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RESEARCH

Deletion of either the regulatory gene ara1 
or metabolic gene xki1 in Trichoderma reesei 
leads to increased CAZyme gene expression 
on crude plant biomass
Tiziano Benocci1, Maria Victoria Aguilar‑Pontes1, Roland Sándor Kun1, Ronnie J. M. Lubbers1, 
Kathleen Lail2, Mei Wang2, Anna Lipzen2, Vivian Ng2, Igor V. Grigoriev2,3, Bernhard Seiboth4, Paul Daly1 
and Ronald P. de Vries1* 

Abstract 

Background: Trichoderma reesei is one of the major producers of enzymes for the conversion of plant biomass to 
sustainable fuels and chemicals. Crude plant biomass can induce the production of CAZymes in T. reesei, but there 
is limited understanding of how the transcriptional response to crude plant biomass is regulated. In addition, it is 
unknown whether induction on untreated recalcitrant crude plant biomass (with a large diversity of inducers) can 
be sustained for longer. We investigated the transcriptomic response of T. reesei to the two industrial feedstocks, corn 
stover (CS) and soybean hulls (SBH), over time (4 h, 24 h and 48 h), and its regulatory basis using transcription factor 
deletion mutants (Δxyr1 and Δara1). We also investigated whether deletion of a xylulokinase gene (Δxki1) from the 
pentose catabolic pathway that converts potential inducers could lead to increased CAZyme gene expression.

Results: By analyzing the transcriptomic responses using clustering as well as differential and cumulative expression 
of plant biomass degrading CAZymes, we found that corn stover induced a broader range and higher expression of 
CAZymes in T. reesei, while SBH induced more pectinolytic and mannanolytic transcripts. XYR1 was the major TF regu‑
lating CS utilization, likely due to the significant amount of d‑xylose in this substrate. In contrast, ARA1 had a stronger 
effect on SBH utilization, which correlates with a higher abundance of l‑arabinose in SBH that activates ARA1. Block‑
ing pentose catabolism by deletion of xki1 led to higher expression of CAZyme encoding genes on both substrates 
at later time points. Surprisingly, this was also observed for Δara1 at later time points. Many of these genes were XYR1 
regulated, suggesting that inducers for this regulator accumulated over time on both substrates.

Conclusion: Our data demonstrates the complexity of the regulatory system related to plant biomass degradation in 
T. reesei and the effect the feedstock composition has on this. Furthermore, this dataset provides leads to improve the 
efficiency of a T. reesei enzyme cocktail, such as by the choice of substrate or by deleting xki1 to obtain higher produc‑
tion of plant biomass degrading CAZymes.
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Background
Plant biomass is the most abundant renewable carbon 
source on Earth for conversion into biofuel and bio-
chemicals by the biotechnology industry. It is composed 
of three major polysaccharides (cellulose, hemicellulose 
and pectin), and many different plant biomass degrad-
ing (PBD) enzymes are required for efficient degrada-
tion [1]. Trichoderma reesei (Hypocrea jecorina) is a 
cellulolytic filamentous saprobic fungus that has been 
used in biotechnology for many decades, mainly for cel-
lulase production [2]. Major developments for indus-
trial applications were reviewed previously [3], such as 
the improved-cellulase producer QM9414 strain or the 
hypersecreting RUT C30 strain (CCR derepressed, due 
to a partial truncation of CRE1) [4]. The disaccharide 
lactose is the primary industrial inducer of T. reesei cel-
lulase production, but induction by crude plant biomass 
is a promising alternative. However, a challenge remains 
to sustain induction when the limited inducers that are 
available have been consumed. Sustaining induction for 
longer time periods will lead to higher overall CAZyme 
yields as well as a more diverse array of CAZymes and 
reduce enzyme production costs.

While T. reesei has been suggested as a model to study 
plant biomass degradation [5], its strategy to degrade 
plant biomass differs from most other saprobes studied 
so far, as its genome encodes a narrow set of enzymes, 
some of which (e.g., several cellulases) are produced at 
high levels [6]. Its molecular mechanisms for the pro-
duction of plant biomass degrading enzymes and sugar 
catabolism have been studied [7–10], demonstrating that 
XYR1 is the major cellulolytic and xylanolytic regulator 
[8], but also involved in d-xylose and (partially) l-arab-
inose catabolism. A second regulator, ARA1, regulates 
l-arabinose and d-galactose releasing as well as catabolic 
enzymes in response to l-arabinose and d-galactose [9].

Carbon catabolism related to plant biomass conversion 
has been studied in many fungi and recently reviewed 
[11]. Carbon catabolism in T. reesei is peculiar, as, more 
enzymes play a role in multiple catabolic pathways, com-
pared to several other saprobes [11]. For example, the T. 
reesei pentose catabolic pathway (PCP) and the d-galac-
tose oxido-reductive pathway share three enzymes 
(Fig. 1), and each of these pathways are regulated by both 
XYR1 and ARA1 [9]. When genes of carbon catabolic 
pathways are deleted, this can lead to the accumulation 
of metabolites, which can function as inducers. In Asper-
gillus niger, a xylulokinase mutant (where the last step of 
the PCP is blocked), resulted in accumulation of induc-
ers, such as xylitol and l-arabitol [12]. In T. reesei, xylitol 
and l-arabitol accumulation was observed in deletion 
strains (Δxyl1, Δlad1 and Δlxr3) of three earlier steps of 
the PCP [13]. While there are no reports of the effect of a 

full deletion of the final step of the PCP, the xylulokinase 
(XKI1), its antisense inhibition increased xylitol produc-
tion in T. reesei [14].

