
Lawrence Berkeley National Laboratory
Lawrence Berkeley National Laboratory

Title
The advanced computational testing and simulation toolkit (ACTS)

Permalink
https://escholarship.org/uc/item/2r0411qg

Authors
Drummond, L.A.
Marques, O.

Publication Date
2002-05-21

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/2r0411qg
https://escholarship.org
http://www.cdlib.org/

The Advanced Computational Testing and Simulation Toolkit (ACTS):
What can ACTS do for you?

L. A. Drummond1 and O. A. Marques2

Lawrence Berkeley National Laboratory
National Energy Scientific Computing Center (NERSC)

One cyclotron Road, Berkeley, CA 94720
http://acts.nersc.gov, acts-support@nersc.gov

Abstract
During the past decades there has been a continuous growth in the number of physical and
societal problems that have been successfully studied and solved by means of computational
modeling and simulation. Distinctively, a number of these are important scientific problems
ranging in scale from the atomic to the cosmic. For example, ionization is a phenomenon as
ubiquitous in modern society as the glow of fluorescent lights and the etching on silicon computer
chips; but it was not until 1999 that researchers finally achieved a complete numerical solution to
the simplest example of ionization, the collision of a hydrogen atom with an electron. On the
opposite scale, cosmologists have long wondered whether the expansion of the Universe, which
began with the Big Bang, would ever reverse itself, ending the Universe in a Big Crunch. In
2000, analysis of new measurements of the cosmic microwave background radiation showed that
the geometry of the Universe is flat, and thus the Universe will continue expanding forever.

Both of these discoveries depended on high performance computer simulations that utilized
computational tools included in the Advanced Computational Testing and Simulation (ACTS)
Toolkit. The ACTS Toolkit is an umbrella project that brought together a number of general-
purpose computational tool development projects funded and supported by the U.S. Department
of Energy (DOE). These tools, which have been developed independently, mainly at DOE
laboratories, make it easier for scientific code developers to write high performance applications
for parallel computers. They tackle a number of computational issues that are common to a large
number of scientific applications, mainly implementation of numerical algorithms, and support
for code development, execution and optimization. The ACTS Toolkit Project enables the use of
these tools by a much wider community of computational scientists, and promotes code
portability, reusability, reduction of duplicate efforts, and tool maturity. This paper presents a
brief introduction to the functionality available in ACTS.

1.- Introduction.

The ACTS Toolkit is a set of computational tools developed primarily at DOE
laboratories and is aimed at simplifying the solution of common and important
computational problems. These tools are freely available with minor licensing
agreements for their use and distribution. The use of the tools reduces the development
time for new codes and the tools provide functionality that might not otherwise be
available. All this potential cannot be achieved, however, if the tools are not used
effectively or not used at all.

1 LADrummond@lbl.gov
2 OAMarques@lbl.gov

The ACTS Project brings together software development from DOE laboratories, and in
some cases in collaboration with universities, to the hands of a scientific community that
is broader than the community in a single DOE laboratory. Consequently, ACTS has
promoted reusability over duplication of efforts and tool interoperability over “hard-
wired” and intrusive library interfaces that only serve a specific project. By analogy with
a commercial company, ACTS has put the formerly uncoordinated research and
development performed at various places into one distribution channel. ACTS
complements DOE research and development efforts by adding technical support, quality
assurance and marketing.

ACTS is bringing tools to higher acceptance levels among computational scientists and
institutions. This provides the necessary means for individual tool projects to interact
with more users, so the tools can gradually mature, becoming both more robust and
portable to state-of-the-art high performance computing environments.

ACTS Tools are mostly library with interfaces to programs written in Fortran, C and
C++. They are primarily designed to run on high performance computing architectures.
Portability and performance are both considerations in their design and adaptability to
emerging computer technologies. At the National Energy Research Scientific Computing
Center (NERSC), we are currently providing a comprehensive support to the users of
tools under ACTS. This support includes training and education, help prototyping
scientific and engineering codes, and independent software evaluation of the tools.

This paper presents a short introduction to the ACTS Toolkit. For more materials and
references the reader is advised to visit the ACTS Information Center [4]. In Section 2,
we present a list of the tools currently available in the ACTS Toolkit. A few examples of
successful implementations of scientific simulations using the ACTS Toolkit are
presented in Section 3. In the last two sections, 4 and 5, we summarize lessons learned
through ACTS support, and future plans.

