
Lawrence Berkeley National Laboratory
Recent Work

Title
USE OF THE LBLSTAFF DATABASE

Permalink
https://escholarship.org/uc/item/2qz4m21z

Author
Konrad, A.

Publication Date
1987-12-01

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/2qz4m21z
https://escholarship.org
http://www.cdlib.org/

~1
',. \~

t

.PUB-3074 c. J

ITtI Lawrence Berkeley Laboratory
II;t UNIVERSITY OF CALIFORNIA, BERKELEY

Information and Computing
Sciences Division

Use of the LBLSTAFF Database

A.Konrad

December 1987

RECEiVl:t...
LAWRENCE

BERKEl~YLA80PATORY

JUN 1 7 1988

LiBRARY)'\ND
DOCUMENTS SECTION

For Reference

Not to be taken from this room

Prepared for the U.S. Department of Energy under Contract Number DE-AC03-76SF00098.

DISCLAIMER

This document was prepared as an account of work sponsored by the United States
Government. While this document is believed to contain correct information, neither the
United States Government nor any agency thereof, nor the Regents of the University of
California, nor any of their employees, makes any warranty, express or implied, or
assumes any legal responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents that its use would not
infringe privately owned rights. Reference herein to any specific commercial product,
process, or service by its trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government or any agency thereof, or the Regents of the University of
California. The views and opinions of authors expressed herein do not necessarily state or
reflect those of the United States Government or any agency thereof or the Regents of the
University of California.

(

c·

~ ..

I.
II.
III.
IV.
v.
VI.

PUB-3074

USEOFTHELBLSTAFFDATABASE

SPIRES at LBL

A. Konrad
Office of Computing Resources

Revised 16 December 1987

Description ofSPmES Functionality
Description ofLBLSTAFF
Examples: Why SPmES-Like Functionality is Useful for Directory Services
Remote SPmES .
Costs

(

c

.,.

Purpose.
In planning the forthcoming ICS, the Project Team has reviewed how various

telecommunications services are presently provided. One of those, directory
assistance services, is presently supported by LBLSTAFF, a locally-implemented
SPIRES database. .

This paper describes how the present system provides directory assistance
services, related applications, ana those inherent features which might require
ongoing support, whether in LBLSTAFF or a replacement product from an lCS
vendor. .

1

(

.~

I. SPIRES at LBL.
In 1981, the Laboratory selected the Stanford Public Information Retrieval

System (SPIRES) as one database system to meet LBL database needs, particularly
those of the Libarary Department. For several years, the Library had been using
SPmES at SLAC for an online book acquisitions system and SPmES at Stanford for
shared cataloging. Selection of SPIRES was based on administrative, scientific as
well as bibliographic needs.

Because LBL did not have a user-accessible IBM environment required to run
SPmES, agreement was reached with the Berkeley campus computing facility in
Evans Hall to provide access to their system for LBL users and to run SPIRES. In
1984, the campus also purchased a SPIRES license and now separate campus and
LBL SPmES environments are supported on the same machine.

A new version ofSPmES is distributed annually by the SPmES Consortium, an
,organization consisting of Stanford University and about 50 universities including
Berkeley, UCSF, CUNY, Cornell, Harvard, Princeton, and Yale, as well as NASA
Goddard, Max Planck Institut fUr Astrophysik, and the National Center for
Atmospheric Research. The SPIRES Consortium also provides consulting support by
telephone and over BITNET. The annual membership fee is $7,000, which covers
botli software maintenance and systems consulting.

SPIRES runs on the Berkeley campus IBM 3090 dual processor under VMlCMS.
Access for LBL users is at 9600 baud via Develcon to one of several IBM Series/I's,
which provide terminal emulation for ASCII terminals.

The Laboratory has in excess of 30 SPIRES accounts on the campus system.

2

(I Major SPIRES users at LBL
/

Database User Subiect
LBLSTAFF Various LBL employee and guest information

~ DRAWINGS Mech.Eng 200,000 Mechanical Eng. drawings
ENGNOTE Mech.Eng Mechancial Engineering Notes

;',0 MIST CSR lO-year Materials Science Database
Project, eventually to run at Sandia
Laboratory in Albuquerlue, to provide
materials data nationwi e.

ATrENDEES Conf. Coord. Several interrelated databases for
conference management.

AWARDS Directors Off. Non-LBL awards for which Laboratory
staff are encouraged to apply.

SOLAR 90 Library Bibliographic collection in 90 Library
ADDRESSEES SSC SSC Public Information System
RPM * Admin. Div. Off. RPM Distribution
TRAINlNG* Eng. Div. Off. Courses and Students databases for

LBL Safety Courses and for

··C; Emergency Preparedness
Management.

LBLRIS TID LBL Reports Issued
LBLSER LIBRARY Serials subscriptions and control
ORDAC LIBRARY Acquisitions (SPIRES at SLACVM)
ADP OCR DOE/GSA ADPE Inventory
STATIONS * CCR ICS Telephone Survey
BLDG anyone Building number, name, manager,

ICSnode

* Logically linked to LBLSTAFF for employee/guest data.

l

3

.;:

(II. Description of SPIRES Functionality.

·C·

A database management system is a collection of software tools to provide
relatively easy processing (entry, storage, retrieval, and presentation) of like data.
The tools that comprise SPIRES are suitable for general applications, rather than
limited to a particular one such as in ctcanned" applications software. SPmES is
p9f"tic~larly well suited to bibliographic applications, i~ approp;iate for much
SClentific data, and has been used for several large admimstrative programs as well.

SPIRES functionality includes:

• Inverted lists as indexes for efficient searching
• Index record-types can serve as goal records for mUltiple views of data
• Versatile query language .
• M~tip.le elements passed to a single index, element values passed to several

mdices
• Virtual indexes and indirect searching
• Textual, non-columnar data accommodated
• Variable length elements
• Optionally-occurring elements
• Multiply-occurring elements.
• Structures (<<repeating groups") to retain logical associations
• Variety of data element types
• Personal name and date processing
• Case handled intelligently
• Word indexes
• Protocols language tools
• System procedures and functions; system variables
• Ease of adding, updating, removing records .
• English-like syntax
• Deferred queue maintained to retain all versions of a record for some period,

enabling the user to ~ack up" and reference any of them
.• Concurrent updating control for simultaneous use of database
• Security at the file, record, and element levels
• Automatic recovery in the event of a system crash
• Easy and fast to restore service in the event of a disk crash
• Versatile re:port generators
• Large capaclty
• Inexpensive

These are some of the features for which SPIRES was originally selected and why
usage continues to grow despite its inability to run on any LBL-owned computing
system. SPIRES is ideal for a research environment because it does not require a
central database administrator. Database owners can create, destroy, and modify
their database definitions and data at will.

Section IV describes how the attributes above are used in LBLSTAFF and why
they are important.

4

. ::-

(m. Description of the LBLSTAFF Database

."

,-

'"

\

Many LBL offices and departments maintain mailing lists that include LBL
employees and guests. It follows that many of these lists maintain employee-guest
data in duplication of one another. Further, none are likely to have manpower
dedicated to tracking changes in employee data, such as mailstop, name, and
department changes on a regular basis, but instead implement changes only when
reported by the employee himself and only to staff supporting that particular
database. Thus, the version of any particular employee's record in one database
might be out-of-date, and also be inconsistent with that employee's record in another
database. Maintenance of this data in multiplicate hill-wide is time-consuming
inefficient use of Laboratory effort and not cost-effective. LBLSTAFF provides this
service in a cost-effective way.

The LBLSTAFF database is comprised of15 (maximum of8l allowed) ftrecord­
types" (See SEC IV.l) or collections of records. Each record-type is comprised of like­
records, each with a unique key and one or more other data elements. For example, a
record in the employee record-type might appear: .

