution time, perplexity and

interpretability—and to convince any topic modeler that weakly-supervised topic models are an

effective enhancement to existing topic models on just about every dataset.
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Symbol Description

w A word in a document of size Nd

z The topic corresponding to w

θ A distribution over topics for each di ∈ D documents, parameterized by α

α The Dirichlet hyperparameters for each K topics

Nd The number of words in di ∈ D documents

D The number of documents in the corpus

φk A distribution over words for each k ∈ K topics, parameterized by β

β The Dirichlet hyperparameters for each w words

B The number of knowledge source topics

K The number of latent topics

φs A distribution over words for each b ∈ B topics, parameterized by δ

δ
The Dirichlet hyperparameters for each word in b ∈ B topics. The value is a result of a
function applied to X and λ

µ The mean to the normal distribution

KA An article-based knowledge source

X The count of each word in a ∈ KA knowledge source article

λ
A latent number that signifies how far φs deviates from the corresponding frequency
distribution

σ The standard deviation to the normal distribution

Table 4.9: Notations used in Source-LDA.

4.3.2 Methods

With the desideratum to leverage graph-based knowledge sources in topic modeling, we must

first model the weakly-supervised input in a way that maximizes the effectiveness of the ranking.

We introduce our method, KnowledgeRank, for constructing a graph-based representation of a

knowledge source for ranking the appropriate nodes and edges.

4.3.2.1 Graph-based knowledge sources

In cases where the only weakly-supervised input set is already in the form of a graph, we can simply

use the given structure as the model for KnowledgeRank. However, what is not entirely clear is

how to obtain the labels. Many ontologies or other compendia consist of concept nodes that can be
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Symbol Description

φr A distribution over words for each b ∈ B topics, parameterized by Rb

KG A graph-based knowledge source

Rb
The Dirichlet hyperparameters for each word in b ∈ B topics influenced by KnowledgeR-
ank

p Bernoulli distribution parameter

b
Draw from the Bernoulli distribution parameterized by p to determine which knowledge
source w is drawn from

Table 4.10: Notations used in Rank-LDA.

Symbol Description

Rg(n) The rank score for a node n in graph g

I(m) The set of all nodes with incoming edges into node m

O(n) The set of all nodes with incoming edges originating from node n

Cn The count of word n in a corpus

D̂ A corpus

d Damping factor

ζg
An input parameter over the interval [0,1] specifying the ranking importance of
frequent words in a corpus with corresponding knowledge source graph g

N The set of all nodes

P (wi|t) The probability of word wi given topic t

S(t,wi) The set of nodes in the shortest path from node t to node wi

X(m,n) The number of times word n appears in topic m’s knowledge source article

zi The ith topic assignment
−→z −i A vector of all topic assignments minus the ith assignment

b A variable representing the draw from a Bernoulli distribution

nwi
-i,j The number of assignments of word i to topic j minus the current assignment

n
(·)
-i,j The number of assignments to topic j minus the current assignment

Table 4.11: Explanations for variables used to describe the methodology behind KnowledgeRank.

used as labels for topics, however there often exists noisy word nodes that would be inappropriate

labels for a given topic (and no way to differentiate between a concept node and word node). For

example, in the NIF ontology, a given node may correspond to the word “of,” which obviously
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would not be a good label for any topic. These less applicable words exist because the ontologies or

other compendia are often built from domain specific free-text. This curated data source can still be

helpful for topic models, but we must first find the appropriate labels.

Graph-based ranking models have already established the ability to find the most important

word in a sentence [MT04]. It follows that similar techniques can find the most important node from

a set of nodes. If we apply the ranking algorithm to a knowledge source graph, we can determine

the labeling for a topic based on the highest scoring nodes.

By applying the ranking in this way, we can obtain the most important nodes in the graph,

but in some cases, we may want to let the corpus give us insight into the importance of a node. It

is plausible that a word used more frequently in a corpus should be considered more important in

the representative graph than one that is used very seldom. In other cases, this weighting is not so

important. To account for these cases, we can augment the original PageRank formula to consider

these weights and the associated importance of the weighting (ζg) as:

w1 =
∑

n∈I(m)

Rg(n)

|O(n)| (4.43)

w2 =
∑

n∈I(m)

Cn
|D| ·Rg(n) (4.44)

Rg(m) =
1− d
|N | + d · [ζg + (1− ζg)× w2] · w1 (4.45)

Ci is the count of word i in the corpus D, and ζg is defined over the interval 0 to 1.

We can also use this information in the generative model itself. Given that we only have

the graph-based knowledge source, we can construct a distribution over the vocabulary using

Equation 4.45. In more detail: we can form a distribution over the vocabulary by starting at a

topic label node, t, and normalizing the probability of arriving at each word in the vocabulary. The

distribution can be calculated by considering the path a random surfer takes to each node with the

restriction that the random surfer starts at each labeled node. This function is given as:

Pg(wi|t) ∝
∏

m∈S(t,wi)

Rg(m) (4.46)
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Figure 4.16: A graph-based representation of two topic (t1, t2) histograms corresponding to knowl-
edge source articles (a) alongside a diagram representation of the pipeline needed for pre-inference
filtering (b).

The advantage of this approach is that the change required to infer the model’s hidden variables

can easily be adapted to any weakly-supervised topic model’s Gibbs sampling equation. We can

precompute the probabilities and then use the distributions the same way as a word distribution

from an article-based knowledge source. In this approach, we add curated outside knowledge while

still allowing LDA to cluster the topics.

4.3.2.2 Article-based knowledge sources

For those knowledge sources consisting only of articles, we can model the articles into a graph

and then run our ranking algorithm. Our approach connects each topic node to each corresponding

source article word. Because frequent words in an article are assumed to be more important to

topic identification, we would like to give these words more weight in our graph representation.

We add this weighting by creating an edge (from topic to word) for each token in an article. For

example, take the two histograms corresponding to a knowledge source article (article-topic) shown

in Figure 4.16(a). In this example, each ti represents a knowledge source topic label (or article

heading) with each wi as a non-topic label word in knowledge source topic i. We model the edges

as undirected, resulting in I(n) = O(n). Note that an article-topic can have in its article a word that

is also a label for another article-topic. Also note that a word can be a non-topic label word (shows

up in the body of the text) and the knowledge source topic label (the article heading) in the same

knowledge source topic (such as ti). The change required to the ranking algorithm is the weighting

205



of each node. This change gives us:

w3 =
∑

n∈I(m)

Ra(n)

|O(n)| (4.47)

w4 =
∑

n∈I(m)

X(m,n)∑
m∈O(n)

X(m,n)
·Ra(n) (4.48)

Ra(m) =
1− d
|N | + d · [ζa × w3 + (1− ζa)× w4] (4.49)

where ζa, a parameter defined between 0 and 1, lets us specify the importance of weighting the

edges over a PageRank score, and X(m,n) is the count of the number of token assignments word n

has in knowledge source topic m.

We can then use the graph-based representation in tasks mentioned in the graph-based knowl-

edge sources section with this representation. This method would be beneficial in preprocessing to

decrease some of the non-important topics.

4.3.2.3 Graph and article knowledge sources

Having both graph and article-based knowledge sources brings a more extensive set of information

into the topic model and thus can lead to better labeling of found topics. Given that we already have

the graph form, we can apply the ranking algorithm to preprocess the existing knowledge source

articles. We would want to let the corpus tell us about the importance of a word, but we also want

to consider how important it is in the knowledge source article. For this, we make a change to the

ranking calculation that allows for this weighting:

w5 = ζg × w1 + (1− ζg)× w2 (4.50)

w6 = ζa × w3 + (1− ζa)× w4 (4.51)

R(m) =
1− d
|N | + d · w5 · w6 (4.52)

We can use this ranking to perform all the tasks previously mentioned, such as pre-inference

topic filtering, as we diagram in Figure 4.16(b). Additionally, this ranking can be helpful in the
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inference stage of existing weakly-supervised topic models. During inference, the topic model must

decide which topics to keep and which ones to discard. To determine which topic to discard, the

algorithm considers a simple observable property such as the count of assignments to a topic. This

decision can lead to problems such as when two related topics are used in a corpus, and thus one

takes most of the overlapping word assignments. The topic with the smaller number of overlapping

word assignments is then discarded. When using clustering algorithms, the same problem exists,

limiting the similarity of two topics to a distance measure. Compared to clustering, using counts has

more of an underlying intuition. We can use the ranking methods described previously as a third

way of determining which topics to discard. After obtaining a ranking, we can simply remove an

appropriate number of low-scoring topics.

Both knowledge sources can also be combined in a topic model that leverages the graph-based

connections to increase the probability of words being assigned to the appropriate source topic when

they do not appear in the knowledge source article. An incomplete assumption of article-based

knowledge sources is that they contain every word for which the generative model would use to

write about a particular topic, but this is certainly not the case. It is entirely possible that important

words about a topic may not show up in a random document describing that topic. Graph-based

knowledge sources can help add more information into the model. The generative process can be

changed to allow for this synthesis of information. The change required to Equation 4.46 is:

P (wi|t) ∝
∏

m∈S(t,wi)

R(m) (4.53)

The graph-based knowledge source exerts an influence over the word assignments differently

than that of an article-based distribution—due to each knowledge source containing independent

data. To handle both of these influences, we can place a Dirichlet prior over the selection between

the models. Based on an input hyperparameter, the data will decide which distribution to select—and

then we sample from this multinomial to determine which knowledge source is used to select the

word. A more straightforward approach assumes that the vocabulary of the samples for the different

types of knowledge sources is disjoint. This approach allows the generative model to sample the

knowledge source choice variable (b) from the Bernoulli distribution, parameterized by p. During
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Description KA KG D K

MeSH Medical subject headings Wikipedia UMLS 2,000 56,326
CiteULike-180 Manually tagged scholarly papers Wikipedia WordNet 182 1,660

FAO-30
Manually annotated documents from the
Food and Agriculture Organization of the
UN.

Wikipedia WordNet 30 650

SemEval-2010 Scientific articles with manually assigned
keyphrases

Wikipedia WordNet 244 3,107

Reuters-21578 Manually labeled documents from the 1987
Reuters newswire

Wikipedia WordNet 21,578 2,663

Table 4.12: Non-hierarchical datasets used for evaluation of KnowledgeRank.

inference, p is easily observed and does not factor into the inference other than to determine which

calculation to use.

As shown in Figure 4.15, we can build a Gibbs sampler from the generative model. The choice

variable, b, should be included in the Gibbs sampling and used to determine which distribution to

sample from. The step sampling for b = 0 is the same as Equation 4.9. For b = 1, the step sampling

is drawn from the proportional probability of [P (zi=j|−→z -i) unchanged and omitted]:

P (zi=j|−→z -i,wi,b=1) ∝
nwi

-i,j + P (wi|j)
n

(·)
-i,j + 1

(4.54)

We take this approach to be Rank-LDA.

Rank-LDA is shown in Figure 4.15 as an extension to Source-LDA however a similar

extension to any weakly-supervised topic model would result in a congruent construction. Rank-

LDA uses the article-based knowledge source (KA) in two ways. The first being the original way

used in the weakly-supervised topic model. The second is to provide supplemental support to the

graph provided by KG. The intuition is that both KA and KG provide partial information about a

topic and that combining them can only help. Additionally, by turning KA into a graph, we take

advantage of ranking over counting, which gives us the advantages discussed in the motivating

examples section. One disadvantage of this approach is that it does not consider the quality of

the knowledge sources (KA and KG), thus weighting them equally. A poor-quality knowledge

source could add noise leading to less desirable results [NND17]. Knowledge source weighting and

optimization are left as an open research area.
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Execution time Preprocessing Trade-off

R
2

f(x) R
2

f(x2) AUCrank AUCvote AUCjs r

MeSH 0.905 0.768 0.418 0.264 0.02 -0.963
CiteULike-180 0.519 0.299 0.244 0.192 0.192 -0.529
FAO-30 0.344 0.186 0.269 0.238 0.238 -0.836
SemEval-2010 0.493 0.28 0.229 0.104 0.104 -0.821
Reuters-21578 0.437 0.236 0.223 0.164 0.164 -0.764

Table 4.13: Metrics describing the execution of KnowledgeRank in the preprocessing stage.

4.3.3 Results

Knowledge source rankings are applied in various experiments to show the utility of KnowledgeR-

ank.

4.3.3.1 Datasets

To examine how well our algorithm performs across different datasets, we collected datasets across

various domains and varying sizes. Details and metrics are provided in Table 4.12 and Table 4.3. The

datasets can be partitioned into two sets: hierarchical and non-hierarchical. For the non-hierarchical

datasets, we required a corpus with topics labeled by a human annotator. Each dataset was taken

from previous work on similar topic modeling tasks [MFW09, KMK10]. The datasets were pre-

processed differently depending on the experiment. More details are provided in each experiment’s

experimental setup. The hierarchical datasets consist of parent, child relationship topic pairs. Each

child was restricted to one parent, while each parent could have multiple children. Thus the network

structure resembled a forest as opposed to a graph. More details about construction are given in the

experimental setup for the hierarchal experiments (Section 4.3.3.6).

4.3.3.2 Execution Time

For KnowledgeRank to be helpful in preprocessing, we seek to add a filtering approach that does

not significantly add to the overall time needed to perform topic modeling. An execution cost that is

minuscule compared to the time needed to complete Gibbs sampling of a corpus is ideal, given that

execution times of weakly-supervised topic models can be quite expensive—as an example, take

Experiment 4.1.4.5.
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Figure 4.17: Results showing the execution time for running KnowledgeRank (a), the precision-re-
call curve for selecting the topics used in the generation of the corpus (b), and the trade-off between
execution time and F-score (c). All results shown are in the preprocessing stage for the MeSH
dataset.

We run KnowledgeRank as the preprocessing step on a dataset that consists of articles from

Wikipedia corresponding to MeSH terms. We seek to obtain the best K topics from a superset of T

knowledge source distributions. With K taken as 100, 200, 500, and 1,000 topics. T also varies

from 0 to 50,000 superset topics. Figure 4.17(a) shows that the execution time increases linearly

with an increase of T . The different values of K do not significantly impact the results, and even

at extreme values of K and T , the total execution time is relatively small—at 1.5 seconds, this is

much less than the time taken in Experiment 4.1.4.5.

The same experiment was performed on each of the non-hierarchical datasets. To show the

linearity of the execution times, we compare the average coefficient of determination of a linear

function fit to the data against a quadratic function. The functions were fit using the least squares

approach. As shown in Table 4.13, the results show more of a linear relationship than a quadratic

relationship for the execution times of KnowledgeRank in preprocessing.