Transcriptomics is a sensitive tool to probe complex 
regulatory events, but only a few T. reesei transcriptomics 
studies have been performed using crude plant biomass 
[15–17], while others used polymers or mono- and disac-
charides [3]. In particular, only one transcriptomic study 
analyzed a regulatory mutant (Δxyr1) using crude plant 
biomass (wheat bran) [18], whereas no catabolic mutants 
have been analyzed by transcriptomics using crude plant 
biomass. This previous study, analyzing only a single 
time point, identified a set of genes regulated by XYR1 
(including not only (hemi-)cellulolytic genes, but also 
genes encoding non-enzymatic cellulose active enzymes, 
sugar transporters and heat shock proteins) [18]. Analy-
sis across multiple time points is required to uncover 
the dynamic changes in gene expression patterns as the 
crude plant biomass is degraded by the fungus.

In this study, we analyzed the transcriptome of T. reesei 
during growth on the two industrial substrates soybean 
hulls (SBH) and corn stover (CS) over time, using two 
regulatory mutants (Δxyr1 and Δara1) and one meta-
bolic mutant (Δxki1). These two substrates have differ-
ent polysaccharide compositions [19, 20], allowing us to 
deeply explore how the regulatory system responds to a 
wide array of sugar inducers released from these poly-
saccharides. CS is richer in hemicellulose, particularly 
arabinoxylan, while SBH is richer in pectin, xyloglu-
can and mannan (Additional file  1). This study resulted 
in three main findings. T. reesei had higher and broader 
transcript levels of PBD CAZyme genes when cultured 
on CS. ARA1 had a larger role in the regulation of PBD 
transcripts on SBH compared to XYR1, which was the 
major TF regulating plant biomass degradation in CS. 
The block of pentose catabolism (by deletion of xki1 from 
the PCP) led to higher PBD CAZyme expression at later 
time points in the CS and SBH cultures.

Results
The regulatory and catabolic mutants had severely 
reduced growth on pure mono‑ and polysaccharides 
compared to the reference strain, but not on crude plant 
biomass
Three T. reesei deletion mutants (Δxyr1, Δara1 and 
Δxki1) were phenotypically compared to the refer-
ence strain QM9414 by growth on various carbon 
sources, including mono- and disaccharides, polymers 
and crude plant biomass (Fig.  2). As reported previ-
ously [21, 22], deletion of xyr1 most severely affected 
growth on d-xylose, less severely on lactose and to an 
even lesser extent on l-arabinose, xylitol, arabinan 
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and arabinoxylan (Fig.  2). Deletion of ara1 abolished 
growth on d-galactose and reduced growth on l-arab-
inose, l-arabitol, while growth on d-xylose, arabinan, 
arabinoxylan and lactose was not affected (Fig.  2). 
Deletion of the xylulokinase xki1 resulted in strongly 
reduced growth on d-xylose and to a lesser extent on 
l-arabinose and xylitol, while growth on l-arabitol was 
abolished (Fig.  2). In all three deletion strains, strong 
growth reduction was only observed on specific mono- 
and polysaccharides, but not on crude plant biomass 
(Fig.  2), perhaps reflecting the diversity of nutrients 
available in plant biomass and highlighting the complex 
regulatory network during growth on crude substrates.

The T. reesei reference strain expressed PBD CAZymes 
at higher levels on corn stover than on soybean hulls
CS or SBH cultures from transfer experiment were sam-
pled after 4, 24 and 48 h for transcriptome analysis that 
focused on genes encoding PBD CAZymes, carbon cat-
abolic enzymes and related TFs (Additional file  4). To 
investigate the adaptation to each substrate, we initially 
compared the PBD CAZyme transcriptome profiles 
by clustering all six conditions of the reference strain 
(Fig.  3). The 4  h and 24  h CS samples clearly separated 
from the other samples, while the 4  h SBH sample was 
also distant from the remaining samples (Fig.  3). Inter-
estingly, the 24  h and 48  h SBH samples clustered with 
the 48  h CS sample (Fig.  3), and overall had less highly 
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expressed genes than the other samples. This suggests 
that during growth on SBH the inducing compounds 
were more quickly removed from the cultures than on 
CS.

Deep transcriptomic analysis (Fig.  4), in terms of 
which PBDs were induced and the level of total expres-
sion, helped to elucidate the patterns found in the PBD 
CAZymes cluster analysis (Fig.  3). CS induced more 
as well as higher total expression of cellulolytic and 
xylanolytic genes (Fig. 4a, b). In contrast, SBH induced 
more as well as higher total expression of mannanolytic, 

amylolytic and pectinolytic genes at the initial stage 
(4 h) (Fig. 4). This indicates that T. reesei is able to sense 
the major inducers from each substrate, adapting the 
expression of PBD CAZyme encoding genes to the sub-
strate composition.