. KEY = 123
NAME = JOHN JONES
MAILSTOP = 50-212
PAN = 9876
LOCATION

BLDG = 50
ROOM = 215
EXT = 5555

Of the 15 record-types in LBLSTAFF, the first (REC01) is comprised of
employee records like the above example, and is considered a ftgoal record" record­
type because employee data records are the goal of a search. Tlie other 14 are index
records used as an efficient means oflocating employee goal records (Sec IV.l).

The LBLSTAFF database uses the GOAL-INDEX concept (Sec IV.2)
extensively. LBLSTAFF is comprised of the following record-types. Those with

. subfile access are indicated as are the names by which subfile access is provided:

RECTYPE GOAL RECORD INDEX TO SUBFlLE ACCESS

RECOl

REC02
REC03
REC04
REC05
REC06
REC07
REC08
REC09
REC10
RECll
REC12
REC13
REC14
REC15

EMPLOYEE data

MAILSTOP RECO!
EMPLOYEE NAME RECOl
PUBLISH FLAG RECOl

BUILDINGS RECOl
EXTENSION NOs. RECOl
PAYROLL ACCT RECOl
DISU RECO!
CLASS RECOl
ZIP CODE RECOl
LEVEL-ill RECOl
LEVEL-IV RECOl
ELECTRON. MAIL RECO!
CODE RECOl

LBLSTAFF
SERVICE
PHONEBOOK
OCTOPUS .
MAILSTOP

BLDG
ICS
PAN

5

(

,(

Note that there are four subfile names for RECO 1. Depending on which subfile
name is selected, some elements in REC01 mayor may not be displayed, or special
processing mayor may not occur, as discussed below.

As of 10 December 1986, LBLSTAFF,REC01 consisted of 11,449 employee and
guest records, and an average of 600-800 online queries per day.

Because the LBLSTAFF file is constantly updated with name, building &
room, mailstop,. extension: payroll accoun~ numbe~ and otherchang:es, it is an ideal
source from which to publish the alphabetical portion of the LBL pnnted phone
directory. A SPmES protocol containing the necessary command language enables
any staff member to produce a troffinput file covering any specified set of PANs, or
the entire "active" Laboratory st:rlf. The pro~col is invoked simply by entering the
command PHONBOOK, answenng the questions that are asked, and then

· forwarding the file to the LBL phototypesetter over BITNET.
The centralized maintenance ofLBLSTAFF also makes it a desirable "public"

resource for mailing labels, reports, and data in 'satellite' databases. LBLSTAFF
· enables staff supporting these adju~ct applications to avoid redundant maintenance
· of the data already kept up-to-date In LBLSTAFF.

. The LBLST AFF file consists of several physical files and several logical
subfiles. LBLSTAFF refers to the file, i.e., the whole collection of physical and
logical entities. Where the subfile of the same name is referred to, the term
"LBLSTAFF Subfile" will be used.

Data elements defined for REC01 in LBLSTAFF include:
Employee-ID (key)
Employee-name
Alt.name
Office-name

Mailstop
Location

Bldg
Room
EXT

Service-notes
Note
Note date

PAN
Class
Tenure

Terminatation date
Hire date

Basis
Publish
Home

Home-priv
Home Address
City
State
Zip

Home-phone .
phone-pnv
areacoae
home phone

Better-half
spouse-priv
spouse
married

Date-changed
Notes
LevelID
Level IV
Sex
Ethnicity
Computed version ofEPO
Electronic Post Office address
L2
Sequence Name (virtual)

6

',:.:.'

i "<

,,r'-

r'-'-'-'-'-'-'-"
i Census i
! (BLDG & Room)' ••

Telephone
Services

Department
Maintains

Data

" Telephone
Operators ! Plant to Tel. Servo !

F";":"':"':"':"':"':"'='

i PAF information. .
! -Pink Sheets-, ----••
! guest data
~.~.-.-.-.-.-.-.-'

Satellite
Databases

OCTOPUS
subfile

OCTOPUS
subfile

PAN
subfile

REPORT
GENERATOR
USAGE:

1
lBlSTAFF

subfile

t
SERVICE
subfile

BLDG
subfile

PHONEBOOK
subfile

+ +

to!\

Mailroom

t
SERVICE
subfile

lBlSTAFF
File

PHONEBOOK
subfile

protocol

t

Shipping &
Receiving

t
SERVICE
subfile

lBLSTAFF
subfile

protocol

.......... '

AnylBL
SPIRES User

t

, ",
~,

PHONEBOOK
subfile lBLSTAFF

subfile

....
l1:L
lBlSTAff

subtile
protocol

LBLSTAFf
subfile

protocol

r----" • • .PCs ,
• • 1.-_-_01

lBlSTAFF subtile
& CMS autologger

REMOTE SPIRES
makes SPIRES

databases
available to Cluster

Accounts

"Compare­
Procedure with

ADMIN.
Computing System

r'-'-'-'-'-'"
i PHOTO· i ---i.~ ! TYPESETTER 1
I I . . L._._._._._

7

(, Usage of Sub files in theLBLSTAFF File.

LBLSTAFF Subfile.
, The LBLSTAFF subfile access is used primarily for adding, updating and

deleting employee and guest records. Those accounts having permission to SELect
LBLSTAFF generally have permission to see, search, and change the values of most
data elements defined for RECOl. Telephone Services staff perform virtually all

'0< adds and updates. To retain historical data, employee and guest records are not
generally removed from the database unless an employee number changes. Only the
following accounts can SELect LBLSTAFF: TPHHH (Telephone Services data
maintenance staff), ADHDVN and SSDVN (D. Neilsen), and KONRAD.

c

SERVICE Subfile.
When the SERVICE subfile is selected, a format is automatically set to display

employee records in a brief 2-3 line display, and then a SPIRES protocol
automatically initiates to prompt to the user to enter a few characters of an employee
or guest name followed by a carriage return. The screen clears, then forwarding and
routing information is rapidly displayed, followed by a prompt for the next search.
The prompt includes the time of day from the mM 3090 system clock. (!)

The SERVICE subfile is used p_rim,arily by INFORTPH (Telephone Services
attendants), MAILR (Mailroom stafI), and SSRHP (Shipping & Receiving, BLDG
901). It is used for searching only.

PHONEBOOK Subfile.
The PHONEBOOK subfile is accessible to anyone who can use LBL SPIRES. It

displays only those data elements that are displayed in the printed LBL telephone
directory. For example, PAN is displayed, termination date is not. No adding,
updating, or removing of records is penni tted via PHONEBOOK access. Only
searching and displaying records is allowed.

OCTOPUS Subfile.
As a cost-effective alternative to Laboratory-wide redundant maintenance of

personnel data, LBLSTAFF provides sub file access via the OCTOPUS subfile for use
by mailing list, training, and other applications. When Telephone Services updates
an LBLSTAFF record, the new information is automatically and immediately
available to other users when the record is displayed via a satellite database. Users
need only maintain the employee or guest ID's in their satellite subtile records which
acts as pointers to fetch the corresponding records in LBLSTAFF (OCTOPUS). This
functionality is provided using virtual redefined elements and phantom structures.
For example, an RPM record is stored:

8

(

'"

c.

RPM-ID = 47
EMPLOYEE-ID = E490429
but appears;

RPM-ID = 47
EMPLOYEE-ID = E490429
NAME = Allan Konrad
PAN = 9191
Mailstop = 50B-2258
Location

etc.