4.3.3.3 Preprocessing

A proposed advantage of KnowledgeRank is the ability to appropriately determine which topics are

used in the generation of a corpus. We show the utility of KnowledgeRank in this task by comparing

it to baseline methods. We consider only baseline methods that require much less computation cost

than that of topic modeling.
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4.3.3.3.1 Experimental Setup

We generate a corpus by first taking a random subset of MeSH article headings and then combine

them with all MedlinePlus article headings. For each article heading, we search Wikipedia for

the corresponding article. If a query leads to no results or multiple results, we discard the article

heading. The process results in 4,300 found Wikipedia articles. Each Wikipedia article is then

turned into a histogram over the set of words in the article. Given the histograms corresponding to

Wikipedia articles, we generate a corpus of 2,000 documents, each consisting of an average of 500

words using the Source-LDA generative model. The Source-LDA parameters are K, α, µ, and σ

set to 100, 0.5, 5, and 2, respectively. For KnowledgeRank, we take as input the SNOMED CT10

subset of the UMLS. The graph is filtered by removing any node whose corresponding string label

does not occur in the corpus. We then run KnowledgeRank on the filtered graph. The first baseline

method is based on voting, where one vote is cast to each topic for every word in both the corpus

and the corresponding knowledge source article. A second baseline method is constructed by taking

each document as a discrete distribution and scoring the likelihood of a topic existing in the corpus

by comparing the Jensen-Shannon (JS) divergence. We then repeat this experiment for all datasets

and record the area under the curve (AUC) of the precision-recall curve.

4.3.3.3.2 Experimental Results

The corpus and knowledge sources are used to determine the ground truth of topics used in the corpus.

Figure 4.17(b) shows the precision-recall curve for each model’s ability to determine whether a topic

was used in the corpus. KnowledgeRank outperforms the baseline methods significantly as the JS

divergence baseline method has a hard time separating the mixtures, and voting is not refined enough

to accurately capture the matching. Bringing into the model the outside information of the UMLS

allows for a more accurate determination of correct topics, while doing so in a computationally

efficient manner. Table 4.13 confirms that KnowledgeRank is consistently better in preprocess

filtering than baseline methods.

10http://www.snomed.org/
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Figure 4.18: A bar chart representing the increase in topic filtering decisions made during inference
using KnowledgeRank and clustering-based methods as a percentage over the naive approach of
simple counting of assignments to each topic using the MeSH dataset.

%∆ Topic selection
Rank Centroid Distance Distance+Rank DBSCAN

MeSH 50 -70 -85 -66.667 -87.755
CiteULike-180 10 0 0 0 0
FAO-30 6.25 0 0 0 6.25
SemEval-2010 30 0 0 0 0
Reuters-21578 50 0 0 0 0

Table 4.14: The increase in topic selections for all datasets when using KnowledgeRank and
clustering-based methods over simple counting during topic modeling inference.

4.3.3.4 Preprocessing Trade-off

As shown in the previous experiment, KnowledgeRank can effectively filter out some topics from

the knowledge source but cannot perform this task perfectly. Some filtered out topics could have

potentially been used to generate the corpus. A natural question to ask is: Should preprocessing be

performed at all? Since keeping all topics into the topic model allows the topic model to determine

whether the topic is needed based on an accurate Gibbs sampling—this may lead to more accurate

topic labeling and better topic interpretability, as it fits with the original model in Section 4.1.3.

The primary factor in deciding to use preprocess filtering is the amount of time it takes a

weakly-supervised topic model to run entirely. Figure 4.8(f) signifies this time to be significant

for existing weakly-supervised methods with a large corpus, approximation steps, and knowledge
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source size. This result is validated again in Figure 4.17(c), for a corpus of 2,000 documents

averaging 500 words per document and K set to 100 topics and 10 approximation steps, as the

knowledge source increases, so does time. At the extreme end, one iteration takes over 350 seconds.

It is simply not feasible to run the model on such an input size.

The solution is to reduce the knowledge source size using KnowledgeRank. But by doing this,

we sacrifice some F-score. Figure 4.17(c) shows the trade-off expected when we filter out all but

K topics from the knowledge source before inference. As expected, as we increase the number of

filtered topics, we inevitability decrease the F-score, as the ranking model has more choices to skew

the filtering. This relationship is verified with the other datasets in Table 4.13. The anti-correlation

(r) is shown in Table 4.13 as the Pearson correlation coefficient.

4.3.3.5 Inference Pruning

Given that the input into the weakly-supervised topic model is a superset of topics, at some point,

the topic model must decide which topics to keep and which topics to discard. Additionally, since

K unlabeled topics are thrown into the mix in the mixed models, a determination must also be made

on these unlabeled topics.

KnowledgeRank can be used in these determinations by helping sort out which topics are

best to keep around in a more in-depth manner than the current method of counting. The following

experiment verifies this, and compares its selections against clustering-based methods.

4.3.3.5.1 Experimental Setup

A corpus was generated consisting with 2,000 documents having an average of 500 words per

document using 100 Wikipedia articles taken from MeSH subject headings. The Source-LDA

generative algorithm was used to create the corpus from the 100 selected Wikipedia articles. The

parameters for Source-LDA were α, µ, σ set to 0.5, 0.7, and 0.3, respectively. We run Source-LDA

with a knowledge source of 1,000 medical subject headings with the generated corpus, inclusive

of the 100 selected topics to generate the corpus. This process does not always yield incorrect

decisions from Source-LDA using simple counting. Therefore, random permutations of the 1,000-

topic superset and 100 selected topic set were used as input into this process. The 100 and 1,000
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topic sets were sampled from a full MeSH and UMLS overlapping set of 8,000 topics. Once a

corpus and knowledge source were found, we log the decisions, count vectors, and φ distributions

at each relevant step of the topic model and run the different methods to see if they can improve

upon the decisions.

The decisions are made using KnowlegeRank and the established clustering algorithms: k-

means clustering and density-based spatial clustering of applications with noise (DBSCAN) [EKS96].

For KnowledgeRank, a graph was constructed using the counts as a weight from a word node and a

topic node. If word i was assigned to a topic j, then the number of times that word i was assigned

to topic j becomes the weight of the directed edge from node i to node j. These rankings were then

used to weigh the counts to decide which topics to keep. K-means and DBSCAN were run against

the φ distributions. The number of centroids for k-means was set to 100. For DBSCAN ε was set

to 0.115 with the minimum number of points for a dense region as 1. We take the point closest to

the centroid (Centroid), the distance to the centroid (Distance), and the distance weighed using the

ranking score (Distance+Rank) to rank and choose topics to keep for k-means. For DBSCAN, we

take the topic with minimal distance to all other topics in the cluster. We then perform the same

experiment on all non-hierarchical datasets.

4.3.3.5.2 Experimental Results

The algorithms were run against the φ and count matrices after 800 iterations of Gibbs sampling.

The decision to make is to choose the best 100 out of 176 (this can be different depending on

the data source and random seed) candidate topics. As shown in Figure 4.18 and Table 4.14,

KnowledgeRank improves upon the existing method of counting, while k-means based decisions

and DBSCAN mostly have no effect. From an intuitive perspective, this problem is well served for

KnowledgeRank. The reason why the topic model does not assign the words to the correct topic is

due to another topic, which is not used in the generation of the corpus, that takes the assignments.

By ranking the counts to topics, we can give less importance to words that belong to many different

topics. These words can skew the counts and lead to incorrect topic decisions—while weighting

them appropriately by the amount they overlap, which ranking methods are quite good at, allows

for a better decision.
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Rank-LDA Source-LDA EDA CTM
Γ Λ% Γ Λ% Γ Λ% Γ Λ%

MeSH 935.8 62.9 4432.5 50.1 20390.8 42 2040.7 30.7
PhySH 47.6 75.9 7262.3 50.2 14447.9 41.5 981.2 39.2
ACM-2012 3.6 49.9 7637 49.9 1481.9 49.9 200.6 49.9
OAD-Wiki 202.3 74.4 25407.6 51.8 11363.1 37 1197.9 12.5

Table 4.15: The classification accuracy of token assignments and perplexity values for Rank-LDA,
Source-LDA, EDA, and CTM using a corpus mixed evenly between parent and child topics.

Rank-LDA SawETM VRTM VRTM+W2V
Γ Λ% Γ Λ% Γ Λ% Γ Λ%

MeSH 935.8 62.9 6212.5 1.82 985.1 1.84 2073 1.85
PhySH 47.6 75.9 2200.6 5.72 910.3 5.72 266.3 5.7
ACM-2012 3.6 49.9 326.8 50.1 167.4 50 63.6 50
OAD-Wiki 202.3 74.4 3223.5 3.04 1225.9 3.04 1401.6 3.04

Table 4.16: The classification accuracy of token assignments and perplexity values for Rank-LDA,
SawETM, VRTM, and VRTM+W2V using a corpus mixed evenly between parent and child topics.

4.3.3.6 Partial Knowledge

We show the utility of Rank-LDA to aid existing weakly-supervised topic models with partial

knowledge. In this experiment, Rank-LDA is used to assign meaningful labels to topics that contain

a large number of words that appear in the corpus but do not occur in the predetermined article-based

knowledge sources. Each corpus used in evaluation consists of a subset of topics as the knowledge

source and their children as the source for tokens not in the knowledge source.

4.3.3.6.1 Experimental Setup

To demonstrate how we constructed the dataset we use the MeSH corpus as an example. All other

datasets were similarly constructed. From the entire MeSH hierarchy, we crawl Wikipedia for the

resultant topic documents. This set consists of 20,050 found topics. We randomly select 65 topics

that contain at least two direct children in the found topics from this set. We take two random direct

children from the 65 parent topics for a total of 130 child topics. We then build the knowledge graph

based on SNOMED CT filtered by tokens appearing in the corpus. We connect the nodes together
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using the graph structure of SNOMED CT and the article-based knowledge source. We add an edge

between every topic node and a word existing in the corresponding article. Next, we run a modified

version of the generative model for the bijective model given in Section 4.1.1 with parameters of K,

α β, µ, σ, D, Davg, as 65, 50/K, 200/V , 5.0, 0.0, 2,000, and 500 respectively. The modification is

for each word we flip an unbiased coin to decide if we are to sample from the parent topic under

the Source-LDA parameters or from the raw child distributions. This process results in close to a

50/50 split between a word coming from the parent or the child. For each child word, we mark the

topic assignment as that of the parent and keep the parent word as assigned to the parent topic. We

then run the Rank-LDA topic model in comparison with Source-LDA, explicit Dirichlet allocation

(EDA) [Han13], the concept topic model (CTM) [SSC11], Sawtooth Factorial Topic Embeddings

Guided Gamma Belief Network (SawETM) [Dua21], the Variationally-Learned Recurrent Neural

Topic Model (VRTM) [Rez20], and a version of VRTM defined to utilize outside information in the

form of word embeddings (VRTM+W2V) [MSC13] (evaluated as a separate model) to determine

which topic each word belongs to. Each neural topic model was implemented as described in their

respective publications [DB21, CBG09]. For all hierarchical datasets, we repeat the experiment as

described above with the corresponding dataset topics.

4.3.3.6.2 Experimental Results

After 1,000 iterations, we compare the perplexity (Γ) and classification accuracy (Λ) as a measure of

goodness between the models. As is shown in Table 4.15, Rank-LDA outperforms all other weakly-

supervised topic models in terms of correctly assigning each word to the correct label (Λ%), as well

as perplexity. Rank-LDA similarly outperforms the baseline neural topic models as demonstrated in

Table 4.16. The weakly-supervised baseline methods, Source-LDA, EDA, and CTM are limited

in being restricted by their knowledge source distributions leading to a low probability of a word

being assigned to the topic when it is not in the knowledge source topic. Rank-LDA rectifies this

deficiency by bringing in additional outside information to connect words that may not show up in

the original knowledge source article. Another interesting aspect is that Rank-LDA outperforms the

neural topic models in terms of perplexity. It is somewhat expected for Rank-LDA to outperform

the baseline models in label assignment accuracy, however perplexity is a major benefit of the
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Figure 4.19: Results showing mean group answers for the word intrusion task (a) and topic intrusion
task (b).

neural topic model over Bayesian models. We submit the reason for better performance has to do

with the benefits of our model (over other weakly-supervised models) coupled with the generated

data. These results suggest in data that is generated under a generative model, Bayesian models

can outperform neural topic models—a finding that suggests the gains in perplexity to Bayesian

topic models in reported studies [DB21, CBG09] may be due to the assumed generative model of

the Bayesian topic models.

4.3.3.7 Interpretability

To show the how knowledge source rankings affect interpretability, we follow established crowd-

sourcing techniques [CBG09] to measure interpretability of our proposed model against baseline

models. The two interpretability tasks we measure are topic intrusion and word intrusion.
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4.3.3.7.1 Experimental Setup

We extract the Wikipedia article for each MedlinePlus article heading from the MedlinePlus corpus.

We add into the knowledge source, articles which are a descendant, ancestor, or no relation to a

MedlinePlus article heading according to MeSH. The knowledge source consists of 1,000 articles

and 1,000 knowledge source topics. We take MedlinePlus as our corpus, which consists of 961

articles. Next, we run LDA with parameters K, α, β as 100, 50/K, 200/V respectively followed

by Source-LDA on the corpus with K, α β, µ, σ, as 100, 50/K, 200/V , 1.0, 0.3 respectively

for 1,000 iterations. Next, we run a version of Rank-LDA where we filter out 800 topics before

inference (Preprocessing) and use ranking to prune topics during inference (Inference Pruning). The

parameters for Rank-LDA are the same as Source-LDA with ζa and ζg both as 0.5. The graph used

in Rank-LDA is built from the knowledge source and the UMLS described in the methods section.

We repeat the above for ten LDA, Source-LDA, Rank-LDA, SawETM, VRTM, and VRTM+W2V

runs. The neural topic models were implemented as described in Section 4.3.3.6. To generate the

topic intrusion task, we choose a random run, then a random document from a set of MedlinePlus

article headings that do not require specialized medical knowledge. After a document is chosen,

we take the two most probable topics from θ and a random selection of the least probable topics as

the intruder topic. We present the user with the title of the article and the first 100 words—with

the option to view the entire article. After reading the title and article, the user must identify the

intrusive topic from the set of 3 topic labels. For LDA, we use the eight most common words as the

topic label. In the word intrusion task, we first select the output from a random run from a topic

model, then randomly choose a topic (distribution over the vocabulary). From the chosen topic, we

choose the four most probable words from φ. The intrusive word is taken randomly from the five

least probable words from φ that are also highly probable words in some other topic. The user is

then presented with the topic label and asked to choose the intrusive word from the combined set of

four probable and one improbable words. We filter out obscure words and topics for both the topic

intrusion and word intrusion tasks.
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4.3.3.7.2 Experimental Results

The tasks are placed on Amazon Mechanical Turk.11 For each task, a total of 75 questions are

generated, 25 each for LDA, Source-LDA, Rank-LDA, SawETM, VRTM, and VRTM+W2V. Each

task is assigned five workers. After the assignments are completed, we compare how well each

model did versus the null hypothesis. For the null hypothesis, we assume a random guess. For

the topic intrusive task, Rank-LDA and Source-LDA score a p-value of 0.0249 and 0.0742 with

mean values of 0.448, 0.416 respectively. These scores imply significance at the 90% confidence

level for both models. For the word intrusive task, we obtain p-values for both Rank-LDA and

Source-LDA as less than 0.001 with mean values of 0.416 and 0.348 respectively. While there is not

much interpretability gain over LDA for the topic intrusion task, there is a significant improvement

in the word intrusion task (mean value of 0.272 for LDA against 0.416 for Rank-LDA). The neural

topic models perform poorly on both tasks, more so than the Bayesian topic models. These findings

are consistent with recent studies on neural topic models and interpretability [DB21]. Each task’s

results are plotted as a box plot in Figure 4.19. Each dot represents an answer whose value is set to

the mean of that group. The groupings are based on the worker and topic for the word intrusion

task, and worker and document for the topic intrusion task. The dashed line represents the mean of

the null hypothesis.