2.- Available Functionalities in the Toolkit.

The following is a list of tools currently available in the ACTS Toolkit [5]. These tools
provide solutions to some numerical problems, scientific data representation, data
manipulation, as well as support for code execution, library tuning and interoperability.
We categorize them by their functionality in 5 different groups, Numerical Tools, Tools
That Support Code Development, Tools That Support Code Execution, Tools That
Support Library Development, and Interoperability.

2.1. Numerical Tools

• Aztec (developed at Sandia National Laboratories, SNL, [5], [6], [7]) is a library that
provides algorithms for the iterative solution of large sparse linear systems arising in
scientific and engineering applications. It is a stand-alone package comprising a set of

iterative solvers, preconditioners and matrix-vector multiplication routines. Users are
not required to provide their own matrix-vector multiplication routines or
preconditioners in order to solve a linear system. The Aztec library is written in C and
is also callable from Fortran. It is portable to most parallel platforms since it uses MPI
to perform data communication. Overall, the package was designed to be easy to use.
The user may input the linear system in a simple format and Aztec will perform the
necessary transformations for the matrix-vector multiplication and preconditioning.
After the transformations, the iterative solvers can run efficiently. If the input matrix
is suitably partitioned, the efficiency can be further enhanced.

Aztec in now in the process of being superseded by the Trilinos solver framework [8].
Aztec's main strength is that it is a small and stand-alone package that contains all the
components needed for the solution of a real sparse linear system of equations
without requiring matrix-vector multiplications or preconditioning routines from the
user. The most commonly used schemes to solve a large linear system on a
distributed parallel machine include four major components: a mechanism to express
the linear system, a matrix-vector multiplication routine, a preconditioner routine, and
an iterative method to compute the solution by using the matrix-vector multiplication
routine and the preconditioner. Aztec has carefully implemented all these components
and overall exhibits good parallel efficiencies on many test problems.

• Hypre (developed at Lawrence Livermore National Lab, LLNL, [5], [9]) is a library
for solving large, sparse linear systems of equations on massively parallel computers.
The main features of this library are: scalable preconditioners, implementation of a
suit of common iterative methods (these include Conjugate Gradient and GMRES for
symmetric and unsymmetric matrices, respectively), intuitive grid-centric interfaces,
and dynamic configuration of parameters. Hypre works for users with different levels
of expertise and has user-defined interfaces for multiple languages.

• OPT++ (developed at SNL [5]) is an object-oriented nonlinear optimization package
for serial architectures. It solves optimization problems of the form

,,...,1,0)(,,...,1,0)(),(min mjxgpixhxf ji
Rx n

=≥==
∈

 in which the user specifies the

function f (and, when available, its first and second analytical derivatives) and the
functions h and g. OPT++ provides four solution algorithms: a Newton method, a
finite-difference Newton method, a Quasi-Newton method, and a nonlinear conjugate
gradient method.

• PETSc, the Portable, Extensible Toolkit for Scientific computation (developed at
Argonne National Laboratory, [5],[10],[11],[12]), provides sets of tools for the
parallel (as well as serial), numerical solution of PDEs that require solving large-
scale, sparse linear and nonlinear systems of equations. PETSc includes nonlinear and
linear equation solvers that employ a variety of Newton techniques and Krylov
subspace methods. PETSc provides several parallel sparse matrix formats, including
compressed row, block compressed row, and block diagonal storage.

PETSc is one of the most popular and matured tools currently available in the ACTS
Toolkit. PETSc has a growing number of application users and development projects
that re-use some of the functionality available in PETSc (like TAO and SLEPc [13]).
The PETSc team has long worked on the development of interoperable interfaces
with other ACTS tools, and perhaps has implemented the most tool-to-tool
interoperability interfaces.

• PVODE (developed at LLNL, [5]) actually refers to a trio of closely related solvers:
PVODE, for systems of ordinary differential equations, KINSOL, for systems of
nonlinear algebraic equations, and IDA, for systems of differential-algebraic
equations. These solvers have some modules in common, primarily a module of
vector kernels, and a generic linear system solver based on a scaled preconditioned
GMRES method. PVODE is a solver for large systems of ordinary differential
equations on parallel machines. It contains methods for the solution of both stiff and
non-stiff initial value problems. Integration methods include the variable coefficient
forms of the Adams and backward differentiation formula methods. The linear
systems that must be solved during the implicit time stepping are solved with
iterative, preconditioned Krylov solvers. The user can either supply a preconditioner
or use one that is included in the PVODE package. PVODE is an extension of the
sequential package known as CVODE, which has been widely distributed and used
[14].