CS induced more PBD CAZyme encoding genes 
compared to SBH (Fig. 3) and to a higher level of total 
expression at all three time points (Fig. 4). The peak of 
PBD CAZyme gene expression on CS was at 4 h where 
the total expression of xylanolytic genes was highest 
(such as xyn1/2/3/4, bxl1, aes1, agu1 and abf2) (Fig. 4b, 
Additional file  4), while cellulolytic gene expression 
was highest at 24  h (e.g., cbh1/2, egl1/2/3//5 and two 
LPMOs egl4 and cel61b) (Fig.  4b, Additional file  4). 
In general, in both substrates, the number of induced 
PBD CAZyme encoding genes and the total expression 
level decreased over time (Fig. 4), with a steeper decline 
over time in the total expression on SBH compared to 
CS (Fig. 4). The decrease over time led to a total level 
of PBD CAZyme gene expression at 48 h on both sub-
strates that is comparable to the level in the d-fructose 
pre-cultures (Figs.  3, 4b) indicating that at 48  h little 
or no inducers were present in the cultures from both 
substrates. Considering that studies in A. niger [23, 24] 
and T. reesei [25] indicated that inducer concentra-
tions below 1  mM already activate the regulatory sys-
tems, this suggests that in fact no inducers are present 
anymore.

Total expression of carbon catabolic genes in CS and 
SBH followed the PBD cellulolytic gene expression 
matches with CAZyme patterns where the expression 
decreased over time in both substrates, but for this gene 
group the total expression was comparable in both sub-
strates at the same time point (Fig.  5). Similar to what 
was observed for the CAZyme genes, a more clear adap-
tation to substrate composition was observed at 4 h than 
at the later time points (Fig.  5). The total expression of 
genes involved in both the PCP and d-galactose oxido-
reductive pathway (xyl1, lad1 and xdh1) was higher in 
CS, while in SBH the total expression of the l-rhamnose 
pathway was higher (Fig.  5b). Transcriptional regula-
tor encoding genes appeared to be similarly induced 
in both substrates (Fig.  6), but small differences were 
observed that also correlated with the composition of 
the substrates. CS induced more highly xyr1 and ace3 
(both (hemi-)cellulolytic activators [26, 27]), while SBH 
higher expressed rhr1 (ortholog of the A. niger rham-
nose responsive regulator rhaR [28]) after 4 h, as well as 
xpp1 (xylanase repressor [29]). The two substrates dem-
onstrated clear differences in their induction pattern and 
physiological response and this led us to initially analyze 
the effects of the three deletion mutants by each sub-
strate separately and then compare these analyses. 
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XYR1 is the major TF regulating the degradation of corn 
stover, while ARA1 more strongly affects soybean hulls 
utilization
We initially analyzed the secretome profiles of the refer-
ence strain and what we considered phenotypically the 
most extreme mutant, Δxyr1, by SDS-PAGE gel analysis 
on later time points (24 h and 48 h), where we expected 
to see clear patterns. T. reesei reference strain secreted 
a different protein pattern in each substrate, where CS 
showed more intense bands especially around 25  kDa. 
According to our expectations, xyr1 deletion caused a 
severe secretome reduction in terms of bands intensity 
and range, in both substrates (Additional file 6).

Clustering analysis showed that in CS, the 4 h and 24 h 
samples of the reference, Δara1 and Δxki1 cluster as two 
related, time-dependent clusters, indicating that overall 
these strains behave very similar during growth on CS 
(Fig.  7). At 48  h, these strains still cluster together, but 
are now related to the 24 h and 48 h samples of Δxyr1, 

characterized by an overall reduction in gene expres-
sion compared to the reference strain at the earlier time 
points (Fig. 7). The 4 h sample of Δxyr1 is clearly distinct 
from the other samples, with also an overall low expres-
sion of the CAZyme genes, but with some genes that are 
still higher expressed than at later time points in this 
strain. The results, therefore, support a central role for 
XYR1 in degradation of CS.

A very different pattern was observed on SBH. Ini-
tially, there appears to be only a minor effect of xyr1 as 
at 4 h, the Δxyr1 sample clusters with the 4 h reference 
strain sample (Fig. 8). However, at later time points the 
Δxyr1 samples are again characterized by overall very 
low gene expression compared to the reference strain 
at the earlier time point. The 4 h samples of Δara1 and 
Δxki1 cluster together, but distant from the reference 
strain and Δxyr1 at this time point. However, they have 
some similarity to the later time points of Δxyr1, char-
acterized by a low expression of part of the CAZyme 
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Fig. 6 Hierarchical clustering (Euclidean distance) of regulator gene expression in all strains in d‑fructose (pre‑culture), corn stover and soybean 
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Fig. 7 Hierarchical clustering (Euclidean distance) of PBD CAZyme gene expression in the T. reesei reference strain (QM9414) and deletion mutants 
Δxyr1, Δara1 and Δxki1 on corn stover (CS)
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Fig. 8 Hierarchical clustering (Euclidean distance) of PBD CAZyme gene expression in the T. reesei reference strain (QM9414) and deletion mutants 
Δxyr1, Δara1 and Δxki1 on soybean hulls (SBH)



Page 11 of 20Benocci et al. Biotechnol Biofuels           (2019) 12:81 

genes (Fig.  8). Some genes that are lowly expressed in 
the Δara1 and Δxki1 strain at 4 h increase strongly in 
expression at the later time points, especially at 48  h, 
but this is not (Δxyr1) or much less (reference strain) 
the case for the other strains. Overall, ARA1 appears 
to have a stronger role in SBH degradation, especially 
at the early time points. Interestingly, the metabolic 
mutant always clustered with Δara1 at each time point 
on both substrates (Figs.  7, 8), which was unexpected, 
as the Δxki1 was expected to result in inducer accu-
mulation and, therefore, upregulation of the ARA1 and 
XYR1 target genes, while Δara1 was expected to reduce 
expression of a subset of those genes.