4.3.4 Discussion

This work aims to remove a barrier to the widespread use of weakly-supervised topics models.

Given that we can now use any size knowledge source size as input that can be run using PageRank,

speed of execution is no longer an impediment. Existing weakly-supervised topic modelers may

find our approach to be beneficial as well to improve upon existing running times. Additionally,

we provide an alternative to counting in the inference stage, which yields better topic elimination

decisions. When used as an extension in the generative model itself (Rank-LDA), we provide

a topic model that improves the state-of-the art method (Source-LDA) for both perplexity and

interpretability. Put together, the techniques presented in this work yields improvements in three

11https://www.mturk.com/
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vital areas of topic modeling: (1) execution time, (2) perplexity, and (3) interpretability. We hope

that by demonstrating these improvements, weakly-supervised topic modeling becomes more widely

used.

The improvements of our method over existing weakly-supervised topic models is impactful,

however it is far from complete. One limitation is the input size of the weakly-supervised input.

Given the nature of PageRank, the input size is limited to the order of 105. While this greatly

increases the number of inputs that can be handled by our model, it is conceivable that an input

size may be larger than 105, and unable to be used with out model. Future work may consider a

non-parametric model to handle a theoretically infinite input size. Also, the ranking method we

provide here may be vastly improved as input into an ensemble technique which uses the baseline

methods together with other information retrieval techniques. The ensemble method approach is

left as an open research area. Another limitation is the inputs used in weakly-supervised topic

models. While generally less restrictive than supervised learning models, there is a limited amount

of weakly-supervised data available. In our study we utilize Wikipedia due to its completeness, but

outside of Wikipedia for the general domain there is not too many alternatives. This hurdle is an

interesting area of future research.

Although the addition of graph-based knowledge sources has been established as beneficial to

various text mining tasks, it has yet to be demonstrated for inputs used in weakly-supervised topic

modeling. Our approach represents a novel technique for representing a knowledge source article

as a graph and extracting meaningful information from that graph. We also provide a technique to

add additional contextual knowledge into topic modeling. Our work is the first topic model that

biases topic construction to both written word knowledge sources and graphical-based knowledge

sources. It also represents the state-of-the-art technique for weakly-supervised topic modeling

when given both graphical and text-based knowledge sources, in both perplexity and interpretability

measurements—and when the knowledge source input size is very large, our method is the only

feasible technique currently available.

This work introduces novel methods for representing knowledge sources as graphs and

ranking the nodes representing topics. These rankings can be applied to existing weakly-supervised

topic models. When used in the preprocessing stage, KnowledgeRank is helpful to eliminate
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unnecessary topics. Eliminating topics before inference helps speed up the topic modeling and

allows the topic model to focus on a more appropriate superset of source topics. This ranking can

be used during inference in place of existing elimination techniques based on counting or clustering.

When used alongside weakly-supervised models that use an article-based knowledge source, a

graph-based knowledge source improves the topic labeling. This also results is better perplexity and

improved interpretability.

4.4 The biased coin flip process

To further advance weakly supervised topic models we seek to eliminate some bounds of the process.

One such bound is the number of topics, which is unreasonable to assume to be known beforehand.

In order to make the topic models more dynamic and potentially more interpretable, we integrate

Bayesian non parametric theory into our probabilistic model. However, before we introduce our

technique of combining weakly supervised topic models with non parametric models, we seek to

improve on existing non parametric topic models.

Bayesian nonparametric learning is a form of Bayesian learning that involves model inference

without some traditionally used parameter(s). For example, in topic modeling, it is assumed that

the number of topics is given as input beforehand. If we would like to discover topics for a corpus

without knowing the number of topics a priori, an applicable model for topic discovery would be

a model which utilizes Bayesian nonparametric learning. In nonparametric topic modeling, often

some form of the Dirichlet process is used to infer topics. The Dirichlet process is not only useful

for topic modeling but also useful for many learning tasks where some set of input parameters are

unknown [DMG20, KRV20, SLN20, CJ88].

As discussed above, nonparametric learning is advantageous when some set inputs parameters

are unknown. One naive solution to finding the correct set of inputs is to use a brute-force method

to try every possible or probable input parameter. Then after the model is learned, some type of

scoring metric would need to be used to compare different runs. This however is, if not intractable,

then extremely inefficient. The Dirichlet process rectifies this by allowing for an infinite set of

possibilities—all while performing inference in a relative efficient time.
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The Dirichlet process can discover predictions using an infinite set of inputs by gradually

decreasing the probability a new input parameter is expanded. In the context of topic modeling,

this takes on the form of the number of topics. During inference, a new topic is created with a

decreasing probability. Though it is theoretically possible for an infinite number of topics, each

new topic decreases the chance of creating another topic so that the number of topics in practice

converge to a finite number.

The Dirichlet process is often expanded to include two Dirichlet processes, with one being

an input to the other in what is known as a hierarchal Dirichlet process (which is a different

concept altogether from hierarchal topic modeling [Ble03]). The hierarchal Dirichlet process is the

distribution used in the theoretical generative model for nonparametric topic modeling. This process

complicates the original non hierarchal process in it’s generative model and inference calculation.

In nonparametric topic modeling inference is done using approximation techniques [Hei11, Wal08]

or more esoteric techniques to sampling [TGG07, IJ03]. The approximation techniques are limited

to how well the approximation fits the underlying calculation—which can lead to the possibility of

less-than-optimal results. Additionally, the more esoteric sampling techniques require a greater cost

to understand the material.

Are the existing methods serving to impede adoption of nonparametric Bayesian topic

modeling? Indeed, it does appear that in topic modeling, parameter based Dirichlet methods are

more popular than Dirichlet process methods12. In this paper we seek to improve the inference

capability of existing nonparametric topic modeling leading to better predictive performance. By

changing a slight yet fundamental detail in how the process generates data, we can frame the

inference as a sub routine of the already adopted, well documented, and less complex latent

Dirichlet allocation inference [BNJ03]. To help understand the intuition behind the new inference

calculation it helps to interpret the Dirichlet process in a new light, in what we introduce as the

biased coin flip process.

12Based on Google Scholar index of research publications in 2019

222



4.4.1 Methods

We describe the biased coin flip process in the context of a bank deciding how to partition a set of

coins. To begin with, a teller at the bank sets aside an infinite number of bags labeled numerically

starting from 1. Each bag is also associated with a coin flip bias h, and a sample from a distribution

G0. Additionally, we assume there is a row of coins on a table and there exists a way to assign a

uniform bias to each coin on the table. The process begins at the first bag, B1. The bank teller takes

the bias associated with B1, h1 as the bias to make each coin on the table flip heads with probability

h1. Next, the teller takes the first coin on the table and flips it. If the coin lands on heads, the coin

is placed in bag 1 (B1). If the coin lands on tails the coin is placed back on the table, never to be

flipped again in this initial step. After the flip of the first coin, the teller moves to the next coin on

the table and repeats the process until all coins have been flipped. At this point we say the teller is

done with bag 1, then proceeds to take the bias out of bag 2 and sets all the coin’s (on the table)

biases to h2. The teller proceeds the same procedure with all coins left on the table. This process is

repeated until all coins are off the table. An algorithmic description of this would be as follows:

1: for i← 1 to∞ do

2: Choose φi ∼ G0

3: Choose hi ∼ Beta(1, γ)

4: Bi ← {}
5: end for

6: for i← 1 to∞ do

7: for all cj ∈ C do

8: Choose f ∼ Bernoulli(hi)

9: if f = 1 then

10: C ← C \ {cj}
11: Bi ← Bi ∪ {cj}
12: end if

13: end for

14: end for
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At first glance it may not appear as though the binary coin flip process is equivalent to n draws

from a Dirichlet process. We prove equivalence below:

B =
∞⋃
i=1

{φi} × Ci (4.55)

C∗i = C∗i−1 \ Ci (4.56)

Ci = {cj ∈ C∗i−1 | fi,j = 1} (4.57)

fi,j ∼ Bernoulli(hi) (4.58)

hi ∼ Beta(1, γ) (4.59)

φi ∼ G0 (4.60)

alternatively, we can write this as:

Gn =
∞∑
i=1

φi · Ci (4.61)

Ci = (
−→
1 −

i−1∑
j=1

Cj) · fi (4.62)

fi,j ∼ Bernoulli(hi) (4.63)

hi ∼ Beta(1, γ) (4.64)

φi ∼ G0 (4.65)

Where
−→
1 is a vector of all 1’s. Since Ci,j = 1 with probability hi ·

∏i−1
k=1 1− hk we can rewrite the

above as:

Gn =
∞∑
i=1

φi · fi (4.66)

fi,j ∼ Bernoulli(hi ·
i−1∏
k=1

1− hk) (4.67)

hi ∼ Beta(1, γ) (4.68)

φi ∼ G0 (4.69)
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And thus eachGn,j will be φi with probability hi ·
∏i−1

k=1 1−hk—this becomes a discrete distribution

over each φi, and can be reformulated as:

Gn,j =
∞∑
i=1

hi ·
i−1∏
k=1

(1− hk)δφi (4.70)

which has previously been established as equivalent to the Dirichlet process [Pai10].

The biased coin flip process is equivalent to the Dirichlet process in the same way that the

Chinese restaurant process, the stick-breaking process or the Pólya urn scheme is equivalent to the

Dirichlet process. It represents an alternative view. We maintain the benefit of this view is that it

guides the thought process of the Dirichlet process away from a single draw to a series of draws

(coins on a table). In this way it represents a departure from existing interpretations, such as the

stick-breaking process or the Chinese district process [PC09]. Another important difference is this

interpretation leads to a novel yet familiar inference calculation. To establish these points more

succinctly—the BCP is equivalent to the Dirichlet process, yet represents an alternate view. This

alternate view distinguishes itself from existing views and contributes in two important ways: (1)

the BCP view frames the process as a series of draws, as opposed to a single draw, and (2) this view

allows for inference to be done in a similar way to LDA.

So given an input of C = c1c2c3 . . . cn we are tasked to find the matrix z with zij ∈ {H,T}
and φ, which will take the form of:

p(z,φ|C, γ) =
p(z,φ,C|γ)

p(C|γ)
(4.71)

But this looks strikingly like existing Dirichlet process inference equations, and indeed in this form

the biased coin flip process is not of much use.

The major advantage of the bias coin flip process occurs when we are asked to find zt and

φt given Ct ⊆ C. From the biased coin flip analogy, this is equivalent to finding the assignments

of H and T for the coins left on the table for the tth bag—as well as the tth bag’s distribution φt.

If the underlying distribution of G0 is a Dirichlet distribution parameterized by β, the probability
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becomes:

p(zi,φi|Ci, γ, β) =
p(zi,φ,Ci|γ, β)

p(Ci|γ, β)
(4.72)

Which thought of in a different way is the exact same calculation as finding the topic assignments

of a single document with K = 2, γ = α = 1, w = Ct and V = 2. In fact a Gibbs sampler (for

Equation 4.72) would then be indistinguishable from Equation 4.12.

We now have all the components necessary to build the Gibbs sampler for the entire biased

coin flip process. If we assume one time step to be flipping all the coins on the table for a single bag,

then for each bag Bt, we calculate the probability of a coin belonging to bag Bt using Equation 4.12

multiplied by the probability the previous t − 1 flips were all tails. This allows for a recursive

multiplication of the previous probabilities that the current coin lands on tails. We can split the head

and previous tail probabilities for the ith coin at time t as:

P (zi=1|z-i,wt, pt−1) ∝ P (zi=1|z-i,wt) · pt−1 (4.73)

and cumulated tail probability as:

pt ∝ P (zi=0|z-i,wt) · pt−1 (4.74)

To account for an infinite amount of time steps we consider the bag that contains the very last coin

from the table (b′). At this point any remaining time step follows a monotone probability calculation

of:

P (zi=1|z-i,wt, pt−1,t) ∝
1

V
· 1

Kα
· pb′ · pt−1−b′

e (4.75)

and pe as:

pe ∝
1

V
· γ

Kα
(4.76)

To aggregate the mass for all bags t > b′ we can take the improper integral which equates to:

∫
P (zi=1|z-i,wt, pt−1,t)dt (4.77)
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This can be further simplified by normalizing the posterior conditionals when t > b′

P (zi=1|z-i,wt) =
P (zi=1|z-i,wt)∑
P (zi|z-i,wt)

=
1

1 + γ
(4.78)

and

P (zi=0|z-i,wt) = pe =
γ

1 + γ
(4.79)

with the total mass as: ∫
P (zi=1|z-i,wt, pt−1,t)dt =

-pb′ · pe
γ · ln(pe)

(4.80)

4.4.1.1 Hierarchical Biased Coin Flip Process

In the hierarchical biased coin flip process, we choose a biased coin flip process as the base

distribution. The “parent” process then will take a Dirichlet distribution as its base distribution.

We can extend our bank analogy by adding a central branch. The bank teller at the local branch

continues with setting aside an infinite number of bags. But instead of generating the distributions

for each bag, the teller must call the central branch to get the distribution. For each call to the

central branch, the bankers place a coin on its table. And before any of the local branches were

even created, the central branch had already generated an infinite number of bags, each with their

associated biases and draws from the base distribution G0.

In a topic modeling analogy each local branch represents a document, and each local branch

coin is a word. To the central branch each bag is a topic (φi), and each coin is a bag of words

corresponding to a particular topic assignment in a particular document (θij). To describe it formally:

1: C∗ ← {}
2: for i← 1 to∞ do

3: Choose φ∗i ∼ G0

4: Choose h∗i ∼ Beta(1, ζ)

5: B∗i ← {}
6: end for

7: for j ← 1 to D do

8: for k ← 1 to∞ do
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9: C∗ ← C∗ ∪ {cjk}
10: Choose hjk ∼ Beta(1, γ)

11: Bjk ← {}
12: end for

13: end for

14: for i← 1 to∞ do

15: for all cjk ∈ C∗ do

16: Choose f ∼ Bernoulli(h∗i )

17: if f = 1 then

18: C∗ ← C∗ \ {cjk}
19: B∗i ← B∗i ∪ {cjk}
20: φjk ← φ∗i

21: end if

22: end for

23: end for

24: for j ← 1 to D do

25: for k ← 1 to∞ do

26: for all cl ∈ Cj do

27: Choose f ∼ Bernoulli(hjk)

28: if f = 1 then

29: Cj ← Cj \ {cl}
30: Bjk ← Bjk ∪ {cl}
31: end if

32: end for

33: end for

34: end for

In the hierarchical biased coin flip process, the Gibbs sampler equations remain the same

except for the conditional posterior at the central branch level. This must consider the word bag
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instead of a single token. This reduces to:

P (zi=j|z-i,w) ∝
∏
wi∈B∗i

nwi
-B∗i ,j

+ β

n
(·)
-B∗i ,j

+ V β
·
ndi-i,j + αj

n
(di)
-i +Kα

(4.81)

To calculate the infinite mass sum, the only changes to Equation 4.80 are to pe

pe =
ζ

1 + ζb′
(4.82)

With ζ being the scaling parameter at the central branch level.