The PVODE trio is most useful for solving large differential and nonlinear algebraic
systems that arise in a variety of applications. Important DOE applications include
chemical kinetics, atmospheric chemistry, semiconductors, and structural or
mechanical systems.

• ScaLAPACK (developed at the University of Tennessee, Knoxville; University of
California, Berkeley; and ORNL, [5], [15]) is a library of high performance linear
algebra routines for distributed-memory message-passing MIMD computers and
networks of workstations supporting PVM or MPI. It is a continuation of the
LAPACK project [16], which designed and produced analogous software for
workstations, vector supercomputers, and shared-memory parallel computers. The
goals of both projects are efficiency (to run as fast as possible), scalability (as the
problem size and number of processors grow), reliability (including error bounds),
portability (across all important parallel machines), flexibility (so users can construct
new routines from well-designed parts), and ease of use (by making the interface to
LAPACK and ScaLAPACK look as similar as possible). The ScaLAPACK library
contains routines for solving systems of linear equations, least squares, eigenvalue
and singular value problems. They can also handle many associated computations
such as matrix factorizations or estimation of condition numbers.

ScaLAPACK is intended for use in large-scale applications that require numerical
manipulation of large dense or band matrices. Within NERSC's user community, we
have seen various routines from ScaLAPACK being used. The applications using
ScaLAPACK include material sciences, computational chemistry and astrophysics.

• SuperLU (developed at the University of California, Berkeley; and NERSC, [5]) is a
general-purpose library for the direct solution of large, sparse, nonsymmetric systems
of linear equations on high performance machines. The library is written in C and is
callable from either C or Fortran. The library routines perform an LU decomposition
with numerical pivoting and triangular system solves through forward and back
substitution. The LU factorization routines can handle non-square matrices but the
triangular solves are performed only for square matrices. The matrix columns may be
preordered (before factorization) either through library or user-supplied routines. This
preordering for sparsity is completely separate from the factorization. Working
precision iterative refinement subroutines are provided for improved backward
stability. Routines are also provided to equilibrate the system, estimate the condition
number, calculate the relative backward error, and estimate error bounds for the
refined solutions.

The developers of SuperLU have participated in many of the activities organized by
the ACTS Toolkit Project and have provided us with feedback for the ACTS
Information Center. SuperLU is a general-purpose software with a wide range of
potential end users.

• TAO, the Toolkit for Advanced Optimization (developed at ANL, [5]), focuses on
large-scale optimization software, including nonlinear least squares, unconstrained
minimization, bound constrained optimization, and general nonlinear optimization.
There are a variety of software tools for solving the aforementioned problems;
however, only TAO offers an Object-Oriented solution that provides a flexible
optimization toolkit capable of addressing issues of portability, versatility and
scalability in many computational environments. The algorithms in TAO place strong
emphasis on the reuse of external tools where appropriate. TAO's design enables
bidirectional connection to lower-level linear algebra support (such as parallel sparse
matrix data structures) that is available in toolkits like PETSc.

TAO is rapidly acquiring a growing community of users and serves as a good
example of quality software being developed on top of existing reliable and robust
software.

2.2. Tools That Support Code Development

• Global Arrays (GA, developed at PNNL, [5],[17]) is a library for writing parallel
programs that use large arrays distributed across processing nodes and that offers a
shared-memory view of distributed arrays without destroying their NUMA
characteristics. The library has both Fortran and C interfaces. Originally developed to
support arrays as vectors and matrices (one or two dimensions), it currently supports
up to seven dimensions in Fortran and even more in C. GA offers two types of
operations: collective operations (require participation and synchronization of all
processes) and local operations (may be invoked independently by all processes). GA

also comes with a visualizer that uses trace files to animate array access patterns. Its
main purpose is to analyze the impact of distribution on performance.

GA is meant to complement rather than replace the message-passing model, and is
interoperable with MPI. GA was originally developed for use in the NWChem
computational chemistry package [18], but has also been used in other chemistry
packages such as GAMESS-UK, Columbus, Molpro, Molcas, and SOCI.