More detailed analysis confirmed that Δxyr1 was the 
regulatory mutant more affected in CS, resulting in a 
lower total expression and number of PBD CAZymes in 
every time point (Fig. 9a, b). In contrast to CS, on SBH 
the xyr1 deletion had a smaller effect on the response in 
all of the time points compared to the other mutants, in 
terms of number of PBD CAZymes induced and their 
total expression level (Fig.  9c, d). In SBH the biggest 
reduction in gene expression for Δxyr1 was observed at 
4  h, but only approximately half of the PBD CAZyme 
genes were affected compared to CS and the total 
expression level was similar to the reference (Fig.  9). 
The ara1 deletion had a much smaller effect on gene 
expression on CS, confirming the higher importance of 
XYR1 in CS utilization (Fig. 9a, b).

The number of PBD CAZymes affected in both of 
regulatory mutants after 4  h on CS was similar but 
the total expression level in Δara1 was still compara-
ble to the reference (Fig. 9a, b). This was mainly due to 
xylanolytic genes, which remained expressed in Δara1, 
but were severely affected in Δxyr1. At 4 h in CS, car-
bon catabolism was also affected by both mutations. 
The PCP genes were lowly expressed in both regulatory 
mutants, but the d-galactose Leloir and oxido-reduc-
tive pathways were affected more by the ara1 deletion, 
while l-rhamnose and d-galacturonic pathways were 
affected only by the ara1 deletion (Fig. 10a, b).

Similar to CS, the initial response on SBH was also 
affected by both regulatory mutants, but the effect was 
larger for Δara1 than for Δxyr1 (Fig.  9c, d). In Δara1 
induction of mannanolytic and pectinolytic genes were 
particularly reduced (Fig.  9c, d). In addition, genes of 
the PCP, both d-galactose pathways and the d-galactu-
ronic acid pathway (only at 4 h) were severely reduced 
in Δara1, while the l-rhamnose pathway genes were 
not or lowly expressed in Δara1 (Fig.  10c, d). These 
pathways were not substantially affected in the xyr1 
mutant on SBH. This indicates that Δara1 was not/less 
able to catabolize or release d-galactose, l-arabinose 

and l-rhamnose, confirming that ARA1 has a larger 
effect on SBH utilization than XYR1.

Surprisingly, in contrast to Δxyr1 and the initial 
response, at 24 h in CS and 24 h and 48 h in SBH Δara1 
induced more PBD CAZymes and to a higher level 
compared to the reference (Fig. 9). The same phenom-
enon was observed also for the Δxki1 strain and will be 
described in the following section.

Deletion of xki1 or ara1 leads to higher expression 
of cellulolytic and xylanolytic genes in soybean hulls 
and corn stover
Clustering analysis (Figs.  7,  8) showed that Δxki1 and 
Δara1 samples always clustered together and by time 
point in both substrates, suggesting a similar response 
from each of the mutants, which was confirmed by 
transcriptomic analysis where PBD CAZyme genes 
(Fig.  9) and carbon catabolic genes (Fig.  10) were simi-
larly expressed. In Δxki1 and Δara1, the initial responses 
(4  h) to both substrates was severely affected, while at 
later time points (24 h in CS, 24 h and 48 h in SBH) more 
PBD CAZyme genes were induced and at higher level 
compared to the reference (Fig.  9). Remarkably, Δxki1 
appeared to be more extreme in its responses to both 
substrates compared to Δara1 (Fig. 9). The Δxki1 initial 
reduction in gene expression (4 h) to both substrates, but 
especially on CS, was more affected than that of Δara1, 
while during the PBD CAZyme gene expression peaks 
(24 h in CS, 24 h and 48 h in SBH) more PBD CAZyme 
genes were highly expressed compared to Δara1 (Fig. 9a, 
c). At these time points, and especially in SBH, genes 
of the PCP, d-galactose pathways and d-galacturonic 
acid pathway were also higher expressed in both strains 
(Fig. 10b, d). Many of the genes that were upregulated in 
one or both of the strains (Δxki1 and/or Δara1) and sub-
strates (CS and/or SBH) are mainly regulated by XYR1 
(Table 1).