Description D K

CiteULike-180 Manually tagged scholarly papers 182 1,660

SemEval-2010 Scientific articles with manually assigned key phrases 244 3,107

NLM500 A collection of PubMed documents and MeSH terms 203 1,740

RE3D A set of labeled relationship and entity extraction documents 98 2,200

Reuters-21578 Manually labeled documents from the 1987 Reuters newswire 21,578 2,700

Wiki-20 20 Computer Science papers annotated from Wikipedia articles 20 564

FAO-30 Manually annotated documents from the Food and Agriculture
Organization of the UN.

30 650

Table 4.17: Datasets used in the evaluation of the biased coin flip process and a description of the
number of documents in the coporus (D) and topics (K) used in the corpus.

4.4.2 Evaluation

Having already proved the theoretical equivalence to the Dirichlet process, we seek to do the same

empirically. Since the biased coin flip process does not rely on approximations, it is entirely possible

that it can outperform existing methods. We show this is indeed the case in terms of predictive ability.

Next, we show the ability to accurately discover the correct number of topics given a generated

corpus. Finally, we show the general applicability of the BCP in a task aimed at discovering the

parameters used in a Gaussian mixture model (GMM). The datasets used in evaluation are described

by Table 4.17.
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4.4.2.1 Perplexity

We seek to compare the ability of the biased coin flip process to predict held out data against

the established methods of: the Infinite-LDA (INF) [Hei11], the Nonparametric Topic Model

(NTM) [Wal08] and the hierarchical Dirichlet process [TJB06].

4.4.2.1.1 Experimental Setup

For all models we set the hyperparameters for γ as 1, and β as 200/V , with V being the size of the

vocabulary. We then run each topic model for 1000 iterations. Each data set was cleaned to strip out

stop words, excess punctuation and frequent and infrequent terms. Additionally, since all baseline

models can update their respective hyperparameters during inference [TJB06, EW95], we add these

models to our baseline comparison. For the perplexity analysis we take roughly 80% of the corpus

for training and test on the remaining 20%.

4.4.2.1.2 Experimental Results

After the 1000 iterations had completed, we compare the ability for each model to predict the

held-out data. We calculate perplexity to be:

T
√∏

p(wi|Dt) (4.83)

With T the sum of all tokens in the test corpus, wi the word at token i in document Dt.

As we show in Table 4.18 and Table 4.19, out of all the models the BCP performs the best

by a substantial amount. We hypothesis this is due to a more direct inference calculation that

considers two sets of concentration parameters: one for the local and central branch. This surprising

result emphasizes the importance of the inference calculation when performing nonparametric topic

modeling. Additionally, we find that optimization does have much of an effect. In some datasets

predictive power is better, while in others it is worse.
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4.4.2.2 K-Finding

We propose a way to test the topic discovery capability of each model is to generate a document

using the hierarchical Dirichlet process’s generative model and recording the number of topics

generated (K). Then we compare the found number of topics for each model run on the generated

dataset.

4.4.2.2.1 Experimental Setup

For each dataset we take a histogram of the words as the Dirichlet hyperparameter input for a new

topic to be created. We set the corpus size to 1000 documents and take the average document size

as a sample from the Poisson distribution having a Poisson centering parameter of 100. With the

sampled number of words, we sample from the hierarchal Dirichlet process to get a topic distribution.

We then sample a word from the returned topic distribution. This process is continued for all 1000

documents. We repeat this corpus generation process for different values of γ and ζ , each ranging

from 0.1 to 4.0. Additionally, we consider a model to “timeout” if the number of discovered topics

exceeds 1000. At this point a heat map score of 0 is assigned to the run. We do this because at

extreme topic counts, the computation time becomes infeasible for the current implementation of

the models.

BCP Inf-LDA NTM HDP

CiteULike-180 2262 36742 71244 13873

SemEval-2010 6591 64963 54397 92635

NLM500 4306 54333 66652 20846

Re3d 134 312 323 1492

Reuters-21578 1591 1168 860 3160

Wiki-20 337 1645 2152 3406

FAO-30 314 4353 4143 5878

Table 4.18: Perplexity of the biased coin flip process (BCP) compared against baseline methods.
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BCP Inf-LDA-Opt NTM-Opt HDP-Opt

CiteULike-180 2262 40695 68435 81111

SemEval-2010 6591 43192 49309 92635

NLM500 4306 46870 69815 20846

Re3d 134 312 366 7834

Reuters-21578 1591 1890 900 3093

Wiki-20 337 2087 1844 20582

FAO-30 314 6391 6766 16578

Table 4.19: Perplexity of the biased coin flip process (BCP) compared against baseline methods
with optimized parameters.

4.4.2.2.2 Experimental Results

Along with the bias coin flip process and the two baseline models, we also run the two baseline

models with parameter updating. Each model is run with the scaling parameters equal to what

generated the corpus. We present the results as a heat map, shown by Figure 4.20. To calculate

the heat map values (M ), we define a metric of similarity that must account for up to an infinite

distance from the true value (K). We use the sigmoid function to map the negative K, positive

infinity range into the interval [0, 1]. However, we want to want to reward answers that are close to

the target value more so then answers that are extremely far. The sigmoid function is too sensitive

at values close to 1 and quickly jumps to the outer bounds at higher values. For this we take the

difference as a percentage of the target value. We formulate this as:

Ek̂ =
|K − k̂|
K

(4.84)

M = 2 ·
∣∣∣∣ -1 + exp(-Ek̂)
2 + 2 · exp(-Ek̂)

∣∣∣∣ (4.85)

This trivial example underscores some of the difficulties in using previous hierarchical

Dirichlet processes. We would expect each model to discover the K topics within a reasonable error.

However, as we can see from the heat map, only BCP reliably does. Inf-LDA has the tendency to

increasingly add topics, making the error from the target larger as the number of iterations increase.
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Figure 4.20: Heat map showing the error in finding K topics.

Likewise, this increasing topic effect happens with the Nonparametric Topic Model outside of the

diagonal—though not to the same effect as Inf-LDA. Much like the perplexity results, it is the

author’s intuition that a more direct inference calculation is leading to superior results. It may also

be to the act of including both scaling parameters—as the biased coin flip process uses the same

amount as the stick-breaking process—which was how the corpora were generated. It does appear

that for NTM, when scaling parameters were the same the results improve. However, for Inf-LDA

this is not the case. Additionally, the parameter updates should rectify this deficiency but fail to do

so.

4.4.2.3 Gaussian Mixture Models

To test the BCP on non topic modeling tasks we seek to find accurate predictive densities of real-

world data sets. These datasets are assumed to be generated from a mixture of Gaussian distributions.

The three datasets used in analysis are Faithful [AB90], Stamp [IS88], and Galaxies [PHG86]. For

each dataset we follow established techniques [IJ02, McA06] of using our nonparametric model

to estimate a Gaussian mixture density. We assume a fixed variance and take 30 samples of the

mixture density at various iterations after an initial 1,000 iterations. The densities of the samples

from the BCP are plotted against their respective kernel density estimates in Figure 4.21. As we

can see from Figure 4.21, the densities from our model closely resembles that of the density from
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kernel density estimation. This similarity suggests our model to be useful in tasks outside of topic

modeling such as estimating Gaussian mixture models.

4.4.3 Discussion

This work introduces a novel way to think about Dirichlet and hierarchical Dirichlet processes.

Thinking about the process as a series of coin flips, where each round we partition the coins into bags

and what’s left on a table, we can see the similarity to an established method for inference—latent

Dirichlet allocation. Because this method is based on topic modeling inference, it may lead to better

results in the context of discovering topics.

(a) (b) (c)

Figure 4.21: 30 density estimates taken from the BCP shown in gray plotted against a kernel density
estimation for the Faithful (a), Galaxies (b) and Stamp (c) datasets.

The downside of the technique presented in this paper is the increase in execution time. Since

we are performing two sets of Gibbs sampling, one at the local branch level and one at the central

branch level, we ultimately need more computations than baseline methods. It is left as an open

research area to find improvements. Although not implemented for the biased coin flip process, it

may be possible to apply a concurrent processing approach [WTW17, WBS09, NAS07, PNI08],

such as that given in Section 4.1.3.4, on the different branch levels. Additionally, an interesting area

to investigate would be optimization of the two scaling parameters. This would then allow for the

model to be completely parameter free.

We maintain that the downsides of our approach are outweighed by the upsides. The reliance

on previous established parametric topic modeling inference calculations leads to a theoretical

advantage to existing techniques. And as we show empirically, the biased coin flip process does

seem to yield better results. In both prediction of held out data and finding the appropriate number

of topics, our model improves upon existing methods.
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4.5 The intepretable topic model

The previous sections have all established a context that leads us to the development of a self-

contained highly interpretetable topic model with topic labels. This newly developed model resolves

all of the shortcomings in previously discussed weakly supervised topic models. Additionally, we

eliminate the need to supply a knowledge source as input and specify the number of topics. From

an input of just a set of hyperparameters and a corpus, we present a technique to discover highly

interpretable topics and topic labels in an efficient manner.

As we have previously shown, topic modeling is an effective way to analyze unstructured

textual data. Even with the emergence of the neural topic model, the most prominent technique

(based off citation count) for topic discovery is based off a Bayesian graphical model that utilizes

the Dirichlet distribution for the inference of topics [BNJ03]. The basic assumption of these models

consist of a generative model for the input text. Words are generated by first sampling a topic

assignment from a document-level topic distribution. Then for the topic assignment a word is

generated from the corresponding topic-level word distribution. This process is completed over the

entire length of the corpus. Inference then is done using some Bayesian inference techniques such

as Gibbs sampling [GS04, Gri02].

The topics themselves consist of word assignments from the corpus to the topic. The word

assignments are then clustered together to form a topic. The topics become just a list of word

assignments, i.e., there is no single n-gram that describes the topic. A word list represents a

divergence from how a layman might think of what a topic is— which could be: the subject of a

discourse or of a section of a discourse [Top21]. This divergence is at the center of interpretability.

Interpretable topics bridge this gap by providing the cluster of words with a single label that serves

to best explain the topic (i.e., all words are semantically connected to a notational label). For

example, if the top 3 words for a topic are: pitcher, batter, and outfielder an interpretable topic for

this topic could be baseball—which could easily match what a layman would say the topic is given

the top words. It is important to note that interpretability is more focused on forming a cluster of

semantically connected words, than about topic labeling (however this is a tangential concept).
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However, it has long been established that existing topic models fail in trivial aspects of

interpretability [CBG09]. Even though the traditional topic modeling methods do not provide a

label comprising their most popular word assignments, one would assume there to be be a semantic

coherence. But this is not always the case [CBG09]. As we demonstrate in Case Study 4.0.0.1, a

major reason for this is that the models tend to assign words to the same cluster (topic) that occur

together rather than being semantically connected. For our baseball example, this may lead to a

topic discovered that contains the words: carrots, batter, and galaxy. For this example, it is hard

to place a single n-gram over the topic. From an intuitive perspective this is not unexpected given

the nature of the generative model. No condition is placed upon the words to assure semantic

relatedness.

Non-parametric topic models do not serve to resolve the deficiencies of interpretability. They

do however allow for topic models to be defined over an infinite parameter size. Additionally,

they do not require certain parameters to be known a priori. In non-parametric topic modeling the

parameter that is left out is often the number of topics. This is advantageous since it somewhat

unreasonable to assume the known number of topics a generative model used to create a corpus.

Often, traditionally used numbers are used (100 [BNJ03, RGS04]) by default without much analysis

of different topic numbers. And to evaluate models learned with differing number of topics, with

a log-likelihood comparison for example, is too time consuming and thus different topic number

consideration is often discarded.

The technique to non-parametric topic analysis is usually based off the Dirichlet process

which bears a resemblance to the Dirichlet distribution. The Dirichlet process specifies a technique

to generate a distribution that relies on an infinite number of steps. The main components consist of

an underlying distribution and a partition of the infinite probability space to returning a sample from

the underlying distribution. Each partition is assigned a sample from the underlying distribution

and subsequent samples to the Dirichlet process contain a technique to search existing partitions

to return their assigned sample, or create a new partition with a new sample from the underlying

distribution. Most often the underlying distribution is a Dirichlet distribution.

Non-parametric topic modeling consists of a “child” Dirichlet process where the underlying

distribution is a “parent” Dirichlet process. The “parent” Dirichlet process then uses a Dirichlet
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distribution as its underlying distribution. This arrangement of “child” and “parent” Dirichlet

processes is sometimes called a hierarchical Dirichlet process (not to be confused with hierarchical

topic modeling [Ble03]). Existing methods have been shown to be effective in discovering topics

sans the number of topics as input. However, non-parametric topic models are not as widely adopted

as parametric-based topic models13.

The connection between non-parametric topic modeling and interpretability lies with weakly-

supervised topic modeling. Weakly-supervised topic models concern themselves with assigning

labels to topics. By consequence of their method, they also shape the discovered topics to their

weakly-supervised topic. Weakly-supervised topic models differ from previous approaches that

seek to assign a topic label after inference [LGN11, MSZ07, MMZ12, SXW15, MCN13, HHK13,

Pec10]. After inference assignment can lead to somewhat uninterpretable topics as the word

assignment cluster representing the topic tend to combine semantically different words. Another

approach is to utilize supervised topic labels as input. However, the requirement of an accurate

labeled input can be expensive or time consuming to obtain. A fusion of these two approaches

are advanced by weakly-supervised input—which allows for an easier to obtain labeled input set

and can help form the topics to the labeled input set. A common weakly-supervised input set

involves a knowledge source which is a collection of articles that are previously labeled. These

articles are then turned into distributions. The distributions are referred to as knowledge source

topics. The components of weakly-supervised topic models are explained by Case Study 4.3.0.1,

and supplemented by the following case study:

Wikipedia knowledge source

If we crawl the textual content of the Wikipedia page for “Cancer” [Wik21], then the beginning of

the page content will start with:

Cancer is a group of diseases...

Taking the above text fragment to be the full article for “Cancer”, we can create a knowledge

source topic by taking a histogram of the document and dividing by the total. For our example

the knowledge source topic would be the vector: [1
6
,1
6
,1
6
,1
6
,1
6
,1
6
] with a word vector mapping of:

13Based on Google Scholar index of research publications in 2019
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[Cancer,is,a,group,of,diseases]. If we continue this same procedure for a set of known illnesses

(perhaps from a list of medical subject headings [MeSH] terms), then the collection of knowledge

source topics comprises the knowledge source. The knowledge source is then used as the weakly-

supervised input set of the topic model. Some of the knowledge source topics will be used and some

will ultimately be discarded. By starting with an easy to obtain set of all possible topics, such as

MeSH terms, we can label topics for many different medical corpora that only need to be about a

subset of the entire MeSH terms (topics) used in the knowledge source.

In Section 4.3.3.6, we demonstrate that in some cases weakly-supervised topic models lead to

better predictive power. This result implies that we may not sacrifice much predictive power when

adopting a weakly-supervised approach. Additionally, there is a foundation for interpretability. If we

can establish that topics, drawn directly from a confirmed knowledge source are highly interpretable,

then it follows that topics discovered by a topic model that are biased by the interpretable knowledge

source topics would be interpretable as well.