• Overture (developed at LLNL, [5]) is a set of Object-Oriented tools for solving
computational fluid dynamics and combustion problems in complex moving
geometries. It has been designed for solving problems on a structured grid or a
collection of structured grids. It can use curvilinear grids, adaptive mesh refinement,
and the composite overlapping grid method to represent problems involving complex
domains with moving components. Overture programs are written at a very high
level, using data-parallel array expressions in the style of High Performance Fortran
(HPF). They can achieve high performance (comparable to Fortran) thanks to a
preprocessor (C++ to C++) called ROSE. Effectively, ROSE is a replacement for the
expression template technique of POOMA. Overture has aggregate array operations
and tightly integrated graphical features based on OpenGL. AMR++, a package that
directly supports adaptive mesh refinement methods, is built on top of Overture.

In October 2001 the Overture Project was named one of the 101 most important
discoveries supported by the DOE Office of Science in the past 25 years.

2.3. Tools That Support Code Execution

• CUMULVS (Collaborative User Migration, User Library for Visualization and
Steering, developed at ORNL, [5],[21]) is a software framework that enables
programmers to incorporate fault-tolerance, interactive visualization and
computational steering into existing parallel programs. The CUMULVS software
consists of two libraries, one for the application program, and one for the
visualization and steering front-end (called the "viewer"). CUMULVS handles
collecting and transferring distributed data fields to the viewers and oversees
adjustments to steering parameters in the application. It also manages the dynamic
attachment and detachment of multiple independent viewers to a running parallel
application. In addition, CUMULVS provides a user-directed checkpoint/restart
mechanism to enable users to integrate fault tolerance to a running parallel
application.

Among others, CUMULVS is very effective for monitoring and steering remote
parallel execution and allowing the construction of attractive user interfaces that have
greatly helped users that are not familiar with all the particulars of a given code
and/or the complexities involved in parallel computing.

• Globus ([5],[19],20) provides a bag of services for the creation of computational
Grids and tools with which applications can be developed to access the Grid. Globus

itself provides the following core services: communication services, resource
allocation and process management. It also provides a standard interface to local
resource management systems, allowing computational Grid tools and applications to
express resource allocation and process management requests in terms of a standard
application programming interface (API) and protocol, without constraining
individual sites to any specific resource management tool. A standard protocol
(LDAP, the Lightweight Directory Access Protocol) allows for discovering,
publishing, and accessing information about the configuration and status of the
computational Grid.

Globus developers were awarded the 1997 Global Information Infrastructure (GII)
Next Generation Award for their work in advancing the technology and application of
high performance distributed computing. The Globus technology is now used
worldwide and it has provided a leading infrastructure for the deployment of and
collaborations around Grid technology. There are three main kinds of users of this
technology: the developers of Grid services, Grid-enabled application developers and
users of the applications. Nowadays, all three kinds of users have to rely on their
institutional agreement and provisions to work with the Globus technology, therefore
the current support to Globus users requires a larger orchestration of personnel and
resources than any of the other ACTS tools.

• PAWS (Parallel Application Work Space, developed at LANL National Laboratories,
[5]) provides a framework for coupling parallel applications within a component-like
model. Central to the design of PAWS is the coupling of parallel applications using
parallel communication channels. The coupled applications can be run on different
machines, and the data structures in each coupled component can have different
parallel distributions. PAWS is able to carry out the communication without having to
resort to global gather/scatter operations. Instead, point-to-point transfers are
performed in which each node sends segments of data to remote nodes directly and in
parallel.

With the abrupt urge to couple multi-disciplinary codes there are high and increasing
demands for tools like PAWS. The tool is currently under consideration by several
research groups and we foresee the integration of functionalities available in other
coupling efforts and PAWS through the use of component technology.

• SILOON (Scripting Interface Languages for Object-Oriented Numerics, developed at
LANL National Laboratories, [5]) gives scientists the ability to rapidly prototype and
solve problems on high performance parallel computers. SILOON provides tools and
run-time support for building easy-to-use external interfaces to existing numerical
codes. The developers hope to enable scientists and other application programmers to
easily access existing object-oriented scientific frameworks and numerical libraries
written in C, C++, and Fortran. SILOON is a middleware package that may be used
with the most popular scripting languages: Perl, TCL, and Python. It generates “glue
code” to bind external library interfaces and provide run-time support and a

computational server that is controllable under the scripting languages of choice. The
first versions of SILOON were targeted for the POOMA and Overture frameworks.