BLDG = 50B
Room = 2258C
EXT = 5458

The OCTOPUS subtile is accessible to several accounts that are "owners" of
SPmES databases, including KOEHN (for the Administration Division's RPM
database) and SEAL Y82 (for the Safety Training and Emergency Preparedness
Management database).N 0 adding, updating, or removing of records is permitted
via OCTOPUS access. Only searching and displaying records is allowed.

MAnSTOP Subtile.
. The MAILSTOP subfile has, as the key of its goal records,mailstop values from

RECOl records. Usually, it is a building and room, but it need not be. Livermore .
style mailstops are also usable and prevent having to change a mailstop for an entire
group when the group changes their physical location. Elements defined for
mailstop records are:

MAILSTOP (key)
Building
Room
Payroll account number
Oftice-N ame
POINTER
The primary purpose of subtile access to the MAILSTOP record-type is to add,

update, and delete MAILSTOP records in order to validate mailstop value~ entered
into emp~yee records. That is, the MAILSTOP subtile acts as a lookup table to
LBLSTAFF records to reduce the likelihood of an illegal mailstop from being entered
into an employee record. Of course, the MAlLSTOP subtile is also an index to
REC01 goal records when the LBLSTAFF subtile is selected.

Only accounts which have permission to add and update e~ployee and guest
records can add, delete, or change MAILSTOP records. A SPmES protocol is
automatically invoked when the MAILSTOP subtile is SELected to assist in .
assuring that no MAILSTOP record is deleted so long as it contains any occurrences
of POINTER, i.e., so long as an employee record has that mailstop as the value of its
mailstop data element.

9

(
\

(.:

BLDG Subtile.
The BLDG sub file consists of:

BLDG (key)
BLDGNAME
BLDGABBRV
ICSSITE
BLDGMGR (Building Manager ID)
Virtual: Bldg Manager name, ext, mailstop, payroll account number,

termination date
The BLDG subtile acts as an index to the LBLSTAFF goal records, as a lookup

. and translation table to convert building numbers into building names, and as a goal
. ~ecord in. its own rig~t. The tra.D:slat!0~ enables .publishing campus building names
In the pnnted LBL directory malntaimng them In employee and guest records. The
lookup function also provides consistency to the appearance of converted building
numbers. BLDGNAME is accessible to RECOl records as a virtual element. The .
BLDG subtile is also used to associate extension numbers with their ICS SITE.

. Clay Sealy, the Laboratory Emergency Preparedness Officer, now maintains
the Building Manager element in the BLDG subfile.

Access to the BLDG subfile is the same as for theLBLSTAFF subfile.

les Subtile.
The ICS subtile is goal record access to the extension number index for

LBLSTAFF employee and guest records. It consists of:
EXT (key)
POINTER
Active structure

ACTIVE (yes or no)
Date effective

TIP ID or universal receptacle
PLACEMENT
NOTE

When ICS is SELected, it can access the employee subfile to associate employee
names in terms of extensions, and the BLDG subtile to associate leS site nodes in
terms of extensions. When LBLSTAFF is SELected, it can provide the same data in
terms of employee records. This provides "A in terms ofB, and B in terms of A"
functionality. The extension number index is maintained by virtue of Telephone
Services staff effort to reflect telephone service orders into the LBLSTAFF (and, if
needed, leS) subtiles. The ICS subtile is accessible by the KONRAD account.

PAN Subifle.

The payroll account number (PAN) subtile is used much like the BLDG subfile,
to provide a lookup translation table so that payroll account numbers in employee
records can be translated into text descriptions the department or group.
P ANNAMES are maintained by Telephone Services. Virtual redetined elements in
RECOl are used to provide the translated PAN to employee records. The PAN
subtile also acts as an index to LBLSTAFF goal records when the LBLSTAFF,
PHONEBOOK, or OCTOPUS subtiles are selected. PAN subtile elements are:

10

(PAN (key)
POINTER
PANNAME

Access to the PAN subtile is the same as for the LBLSTAFF subtile .

. , : ..

",

11

(IV. Examples: Why SPIRES-like functionality is Useful in Directory Services.

..

(.

A brief description of some basic SPIRES concepts is presented to provide a better
understanding of how LBLSTAFF fulfills the requirements of a directory services
system and for its integration with related applications. The order of presentation is
as listed in Section ll .

1. Inverted Lists as Indexes for Efficient Searching.

The primary structural concept in SPIRES is use of multiple record-types as
indexes to a goal record record-type. A record-type is a collection of goal or index
records. A record is a collection of data elements and their values. The first element
in each record is a unique key. Goal records are often contained in a record-type
(RECTYPE) named REC01. Index records are in separate record-types, e.g., REC02,
REC03, etc., though they may have any legal name. A simple goal record might
appear:

KEY = 123
NAME = TOM SMITH
EXT = 5555

The characteristic that differentiates goal records from index records is that
index records include an element called POINTER:

KEY = SMlTH,TOM
POINTER = 123 (actually a hexidecimal address for

"123" where 123 is the key of a goal
record for Tom Smith)

The POINTER value is derived from the location of the goal record to which it
points, much as the paiIe number in the index in the back ofa book points to the page
on which a given topic IS discussed. However in SPIRES, the user is not aware of the
POINTER value. SPIRES uses it internally to present retrieved records to the user.
For example,

Goal record rectype: Index record rectypes:

RECTYPE REC01
KEY = 1
NAME = TOM SMITH
EXT = 5555

KEY=2
NAME = JOHN JONES
EXT = 4444

RECTYPE REC02 (name index)
KEY = JONES, JOHN
POINTER = 2

KEY = SMITH, TOM
POINTER = 1

RECTYPE REC03 (EXT index)
KEY = 4444
POINTER = 2

KEY = 5555
POINTER = 1

Before doing a search in SPIRES, the user first SELects the subfile to identify
which set of goal records are sought. A single goal record record-type may be
accessed by several different subfile names. This is useful to control which users can
see or update particular data elements and perform other tasks.

12

:',

c

The FIND command in SPIRES searches the index records to locate pointers to
goal records that meet the search criteria, and then reports the result to the user:

User: Find ext 4444
SPIRES: RESULT 1 RECORD
User: Type
SPIRES: KEY = 2

NAME' = JOHN JONES
EXT = 4444

When a search is initiated, using the FIND command, the index record-type is
searched, not the goal records. This is important in directory service as it speeds the
searc?ing process significantly in a large database, ~ducing waiting time to
realtime users such as telephone attendants andmallsorters.

Obviously, the element POINTER can be multi ply-occurring if there are
several employees with the same telephone number:

Goal record rectype: Index record rectypes:

RECTYPE RECOl
KEY=l
NAME = TOMSMlTH
EXT = 5555
EXT = 4444

KEY=2
NAME = JOHN JONES
EXT = 4444

RECTYPE REC02 (name index)
KEY = JONES,JOHN
POINTER = 2

KEY = SMITH, TOM
POINTER =1

RECTYPE REC03 (EXT index)
KEY = 4444
POINTER = 1
POINTER = 2

KEY. = 5555
POINTER = 1

Note that in all record-types, SPIRES stores records in order by their key.
Thus, an inverted list, which serves as an index, is presorted, as are the goal records,
conserving CPU resources durin¥ searching. The presorted aspect ofinverted lists
can be used by SPIRES to ftdrive' the order of output of goal records rather than
performing the sort in realtime for mailing labels, building lists, etc. .

Searching for records based upon the non-indexed elements is performed
directly (sequentially) rather than via an index, which is equivalent to searching for
a topic in a book page-by-page rather than using the index to go directly to the
desired pages. . .

"A in terms ofB, B in terms 0 fA" capability is provided merely by indexing.
For example, suppose telephone set records contained a multiply-occurring element
FEATURES, which is indexed. Displaying any single record will display all the
features associated with that telephone set. The search FIND FEATURE = X
retrieves all the records of telephone sets with that specific feature. One can display
all the features of an extension, and all the extensions with a particular feature.
This capability is used in LBLSTAFF for all elements that are indexed, e.g., PAN,
and EXT.