One drawback of weakly-supervised topic models is knowing how many knowledge source-

topics to discover. From Section 4.1.3.3, we can see that the models are not well defined in this

matter, resorting to some heuristic for topic elimination during inference. For example, using Gibbs

sampling, at the start of inference every possible knowledge source topic is considered. Then as

iterations increase, knowledge source topics are eliminated based on a rank of word assignments.

This is repeated until the total number of topics reach the specified input parameter K. Ideally, this

would have a stronger theoretical foundation and not rely on such heuristics as topic assignment

counts. Additionally, the model is such that as the number of knowledge source topics increase, so

does the computation time. As is shown in Section 4.1.4.5, at a knowledge source input size of just

1,000, the running time is infeasible.

Hence the context for combining weakly-supervised topic models with non-parametric topic

models. If non-parametric models can be defined to reasonably execute for an infinite number of

topics, 1,000 topics should be easily attainable. Additionally, we can remove the need to specify the

number of known topics beforehand, resulting in a more dynamic topic model. We further extend

this combination by removing the requirement to specify the knowledge source a priori.
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Upon fusing these two domains together we notice another discovery, that we create a topic

model for interpretability. In our method of combining the two models we introduce a parameter that

specifies the likelihood a knowledge source biased topic is chosen over a regular topic model biased

topic. This parameter acts as a way to increase or decrease the knowledge source topics influence

as a percentage. Since knowledge source topics tend to be very interpretable, the parameter then

becomes a way to increase or decrease interpretability, by a pre-specified amount. By combining

weakly-supervised topic models and non-parametric topic models we now have a way to specify the

desired level of interpretability.

4.5.1 Methods

To introduce our technique of combining non-parametric and weakly-supervised topic modeling,

we begin with the generative model for the hierarchical Dirichlet process, then append weakly-

supervised topic modeling constraints. We then explore various improvements to the challenges our

approach entails.

4.5.1.1 Non-parametric weakly-supervised model

Starting with the generative model of a hierarchical Dirichlet process-based topic model of:

θd =
∞∑
i=1

qd,i ·
i−1∏
`=1

(1− qd,`)δφd,i (4.86)

qd,i ∼ Beta(1, γ) (4.87)

φd,i ∼ P (4.88)

P =
∞∑
i=1

ri ·
i−1∏
`=1

(1− r`)δφi (4.89)

ri ∼ Beta(1, ζ) (4.90)

φi ∼ Dir(α) (4.91)
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We see that we can easily inject weakly-supervised topic model information into the base distribution

φi. We can simply place a mixture over the alpha-Dirichlet distribution and each labeled topic

distribution. If we define B to be the number of all labeled topics, this transforms φi to:

φi ∼M (4.92)

M = (1− ξ) · δA +
ξ

B
·

B∑
i=1

δΩi
(4.93)

A ∼ Dir(α) (4.94)

Ωi ∼ Dir(ωi) (4.95)

This newly formulated base distribution allows us to construct the entire generative model. In

algorithmic form this would be:

1: for b← 1 to B do

2: Choose λb ∼ N (µ, σ)

3: ωb ← [(Xb,1)g(λb), (Xb,2)g(λb), . . . , (Xb,V )g(λb)]

4: end for

5: for i← 1 to∞ do

6: Choose f ∼ Bernoulli(ξ)

7: if f = 1 then

8: Choose u ∼ Uniform(B)

9: Choose φi ∼ Dir(ωu)

10: else

11: Choose φi ∼ Dir(β)

12: end if

13: end for

14: for d← 1 to D do

15: for j ← 1 to∞ do

16: Choose r ∼ Beta(ζ)

17: Choose i← 0

240



18: Choose f ∼ Bernoulli(r)

19: while f = 0 do

20: Choose r ∼ Beta(ζ)

21: Choose i← i+ 1

22: Choose f ∼ Bernoulli(r)

23: end while

24: qj ← i

25: end for

26: Choose Nd ∼ Poisson(D∗)

27: for t← 1 to Nd do

28: Choose q ∼ Beta(γ)

29: Choose i← 0

30: Choose f ∼ Bernoulli(q)

31: while f = 0 do

32: Choose q ∼ Beta(γ)

33: Choose i← i+ 1

34: Choose f ∼ Bernoulli(q)

35: end while

36: Choose wd,t ∼ Multinomial(φqi)

37: end for

38: end for

With the generative model established we are now able to build a Gibbs sampler for inference.

Following established methods, we seek to find the appropriate topic assignment for each token. In

our model this takes the form:

P (z = i|β,ω,−→w ,ξ) (4.96)

Each topic assignment is dependent on the assignment of a local stick break (q̂), and a mapping of

that stick break to the parent stick break (r̂). We formalize this as:

P (z = i|β,ω,−→w ,ξ) = P (Mr̂|β,ω,−→w ,ξ,r̂) ·
∑

P (q̂ = r̂|β,ω,−→w ,ξ,Mr̂) (4.97)
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Figure 4.22: A visual representation of a hierarchical Dirichlet process topic model partitioning
words into stick breaks.

However, with the change in the underlying distribution this will need to be factored into the

posterior distribution and then marginalized out. Letting õ be a shorthand for the observables:

β,ω,−→w ,ξ,r̂, our posterior calculation becomes:

P (Mr̂|õ) = (1-ξ) · P (Mr̂ = Dir(α)|õ) +
ξ

B
·

B∑
j=1

P (Mr̂ = Dir(ωj)|õ) (4.98)

The addition of the new underlying distribution does complicate things, but we can reuse existing

inference calculations for
∑
P (q̂ = r̂|β,ω,−→w ,ξ,Mr̂) since this is the basis that every hierarchical

Dirichlet process based topic model must calculate. Here we will borrow the calculation from

“Infinite LDA” [Hei11] which reduces our calculation to:

∑
P (q̂ = r̂|β,ω,−→w ,ξ,Mr̂) ∝ p(−→z i=j|−→z -i) · p(−→z i=j|−→z -i,

−→w ,x,y,Mr̂) (4.99)

p(−→z i=j|−→z -i,
−→w ,x,y,Mr̂) ∝


Equation 2.21 if Mr̂ = Dir(α)

Equation 2.24 otherwise
(4.100)

p(−→z i=j|−→z -i) ∝ ndi-i,j + γ · τz (4.101)

τ represents a sample from the Antoniak distribution, for further details we refer to the “Infinite

LDA” publication [Hei11]. We now only need to marginalize out all the possibilities for P (Mr̂|õ).
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With this probability being:

P (Mr̂ = m|õ) ∝
∏

p(−→z i=j|−→z -i,
−→w ,x,y,m) (4.102)

This last probability approximation may seem like a bit of a stretch to the uninitiated. To help

the reader understand, we give a simple example and reasoning of the stated probability calculation.

4.5.1.1.1 Bank corpus

We follow a simple and established example involving a corpus containing bank-financial and

bank-river terms [SG07]. The corpus involves three documents:

1. money1 bank1 loan1 bank1 money1 money1 bank1 loan1.

2. money1 bank1 bank2 river2 loan1 stream2 bank1 money1

3. river2 bank2 stream2 bank2 river2 river2 stream2 bank2

In our model, perhaps the generative model would partition the words according to Figure 4.22.

How would we determine the appropriate P (Mr̂|õ)? One can see that this reduces to finding the

appropriate topic to a newly introduced problem: the single topic-document model. The single

topic-document model is the exact same as a vanilla latent Dirichlet allocation model with the

restriction that each document is assigned only a single topic. The single topic is drawn with a

likelihood given by the ξ-discrete distribution in P (Mr̂|õ). In more detail:

1. Choose φ1 ∼ Dir(β)

2. for t← 1 to B do

3. Choose λt ∼ N (µ, σ)

4. ωt ← [(Xt,1)g(λt), (Xt,2)g(λt), . . . , (Xt,V )g(λt)]

5. Choose φt+1 ∼ Dir(ωt)

6. end for

7. for d← 1 to D do

8. Choose zd ∼ Multinomial([1− ξ] · δ1 + ξ
B
·∑B

i=1 δi+1)

9. Choose Nd ∼ Poisson(D∗)
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10. for n← 1 to Nd do

11. Choose wn,d ∼ Multinomial(φzd)

12. end for

13. end for

The single topic-document model is uninteresting in itself but one can see the parallel between

discovering the probability that a document is assigned topic zd and determining P (Mr̂|õ). They are

reformulations of the same problem. Setting p(−→z i=j|−→z -i) from the single topic-document model

to the ξ-discrete distribution, we arrive at Equation 4.102.

We now have the basis for non-parametric weakly-supervised topic modeling. We see that we

can take an existing non-parametric model and marginalize the underlying distribution representing

the weakly-supervised topics. The interesting observation to note is the parameter ξ becomes the

likelihood that a weakly-supervised topic is chosen versus a “regular” topic is chosen. If we take a

weakly-supervised model to be an interpretable topic (which we will show in the evaluation section)

then ξ becomes a parameter specifying the level of interpretability.

4.5.1.2 Knowledge source topic approximation

Discovering topics using a large knowledge source can lead to a severe degradation of execution time.

The addition of the weakly-supervised topic model constraints onto the non-parametric Bayesian

model imposes aO(B×Nd×D) increase in execution time. One technique to minimize the impact

of this time increase is to sample P (Mr̂|õ) at different timesteps than P (−→z i=j|−→z -i,
−→w ,x,y,Mr̂)—

such as assigning the appropriate P (Mr̂|õ) at the document timestep as opposed to the token

timestep. Another approach we take is to order the most likely knowledge source topics and take

only the top s ordered topics. We can then approximate the sum of the remaining B − s topics

using an approximation function. If we assume a good ordering, and that each lower ordered

function decreases the probability value by a constant, ρ, in the range (0,1), then we can calculate

the remaining probability as:

P∗j = P (Mr̂ = Dir(ωj)|õ) (4.103)
B∑
i=s

P∗i = P∗s−1 ·
∫
ρbdb ≈ -

P∗s−1

ln ρ
(4.104)
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By sampling from this remaining probability chunk we can find the appropriate ordered item.

To order the topics, we examine what makes a good match for a topic. Since we are comparing

the bag of words at the parent stick break level, we can use Equation 4.102 to see that words which

are assigned to a stick interval a high number of times will tend to match up with a topic that has

the same words assigned a high number of times. We can partition each knowledge source topic

by each of its top words. Then when we need to get an ordering, we can sort the stick bucket by

the top words and search for knowledge source topics that match the bucket’s top words. After we

acquire a sufficiently sized superset (∼10 times s) we can order the knowledge source topics using

Equation 4.102.

4.5.1.3 Knowledge source discovery

In corpora where a knowledge source is easy to obtain, then we can just use a constructed knowledge

source. For example with the Reuters-21578 corpus [reu], we can take the topic label and construct

the knowledge source by querying Wikipedia and following the procedure given in Section 4.5.

However, many corpora may not have such a simple method to construct the knowledge source.

Our solution involves obtaining the entirety of Wikipedia as a superset of knowledge source

topics. We filter out unpopular Wikipedia articles (measured by page views). Because a good

match for a knowledge source topic is dominated by token assignments to that topic, it would make

sense that words in the corpus that show up in a knowledge source topic many times would be a

good fit. We can take simple heuristics for search, such as word count (vote). Word count however

can be thrown off by knowledge source topics that contain a lot of words. To account for this we

can take word count divided by the total amount of words, or use the established method of term

frequency-inverse document frequency (tf-idf) and cosine similarity.

We propose another and novel solution based off existing ranking algorithms [PBM99].

For our knowledge source articles we can model the articles into a graph and then run a ranking

algorithm. We take the approach of creating a topic node which is connected to each word in

its corresponding source article. This intuition leads us directly to KnowledgeRank, discussed in

Section 4.3.
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Using the same approach as what was introduced in KnowledgeRank, we use the graph

representation and ranking to obtain a subset of knowledge source topics we think would be useful

to our model. Additionally, we can use this method in conjunction with other baselines, such as

voting.

4.5.1.4 Parameter updating

Due to the Bayesian nature of our model, it may be the case that the ξ guarantee is not met.

Ultimately, it will be the data that decides the number of interpretable topics to choose, and ξ will

act more as a guide. To enforce a ξ ratio of interpretable topics, we provide techniques for parameter

updating.

A simple approach is to use the previous observations of the knowledge source/unlabeled

topic ratio to update ξ. If we suppose a linear relationship to the number of topics and ξ, then we

can model the expected number of topics given ξ as:

E = B1 · ξ̂ + B0 (4.105)

The parameters B1 and B0 can be updated using linear regression, and ξ̂ can be determined by

setting E to the total number of topics multiplied by the original value of ξ.

4.5.2 Evaluation

To evaluate the effectiveness of our methodology we set up various experiments. In the first

experiment, we test the interpretability of our proposed topic model combination. Next, we show the

Description Documents Topics
CiteULike-180 Manually tagged scholarly papers 182 1,660
SemEval-2010 Scientific articles with manually assigned key phrases 244 3,107
NLM500 A collection of PubMed documents and MeSH terms 203 1,740

Reuters-21578
Manually labeled documents from the 1987 Reuters
newswire 21,578 2,700

Wiki-20
20 Computer Science papers annotated from Wikipedia
articles 20 564

FAO-30 Manually annotated documents from the FAO of the UN. 30 650

Table 4.20: Datasets used for evaluation.
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Figure 4.23: Word detection results for all models and datasets with the provided constructed
knowledge source (a) and the discovered knowledge source (b). The topic detection task is shown
in (d) and (e) for the provided and discovered knowledge sources respectively. The expected
distributions for our method at ξ = 1 show significance against the null hypothesis distribution for
both word detection (c) and topic detection tasks (f).

relationship to perplexity, and lastly we evaluate a technique to discover knowledge source topics for

a corpus. For all experiments we use the datasets given in Table 4.20. The baseline methods used for

our combination method are: Infinite-LDA (Inf-LDA) [Hei11], Hierarchical LDA (hLDA) [Ble03],

and the Non-parametric Topic Model (NTM) [Wal08]. For the weakly-supervised portion we adopt

the Source-LDA model. For other experiments, we add an additional set of baseline models for

comparison with more details given in their respective experiment setups. The weakly-supervised

input was taken from the pre-established knowledge source obtained as described by Section 4.5

(Semi-supervised/SS), and a discovered knowledge source described in Section 4.5.1.3 (Rank).

4.5.2.1 Interpretability effect of ξ

We seek to determine how the ξ parameter used in the combination of non-parametric Bayesian and

weakly-supervised topic models affects interpretability using human-aided evaluation.

4.5.2.1.1 Experimental Setup

For each baseline model against each dataset, we run the model with the default scaling parameter α

as 1 and β as 200/V (V being the size of the vocabulary) for 1,000 iterations. After inference was
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Figure 4.24: Perplexity as a function of ξ for the our interpretability method constructed with various
baseline models together with the provided knowledge source (a) and the discovered knowledge
source (b). The perplexity interpretability relationship is shown as an inverse association (c).

complete, we are able to calculate the document to topic mixture (θ) and topic to word mixture (φ)

using the end result of the topic assignments. With the θ and φ mixtures, we can easily determine

the most and least popular word for a given topic, and the most and least popular topic for a given

document. We then repeat the same process for all models with weakly-supervised topic modeling

appended as described by Section 4.5.1.1. We run the baseline models outside of our interpretability

model (ξ = 0) against the ξ values of 0.5 and 1. After all runs were completed, we can construct a

word intrusion and topic intrusion task to be given for evaluation [CBG09]. Word intrusion involves

giving a person 6 words, 5 being from the most popular words in a topic and 1 being among the

least popular—the least popular word is referred to as the intrusive word—and asking them to

identify the intrusive word. For our evaluation we filter out topics that have 3 or more words that

are not in common usage (as determined by showing up in a dictionary word list) or are numeric.