In CS at 24  h (where the PBD CAZyme gene expres-
sion peaked) in both strains, mainly cellulolytic and 
xylanolytic genes, but also a few pectinolytic genes were 
more induced, while additionally in Δxki1 a few xylo-
glucanolytic genes were higher expressed (Fig.  9a, b). 
Many of these genes are described as XYR1 target genes 
[9, 22, 27, 30], including the major cellulolytic genes 
(e.g., bgl1, egl1/2/3/4/5 and cbh1/2), xylanolytic genes 
(e.g., xyn3/4, axe1 and the candidate β-xylosidase/α-l-
arabinofuranosidase Trire2_3739), one pectinolytic gene 
(pgx1) and one mannanolytic gene (man1) (Table  1). 
Only in the Δxki1 strain, two arabinanolytic (e.g., abf2) 
gene and one PCP gene (lxr3) were higher expressed, 
which were also reported to be XYR1 regulated [9, 22, 30] 
(Table  1). Expression of xyr1 was also higher, while the 
cellulase repressor rce1 [31] was lower expressed (Fig. 6).
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Fig. 9 PBD CAZyme gene expression and TFs hierarchical clustering in the deletion mutants Δxyr1, Δara1 and Δxki1 compared to the reference 
strain in corn stover and soybean hulls. a, c Fold change analysis. Differentially expressed genes were those with a p value ≤ 0.05, fold change > 2.5 
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In SBH at 48  h, Δxki1 and Δara1 had their highest 
PBD CAZyme gene expression, which included pecti-
nolytic, amylolytic, cellulolytic and xylanolytic genes 
(Fig. 9). Similar to CS, xyr1 and ace3 were also higher 
expressed in Δxki1 and Δara1 (Fig. 6), and many of the 
genes upregulated in SBH at 48 h in Δxki1 and Δara1 
have been described as XYR1 target genes [9, 22, 27, 30] 
(Table 1). These included cellulolytic (e.g., egl1/2/3/4/5 

and cbh1/2), xylanolytic (e.g., xyn3/45, bxl1, axe1 and 
aes1), and mannanolytic (e.g., man1 and the candidate 
β-mannosidase Trire-2_62166) genes [8, 9, 18, 22, 27, 
30] (Table 1). In addition to these, abf1, the candidate 
β-xylosidase/α-l-arabinofuranosidase Trire2_3739, 
bgl1 (Table  1) and two PCP genes, xyl1 (XYR1 regu-
lated) and lxr3 were higher expressed in Δxki1, but not 
Δara1 [9].
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Fig. 10 Carbon catabolic gene expression in the deletion mutants Δxyr1, Δara1 and Δxki1 compared to the reference strain in corn stover and 
soybean hulls. a, c Fold change analysis. Differentially expressed genes were those with a p value ≤ 0.05, fold change > 2.5 (log2foldchange > 1.32) 
compared to pre‑culture and FPKM ≥ 18 in at least one condition.  b, d  Total expression analysis were performed with average FPKM level between 
3 replicates in plant biomass and 2 replicates in pre‑culture. Error bars represent the standard error on the total C‑catabolism expression
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Discussion
In this study we evaluated the transcriptomic response of 
the T. reesei reference strain, two regulatory mutants and 
a metabolic mutant during growth on two plant biomass 
substrates, corn stover (CS, monocot) and soybean hulls 
(SBH, dicot). Our data showed that substrate composi-
tion strongly affected PBD CAZyme expression, resulting 
in higher induction of a broader set of CAZyme encod-
ing genes in CS compared to SBH (Figs. 3,  4). This higher 

(hemi-)cellulolytic gene expression matches with the sub-
strate composition (CS is richer in hemicellulose, espe-
cially arabinoxylan) (Additional file 1), as well as the more 
complete set of CAZymes in the T. reesei genome for 
CS degradation [6]. In addition, PBD CAZyme and car-
bon catabolism related gene expression decreased over 
time earlier in SBH (Figs.  4,   5), suggesting that release 
of inducing compounds by T. reesei finished earlier on 
SBH. Indeed, T. reesei has only a few enzyme activities 

Table 1 Support for xyr1-activation of the PBD CAZymes that were higher expressed in the Δxki1 mutant at later time-
points in corn stover (CS_24 h) and soybean hulls (SBH_48 h)

DE genes were assigned to be regulated by ARA1 and/or XYR1 according to literature [9, 22, 27, 30] or this study

ARA1/XYR1, both ARA1 and XYR1 have similar impact in regulation; ARA1 (XYR1), ARA1 has a bigger impact in regulation compared to XYR1