• TAU (Tuning and Analysis Utilities, developed at the University of Oregon and
LANL National Laboratories, [5],[22]) is a set of tools for analyzing the performance
of C, C++, Fortran and Java programs. It is normally used in three steps: (1)
instrument the program by inserting TAU macros into the program (this can be done
automatically for C++ programs); (2) run the program, a trace file is then
automatically generated; and (3) view the trace file with a TAU visualizer (RACY) or
a third-party visualizer (such as VAMPIR). TAU collects much more information
than what is available through prof or gprof, the standard Unix utilities. Also
available through TAU are: per-process, per-thread and per-host information
(supports pthreads), inclusive and exclusive function times, profiling groups that
allow you to organize data collection, access to hardware counters on some systems,
per-class and per-instance information, separate data for each template instantiation,
start/stop timers for profiling arbitrary sections of code, and support for collection of
statistics on user-defined events.

TAU can be used by anyone writing a C, C++, Fortran or Java application and that
wants to understand where the performance bottlenecks are. The hurdles of inserting
profiling functions is minimized by two factors: only a single statement is needed to
profile a function, and profiling can be disabled completely so that profiling
insertions don't need to be taken out. Users of TAU have been enthusiastic about its
usefulness.

2.4. Tools That Support Library Development

• ATLAS (Automatically Tuned Linear Algebra Software, developed at the University
of Tennessee, Knoxville, [5]) and PHiPAC (Portable High Performance ANSIC,
developed at the University of California, Berkeley, and the International Computer
Science Institute) are tools for the automatic generation of optimized numerical
software for modern computer architectures and compilers. These tools have both
initially focused on level-three BLAS operations (matrix-matrix multiplications) and
also a few routines from LAPACK, which have high potential for optimization.
Traditionally, the optimization of these routines has been a tedious, architecture-
dependent, hand coding process. Codes automatically generated by ATLAS and
PHiPAC have been able to meet and even exceed the performance of the vendor-
supplied, hand-optimized BLAS on a range of platforms. ATLAS and PHiPAC
achieve performance through loop unrolling, explicit removal of unnecessary
dependencies in code blocks, and use of machine-sympathetic C constructs. Code
generators are parameterized and scripts are used to find the optimal choice of
parameters for a given architecture and compiler. Research continues on these tools to
extend them to new BLAS 3 operations and other basic linear algebra calculations,
including sparse operations.

Our comments: ATLAS and PHiPAC are of primary interest to computer architects
and administrators and are not tools that the application programmer would use,
although the technology that they are enabling may well eventually spill over into
tools for application programmers.

• PADRE (Parallel Asynchronous Data and Routing Engine, developed at LANL, [5])
is a C++ layer for interfacing with libraries that distribute data on parallel computers.
PADRE attempts to provide a uniform interface to several parallel decomposition
libraries (KeLP, Multiblock PARTI, etc.) and the communication mechanisms used
by them.

• PETE (Portable Expression Template Engine, developed at LANL, [5]) is an
extensible implementation of the expression template technique (C++ technique for
passing expressions as function arguments Error! Reference source not found.).
This technique uses C++ recursively-defined templates for transforming certain kinds
of C++ statements into other statements with the same effect but higher performance.
Evaluating array expressions in a single loop is of fundamental importance for
performance, for example. Using simple C++ overloading it is difficult (practically
impossible) to obtain this kind of translation. Furthermore, PETE has the advantage
that the entire transformation is done by the C++ compiler, without requiring separate
tools.

2.5. Interoperability

The Objective of the Common Component Architecture Forum (CCA Forum,[23],[24]) is
to define a minimal set of standard features that a High-Performance Component
Framework has to provide, or can expect, in order to be able to use components
developed within different frameworks. Such standard will promote interoperability
between components developed by different teams across different institutions. The
Center for Component Technology for Terascale Simulation Software (CCTTSS) is
dedicated to the development of a component-based software development model
suitable for the needs of high-performance scientific simulation, particularly the CCA.
The Center is funded by the U. S. Dept. of Energy (DOE) as an Integrated Software
Infrastructure Center (ISIC) under the Scientific Discovery through Advanced
Computing (SciDAC, [25]) program and includes members from Argonne, Livermore,
Los Alamos, Oak Ridge, Pacific Northwest, and Sandia National Laboratories, Indiana
University and the University of Utah.