Additionally, we restrict intrusive words to the same criteria. We do this because topics which

contain all numbers or obscure words may be hard for non-domain experts to understand and so

an evaluation with a high percentage of these words might not be meaningful. Topic intrusion is

similar to word intrusion only applied to topics. Each user is given a block of text (100 words) that

begin a document and are then given 4 topics—3 topics being the most popular in the document

and 1 being among the least popular—and asking them to identify the intrusive topic. We utilize

Amazon Mechanical Turk as the platform to obtain human evaluation. Each question was given to 3

different Amazon Mechanical Turk users. For subsequent questions, the users were redrawn from

the Amazon Mechanical Turk pool of users which reduces the probability that any one single user

answered multiple questions.
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4.5.2.1.2 Experimental Results

After the users submitted their answers to all questions for the word and topic intrusion task, we

evaluated their effectiveness. Each submitted answer was assigned the value of accuracy for its

group and plotted in Figure 4.23. The groupings were based on ξ, dataset, and model. We can

clearly see the trend between ξ and interpretability for both the topic and word intrusion tasks.

In both, ξ is positively associated with interpretability. We show the regression line in each task

box plot. Each regression line shows a significance above 0.1. As expected, we see an increase in

detection of intrusive words when using the predefined knowledge source versus the discovered

knowledge source. However, this is not the case for the intrusive topic. We suppose the topic

discrepancies may be due to randomness and does not represent a significant difference. Still, this

may represent an interesting point to examine. While the pre-defined knowledge sources are human

curated topic labels suggested by reading each document, the discovered ones are more numerical.

Numerical in the sense that the only criteria for selecting them are using established methods for

information retrieval. It then makes sense that for certain tasks the discovered knowledge source

performs better.

Additionally, we calculate whether the models with ξ = 1 represent a significant increase

in interpretability. The expected distributions, plotted in Figure 4.23(c) and Figure 4.23(f), show

significance above 0.1.

4.5.2.2 Perplexity

After establishing the association between ξ and interpretability, we seek to do the same for

perplexity. We then aim to link ξ, interpretability and perplexity.

4.5.2.2.1 Experimental Setup

With a total of 3 models, 6 datasets, and 2 sets of knowledge sources (described in Table 4.20 and

Section 4.5.2) we vary ξ from 0 (no weakly-supervised input added) to 1. All models had the same

scaling parameter of 1, β as 200/V and were run for 1,000 iterations. The discovered knowledge

source contained 10,000 knowledge source topics and was obtained as described in Section 4.5.1.3.
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We also describe knowledge source discovery in more detail in Experiment 4.5.2.3. Before running

the topic models on the data, we cleaned the corpora by removing the top 5% of the most and least

popular words. For perplexity we split the documents at an approximate split of 80/20.

4.5.2.2.2 Experimental Results

After inference was completed, we calculate the perplexity of the held out data using Equation 4.83.

The perplexity is shown as function of ξ in Figure 4.24(a) and Figure 4.24(b). For most models

there is a negative association between ξ and perplexity. In other words, we lose predictive power

as ξ increases. This is also in line with previous studies [CBG09]. Some models seem to be less

affected than others. For example, using NTM with the pre-established knowledge source does

not seem to increase the perplexity much. This leads to the interesting possibility of a model that

increases interpretability without affecting perplexity. Furthermore, NTM outputs the best perplexity

among the models. However, in the aggregate this is not the case. If we take the regression line

against all models, we see a negative association. We plot this negative association alongside the

interpretability scores reached in Experiment 4.5.2.1 in Figure 4.24(c). We use the metric PP as a

function that is just the regression line of the perplexity values with an inverse slope. We can see a

general trade-off between interpretability (Int) and perplexity (PP). To gain more interpretability we

have to sacrifice perplexity and vice-versa.

4.5.2.3 Knowledge source discovery

In this experiment we test various strategies of discovering a knowledge source for a corpus. We

also detail the technique used to construct the knowledge sources utilized in Experiment 4.5.2.1 and

Experiment 4.5.2.2.

4.5.2.3.1 Experimental Setup

Starting with the entire Wikipedia dataset from 2013, we take only articles with more than 20 daily

page views [Lat21]. This resulted in a collection of 463,819 knowledge source articles. We then

proceed to turn these into knowledge source topics as described in Section 4.5. From this 463,819

knowledge source set, we proceed to determine the best 50,000 most likely knowledge source topics

250



for our corpus. We experiment with various methods. The simplest, referred to as voting, entails

ranking the knowledge source topic by the number of words showing up in the corpus. We also

consider multiplying (Multiply) the count of the word in the corpus by the count of word in the

knowledge source, as well as the addition of those two (Add). Other techniques such as ranking

and term frequency inverse document frequency (tf-idf) hit memory and execution walls and were

not considered in isolation. However, from the 50,000 knowledge source topic set we were able

to compare ranking and tf-idf techniques. From this 50,000 knowledge source topic set we then

compare how well each algorithm does against what we know to be topics contained in the human

curated knowledge source. For each technique we choose the best 10,000 topics and compare how

many in the 50,000 topic set were discovered.

4.5.2.3.2 Experimental Results

From the results given in Figure 4.25, we see that tf-idf from the 50,000 vote set performs the best

out of any two models combined. Also considered, but not shown here were basic models that

attempted to discount the size of the knowledge source topic (such as dividing by the length of

knowledge source). This is an intuitive approach since a knowledge source topic that contains a

lot of words will naturally have a higher amount of words showing up in the corpus. We discover

however that these results were not particularly good, so we omit them. We do however find a

remarkably interesting discovery in this regard. While simple averages do not yield good results,

ranking does quite well. We submit that there is an effective way to discount large knowledge

source topics—but simple length division will not work. Ranking, on the other hand, seems to do a

better job at discounting large knowledge source topics. This intuition is supported by the results as
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Figure 4.25: Sensitivity in finding knowledge source topics belonging to a corpus.
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demonstrated by Figure 4.25. Quite surprisingly, there seem to be a subset of topics used in the

corpus that ranking scores high while voting scores them in the middle. We propose a fascinating

reason for this: large knowledge source topics need to be discounted for having lots of words but

length divisions and tf-idf based scoring do not do as well as ranking. Ranking is able to associate

“bad” knowledge source topics with other “bad” knowledge source topics by way of edges connected

in a graph. Large knowledge source topics will tend to be connected more frequently to other large

knowledge source topics so they serve to discount each other. This tendency works in opposition to

voting or tf-idf, which tend to detect top scoring knowledge source topics as the most likely to be

used in a corpus. So these two forces work in opposition placing the most likely topics to be in a

corpus right at the middle. When we combine tf-idf, voting and raking we obtain the best results by

far. This combination yields a significant result over the next best method (voting+tf-idf) at the 0.1

level.

4.5.2.4 Interpretability

To evaluate the effectiveness of our methodology we set up two human evaluated tasks to measure in-

terpretability. For all experiments we use the datasets given in Table 4.20. The baseline methods used

are: Infinite-LDA (InfTM) [Hei11], Hierarchical LDA (hLDA) [Ble03], the Nonparametric Topic

Model (NTM) [Wal08], the Sawtooth Factorial Topic Embeddings Guided Gamma Belief Network

(SawETM) [Dua21], the Nonparametric Tree-Structured Neural Topic Model (nTSNTM) [Che21a],

and the Variationally-Learned Recurrent Neural Topic Model (VRTM) [Rez20]. VRTM was also

defined to utilize outside information in the form of word embeddings [MSC13] and is evaluated

as a separate model (VRTM+W2V). All baseline methods were parametrized according to their

experiment descriptions in their respective papers. For the Interpretable Topic Model (IntTM)

we use [Wal08] for Equation 4.101 and Equation 4.12 and Equation 4.16 for Equation 2.24 with

their respective default parameters. To maximize interpretability we set ξ = 1 for IntTM. For

weakly-supervised input we take the discovered knowledge source described in Section 4.5.1.3.
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Word Intrusion Topic Intrusion

N µ1 MD p-value N µ1 MD p-value

hLDA 600 0.15± 0.03 −0.02± 0.04 0.830 500 0.27± 0.04 0.02± 0.05 0.236
InfTM 600 0.15± 0.03 −0.01± 0.04 0.736 600 0.27± 0.04 0.02± 0.05 0.215
IntTM 600 0.31 ± 0.04 0.14 ± 0.05 2.2e-09 600 0.36 ± 0.04 0.11 ± 0.05 1.3e-05
NonTM 600 0.12± 0.03 −0.04± 0.04 0.987 600 0.26± 0.03 0.01± 0.05 0.421
nTSNTM 600 0.15± 0.03 −0.01± 0.04 0.709 500 0.28± 0.04 0.03± 0.05 0.175
SawETM 600 0.15± 0.03 −0.02± 0.04 0.808 600 0.28± 0.04 0.03± 0.05 0.107
VRTM 600 0.11± 0.03 −0.05± 0.04 0.996 600 0.28± 0.04 0.03± 0.05 0.163
VRTM+W2V 600 0.12± 0.03 −0.04± 0.04 0.984 600 0.24± 0.03 −0.01± 0.05 0.656

Table 4.21: The p-value, mean (µ1), mean difference (MD) and associated 95% confidence intervals
for each model aggregated the datasets for both the word intrusion and topic intrusion tasks.

4.5.2.5 Word Intrusion

In the word intrusion task [CBG09], we run each topic model against a dataset and sample an output

φi. We take the 5 highest scoring words from φi as our “key” words. From the least scoring 5%

of words of φi we take the word which is the highest scoring in φj where j 6= i as the “intruder”

word. We take this last step intentionally to allow for a more competitive “intruder.” We repeat this

process for a total of 20 samples across all datasets and models. Next, we shuffle the “intruder” and

“key” words and create a form which asks a human evaluator to choose the “intuder” word. The

exact directions submitted were: Find the word that does not belong to the set of words. The form

was placed on Amazon Mechanical Turk14 and each question was assigned 5 different “workers.”

We aggregated the 100 answers for each dataset and computed a t-statistic against the null

hypothesis of random selection. Additionally, we compute the associated 95% confidence intervals

of both the hypothesis mean (µ1) and mean difference (MD) between the hypothesis and the null

(µ0) means. Table 4.21 shows the computed values along with the associated p-value.

4.5.2.6 Topic Intrusion

The topic intrusion task [CBG09] is similar to the word intrusion task in that we give a set of “key”

items mixed in with an intrusive item and ask the human evaluator to find the intrusive item. After
14https://www.mturk.com
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Figure 4.26: The Tukey-Kramer pairwise difference of means and associated 95% confidence
intervals for the word and topic intrusion tasks.

topic modeling was complete for all models chose a random document di and the corresponding

θi distribution. From θi, we take the highest 3 scoring topics as the “key” topics and from the the

lowest scoring 5% topics we choose the topic which is the highest scoring in document dj where

j 6= i. The intuition behind this selection is the same as in Section 4.5.2.5. Each topic is represented

by 8 of its highest scoring words and shuffled (only the topic order is shuffled, not the top words in

the topic). We then create a form which presents the first 100 words of document di along with a

selection to choose the “intruder” topic among the 3 total topics. The form also allows the user to

click a button to see the full text of the document. We repeat the process for a total of 20 samples

for each dataset. The form and samples are placed on Amazon Mechanical Turk and assigned to

5 workers each for a total of 100 questions per dataset. For the Wiki-20, dataset both hLDA and

nTSNTM did not output enough topics to conduct the experiment, and were left off the evaluation

for the Wiki-20 dataset.

After all questions were answered we compute the t-statistic and other statistical measures as

we did in Section 4.5.2.5. The results are placed alongside the word intrusion topic in Table 4.21.

Additionally, we seek to evaluate how well the models compare among themselves. Post-hoc

analysis is conducted using the Tukey-Kramer method which represents the mean difference and

95% confidence intervals in Figure 4.26.
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4.5.3 Discussion

In both the word intrusion and topic intrusion tasks, IntTM is the only model to achieve significance

at the 0.01 level. In the word task, we see that all other models perform worse than the null

hypothesis. We suspect this has to do with the experiment design. Among the “key” words to select

from there may be a mixture of coherence along with more esoteric words. With a non consistent

coherence, the human evaluator is not able to discern the overall topic and the intruder word becomes

more favorable (of not being chosen as the intruder) than one or more of the esoteric words. One

could argue that injecting outside information into the neural topic models could produce similar

results to the IntTM. We do not deny this possibility, however we see that the addition of word

embeddings does not significantly improve performance for VRTM. This suggests that more recent

word embeddings, such as BERT [DCL19], may not necessarily lead to outperforming results to the

IntTM.

Also of interest was the non significant difference between the Bayesian and neural topic

models outside of IntTM. For the topic intrusion task, one could expect neural topic models to

perform poorly since they tend to reuse individual θ distributions (see Section 4.5 for more details).

However, that Bayesian models outside of IntTM perform similarly to neural topic models is a

surprise. We hypothesis this similarity is due more to poor performance from the Bayesian models

as opposed to good performance from the neural topic models. The non significance between

Bayesian and neural models for the word task introduces an interesting area for investigation

since the neural topic models produce topics with better perplexity and PMI-based scores. The

inconsistency with perplexity and PMI-based metrics to our measure of interpretability is consistent

with other interpretability studies [CBG09, DB21]. Our results may indeed add to the challenge

of PMI-based methods being the most appropriate method for measuring interpretability [DB21].

However, we contend that PMI-based methods are still valid and useful. Especially since human

evaluation is both costly and time-consuming.

This work investigates a novel combination of non-parametric Bayesian and weakly-supervised

topic models. In this combination we discover a fascinating result—a self-contained non-parametric

interpretable topic model. As we show with empirical results, this topic model can add inter-

pretability into any non-parametric topic model, without the need to supply an existing knowledge
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source. This interpretability trade-off comes at the cost of perplexity—with the parameter ξ acting

to determine how much interpretability to be added to the model. This novel method highlights a

new approach to topic modeling—one in which topic interpretability is at the forefront of topic

discovery.
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CHAPTER 5

Conclusion

5.1 A summary of contributions

This work focuses on knowledge discovery from biomedical and scientific text. The first set of

significant contributions involve our structured causal pipeline with the potential to enhance the

scientific method. The initial step of our pipeline seeks to increase the amount of piecemeal causal

text fragments. Next, we synthesize the causal assertions into a graphical form. From the graphical

form, we develop a technique to quantify the strength of each assertion using Bayesian analytics.

We then evaluate the causal network from a probabilistic framework which accounts for consistency

in the equivalence class of derived constraints. In the final quantification step, we seek to apply

graphical algorithms to add consideration to the contextual elements of piecemeal causal discovery.