13

:.

(. The following elements are indexed in the LBLSTAFF (PHONEBOOK,

c

OCTOPUS) subfile:
Mailstop
Employee name and

alternate name (same index)
Publish Flag
Buildin
EXT g
PAN
Code

Display-Under
Classification (data not maintained)
ZIP Code (home addresses)
Level-ill Distribution
Level-IV Distribution
Electronic Mail Addresses (data not yet

acquired or entered)

2. Index Record-Types Can Serve as Goal Records for Multiple Views of Data.
. Records in index record-types have the same structure as goal records, i.e., an

element that is the unique key, followed other elements. The POINTER need not be
~e only other element besides the key in an i.nd~x r~cord. For example, in the EXT
mdex record-type (REC03), another element Indicating the color of the telephone
might be defined. The record-type structure would appear:

REC03

In the example,
Goal record rectype:

RECTYPE RECOl
KEY = 1

KEY
POINTER
COLOR

NAME = TOM SMITH
EXT = 5555
EXT = 4444

KEY=2
NAME = JOHN JONES
EXT = 4444

Index record rectypes:

RECTYPE REC02 (name index)
KEY = JONES, JOHN
POINTER = 2

KEY = SMITH, TOM
POINTER = 1

RECTYPE REC03 (EXT index)
KEY = 4444
POINTER = 1
POINTER = 2
COLOR = RED

KEY = 5555
POINTER = 1

.~ COLOR = BLUE

In such a case, it may be desirable to process REC03 records in two different
ways: as index records, and also as goal records in their own right. Such a record­
type is called as a GOAL-INDEX record-type. Element values in a goal-index record,
e.g. for the element color, can also be indexed for searching. Such a COLOR index

(might be REC04.

14

c·

~:

' ..

SPIRES provides access to goal records in goal and goal-index record-types as
"subfiles", what users think of as "databases". Thus, in the example above, REC01
might be called the E:MPLOYEE subtile and REC03 might be the PHONE subtile.

This dual role of record-types is one way that integrated non-duplication of
data is achieved in SPIRES. For example,P AN and P ANNAME elements do not
both have to be stored in each employee record, only the PAN. And if the
P ANNAME is changed, it need only be changed in theP AN subtile which
automatically causes the change to be reflected in employee records. Satellite
databases such as RPM and TRAINING are important examples of how data can be
stored and maintained in a single place, but be used as if it were stored in the many
databases in which it is needed.

This dual role record-type also provides some of the relational capability in
SPIRES. Much attention has been given recently to relational database systems
which can provide useful on-the-fly views of data. However, practical considerations
can remove some of the advantages,e.g.,:

• Multiply occurring elements are not usually accomodated in relational
systems; rather,separate records are created, either needlessly duplicating
data or else adding complexity to the tile structure.

• Hierarchical structures are often not allowed. Structures must be normalized,
imposing a flat tile structure, proliferating records which must be recombined
in some fashion, but most importantly, potentially losing the important meta­
information provided by the organization of the data into a structure;

• JOINS must be computed at the time of search (usually prime interactive
time), rather than overnight or as each record is added or updated, as in
SPIRES. Relational systems are often CPU-intensive at search time for this
reason, putting the burden of waiting on the searcher. Searching is generally
much faster in SPIRES, though JOINS can provide better flexibility.

• It is sometimes difficult to accomodate non-tabular data in relational systems,
e.g., bibliographic abstracts and personal names.

3. Versatile Query Language.
As indicated, searching for goal records in SPIRES can be done either using

indices or searching the records themselves sequentially. Relational operators can
be used in queries (=, >, <, - =, > =, < =), range operators (from - to, b~tween-and),
content operators (HAVING, PREFIX, STRING, WORD, WITH, etc), and logical
operators (AND, OR, NOT). For example,

FIND PAN> = 9000 and < = 9010
FIND MS HAVING 50

Compound searches are permitted, i.e., searching two indices:
FIND NAME SMITH AND PAN 9044

Inclusion and exclusion lists are recognized in queries using SEARCHPROCS
and PASSPROCS (Section IV .15.1). For example, PASSPROCs and
SEARCHPROCs for the ELECTRONIC MAIL element might specify the word AT
and the symbol @ in an exclusion list.

Search results can be resequenced using the SEQuence command.

15

(
"

c

..

Search commands can use truncated values, e.g.,
FIND NAME G. SMI#

will find Greg Smith.
The capability of successive refinement of search results is allowed.

4. Multiple Elements Passed to Single Index, Element Values Passed to Several
Indices.
A record in the LBLSTAFFsubfile for a stafl"member with a newly-changed

name might appear.

ID = 123
NAME = Susan Jones
ALTERNATE NAME = Susan Smith
etc.
Either search command

FIND NAME S S:MITH or
FINDNAMESJONES or

FIND NAME S SMITH OR S JONES
will find her record, even though SMITH is the value of the ALTERNATE NAME
element, not the NAME element, because both the NAME element value and the
ALTNAME values are passed to the name index. This is important in directory
services where a telephone or Mailroom attendant does not know the employees new
surname or even that the employee has a new surname.

At present, no data element values are passed to more than one index. But, for
example, it might be useful to pass LEVEL-IV values to both LEVEL-m and
LEVEL-IV indices so that a search on LEVEL-m includes those employees on the
LEVEL-IV distribution.

5. Virtual Indices and Indirect Searching.
It is occasionally useful to search for goal records based upon data that does not

exist, and to have the records in the search result processed and displayed as usual.
SPmES provides two ways to accomplish this task, both by applying rules rather
than utilizing stored data. The first is to build an index based upon data that does not
exist, and to search that index in the normal way. For example, one might have
employee records which contain a data element named ELECTRONIC.M.All.., where
the values contained in the element are electronic mail addresses in the form
XONRAD at UCBCMSA' or fAKONRAD@LBL'. Such values are probably passed
to an electronic mail index (say, EM), which is likely to be a word index. Prior to
passing values to the index,@'s are changed to blanks, fAT' is changed to null (to
conserve storage), then the value is broken on blanks and each word passed to the
index separately. This would enable the following searches to occur successfully:

16

(

(

i
\

FIND EM KONRAD
FIND EM UCBCMSA
FIND EM KONRAD UCBCMSA
FIND EM UCBCMSA KONRAD
FIND EM KONRAD AT UCBCMSA
FIND EM AKONRAD@LBL
FIND EM AKONRAD
FINDEMLBL

But it might be desirable to search on network names such as ARPANET or
BITNET. But, such values are not stored in the ELECTRONIC MAIL element in
employee records, nor need they be. A second index can be defined called
NETWORK. Values of the EM element are passed to this index just as they are to

. the EM index, except that everything before the last word delimited by blanks is
changed to null, and the remaining string is converted based upon a table, e.g.,
UCBCMSA is converted to BITNET, LBL is converted to ARPANET, or ARPANET
AND BITNET, etc. Thus the following searches become legal:

FIND NETWORK BITNET
FIND NETWORK BITNET AND EM KONRAD
FIND NETWORK ARPA AND EM LBL

Non-existent data can be indexed and searched in other ways, such as from virtual
elements which fetch data from other databases.

A second method, used by LBLSTAFF satellite databases, is to search an index
that does not exist (a virtual index). This is called indirect searching. As mentioned,
the RPM and TRAINING & EJMERGENCY PREPAREDNESS subfiles contain no
employee data other than the employee-guest ID which is also the key of the
corresponding record in LBLSTAFF. When an RPM or TRAINING record is
displayed, that value is used to fetch elements from the appropriate employee record
and display them as if they were part of the RPM or TRAINING record. But what
about searching? It would be useful to be able to search for employee data even
though none is stored in such databases. For example, it would be useful to search a
PAN index in the satellite subfile:

SELectRPM (orTRAINING)
FINd PAN 9191

even though no PAN element or index is stored.