3.- Some Highlights in High-Performance.

A number of high performance scientific applications are already using the ACTS tools.
Here we summarize a few examples. For some cases, the results achieved could not have
been realized otherwise.

• Collaborators at the Lawrence Berkeley National Laboratory (LBNL), Lawrence
Livermore National Laboratory (LLNL), and the University of California at Davis
have obtained a complete solution of the ionization of a hydrogen atom by collision
with an electron, the simplest nontrivial example of the long-standing unsolved
problem of scattering in a quantum system of three charge particles [1]. In this
application, SuperLU was used to construct preconditioners for the solution of
unsymmetric linear systems of order up to 1.8 million. SuperLU is a general-purpose
library available in the ACTS Toolkit that provides for the direct solution of large,
sparse, nonsymmetric systems of linear equations on high performance machines.

• On April 26, 2000, the international BOOMERANG (Balloon Observations of
Millimetric Extragalactic Radiation and Geophysics) consortium, led by Andrew
Lange of the California Institute of Technology and Paolo de Bernardis of Università
di Roma La Sapienza, announced results of a very detailed measurement of the
cosmic microwave background radiation (CMB). These results revealed that the
curvature of the Universe is not positive or negative but flat [2]. Much of the data
analysis was performed by Julian Borrill (LBNL) employing a software called
MADCAP (Microwave Anisotropy Dataset Computational Analysis Package [3])
which uses several routines from ScaLAPACK. ScaLAPACK is one of the tools
available in the ACTS Toolkit intended for linear algebra calculations.

• Achieving High Sustained Performance in an Unstructured Mesh CFD Application,
http://www.mcs.anl.gov/petsc-fun3d. Kyle Anderson, William Gropp, Dinesh
Kaushik,, David Keyes, Barry Smith [27, 28]. This application is based on FUN3D
[26] code that is used in airplane, automobile, and submarine applications for analysis
and design This code involves sparse, unstructured data that imply memory
indirection with only modest reuse. This application won the Gordon Bell Award at
SC 99. The results of this research is wide applicability to other implicitly discredited
multiple-scale PDE workloads of interagency, interdisciplinary interest.

• Prometheus [29] is freely available as an unstructured multigrid equation solver for
large scale (106-109 degrees of freedom). These softwares were developed using
PETSc, to provide high performance, cross platform, support for iterative solvers for
discretized partial differential equations and ParMETIS [30], from the University of
Minnesota for parallel mesh partitioning. Future work will include the integration of
functionality available in Trilinos/Petra.

More details on these codes and additional examples of scientific applications using tools
from the ACTS Toolkit can be found in the ACTS Information Center.

4.- Lessons Learned

As a result of the user support and education activities provided by ACTS, we have
learned various lessons that are valuable to the computational science community, and in

particular the software development and support projects. Here we summarize the most
important issues:

• There is still a gap between tool developers and application developers which leads
to duplication of efforts. Without projects like ACTS, application developers will
continue to design and implement codes using techniques that are already available
from other sources. Quite often these new developments are far from optimal
because of the application developers’ inexperience with all the different issues that
lead to optimal performance. In many cases, application developers only consult
sources like Numerical Recipes Error! Reference source not found. that do not
address platform optimization and parallelism, algorithm robustness, and language
specific optimization issues.

• The tools currently included in the ACTS Toolkit should be seen as dynamically
configurable toolkits and should be grouped into toolkits upon user/application
demand. Based on the particular needs of an application, users generally benefit from
only a subset of the functionality available in ACTS; therefore, they may only need to
install a subset of the ACTS tools in their computing environments. A future agenda
for the ACTS Toolkit must include an automatic mechanism that will allow a
friendlier and dynamic installation of the tools based on particular demands.

• Users demand long-term support of the tools. One of the main concerns that users
have expressed to us is the longevity of support from tool developers and required
evolution of the software as the hardware technology continues to evolve and the
complexity of the scientific application continues to grow. Inasmuch as a solid base
of reusable tools is utilized inside newer tool developments, users are guaranteed the
evolution of the tools; thus long-term support and functionality are also guaranteed.