With the numeric considerations complete, we then proceed to increase our causal understanding

of existing causal networks. We present to the biological research our findings which state which

assertions are strongest, which elements are most likely to yield a causal connection, which elements

in a community are most influential, and finally, which established biological causations are most

likely due to confounding variables.

Starting from the raw text in scientific research papers, we provide a novel approach for

deriving the causal elements. Our method underscores the integration of two distinct domains

to produce causal discovery from raw text. These domains are bioinformatics-based sequence

alignments and biological causality descriptions. Additionally, we expand on existing sequence

alignment algorithms to provide an efficient and dynamic breakpoint sequence alignment. This

technique supersedes existing dynamic alignment algorithms [AG11, HC03] and is well situated for

contributions in the field of bioinformatics. In the domain of text-based biological causality, we

find this technique to be well suited in conditions with a small amount of training data and a large
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amount of data for retrieval. The application of this method has uncovered causal chains which

were previously unestablished.

With the casual textual elements obtained, we developed an approach for information synthe-

sis, allowing for further knowledge discovery. Our causal elements take the form of a graph with

connections denoting a causal relationship. The main contribution in this area is developiong a

small finite set of causal semantics that represent a powerful range of biological relationships. These

semantics are displayed as edge types between nodes representing biological entities. Connecting

these causal fragments reveals a rich and powerful piecemeal causal network. An environment that

is favorable for network-based analysis to enhance the scientific method.

To represent the strength between piecemeal causal assertions, we introduce a Bayesian-based

scoring metric. We discover our method to be consistent with existing heuristic scoring methods

within the biological community. These are convergency and consistency. The score assumes a

generative model over a hidden distribution representing the true causal distribution of an element

pair. We use an expectation-maximization to infer the posterior distribution over the set of classes.

The expectation is normalized to finalize our score. The metric can easily be used to gauge the

strength of evidence between pairs or used to analyze the key component of a study. When an

entire research article is transcribed into the graphical form, the graphical network becomes a more

succinct synthesis of the much larger amount of information contained in the research work.

From the piecemeal causal network, we move to constraint-based graphical deductions. Be-

cause each observation implies a causal connection, we can convert the implications into constraints

representing statistical relations. These relations can then direct us to make decisions based on the

inference of causal graphs consistent with the constraints. We discover the problem statement to

be equivalent to a weighted boolean satisfiability problem (SAT). We submit our technique repre-

senting a novel synthesis of piecemeal causal network information as input into the state-of-the-art

constraint-based answer set programming language Clingo [GKK11]. Starting from a piecemeal

graphical network, we can construct the statistical relations to query Clingo about the set of possible

causal graphs representing an equivalence class. We can then use the equivalence class to deduce

what result is most consistent with the known information—an important step in hypothesis testing

and experiment selection.
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We then proceed to improve the introduced pipeline by considering the effect of contextual

information. Considering the external connections between two biological elements leads us to

develop an additional scoring criterion that weighs the effect of possible confounding variables.

Similar to the PCEI, we institute a Bayesian model where the posterior probability represents the

strength of evidence. The score is then combined with the PCEI to obtain a numeric indication of the

strength of the evidence considering not only the biological elements under direct evaluation but also

the surrounding variables. This scoring setting allows for a much more impactful constraint-based

experiment selection and hypothesis testing. When used in an algorithm for equivalence class

discovery, we show the technique to converge quicker than other techniques. This approach allows

for scientific discovery faster and cheaper than before. We then show the applicability of this

pipeline enhanced with contextual considerations over an exhaustive input set. We discover a set

of biological elements that are likely to yield the most information gain when examined. We also

discover biological pairs which are likely to be causally connected. In subset networks, we use

our technique to determine which biological element is the most influential, a finding that can help

targeted drugs and therapies isolate a biological element to obtain a maximal effect. We also posit

biological elements in a network where the causal effect observed is likely due to confounding

variables. This result can help scientists pinpoint which biological elements to avoid when targeting

a specific entity or help draft experiments to discover confounding variables.

Another significant contribution this dissertation makes is in the topic modeling sub-domains

of interpretability and labeling. Topic modeling has shown the ability to cluster tokens such that

they resemble topics. A major drawback of existing methods is the tendency to assign semantically

different terms together. The incohesive terms are acted upon solely based on being frequented often

in the same set of documents. This deficiency is apparent in both Bayesian-based and neural topic

models. To overcome this inadequacy, we develop a method that incorporates outside information

into the topic model in the form of a knowledge source. Since the knowledge sources tend to be

curated manually, they are assumed to be highly interpretable. It follows then that topic distributions

biased from highly interpretable knowledge sources results in highly interpretable discovered

topics. Indeed, we find this to be the case as human evaluators score our method higher in tests of

interpretability. Since the knowledge sources are also labeled, we can easily transfer the label to the
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discovered topic. First, we introduce the foundation for this approach with the Source-LDA model.

Next, we develop techniques to improve upon the pioneering model. We then relax more constraints

leading to a complete, self-contained, highly interpretable non-parametric topic model with topic

labels. The final work represents the state-of-art method for a simple and highly applicable topic

model to discover labels and produce highly interpretable topics.

Bayesian topic models produce distributions over the vocabulary representing a topic and

distributions over the topics themselves for each document in a corpus. The generative model,

which forms the basis for inference, does not make any semantic determinations when assigning a

word to a topic. It is in the assumption of topic modeling that words that frequently appear in the

same documents belong to the same topic. This assumption can somewhat limit the interpretability

of such models as semantically different words can show up frequently together, which results in

incohesive topics. We contribute to the fields of interpretable topic modeling and topic labeling by

introducing a novel concept of outside knowledge sources into the topic modeling generative model.

We use the knowledge sources to form distributions assumed to be hyperparameters to the Dirichlet

distributions that generate the topics. This method becomes more flexible than other existing

methods leading to improved results. This balance results in higher interpretability, perplexity, and

token accuracy than other models in the same field. When compared against both Bayesian-based

and neural topic models, the interpretability is significantly higher. Additionally, this method

serves to label the topics which make the model suitable for topic visualization and description

applications.

Source-LDA provides the basis for interpretable topic modeling and topic labeling. However,

there are a few shortcomings with the model. One such weakness is that the input is not always

inclusive of every word that semantically belongs to that topic. We seek to mitigate this weakness

by introducing context when deciding token assignments. In this aim, we capitalize on the recurrent

neural network (RNN). We choose the RNN because the model is well-suited for context-based

predictions Since each input of the RNN is trained on the complete history of all previous input,

we can take advantage of this “memory” by asking the RNN whether a word belongs to a weakly

supervised topic. By training our knowledge source on the RNN, we can determine the likelihood

that a word belongs to a supervised input (knowledge source topic) and replace our naive weakly
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supervised predictive probability with the probability given by the RNN. This fusion further

increases the perplexity of the model. We also show the benefits of this amalgamation in reverse. We

demonstrate the ability of topic models to increase the predictive power of the RNN in our contrived

model, Topic-RNN. The method resembles an ensemble approach of a set of independent RNNs

trained over their respective topic partitions together with a vanilla RNN. Under our evaluation,

Topic-RNN becomes the state-of-the-art RNN enhanced with topic modeling input.

We further improve weakly supervised topic models (including Source-LDA) by decreasing

the running time taken to infer the topic clusters. The existing high running times of these models

exist because the inference must consider the knowledge source input, which typically is large

by design, and increases the iteration time by a multiplicative factor over the knowledge source

size. The time increase limits the model to be run on a knowledge source input size in the order

of 103. To increase the range of applicability of the model, we provide a pre-inference technique

to rank the topics by how likely they are to be used in forming the output topics post-inference.

Our method, KnowledgeRank, adapts PageRank to be used on graphical-based knowledge sources.

We also demonstrate the ability to take text-based knowledge sources, form them into a graphical

structure, and apply KnowledgeRank to rank text-based knowledge source input effectively. The

same technique is also adapted to the weakly supervised model that improves perplexity and

interpretability. The perplexity gains show the ability to compete, and, in some cases, outperform

existing state-of-the-art neural topic models—a feat previously thought not to be likely.

KnowledgeRank effectively eliminates knowledge source input beforehand, increasing the

range of input sets that can be used in weakly supervised models. However, KnowledgeRank

is limited in the range of inputs. Although the input size is large, we present a technique to

allow for an infinite input size. Our technique is to take advantage of the theoretical advantages

conferred in the field of non-parametric topic models. On the path towards a nonparametric, infinite

knowledge source input model, we contribute to the field of nonparametric topic modeling as well

as Bayesian nonparametrics in general, in the development of our alternative view of the Dirichlet

process, the biased coin flip process. Our novel view reimagines the Dirichlet process to be a

partitioning of coins on a table into different bags. Each bag contains its own bias assumed for

each coin toss in consideration of placing that coin in the bag. We prove this view to be equivalent
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to the Dirichlet process. The advantage of this alternative view comes from the reuse of existing

topic model inference equations. Given the similarity of the view to the generative model of

Bayesian topic modeling, we can easily transfer the topic modeling inference equations to the

Dirichlet process. Since the topic modeling inference equations have entrenched their utility in topic

discovery, it follows that similar inference equations may yield favorable results in non-parametric

topic discovery. We indeed show this to be the case, as our model outperforms differing inference

technique-based models. This work contributes not only to improved performance, but to the general

understanding of the Dirichlet process as well.

Our final contribution is made by combining weakly supervised topic models with non-

parametric topic models. Given the high interpretability of weakly supervised models and un-

bounded input size of nonparametric models, it is a naturally intuitive approach to achieve a superior

model in the fusion of both models. We provide the theoretical framework and the model to realize

this composition. We also provide a technique for constructing a knowledge source for any corpus

without any prior information or input—an approach where we discover KnowledgeRank to be

quite helpful. In the process of constructing our model, we realize the model becomes a complete

self-contained nonparametric topic model for interpretability and topic labeling. Sans any prior

input, outside of a corpus and hyperparameters, we can achieve topic discovery that is both highly

interpretable and labeled. Compared against state-of-the-art neural topic models and established

nonparametric Bayesian models, our method performs significantly better in human evaluated

tasks of interpretability. We also find the unbounded input to mitigate the execution time barriers

previously discussed in weakly-supervised topic models. We deliver to the research community a

novel outperforming topic model that places interpretability and topic labeling at the forefront of

topic discovery.

5.2 Key findings

This dissertation shows that sequence alignments of parts of speech text fragments can be used to

extract causal assertions. Under the setting of a small amount of complex textual training data and a

large amount of retrieval data, OpBerg outperforms machine learning-based approaches. OpBerg is

most suitable for causality extraction among competing sequence alignment algorithms due to its
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flexibility. We can increase the number of causal assertions from a small amount of training data by

transforming the training data into parts of speech text fragments and comparing the retrieval data

using OpBerg. We also find that these matchings can easily extract agent and target pairs.

We also demonstrate that causal biological text can be effectively synthesized in graphical

form. Using a small set of class labels, we can accurately describe the key components of a

biological research article. When connected, this graph represents a valid network of piecemeal

causality. We can then make interesting discoveries about the strength of connections, hypothesis

testing and experiment planning from the connected elements.

The piecemeal cumulative evidence index is an effective measure of certainty of experimental

validity. The score also quantifies the accumulation of qualitative evidence into a readily understood

value. We find the value agrees with the biological concepts of consistency and convergency. This

approach also serves to connect Bayesian statistics with biological heuristics. The score can help

scientists focus on elements within a graphical network and easily convey meta-analytic information

succinctly.

To test the strength of a hypothesis, we discover the piecemeal causal graph analysis to be

beneficial. Analyzing the degrees of freedom for each element in the known piecemeal causal

graph leads to discovering the true causal graph quicker and with less experimentation than a

random-based algorithm. Also of benefit, is calculating the expectation of an effect alongside

the degrees of freedom. An analysis that binds the possible set of graphs to statistical constraints

can be used to determine an equivalence class which translates into an approach of true causal

discovery. This analytic approach can determine the true nature of a causal network faster and more

cost-effectively than performing experiments at random.

When assessing the meta-analytic observation of an experiment, this dissertation finds con-

textual information to play a notable role. In the process of equivalence class determination over

a piecemeal causal graph, considering contextual information increases the convergence rate to

the true causal graph. This consideration further improves the time and cost savings over random

selection. We also show that a quantification of contextual information can be achieved similarly

to the PCEI. Likewise, the scoring becomes consistent with consistency and convergency. In the

evaluation of a less constrained and non-theoretical causal network, the contextual scoring further
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distinguishes important connections. This separation allows for a more focused view of scientific

discoveries.

Our causal pipeline demonstrates that qualitative causal text fragments are sufficient to guide

causal discovery. Over the exhaustive PubMed dataset, we make interesting discoveries about

the causal world we have so far. These include: potential experiments that would maximize our

understanding of the piecemeal causal world, which connections are the most important, experiments

that are most likely to yield a causal relationship, and which variables are suspect to confounding

variables. Our pipeline demonstrates that key parts of the scientific process can be automated and

potentially increase the rate of discovery while driving costs down. We submit the theoretical basis

alongside our findings and await validation from the biological domain.

To develop a topic model that labels topics and is highly interpretable, we show how to

leverage outside knowledge sources to attach missing associations. Since both the Bayesian and

neural topic model are lacking a prior understanding of semantic cohesiveness among words,

incohesive words may be bound to the same topic at a high rate. To help partition the words

to the proper topic we demonstrate our method, Source-LDA, to achieve higher interpretability

and token accuracy than baseline models. The change required is only to the hyperparameters of

the Dirichlet distribution. We find that the flexibility of a distribution drawn from Source-LDA’s

hyperparameters is a balance between a too rigid knowledge source influence and a completely free

influence—resulting in better performance. The approach of biasing the hyperparameters represents

a simple yet powerful mechanism that has the effect of making the topic assignments more cohesive.

To improve knowledge source topic models, this dissertation finds that considering context

through the recurrent neural network aids topic assignments of words that do not exist in the

vocabulary of the knowledge source. We demonstrate that there is a small similarity in the word

construction per topic. We can use this slight difference to tilt the assignment of a word to a topic

that is more like the words in the knowledge source article representing that topic. This technique

results in better token assignment and perplexity. Additionally, we show how topic modeling inputs

can increase word prediction of the RNN. When partitioned in an ensemble fashion per topic, the

combination of a per topic RNN and an overall RNN result in an ensemble RNN that predicts both
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words and character better than any previous topic RNN hybrid model. We demonstrate that our

combination asserts character-level RNNs as equally as predictive as word-level RNNs.

Another improvement to token assignment can be made using a combination of graphical-

based and text-based knowledge sources. This process involves taking the text-based knowledge

source and merging it into the graph-based knowledge source. With the merged graph, we can

then run a weighted recursive ranking algorithm. Additionally, we can use a text-only knowledge

source and apply the same technique of transformation and ranking to yield improved results. This

ranking technique improves interpretability, perplexity, and token assignment. When used in the

topic elimination phase during inference, ranking is superior to baseline methods. We also discover

the ranking technique as an excellent approach to pre-inference knowledge source pruning. We

find the relationship between knowledge source topic retrieval and rank filtered input size to be an

inverse relationship. This ranking technique is demonstrated to be an effective method to allow

knowledge source-based topic models a feasible execution time even with a very large knowledge

source.