In fact, this command sequence is legal and generates the correct search result
because "indirect search" is implemented for the selected database. Indirect search
operates as follows:

The subfile having been selected, the user issues a FIND command, as above.
SPmES performs the search on a secondary database, in this case, LBLSTAFF,
e.g., finds all the records with PAN = 9191.

Rather than reporting this intermediate search result, SPmES then filters the
search result to determine which records correspond to records in the selected
(satellite) subfile (RPM or TRAINING) that contains the specified element-in­
common, in this case, employee ID.
This filtered result is then returned to the user, who may then process (e.g.,
display, resequence) the records as with any search result. This has several
advantages. First, less storage space is required. Second, only one index need
be maintained whenever the PAN in an employee record is changed.

17

c

6. Non-Tabular Data Accommodated.
Many database applications employ data that is not easily or appropriately

presented in a table. This is true from a formatting standpoint, where physically
arranging such data into a table is inappropriate and difficult,e.g., the abstract of a
scientific paper. For example, wrapping long text values on several lines so that
words are recognized, starting a newline at the beginning of a word rather than in
the middle of a word, makes generating legible reports easier. It is true from a
logical standpoint as well, where data elements often do not occur in a record leaving
"holes" in the table, or where elements occur mUltiple times within a record. Some
database systems force data into tables when such a model does not reflect reality.

In LBLSTAFF, non-tabular data such as a payroll account number translation,
alternate name, and home address are easily accomodated.

7 . Variable Length Elements.
The purpose of variable length elements is to avoid storing and processing

blank characters so as to conserve storage space, to make output formatting easier,
and to avoid having to guess what the longest value ever used will be at the time of
the definition of the database. Fixed length elements require knowing in advance
what the longest value will be, which is impractical, or guessing "long" and wasting
storage, or else guessing wrong, too short, and truncating or abbreviating some
values. For example, the NAME element in LBLSTAFF contains a record where the
value is:

ALEXISESCHACHVONWrrl'ENAU
a total of28 characters. But most names are much shorter. Thus, if the name
element were defined as a fixed length element long enough to store the above name,
then much storage space would be wasted on all the shorter names. Some systems
suppress trailing blanks internally, but then force their restoration when the record
is displayed making output formatting inconvenient. For example, to concatenate
ELEMENT B to ELEMENT A, as in a bibliographic entry, where ELEMENT A is a
fixed length, might require programmer intervention to strip trailing blanks, or
worse, user intervention to accomplish a properly formatted output:

Smith, John. How to Build Computers. 1986.
rather than,

Smith ,John . How to Build Computers. 1986.
Ifthe·name element were fixed length at, say, 28 characters, then blanks would need
to be removed to produce a properly formatted bibliographic entry as above.
Further, ifpersonal names are stored as separate elements (surname, pre-surname,
post-surname), formatting a whole personal name can be more complicated.

Although fixed-length elements are definable in SPIRES, they are rarely used.
Though they require slightly less overhead, the inflexibility is usually not worth the
small savings. For example, it is tempting to define elements such as LBL
EXTENSION or PAN as 4-byte fixed length. But many LBL extensions are off si te,
requiring 6 or 7 digits. PAN's were defined as fixed length, 4 byte values. This error
in foresight became apparent when the Laboratory began using PAN sub accounts.

A less obvious advantage to variable length elements is absence of arcane
schemes for abbreviating English words and pnrases in data values that usually
evolve by necessity in fixed-length storage schemes. Often, only the person who

18

c

performed the abbreviation can translate it back into English. Even if the users are
familiar with the abbreviations, such data often finds its way into reports printed for
public consumption or for managers who are unfamiliar with the terminology, much
less the abbreviations.

8. Optionally Occurring Elements.

Most elements are defined in SPIRES as optionally occurring so that storage
space is not consumed when there is no element value applicable. As well, it is
useful to be able to isolate records on the basis of whether an element occurs or does
not occur, or occurs a specific number of times, or occurs but with no value.

For example, an element ALTERNATE NAME is defined in LBLSTAFF so
that employees can be searched based on either maiden or married surnames. Yet
most employee records have no occurrence of the AL TN AME element and no disk
storage is consumed by the element for those records.

9. Multiply Occurring Elements.

Some employees have more than one location, e.g, an office and a laboratory.
Multiple occurrences of elements such as building, room, and extension must be able
to be individually processed (stored, searched, and displayed), rather than strung
together as a single text string. This enables values to be indexed separately for fast
searching, and the formatting of each new occurrence of an element to begin
automatically on a new line without having to detect where in a string the new
occurrence begins. Storing multiple occurrences separately also allows extension
numbers to be processed separately, e.g., automatically inserting a hyphen into
extension numbers that are six or seven characters, but leaving 4 byte numbers
unchanged. Some database systems do not permit mUltiply occurring elements
except as the last element defined.

10. Structures.

To the extent that computer programs coincide with reality, the more useful
they are. Often there is inherent logical association among multiply occurring
elements. For example, an employee may have two locations, as described above. It
is likely that the telephone numbers associated with each are different and that
association must be retained. Thus, an element of type STRUCTURE (named
LOCATION in LBLSTAFF) logically binds occurrences of elements hierarchically
beneath it:

Without Structures:

KEY = 123
NAME = JONES, JOHN
BUILDING = 50
BUILDING = 51
ROOM = 4220
ROOM = 10
EXT = 4444
EXT = 5555
EXT = 6666

Wi th Structures:

KEY = 123
NAME = JONES, JOHN
LOCATION

BUILDING = 50
ROOM = 4220
EXT = 4444
EXT = 5555

LOCATION
BUILDING = 51
ROOM = 10
EXT = 6666

19

c

.

Structural binding enables all elements in a single structure to be processed
together automatically rather than having to perform some procedure to accomplish
that task. It is important in displays, especially the printed phonebook to associate
(logically bind) extension numbers with their proper location:
Jones, John .9330 50 4220 4444

5555
51 10 6666

Rather than (simple line-by-line display).:
Jones, John 9330 50 4220 4444

51 10 5555
6666

in which case ext 5555 is mistakenly associated with the wrong location.

11. Variety of Data Element Types.
11.1 Stored elements
11.2 Computed elements

11.1 Stored elements
11.1.1 Text
11.1.2 Personal name
11.1.3 Date, time
11.1.4 Integer, real, decimal, packed
11.1.5 Bit, yesno
11.1.6 Dollar (real + rules)
11.1.7 Structure
11.1.8 Executable element values
11.1.1 Text. TEXT is the default element type. Any element value is accepted.

Most elements in LBLSTAFF are defined as type text.
11.1.2

•
•
•

Personal Name Processing.
In processing personal names, one has four choices:
use a single field and enter last name first, which has an undesirable
appearance for some applications such as mailing labels;
use a single field and enter first name first, which yields an undesirable
sort order;
use separate fields for surname, pre-surname, and post-surname data so
that they can appear in any order. However, this adds complexity
because the portions must be recombined every time the name is
processed (displayed).

• use a single field and define processing rules that identify the surname,
and allow a variety of output formats.