• Applications and users play an important role in hardening tools. The main
parameters for maturity are portability, robustness, acceptance, and long-term
support. It is particularly the interactions with real users and real applications that
have made the software mature, portable, robust and better documented. In turn,
mature software will be widely accepted inside a given scientific community. The
current framework of the ACTS Toolkit has promoted the tools to a wider national
and international audience, thus increasing not only the visibility of the tools
worldwide but also the range of users and applications.

• Tools evolve or are superseded by other tools. As technology continues to advance,
there are some tool functionalities that are either no longer needed or are improved as
direct consequences of the user demands. An example of these changes in the ACTS
Toolkit is the Aztec library being superseded by AztecOO, which is one of the
components of the Trilinos solver framework [8]. An umbrella project like ACTS
provides mechanisms to help users with the transition and adoption of the new tools.

• There is a demand for tool interoperability and more uniformity in the documentation
and user interfaces. Users want to experiment with functionalities available in a

subset of the ACTS tools, and finding similar user interfaces and comparable levels of
support and documentation makes this task even simpler and risk free. Furthermore,
the computational challenges at hand demand new software developments that
interact with legacy code practices, data and computer languages. ACTS provides a
natural infrastructure to put in practice all the code, data and language interoperability
required by these new challenges.

• There is a need for an intelligent and dynamic catalog/repository of high
performance tools. The need for a centralized software and reference repository is
vital for preventing the duplication of efforts. Currently, the ACTS Information
Center provides pointers to tools currently funded under ACTS with the accumulated
expertise from tool users and scientific domains that are served by the tools.
Additionally, we envision the inclusion of pointers to tools offering functionality not
currently available in the ACTS Toolkit as well as fair comparisons with other tools
that offer functionality that overlaps with the ACTS tools.

5.- Conclusions

The hard problems at hand for the ACTS Toolkit, and high performance software in
general, continue to be language and software interoperability, uniform software
distribution and licensing, friendly tool interfaces and tool installation procedures,
performance, and tool acceptance. Our future agenda plans to implement an expansion of
the ACTS Toolkit based on the valuable lessons learned from the outcomes of the current
scope of the project, and work with the institutions outside DOE, high performance
computing funding programs, and DOE initiatives and projects to formulate solutions to
these hard problems. We plan deliver an expanded ACTS framework to host a solid base
of computational tools with the appropriate levels of support and expertise, and to serve
as a buffer between tool and application development.

The benefits of our proposed work can be measured in many ways. A wide range of
scientific code developers and users will benefit from information and education about
state-of-the-art, high performance computational tools. They will benefit from the
development and promotion of robust, effective, portable, usable, and durable software.
They will benefit from the increased interoperability of tools, which promotes the
evolution and adoption of current software development projects into future software
technologies. They will benefit from multidisciplinary collaborations and the consequent
accumulation of expertise. Perhaps they will benefit most from spending less time on
code development and having more time to devote directly to scientific discovery.

Acknowledgements.
ACTS is funded by the US Department of Energy, office of Mathematical, Information
and Computation Science.

References.

[1] T. Rescigno, M. Baertschy, W. Isaacs and W. McCurdy, 1999. Collisional breakup
in a quantum system of three charged particles, Science, 286:2474-2479.

[2] P. de Bernardis, P. A. R. Ade, J. J. Bock, J. R. Bond, J. Borrill, A. Boscaleri, K.
Coble, B. P. Crill, G. De Gasperis, P. C. Farese, P. G. Ferreira, K. Ganga, M.
Giacometti, E. Hivon, V. V. Hristov, A. Iacoangeli, A. H. Jaffe, A. E. Lange, L.
Martinis, S. Masi, P. V. Mason, P. D. Mauskopf, A. Melchiorri, L. Miglio, T.
Montroy, C. B. Netterfield, E. Pascale, F. Piacentini, D. Pogosyan, S. Prunet, S.
Rao, G. Romeo, J. E. Ruhl, F. Scaramuzzi, D. Sforna and N. Vittorio., 2000. A flat
Universe from high-resolution maps of the cosmic microwave background
radiation, Nature, 404: 955–959.

[3] MADCAP, http://www.nersc.gov/~borrill/cmb/madcap.html

[4] ACTS Information Center, http://acts.nersc.gov

[5] ACTS Tools, http://acts.nersc.gov/tools.html

[6] J. N. Shadid, R. S. Tuminaro, Iterative Methods for Nonsymmetric Systems on
MIMD Machines, in Proceedings of the Fifth SIAM Conference on Parallel
Processing for Scientific Applications, Eds. Dongarra, Messina, Sorensen, and
Voight, Houston, TX, March 25-17, 1991.