In the context of nonparametric topic models, we find an alternative view can help shape

Dirichlet process inference. By taking a more topic-modeling interpretation of the Dirichlet process,

we can quickly connect the interpretation to existing Dirichlet inference techniques found in topic

modeling. This connection is key to constructing a non-parametric topic model with better perplexity

and k-finding. Additionally, the approach represents a more tunable non-parametric topic model by

supplying two scaling hyperparameters. When compared in Gaussian mixture models, the mixture

approximations resemble kernel-based techniques.

In the combination of non-parametric and knowledge source topics, we find an improved

interpretable topic model with topic labeling that is scalable to an infinite input size. In the

theoretical basis for the generative model in this combination, we discover a parameter value can

be used as input to specify the influence from the knowledge source input. This influence acts

as an interpretability parameter with a range between 0 and 1, with 0 being low interpretability

and 1 resulting in a higher perplexity. We find KnowledgeRank useful in filtering the knowledge

source topics a priori to improve the combined topic model input. In our evaluation, this topic

model significantly improves the interpretability of the discovered topics and the interpretability
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of the topics discovered in each document. We find that very little input is needed to discover

and label highly interpretable topics, and we need not specify a knowledge source as input. This

model demonstrates that we can have reasonable perplexity alongside interpretable, labeled topics

discovered in a computationally efficient manner.

5.3 Future work

Although this dissertation contributes to knowledge discovery from biomedical and scientific text,

much work is yet to be undertaken. In the context of piecemeal causal discovery, we highlight open

research areas for each step in the pipeline. When discovering interpretable and labeled topics, we

discuss current state-of-the-art approaches in general domains and their potential for improvement

in our setting. Additionally, we explore application potentials in each sub-area.

5.3.1 The piecemeal causal pipeline

Of all the components in the piecemeal causal pipeline, the most raw piece is that of causal

extraction. There exists a potential for many improvements in this area. Although it was shown that

in the setting of low training data and a large retrieval space, OpBerg performs the best, it would

be interesting to try and leverage existing knowledge bases and machine learning approaches to

improve the results. We would assume an ensemble technique would be superior to OpBerg alone.

OpBerg may be a good filtering technique however it still has problems with matching. A simple

“not” in front of a biological element can drastically change the meaning of a text fragment, however

OpBerg would only consider this as a single penalty (indel or mismatch). We may also be able

to improve on weighing the matches. It may be the case that a match of adjectives should be less

important than a match of nouns, however currently they are weighed the same. Execution time

can be an area of improvement; one area in this space worth investigating is running the algorithm

on the graphical processing unit (GPU). Any improvements would be particularly appealing for

extremely large input sets. The last text extraction area we submit for future work is applying

OpBerg to the domain of bioinformatics. In applications where existing dynamic algorithms are

being used [AG11, HC03], OpBerg could be of use.
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For the other components of the pipeline, we surmise that the graphical representation of

ResearchMaps may be expanded to account for different types of assertions. We may consider an

experiment conducted over three or more variables and create some way of integrating this into our

existing schema. Another edge type may be investigated as well. This edge would be a two-way

edge, where an effect was shown upon both variables—one in which the evidence is consistent

with a causal effect in both directions. Alternatives to the PCEI may be fruitful in consideration.

One may take the view that the score represents a probability of a future observation. Under this

context, the problem becomes that of prediction. And with enough training data, prediction seems

best suited under machine learning and deep learning approaches. The formulation of these models

is left as an open research area. We may also seek to weigh the textual observations. Currently, each

extracted text fragment is observed as a single observation. Perhaps two observations with different

p-values should be considered differently. Also, we may be able to leverage sentiment analysis to

score an assertion more highly if the text fragment reveals a high level of certainty or enthusiasm.

In our approach of using SAT solvers to discover an equivalence class, we should seek

improvements in the execution time. Given the combinatorial nature of our problem, we are severely

limited in the subgraph size we can input into the procedure. Currently, this can only be feasible

for a network length less than 5. To improve the input size, it may be possible to leverage GPUs to

run the computations in parallel. Other techniques such as simplifying assumptions, pruning, and

other efficiencies should be explored as well. Existing parallel approaches may be used in isolation

or in combination to investigate an improvement in applicability [MML11a, MML11b, MML12a,

MML12b, MML12a, HS18]. For experiment selection, we maintain our approaches at a heuristic

level. Theoretical work can be explored to establish the computation limits of our problem setting.

The theoretical groundwork may also lay the foundation for an outperforming algorithm. Given

the probabilistic formulation of our experiment’s selection setting, it may be possible to leverage

graphical-based deep neural networks to discover the next best experiment to perform. It may also

be worthwhile to seek out ensemble-based methods that combine our existing approaches with

novel techniques.

The pipeline overall need not be isolated to that of biological experiments. In any area of

causal discovery, we suppose the piecemeal causal pipeline to be applicable. We can perhaps apply
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the pipeline to free-text causal statements in a general platform. For example, that of social media,

we may start with a small number of labeled causal statements, expand on it with OpBerg, and

end with a discovery of new causal elements to investigate. This approach also seems well suited

to that of the medical domain. We may be able to contribute greatly to the study of diseases by

taking our approach to confounding variables. It would be interesting to investigate some disorders

such as autism to try and find a set of variables most influential in the onset of the disorder. This

scope could also be expanded to include genetic markers as to understand genotype and phenotype

relationships.

5.3.2 Topic interpretability and labeling

In the domain of topic interpretability and labeling, a significant area of future work is in that

of evaluation. The practice of determining what a “good” discovery of topics is, is not a well-

defined area. Perplexity, for example, is a well-defined metric—however, it is questionable how

well perplexity and interpretability correlate [CBG09]. As we have shown in this dissertation,

neural topic models that output high perplexity topics perform poorly in interpretability tasks. The

same critique applies to pointwise mutual information (PMI) metrics. Although there is one study

linking high PMI with high interpretability, recent work [New10, DB21] along with this dissertation

provides evidence that challenges this metric as causal to interpretability. A well-defined and

unquestionable metric of topic interpretability that is cheaply able to be obtained is an important

goal to strive for in future research. The current best method, giving the topic modeling output to

human annotators to determine interpretability, is both well-defined and unquestionable—however,

the results are expensive and time-consuming to obtain.

Source-LDA represents a good first step for topic modeling with labeling and interpretability—

however, there can still be some improvements. The assumption of the generative model assumes a

normal distribution over the mapping of hyperparameters. This assumption presents difficulties in

the inference, which requires an approximation to infer the posterior. It may be more appropriate

to assume a Dirichlet distribution over the hyperparameters allowing for a more direct inference

calculation. Additionally, the model assumes a uniformity of interpretability over its article set.

There may be some work in this area to determine which one of the human-annotated input
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represents a poor topic and is ultimately discarded. The model also assumes a general equivalence

of token count for each document. In documents that have more tokens, the model will give these

documents a higher importance and likelihood of assignment since the higher token counts will

more heavily influence the approximate posterior equation. It may lead to better results by assuming

a proportional weighting or other weighting techniques.

A key discovery in our analysis of Rank-LDA was that in generated data, Bayesian topic

modeling outperforms state-of-the-art neural topic models. This analysis should also be applied

to non-generated datasets to investigate if the effect carries over. The presumption here is that it

will not, and assuming that to be the case, it indicates the inferior performance may be due to the

generative model. Other models should be considered, perhaps with different distributions or a

different form of the model algorithm. It may be fruitful to look at dynamic generative models.

These may be generative models that are built depending on the data instead of pre-defined. Under

a dynamic model fit to the data, it may be possible to outperform neural topic models in terms of

perplexity.

From our approach to combine topics and recurrent neural networks, it follows that the

same technique could yield improvements in both convolutional neural networks (CNNs) and

transformers. At its heart, Topic-RNN is an ensemble technique, and the concepts of specialization

should apply to any other deep learning model. Additionally, it would be interesting to look at the

comparison of ReSource-LDA in datasets against neural topic models. Perhaps a combination of

ReSource-LDA and Rank-LDA could lead to an increase in gains over state-of-the-art neural topic

models. The two models are compatible, so a sampling from either generated distribution should

only require an additional draw from a Bernoulli distribution. In the inference calculations, this

hidden variable can be sampled independently of the z assignment.

The biased coin-flip process has been shown to work well when the hyperparameters are

known to be the same as the corpus. However, when the hyperparameters are unknown a priori, the

values are determined as input. It would be favorable to have the parameters determined by the data.

This approach may follow existing techniques of hyperparameter discovery [Hei11, Wal08, TJB06].

Further improvements should also be investigated as existing methods are less than ideal. The

biased coin-flip process is also unique in that there are two input parameters, so the hyperparameter
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estimation may be more complicated. Also, work can be done to see how well the biased coin-

flip process fairs in conjunction with our interpretable topic model. Existing methods are using

previously established methods, and given the BCP’s improvements over the established methods, it

would imply even better results in the interpretable topic model.

The primary focus of the topic modeling portion of this thesis is that of Bayesian topic models.

Although the neural topic model seems to be fashionable as of late, we do not find the output to be

highly interpretable. The scoring method behind neural topic models, pointwise mutual information,

has been recently challenged in its efficacy. Indeed, in our analysis, we do not find the correlation

between PMI and interpretability to be high. Working towards an interpretable neural topic model

is a worthwhile goal. We would encourage techniques to look to outside information. Even though

in Section 4.5.2.4 we show existing methods that incorporate vector mappings do not show an

improved effect, there may be a way this is possible. Outside of Word2vec, one can try Glove or

BERT word embeddings. We also hypothesize a technique where knowledge sources are added

alongside the neural topic model topic matrices to capture interpretability. In a similar manner to

our Bayesian topic model, we can assume the knowledge source to be topics, and convert them to a

probability value. Then we can feed this probability value as input in conjunction with the edges

emitted from the topic matrices. In this way, the influence can be exerted on the topic matrices in

much the same way as weakly-supervised Bayesian topic modeling.

This thesis presents the state-of-the-art topic model with interpretable topics, interpretable

document assignments, and topic labels. However, we can seek improvement by adding into the

model ReSource-LDA, Rank-LDA, and the BCP. If we can discover the parameters from the data,

then the topic model becomes an entirely self-contained model with no necessary input outside of a

corpus. The output will then represent the best topic discovery useful to applications that visualize

or present the topics themselves. One example of this is the patient-adaptive retrieval summarization

engine (PARSE)1. Further work must be done to combine the complete self-contained interpretable

topic model with patient meta-data—however, once these steps have been completed, the engine

behind PARSE is all but complete. Investigating the effect of PARSE on the patient-clinician

interaction is a logical next step. This work has the potential to improve the understanding of a

1NIH National Library of Medicine, R21 LM011937
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patient history leading to better outcomes—which could lead to drastic improvements in medical

decisions and the prevention of medical errors.
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Hal Daumé III, and Katrin Kirchhoff, editors, Human Language Technologies:
Conference of the North American Chapter of the Association of Computational
Linguistics, Proceedings, June 9-14, 2013, Westin Peachtree Plaza Hotel, Atlanta,
Georgia, USA, pp. 179–189. The Association for Computational Linguistics, 2013.

[MD18] D. Malinsky and D. Danks. “Causal discovery algorithms: A practical guide.”
Philosophy Compass, 13(1), 2018.

285



[Mei06] Qiaozhu Mei et al. “A probabilistic approach to spatiotemporal theme pattern
mining on weblogs.” In Proceedings of the 15th international conference on World
Wide Web, WWW 2006, Edinburgh, Scotland, UK, May 23-26, 2006, pp. 533–542,
2006.

[mes] “Medical Subject Headings.” https://www.nlm.nih.gov/databases/download/mesh.
html.

[MFW09] Olena Medelyan, Eibe Frank, and Ian H. Witten. “Human-competitive tagging
using automatic keyphrase extraction.” In Proceedings of the 2009 Conference on
Empirical Methods in Natural Language Processing, EMNLP 2009, 6-7 August
2009, Singapore, A meeting of SIGDAT, a Special Interest Group of the ACL, pp.
1318–1327. ACL, 2009.

[Min03] Tom Minka. “Bayesian inference, entropy, and the multinomial distribution.”
Online tutorial, 2003.

[MLM07] David M. Mimno, Wei Li, and Andrew McCallum. “Mixtures of hierarchical topics
with Pachinko allocation.” In Machine Learning, Proceedings of the Twenty-Fourth
International Conference (ICML 2007), pp. 633–640, 2007.

[MM88] Eugene W Myers and Webb Miller. “Optimal alignments in linear space.” Com-
puter applications in the biosciences: CABIOS, 4(1):11–17, 1988.

[MML05] S. Meganck, B. Manderick, and P. Leray. “A decision theoretic approach to
learning Bayesian networks.” Technical report, Technical report, Vrije Universiteit
Brussels, 2005.

[MML11a] Ruben Martins, Vasco Manquinho, and Inês Lynce. “Parallel search for Boolean
optimization.” In RCRA International Workshop on Experimental Evaluation of
Algorithms for solving problems with combinatorial explosion, volume 11, pp.
26–59, 2011.

[MML11b] Ruben Martins, Vasco M. Manquinho, and Inês Lynce. “Exploiting Cardinality
Encodings in Parallel Maximum Satisfiability.” In IEEE 23rd International Con-
ference on Tools with Artificial Intelligence, ICTAI 2011, Boca Raton, FL, USA,
November 7-9, 2011, pp. 313–320. IEEE Computer Society, 2011.

[MML12a] Ruben Martins, Vasco Manquinho, and Inês Lynce. “Clause sharing in parallel
maxsat.” In International Conference on Learning and Intelligent Optimization,
pp. 455–460. Springer, 2012.

[MML12b] Ruben Martins, Vasco M. Manquinho, and Inês Lynce. “Parallel search for maxi-
mum satisfiability.” AI Commun., 25(2):75–95, 2012.

[MMZ12] Xianling Mao, Zhaoyan Ming, Zheng-Jun Zha, Tat-Seng Chua, Hongfei Yan, and
Xiaoming Li. “Automatic labeling hierarchical topics.” In Xue-wen Chen, Guy
Lebanon, Haixun Wang, and Mohammed J. Zaki, editors, 21st ACM International

286

https://www.nlm.nih.gov/databases/download/mesh.html
https://www.nlm.nih.gov/databases/download/mesh.html


Conference on Information and Knowledge Management, CIKM’12, Maui, HI,
USA, October 29 - November 02, 2012, pp. 2383–2386. ACM, 2012.

[MRD06] Ruth Stashefsky Margalit, Debra Roter, Mary Ann Dunevant, Susan Larson, and
Shmuel Reis. “Electronic medical record use and physician–patient communica-
tion: an observational study of Israeli primary care encounters.” Patient education
and counseling, 61(1):134–141, 2006.

[MS21] Leacky Muchene and Wende Safari. “Two-stage topic modelling of scientific publi-
cations: A case study of University of Nairobi, Kenya.” Plos one, 16(1):e0243208,
2021.

[MSC13] Tomás Mikolov, Ilya Sutskever, Kai Chen, Gregory S. Corrado, and Jeffrey Dean.
“Distributed Representations of Words and Phrases and their Compositionality.”
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