Trire2_geneID Gene name Activity Regulated by CS_24 h SBH_48 h

3739 BXL/ABF XYR1 Yes Yes

22197 cel1b/bgl1b BGL XYR1 Yes Yes

46816 cel3d/bgl3d BGL Unknown Yes No

49081 cel74a XEG ARA1/XYR1 Yes Yes

49976 egl5/cel45a EGL XYR1 Yes Yes

56996 man1 MAN XYR1 No Yes

60489 CUT Unknown No Yes

62166 MND Unknown No Yes

69944 AXL/AGD ARA1 (XYR1) No Yes

72526 glr1/agu1 AGU XYR1 No Yes

72567 cbh2/cel6a CBH XYR1 Yes

73632 axe1 AXE XYR1 No Yes

73643 egl4/cel61a LPMO XYR1 Yes Yes

76210 abf2 ABF ARA1(XYR1) Yes No

76227 cel3e/bgl3e BGL Unknown No Yes

76672 bgl1/cel3a/bgl3a BGL XYR1 No Yes

82227 cel3c/bgl3c BGL XYR1 No Yes

82235 AGD XYR1 No Yes

103049 PGA ARA1(XYR1) Yes No

108477 AGD Unknown No Yes

111849 xyn4 XLN XYR1 No Yes

112140 pgx1 PGX Unknown No Yes

120229 xyn3/xyn10a XLN XYR1 No Yes

120312 egl2/cel5a EGL XYR1 No Yes

120961 cel61b LPMO XYR1 No Yes

121127 bxl1/xyl3a BXL XYR1 No Yes

121418 aes1 AES XYR1 No Yes

121735 cel3b/bgl3b BGL XYR1 No Yes

122081 egl1/cel7b EGL XYR1 No Yes

122780 rgx1 RGX ARA1 No Yes

123232 egl3/cel12a EGL XYR1 No Yes

123283 abf1 ABF ARA1(XYR1) No Yes

123818 xyn2/xyn11a XLN XYR1 No Yes

123940 cip2 GE XYR1 No Yes

123989 cbh1/cel7a CBH XYR1 Yes Yes

124016 agl2 AGL ARA1 No Yes
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[6] for efficient degradation of SBH, such as low numbers 
of pectinases and α-xylosidases and a complete lack of 
endo-arabinanases and feruloyl esterases. This may have 
resulted in fewer inducers released from SBH and con-
sequently in lower induction of a narrower set of PBD 
CAZyme encoding genes. d-xylose, which has been dem-
onstrated to be a major inducer of the (hemi-)cellulolytic 
system in T. reesei [25], is mainly α-linked in xyloglucan 
in SBH, whereas it is β-linked in xylan in CS [32]. In CS, 
the major β-xylosidase bxl1 was highly expressed at all 
three time points, while no β-xylosidase expression was 
found at any time point on SBH (Additional file 4). T. ree-
sei has one putative α-xylosidase [6], which was expressed 
after 4 h (but not 24 h and 48 h) on SBH, possibly limiting 
the release of the α-linked d-xylose from SBH more so 
than the β-linked d-xylose in CS (Additional file 4). This 
was supported by a study, in which the addition of extra 
α-xylosidase activity to a T. reesei commercial enzyme 
cocktail improved significantly the amount of d-xylose 
released from pea or tamarind xyloglucan [33].

The data of this study provides leads to improve the 
production of a commercial T. reesei enzyme cocktail, 
such as by the choice of substrate on which the enzymes 
are produced and the time after which enzymes are har-
vest. CS appears a better substrate to obtain a (hemi-)cel-
lulolytic cocktail, while SBH is better for a pectinolytic, 
amylolytic and mannanolytic cocktail (Fig.  4). In both 
substrates, the overall expression level was higher at the 
earliest time point (4  h), suggesting that high enzyme 
production will not be sustained over time unless the 
consumption of potential inducers can be impaired such 
as in the Δxki1 mutant. A similar pattern was observed 
in Podospora anserina using comparable methodology 
including the same substrates [34], where CS induced 
predominantly (hemi-)cellulases, while SBH induced 
more amylolytic and pectinolytic genes. However, in P. 
anserina, SBH was the broader and higher PBD CAZyme 
gene inducing substrate compared to CS. This indi-
cates that the inducing effect of crude substrates can be 
species-specific, depending on the genome content and 
plant biomass degradation strategy. Nevertheless, com-
monalities can be found in the responses of fungi from 
diverse biotypes. Analysis of the T. reesei PBD CAZyme 
genes expressed in both substrates resulted in a core set 
of 35 shared enzyme activities (data not shown). Of these 
activities, 14 were in common with the 18 activities in 
the core set of P. anserina and saprobic basidiomycetes 
[34, 35]. These 14 activities included three cellulolytic 
(LPMO, CBH and EGL), one amylolytic (AGD), four 
xylanolytic (AXE, XLN, ABF, BXL), three mannanolytic 
(MAN, MND and LAC), two pectinolytic (LAC and 
ABF) and one xyloglucanolytic (XEG) gene. This core 
enzyme set could be considered as a general response of 

fungi from diverse biotypes to commonly found compo-
nents of plant biomass.

We showed that particularly (hemi-)cellulolytic genes 
were more induced in CS, most likely due to the higher 
expression of the two (hemi-)cellulolytic regulators xyr1 
and ace3 (Fig.  6). However, a higher expression of a TF 
does not necessarily lead to higher expression of its tar-
get genes, because they can be regulated also at post-
transcriptional level, as has previously been shown for 
XYR1 and other TFs [8]. However, our data demonstrates 
low expression for clr2 in all conditions, suggesting a dif-
ferent function in T. reesei for CLR2 compared to Neu-
rospora crassa and several Aspergilli, where it has been 
described as a cellulolytic and mannanolytic regulator 
[36–38]. Overexpression of clr2 in T. reesei did not result 
in substantial enhancement in cellulase and xylanase 
activity [26]. The orthologs of the A. niger d-galacturonic 
acid regulators gaaR and gaaX [39] were also poorly 
expressed in most of the conditions (Fig.  6), suggest-
ing that the mechanism with which T. reesei responds to 
d-galacturonic acid may differ from Botrytis cinerea and 
A. niger [6, 8].

Our data showed that all mutations, both regula-
tory and catabolic, severely affected the initial response 
(4  h) to both substrates (Figs.  9, 10). This suggests an 
initial delay in the release and utilization of enough eas-
ily metabolized sugars/inducers at 4  h by the mutants, 
resulting in a lack of energy, lower co-factor regenera-
tion (especially for Δxki1), such as NADH and NADPH 
that are necessary for the activity of many oxidoreduc-
tases of catabolic pathways, and carbon to synthesize 
the necessary proteins to degrade plant biomass. Lower 
PBD CAZyme gene expression was also observed in a 
study performed with comparable methodology in A. 
niger, where ΔxlnR and ΔxkiA mutants severely affected 
PBD expression in both CS and SBH at the early stage 
[40]. Comparison with this A. niger study is particularly 
informative as similar conditions (with respect to time-
points and substrates) and mutants were used.