[7] R. S. Tuminaro, M. Heroux, S. A. Hutchinson, and J. N. Shadid, Official Aztec
U s e r ' s G u i d e : V e r s i o n 2 . 1 , D e c e m b e r , 1 9 9 9 ,
http://www.cs.sandia.gov/CRF/aztec1.html.

[8] Trilinos, http://www.cs.sandia.gov/Trilinos

[9] Chow, E., A.J. Cleary, and R.D. Falgout, Design of the hypre Preconditioner
Library, Proc. of the SIAM Workshop on Object Oriented Methods for Inter-
operable Scientific and Engineering Computing, Mike Henderson, Chris Anderson,
and Steve Lyons, Eds. (SIAM Press, Philadelphia, PA: 1998). Workshop held at the
IBM T.J. Watson Research Center, Yorktown Heights, NY, October 21-23, 1998.

[10] PETSc Website, http://www.mcs.anl.gov/petsc

[11] Satish Balay, William D. Gropp, Lois Curfman McInnes, and Barry F. Smith.
Efficient Management of Parallelism in Object Oriented Numerical Software
Libraries. In Modern Software Tools in Scientific Computing, E. Arge, A. M.
Bruaset , and H. P. Langtangen., pp. 163--202, Birkhauser Press, 1997.

[12] Satish Balay, William Gropp, Lois Curfman McInnes, and Barry F. Smith. PETSc
users Manual, ANL-95/11 –Revision 2.1.1, Argonne National Laboratory, 2001.

[13] SLEPc, http://acts.nersc.gov/workshop/slides/roman.pdf

[14] ODE, http://www.netlib.org/ode

[15] E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra, J. Du
Croz, A. Greenbaum, S. Hammarling, A. McKenney, and D. Sorensen. LAPACK
Users' Guide, SIAM, Third Edition, Aug 1999.

[16] LAPACK, http://www.netlib.org/lapack

[17] Nieplocha, RJ Harrison, and RJ Littlefield, Global Arrays: A portable `shared-
memory' programming model for distributed memory computers. In Proc.
Supercomputing'94, pages 340-349, 1994.

[18] NWChem, http://www.emsl.pnl.gov:2080/docs/nwchem

[19] I. Foster and C. Kesselman, Eds, 1999. The Grid, Blueprint for a New Computing
Infrastructure, Morgan Kaufmann Publishers, Inc, San Francisco, CA.

[20] Ian Foster, 2002. The Grid: A New Infrastructure for 21st Century Science, Physics
Today, February.

[21] G. A. Geist, J. A. Kohl, P. M. Papadopoulos, CUMULVS: Providing Fault-
Tolerance, Visualization and Steering of Parallel Applications, International Journal
of High Performance Computing Applications, Volume 11, Number 3, August
1997, pp. 224-236.

[22] S. Shende, A. D. Malony, J. Cuny, K. Lindlan, P. Beckman and S. Karmesin,
Portable Profiling and Tracing for Parallel Scientific Applications using C++,
Appears in: Proceedings of SPDT'98: ACM SIGMETRICS Symposium on Parallel
and Distributed Tools, pp. 134-145, Aug. 1998.

[23] CCA-Forum, http://www.cca-forum.org

[24] CCTTSS, http://www.cca-forum.org/ccttss

[25] SciDAC/DOE, http://www.er.doe.gov/scidac

[26] FUN3D, http://fmad-www.larc.nasa.gov/~wanderso/Fun

[27] PETSc-FUN3D, http://www.mcs.anl.gov/petsc-fun3d

[28] Gropp, Kaushik, Keyes & Smith, 1999, Toward Realistic Performance Bounds for
Implicit CFD Codes, in Proceedings of Parallel CFD'99, Elsevier

[29] Mark Adams, Parallel Multigrid Solvers for 3D Unstructured Finite Element
Problems in Large Deformation Elasticity and Plasticity. International Journal for
Numerical Methods in Engineering, 48(8):1241-1262, 2000.

[30] ParMETIS, http://www-users.cs.umn.edu/~karypis/metis/parmetis/