SPIRES employs the fourth alternative, applying rules (called $NAME, $PNAME)
to input, output, index, and search values such that, in the following example,
SMITH is always identified as the surname:

20

(John Smith
J.Smith
Smith,John
Dr. John Smith
Dr. John Smith, Jr.
Smith,ra,D~John
John Smith-Jones

Further, a special $N AME option used in LBLST AFF allows
Smith m, Dr. John

to be processed properly as well.
Personal name processin~ in conjunction with other SPIRES facilities enables

the following names to appear In the printed directory in their proper sequence in
spite of the special characters:

DeHaven
De Jonghe
DelValle
De Marco

O'Keefe, Mike
Oki,Mike

Truncation (wild card) characters allow surname prefix searching without
requiring the entire pre-surname portion:

C FIND NAME J SMI#:
is acceptable. The user does not need to enter:

FIND NAME JOHN SMI#:
All of the following will find John Smith's record:

FIND NAME SMITH
FIND NAME J SMITH
FIND NAME JOHN Smith
FIND NAME J Smi#:
FIND NAME Smi#
FIND NAME Smith, J

There are other aspects of SPIRES personal name processing, especially
regarding indexing and searching, and processing of the non-surname portion, which
provide high utility.
11.1.3 Date. time. All common forms of date are recognized upon input and

converted to the hexadecimal form ofCCYYMMDD. Outprocs (output
processing rules) allow for most any form of date to be specified upon
conversion to output, including:

01105/87
JAN. 5,1987
MON. 01105/87
MON. JAN 5,1987
Jan. 5, 1987
Mon Jan 5, 1987
Monday, January 5,1987
Mon. 05-01-87

21

(

c

11.1.4

11.1.5

11.1.6

11.1.7
11.1.8

1987.01.05
MON. 5 JAN 1987
MON. 1987 JAN. 05

Integer, real, decimal, packed, Stores and displays numerical data
efficiently and allows appropriate operations to be performed upon
element values.

Bitt yesno. Since any employee or guest might be sent mail or telephone
cat s, it is essential that both employees and guests be included in the
LBLSTAFF subfile. Further, those persons might be sent mail or
telephone calls even after termination, and so their extension and
mailstop must be retained so that another staff member in the group or
department can transact Laboratory business as needed. When an
employee is terminated, a termination date is entered in their record,
rather than removing the record from the database.

Thus, not all persons represented in the LBLSTAFF database should
appear in the published telephone directory. A YESINO flag is used in
LBLSTAFF to distinguish whether a record should appear in the
published LBL directory. This control is provided by the PUBLISH
element in each record which is required to have a value of either YES or
NO. Non-terminated employees are assigned a YES value. When the
terminate, the value is set to NO. Guest records are assigned
PUBLISH = NO, except where their sponsoring department or division
requests that they appear in the directory.
Dollar. Special characters (dollar signs) are stripped on input and stored
as type real. Special characters restored upon output.
Structure. Structures are discussed above (IV.10)

Executable element values. Allows elements to be interpreted as
commands.

11.2 Elements Computed rather than stored:
11.2.1 Virtual. Creates a value either by operating on values of other elements

or system variables, or by generating a value in a programmer-defined
manner.

11.2.2

11.2.3

11.2.4

Redefined Virtual. A type of virtual element that redefines an ,element
that exists in the database. E.g., in TRAINING, the virtual element PAN
redefines the employee ID to be the PAN by accessing OCTOPUS.

Dvnamic. Allows a user to define an element derived either from other
etements or from variables, which exists for the duration of an interactive
session. For example,

DEFINE ELEM ANNUAL SALARY AS @SALARY * 12
Dynamic elements are used occasionally in LBLSTAFF for ad hoc report
making.

Phantom Structures. A type of virtual element that enables a record or
part of a record in one subfile to appear as if it were part of a record in
another based on sonie element-in-common in an output format. For
example, in the TRAINING subfile, the data describing courses appears
in student record as if they were part of the student record.

22

..

,-
! 12. Case Handled Intelligently.

c

Data can be entered and stored in mixed or uniform. case. Input rules
(INPROCS) can be specified to force all input values to a specified case, e.g., first
letter upper - the rest lower, all upper, etc. Regardless of the case in which goal
record data is stored, index values and search values are forced to upper case, by
default, so that the user need not know the case for searching (although this feature
is overrideable):

FINd NAl\'.IE I smith will find: L Smith, I smith, L SMITH, etc .

13. Word Indexes.
By coding $WORD in the file definition PASSPROCs and SEARCHPROCs, the

element value string will be stored as a single text string in the goal record, but will
be passed to its index as separate substrings delimited by blanks or other designated
characters (i.e., words) rather than as a single string. .

For example. the ELECTRONIC MAIL element in a record might appear:
EM = KONRAD AT UCBCMSA

It is desirable to have the following searches all successfully retrieve the record:
FIND EM = KONRAD
FIND EM = UCBCMSA
FIND EM = KONRADATUCBCMSA
FIND EM = KONRAD UCBCMSA
FIND EM = UCBCMSA KONRAD

P ASSPROCs and SEARCHPROCs can convert ~A T' to null and ~@' to space for
indexing and searching.

14. Protocols Language Tools.
SPmES protocols language provides general language tools such as if-then­

else branching, all SPIRES query commands, system variables, user-defined
variables, report making commands, the ability to read from and write to CMS files,
and the capability to prompt the user, then store the response in a variable which
can be tested or otherwise processed. Of course, the same functions can be
accomplished in common programming languages such as COBOL or FORTRAN,
but they lack built-in ~owledge" of SPIRES data and structure, and would require
much more programming effort.

The SERVICE subfile uses a SPmES protocol named FASTXEQ to prompt
telephone and mailroom attendants for search values so that they do not need to
know any SPmES query language.

23

(

..

c

..

15. System Procedures, Functions, and System Variables.

As mentioned, a database system is a collection of pre programmed software
tools. SPIRES provides many such tools in the forms of system procs, system
variables, and system functions.

System procedures (PROCS) are actions that can operate on values entered intO
SPIRES, output by SPIRES, passed from a goal record to an index, or values specified
by a user in a query. They enable customized processing to occur using pre­
~rogrammed tools which save programmer time and owner-defined tools which add
flexibility:

INPROCS
OUTPROCS
PASSPROCS

Actions executed when the record is input (or updated)
Actions executed when record is displayed or pnnted
Actions executed on an element value before it is passed to an

index
SEARCHPROCS

USERPROCS

Actions performed upon a search value before the index is
searched

User-defined procedures for input, output, passing, or
searching.

. A USERPROC can be written to process a value based on either another
element value or the current value of some system or user variable, or other source.
This is important for sequencing names properly in LBLSTAFF for the published
phonebook. Some names contain blanks, apostrophes and other special characters.
Records to be published in the directory are sequenced, not according to the value of
the NAME element, but according to a virtual element called SEQN (ftsequence
name") which processes the NAME value by calling a USERPROC:

Element = Name;
Inproc = $NAME.SPECIAL(comma);
Outproc = $NAME.SPECIAL(comma);

Virtual elements:

Element = SEQN;
Outproc = $CALL(CANON)I $CALL(NICKN)
REDEFINES = NAME

USERPROCS;

USERPROC = CANON;
Let SQN = $cap($value)
Let SQN = $change(#sqn, "",")
Let SQN = $change(#sqn,-,9)
Let SQN = $change(#sqn,JR.,null)
Let SQN = $change(#sqn,SR.,null)
Let SQN = $change(#sqn,III,null)
Let SQN = $change(#sqn,II,null)
etc.
Set VALUE = #sqn

removes apostrophes
changes hyphen to 9 for sequencing
removes JR.
removes SR.
removesm
removes II

24

C'

,.,

USERPROC = NICKN
let m = $match($value,?C«,?) scans string for double paren which

indicates a nickname is included in
name string

If #m = 0 : return If 0, no nickname in string
let surname = $break($value,',')
let nickname = $break($value/({')
let nickname =$strip($value,#nickname)
let nickname = $change(#nickname/»'null)
let nickname = $chan~e(#nickname, C((' ,null)
set value = #surname ,'#nickname

Therefore, the names indicated in Section IV.I1.11 will appear in the printed
phonebook in the proper sequence despite the special characters.