Our study demonstrates that xyr1 is the major TF 
affecting CS utilization, where its deletion caused a mas-
sive reduction of PBD CAZyme gene expression at 4  h 
and 24 h, especially of cellulolytic and xylanolytic genes 
(Fig.  9). This matches with the substrate composition 
(Additional file  1) and the function described for this 
regulator, as indeed CS is richer in (hemi-)cellulose and 
XYR1 is the main (hemi-)cellulolytic activator [9, 22, 27]. 
This confirms a previous study, in which another (hemi-)
cellulose-rich substrate (wheat bran) and a T. reesei Rut-
C30 Δxyr1 mutant were used [18].

In contrast, at 4 h in SBH, substrate utilization was more 
affected by the ara1 deletion resulting in a more severe 
reduction of PBD CAZyme expression. This dependence 
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of the early response to SBH on ARA1 is most likely 
due to the fact that ARA1 responds to l-arabinose and 
d-galactose [9] (inducers which SBH is richer in Addi-
tional file  1). During the later response (24  h and 48  h), 
other TFs indirectly compensated for this loss, such as 
the higher expression of the (hemi-)cellulolytic activators 
xyr1 and ace3 [8, 22, 26], or the lower expression of the 
cellulase repressor rce1 [31] (Fig. 6). Supporting this role 
of these regulators, cellulolytic and xylanolytic genes were 
higher expressed in Δara1 at the later time points (Fig. 9).

Our study is the first which highlights the importance 
of TFs other than XYR1, in a pectin- and mannan rich 
substrate such as SBH for T. reesei. Most of the previ-
ous studies where xyr1 was deleted used substrates that 
did not contain pectin or mannan, such as lactose, cel-
lulose or xylan-rich crude plant biomass [15, 18, 22, 27, 
30, 41–44]. The use of SBH in our study not only showed 
that XYR1 was not the major regulator on this substrate, 
but also that XYR1 partially regulates a few pectinolytic 
and mannanolytic genes (Additional file 4). This suggests 
that the function of XYR1 is not limited to cellulolytic 
and xylanolytic genes [27], but is broader than what has 
so far been described [8, 9, 27, 30]. Another broader role 
for XYR1 was reported by Ma et  al. [18], where XYR1 
appeared to regulate not only (hemi-)cellulolytic genes, 
but also genes encoding non-enzymatic cellulose active 
enzymes, sugar transporters and heat shock proteins.

In A. niger, XlnR (xyr1 ortholog) and AraR (functional 
homolog of ara1) can compensate for each other’s loss, 
by inducing the target genes of the deleted regulator, most 
likely due to a similar binding motif [45]. In contrast, T. 
reesei XYR1 and ARA1 are not able to compensate for each 
other loss, probably because they are not closely related 
and, therefore, also bind to distinct promoter sequences [8, 
9]. XYR1 appeared to express its own target genes, mainly 
(hemi-)cellulolytic genes [9, 22, 27], to a higher level in the 
Δara1 strain, but not ARA1-target genes (Fig. 9).

The residual growth of Δxki1 on l-arabinose (which 
should result in a block of the PCP, Fig.  2), suggests the 
presence of another catabolic pathway in T. reesei to par-
tially catabolize l-arabinose instead of the PCP. In con-
trast, the A. niger xylulokinase mutant cannot grow on 
l-arabinose [12], indicating a difference in the organi-
zation of these pathways between these two fungi. Blast 
analysis revealed that the T. reesei genome contains 
orthologs for the non-phosphorylative l-arabinose path-
way from the bacterium Azospirillum brasiliense [46] 
(referred to as “alternative l-arabinose pathway” in our 
analysis). Whether this putative alternative l-arabinose 
pathway is responsible for the further catabolism of l-ara-
binose in Δxki1 strain (Fig. 10) requires additional studies.

In Δxki1, the putative block of the PCP resulted in 
higher PBD CAZyme expression at later time points on 

both substrates (24  h in CS and 48  h in SBH) (Fig.  9). 
Many of these genes were described as XYR1 regulated 
[9, 27, 30] (Table 1) and were also upregulated in Δara1. 
A similar inducing effect was also observed in A. niger 
ΔxkiA [40], where accumulation of inducers [12], such 
as xylitol and l-arabitol, resulted in more PBD CAZyme 
genes that were highly expressed compared to the refer-
ence strain at later time points. However, this was lim-
ited to genes acting on pectin or with an activity that 
could be involved in the degradation of several sub-
strates. This inducer(s) accumulation could also be the 
explanation for our results with T. reesei, which resulted 
in higher expression of the (hemi-)cellulolytic regula-
tor xyr1 (Fig.  6) and its target genes [9, 27, 30]. Xylitol 
and l-arabitol accumulation was already reported for 
other T. reesei PCP-knockout strains (Δxyl1, Δlad1, 
Δlxr3) [13]. This inducer(s) accumulation (such as by 
xylitol and l-arabitol) is a possible explanation for the 
higher expression of PBD CAZymes observed also in the 
Δara1 strain. However, in this case, where a TF is miss-
ing, we cannot exclude the involvement of other regula-
tory mechanism(s) such as secondary/backup regulatory 
system(s). It was previously shown in A. niger that XlnR 
and AraR have an antagonistic effect on each other and 
that deletion of one, increases expression of the target 
genes of the other [47, 48]. Considering that growth on 
solid media, where sugars other than pentoses were avail-
able, was comparable to the reference strain (Fig. 2), dele-
tion of xki1 could be used to improve production of T. 
reesei enzyme cocktails at industrial scale by limiting the 
catabolism of pentose inducers from a crude plant bio-
mass substrate, potentially sustaining the induction of 
the enzyme encoding genes longer.