Examples ofINPROCS, OUTPROCS, PASSPROCS, and SEARCHPROCS:

$break

$call
$date
$date.out

$Default·
$dollar
$dollar.out
$getelem

$GETUVAL
$GETCVAL

$length
$max.len
$min.len

$lookup
$subf.lookup

$max.occ
$min.occ

$msg

$name
$pnames

$range

$search.subf
$search.trunc

$time

$yesno
$yesno.out

Splits value into multiple occurrences at delimiters

Calls a programmer-defined procedure
Verifies date value, converts to hexadecimal
converts hex value to specified output format (Section IV.I1.13)
Generate default values

Converts money text string to floating point
converts floating point to money text
Fetch a specified occurrence of an element value from a specified
record
Navigates the record structure to fetch specified value
(internal or external version of value)

Verify length of element value

Fetch a data element value from a record in another subfile or
record-type.

Verify number of occurrences of data element value

Specify text of error message in event error occurs.

Convert personal names for processing

Verify that value is in a specified range

Perform indirect searching (virtual index)

Allow truncated searching on an index

process time value

Flag processing

25

(Especially important are the text-oriented actions:
$break Splits value into multiple occurrences at delimiters
$cap Capitalizes words or entire values
$lowert Changes value to lower case
$case Provides several options for specifying case
$change Changes a character string to another character string or null

e.g., $change(hello,goodbye) changes "hello" to ~goodbye".
.. $exclude Discards values in a list, usually for indexing and searching, e.g.,

"at, the", etc.
$include Process only those values in a list, e.g., index only months of the

:: year from an element value . . :'
'::'

$insert Insert a text string before, within, or after a value.
:::

$insetl Left (right, or center) justify a value and fill to make a value of size n
. $insetr E.g., $insetl(hello, + ,10) returns "hello + + + + +"
. $insetc
$LSTR Returns a substring of the input value truncated to its leftmost
$Rstr (rightmost) portion for a specified integer number of characters.

E.g., $lstr(find,3) returns "fin"

$LSUB,* Returns a substring of the input value truncated to the left (right)
$RSUB* of a specified substring, e.g., $lsub(select,e) returns "s"

($match Compares input value with a predetermined list of string/atterns
"- and returns the corresponding integer, e.g., $match(Z,x, ,Z)

returns ~3".

$pmatch Acts like $match but for matching against exact stems
$Substr Extract string from within a value .
. $Xstr

$size* Returns the length of the value in bytes
$squeeze Removes leading, trailing and multiple blanks.
$Strip Returns substring of the input value beginnin: with first character

found in the value and not in a second specifie string, e.g.,
$strip(book,oeb) returns "It" .

::: $SPAN Returns substring of the input value broken to the left of any
character found in the value and not in the second specified string,
e.g., $span(book,oeb) returns "boo".

, .. $verify Verify that value is of a specific type (real, integer, text, hex, date,
etc.)

$word Separate value into individual occurrences at blanks or other
specified delimiter

* indicates this function also available in AT&T CSM

\ -

26

(

..

:: .

. ,.

..

System variables provide access to useful information about SPmES both
interactively and in SPmES protocols. There are many, the most often used
including:
$Account Returns the user's logon ID.
$Ask Stores the most recent response to the ASK prompt
$Date, $time Current date and time
$Filename Name of currently selected or attached SPmES file
$Format Name of currently set format.
$Select Name of currently selected subfile
$subfile size Number of records in the subfile
$key Key of goal record most recently processed
$Lastcmd Stores the last command executed
$ result Number of records in the most recent search result
$yesno Indicates whether the previous command failed.

There are many others for specific functions, such as output formatting:
$CCOL Stores the column that will be written to next
$Crow
$cval
$Wdsw
$wdsr
$idata
$odata
$pageno
etc.

Stores the row that will be written to next
Converted value of most recently retrieved element
The line most recently written (e.g., the 15th line)
The line most recently read
Name of input file
Name of output file
Last page number written

27

(

.. .

16. Ease of Use for Adding, Updating, Removing Records.

As with many systems, element-by-element prompting is available for adding
and updating records. But it is not mandatory to step through an entire record in
that manner. SPIRES also allows a user to transfer a whole record into a user file
where it can be edited with a full screen editor.

Further, the full screen editor enables occurrences to be repositioned relative to
each other with out reentering the data (as in Datatrieve). Suppose a record
appeared:

KEY = 1
NAME = TOM SMITH
LOCATION

BLDG = 50
ROOM = 222
EXT = 5555
EXT = 4444
EXT = 6666

and suppose that it was desired that the 6666 extension become the primary
extensIon. The line can simply be moved in the editor and the entire record returned
to the database.

It is helpful in editing LBLSTAFF location structures with multiple extensions
to be able to combine or separate a structure on a full screen, i.e., to have access to
the whole record simultaneously, and then simply return the edited record to the
database with the UPDate command.

17. English-Like Syntax.

SPmES syntax is intuitive:

show private subtiles (show what private databases can be selected)
SELect < subfile > e.g., sellblstaff
sho formats (lists custom formats available)
Show elements
Sho subfile size (shows number of records in the subtile)
sho subtile information
Sho select (shows name of subtile selected)
Sho result (shows size of the search result)
shoindexes
sho element information
browse < index name> < value> e.g., browse name smith shows the

"smiths" in the name index
Find name dave shirley and bldg 50
set format snarf
sequence bldg room name (resequences records a search result or a stack)
T~e .
for subfile where location occurs > 1
Update
clear format
for updates where publish = NO
display all

28

(18. Security.

Various security features are provided in SPIRES.

18.1 Deferred Queue. It is essential in database updating, as in text editing, to have
some means to undo a change and to return to any previousversio'n of a record.
If, for example, an incorrect value has been entered in one or more records, or

,.. records have erroneously been deleted from the database, it is important to be
able to restore the prior state. As well, it is useful to be able to obtain a view of
"all records updated today" or "all records added today". SPIRES provides this
capability by storing all versions of a record made "today" in the Deferred
Queue which allows access to each version as well as access to the unchanged
and unremoved version of the record. The current version is always presented
by default.

18.2 Concurrent Updatinf Control. It is essential in a multi-user database that no
user's modification 0 a record interfere with or "wipe out" a simultaneously
updated version of the same record by a different user. This is important in
LBLSTAFF where several accounts have permission to update records.
SPIRES handles concurrent updating appropriately with the use of
SECURE-SWITCH 10 being SET in the file definition:

• A user TRAnsfers a record to a physical (CMS) file which can be edited. The
record is not removed from the database during this time. It is still displayable
by other users. The TRAnsfer command transfers not the record, but control of
the record to the user who is updating it and a copy to a CMS file where it can
be edited.

• If another user attempts to update the record by issuing a TRAnsfer (or
MERGE under prompting), a message is sent to the second user indicating that
someone is presently updating the record and prevents transferring control of
the record to his account.

• When the user updating the record has finished editing, he issues the UPDate
command which sends the new version of the record to the database as the
current version, and enables any other individual who has permission to
TRAnsfer the record to perform updates of his own.

18.3 Recovery After a Day. If the erroneous modifications by an authorized user are
not discovered the same day, Le., while they're still in the deferred queue, the
CMS RESTORE facility can provide earlier versions of CMS files. Thus, the
database can be restored to appear as it did on almost any previous day. At
UCBCMSA, the tape backup facility runs continuously, backing up changed
files nearly every day.

18.4 Recovery After a System Crash. If the computing system crashes during an
add, update, or overnight processing, it is important that the database system
be able to recover gracefully. SPIRES recovers from such incidents, usually
transparently, by use of internal checkpoints. Occasionally the file owner is
required to issue a PROCESS command to complete the interrupted processing.
SPIRES users do not lose data in the event of a system crash unless they are in
an editor when the system does down. In that event, the data has not yet been
entered into SPIRES and thus SPIRES cannot save it. CMS might retain a
portion of the edited file.

29

",

("

..

18.5 Recovery During Disk Crash. Occasionally disks may become unusable. When
this occurs to LBLSTAFF, it is simple to modify an entry in FTI.ELOC, a
SPIRES database that tells SPIRES which CMS files are to be considered as the
files that comprise a particular database, to point to backup copy of the
database. This occurred in December, 1986, and the database was available in
less than 10 minutes after the crash. Later that day, the data on the bad disk
was restored by UCMCMSA staff. It was not necessary to use the CMS
RESTORE facility which provides system backup and restoration, but that too
was available had it been needed. No SPIRES data has ever been lost at
UCBCMSA.

18.6 Security at the Element Level. Users have persmission to see or not to see,
update or not update, and to search or not search each data element in a
SPIRES subfile individually by element, individually by user, if desi:red.
SPIRES employs the mechanism of a PRIV-TAG associated with each element
and linked to an accounts list to identify which users can process which
elements and what processing is allowed. This feature is used extensively in
LBLSTAFF.

18.7 Security at the Subfile Level. It is important to be able to control accesS to the
each subtile, which SPIRES accomplishes by allowing specified accounts for
each subfile access. For example, on~y the Mailroom, Telephone Services, and
Shipping and Receiving can SELect SERVICE to get rapid employee location
displays that include termination dates.

18.8 Data Validation. It is essential to be able to control element values. For
example in LBLSTAFF, mailstop values must occur in a lookup table record in
theMAILSTOP subfilebefore they can be used in an employee record. This
reduces the chance of spurious mailstop values from being entered into
employee records. Many other types of data validation are available, including
the capability for the file owner to write their own procedure that is compiled
into the file definition, a USERPROC, that is invoked each time the element is
processed in a record.

18.9 Subfile Logging. For SPIRES subfiles for which ItCommand Logging is in
effect", every command entered by a user, and the date and time are entered in
the log. This is especially helpful in assisting new users .

30

..

..

(19. Report Generators.

c:

\.

SPmES provides three means of output formatting:

First, the default SPIRES output format, which is used for most updating, is an
element-by-element listing in the form: .

(Element name) (optional equal sign) (element value) (semicolon)

E.g., ID ::: 123;
Name = John Jones;
Location;

Bldg = 50;
Room = 130;
EXT = 4444;

. The second form of output formatting is invoked interactively by setting format
$REPORT, which produces a table:

SELect LBLSTAFF
FIN PAN 9191
SET FORmat $REPORT ID(2,7) NAME(10,30) pane 45,4) EXT(50,10)
TYPE (or IN ACT CLR DIS ALL to put the result in a file)

m
E111111
E222222

E333333
etc.

Name

Fink, Robert
Konrad, Allan

Rogers, Sig

pan

9191
9191

. 9191

EXT

4444
5555
7091
6666

Format $REPORT is used to download formatted LBLSTAFF records to an LBL Vax
for distribution to other systems.

Finally, customized formats are programmable to allow specific processing and
placement of data, general language features such as looping, if-then-else, etc., and
creation, modification, filtering, and insertion of any other information into a report
whether it is derived form data stored in a database or not. For example, a
customized SPmES format inserts troff command language into formatted
LBLSTAFF records to produce the alphabetical portion of the printed phoI?-ebook.

A common use for customized output formatting in LBLSTAFF is production of
adhesive mailing labels. For example, to make adhesive mailing labels for OCR
staff:

SELect LBLSTAFF
Fin pan 9191 and publish = y
set format label
in act clr type
LABEL active file a (this sends the output file to the LBL label printer via

BITNET)

Coupling to graphics and statistics aackages. SPIRES system staff at Stanford
have chosen not to duplicate graphics an statistical capability provided by other
sophisticated packages, but rather to make interfacing with those packages easy.
SPIRES custom formats and protocols provide the desirable user friendliness.

31

..

(
20. Large Capacity.

SPmES databases can span several physical disks in VMlCMS. Currently the
largest SPmES database at LBL is the Mechanical Engineering Drawings database
of 200,000 records. Each element has about a half dozen data elements such as

.~ drawing ID, category, type of drawing, and title, date entered into database. The
database is about 20 MB.

c·

32

•

...

(_.. v. Remote SPIRES.

Remote SPIRES is a facility which runs under CMS in a disconnected virtual
machine in conjunction with SPIRES to provide fas~ simple database search and
retrieval either locally or from any authorized BITNET user.

Search and report-making commands are sent via BITNET. In the BITNET
environment there are three types of entities that a user can send or receive: files,
mail (a file with header information>, and messages (which interactively appear on
the screen of the addressee). From a VMlCMS environment, Remote SPIRES can
accept commands via messages using the TELL command and via mail using the
NOTE command, using the format:

TELL user AT node query (IN subfile
or

NOTE user AT node
The interactive message form is preferable,

For example, using interactive messages,
TELL QSPmES AT SLACVM FIND author A. Jones (in HEP

would find all preprints where A. Jones occurred as an author in the High Energy
Preprints file maintained at SLAC.

LBL databases will be similarly searchable:

TELL LBLREMOT AT UCBCMSA FIND NAME R. SMITH (IN PHONEBOOK
will find R. Smith's record in LBLSTAFF.

TELL LBLREMOT AT UCBCMSA DISplay BOA (in BLDG
will who the building manager is for building BOA.

On workstations, the prefix TELL LBLREMOT AT UCBCMSA can be set with
a function key so that one keystroke enters the whole string.

On the LBL Central Computing Facility Cluster, the user must be on CSA2 to
send BITNET messages. The command BSEND is used rather then TELL as in
CMS. BITNET messages cannot be sent from LBL unix machines at present.
S~parate instructions will be made available for LBL users who do not have access to
CSA2 and must therefore use mail. .

33

(

VI. Costs.

The annual SPmES software maintenance fee is $7,000 which covers the right
to use the newest version, media (9-track tape), full set of documentation (on tape),
and system consulting support from the Consortium office. This fee has been paid by
OCR for several years.

The monthly costs for LBLSTAFF and other associated SPmES accounts,
including stora~e costs, online charges, and batch charges (but not local LBL
Computing FaCllity charges) for September and October 1986 were:
Account Usage September October
TPHHH StoresLBLSTAFF, used for updating $175.93 $149.98
INFORTPH Telephone Attendants 7 am - 5 pm 149.63 145.48
MAILR Mailroom,7 am - 5 pm & weekends 180.76 156.70
SSRHP Shipping & receiving 73.71 77.28
SSDVN
ADHDVN
SPmES
SFSYS .
LBLOVNT
SEALY82
KOEHN
KONRAD

D.Nielsen
D.Nielsen
System files
Fileserver
Overnight Processor (batch)
Training & Emergency Preparedness
RPM database

21.94
4.21

343.28*
359.92*
40.03*
47.53
31.39

Consulting, system maint, applications 87.87*

* Covers service for applications other than LBLSTAFF

32.28
16.72

288.64*
309.84*

39.20*
119.77

7.65
79.11*

34

~ , .~

LAWRENCE BERKELEY LABORATORY
TECHNICAL INFORA1ATION DEPARTMENT

UNIVERSITY OF CALIFORNIA
BERKELEY, CALIFORNIA 94720

....