Conclusion
CS induces a broader and higher expression of PBD 
CAZyme encoding genes in T. reesei, while SBH could be 
used to induce an enzyme cocktail that is richer in pecti-
nolytic and mannanolytic enzymes. XYR1 is the major TF 
affecting CS utilization, while ARA1 affects more SBH uti-
lization. Blocking the PCP by deleting xki1 leads to higher 
expression of PBD CAZymes at later time points in the 
cultures, which could lead to a novel strategy to improve 
the enzyme cocktail production at industrial level.

Materials and methods
Strains, media, and growth conditions
Trichoderma reesei QM9414 (ATCC 26921) [49] was 
used as reference strain and compared to CBS 143327 
(Δxyr1) [22], CBS143330 (Δara1) [9] and CBS143332 
(Δxki11) (this study) in all experiments. All T. reesei plate 
cultures were incubated at 28  °C on PDA (Difco) for 
sporulation, or minimal medium (MM) [50] with 18 g/L 



Page 17 of 20Benocci et al. Biotechnol Biofuels           (2019) 12:81 

Select agar (Invitrogen) during the transformation or 
growth profiling (in this case Na-citrate was removed). 
The growth profile was performed on MM with 25 mM 
d-glucose (Sigma), d-fructose (Sigma), d-xylose (Sigma), 
l-arabinose (Sigma), xylitol (Sigma), l-arabitol (Sigma), 
d-galactose (Sigma), lactose (Sigma), 1% arabinan (Mega-
zyme), wheat arabinoxylan (Megazyme), apple pectin 
(Sigma), avicel (Fluka), 3% soybean hulls and corn stover 
in 9  cm Petri dishes. Duplicate plates were inoculated 
with 2 μL containing 1 × 103 spores, which were pre-ger-
minated overnight in MM with 1% d-fructose and 0.1% 
peptone, and incubated in the dark for at least 5 days at 
28  °C. Pre-germination facilitates replicable growth on 
C-sources where T. reesei spores germinate infrequently 
or do not germinate. Independent deletion strains were 
generated and tested for growth on a subset of C-sources 
to confirm the reliability of attributing the observed phe-
notypes to deleted gene (data not shown). We selected 
one strain to use in further studies and deposited these 
at the Westerdijk Fungal Biodiversity Institute collection, 
with strain number as indicated above.

A transfer experiment was performed for transcriptom-
ics. 250  mL of complete medium (CM) [51] containing 
2% d-fructose in 1 L Erlenmeyer flasks was inoculated 
with 2.5 × 108 fresh spores, harvested from a PDA plate, 
and incubated in a rotatory shaker at 28  °C for 20  h at 
250  rpm. The mycelium was harvested by filtration, 
washed with liquid Mandels Andreotti medium (MA) [52] 
(without carbon source) and 2.5 g mycelium (wet weight) 
was transferred to 250  mL Erlenmeyer flasks containing 
50 mL MA with 1% of soybean hulls or corn stover, and 
incubated in a rotatory shaker at 28 °C and 250 rpm. After 
pre-culturing and after 4 h, 24 h, and 48 h of incubation 
in CS or SBH, the mycelium was harvested by vacuum fil-
tration, dried between tissue paper, directly frozen in liq-
uid nitrogen and stored at − 45  °C [53]. All experiments 
were performed in triplicates, with the exception of pre-
cultures, which were performed in duplicates.

Molecular biology methods
The hygromycin  BR cassette was amplified from the plas-
mid pLH1hph [54] and fused with 1 kb flanking regions 
up- and downstream of the xki1 gene by fusion-PCR 
and purified as described by Klaubauf et  al. [53]. This 
xki1 deletion cassette was used to transform spores of 
T. reesei QM9414 Δtku70 [55] by electroporation as 
described by Schuster et  al. [56], using a Bio-Rad Gene 
Pulser Electroporator System set at 1.8 kV, 800 Ω and 25 
μF. DNA from transformants was screened by PCR for 
the absence of xki1 and the correct positioning of the 
insert as described by Klaubauf et  al. [53]. The absence 
of ectopic integrations was confirmed by Southern blot 
(Additional file  2) using DIG Easy Hyb kit (Roche) and 

Anti-Digoxigenin-AP, Fab fragments (Roche) with a 
probe designed to hybridize to part of the hygromycin 
resistance gene sequence and amplified with the PCR 
DIG Probe Synthesis Kit (Roche), according to the manu-
facturer protocols. Primers used for PCR reactions are 
listed in Additional file 3.

Total RNA was extracted from mycelium ground in a 
Tissue Lyser (QIAGEN) using TRIzol reagent (Invitro-
gen) according to the manufacturer’s instructions. RNA 
integrity and quantity were analyzed on a 1% agarose 
electrophoresis gel and with the RNA6000 Nano Assay, 
using the Agilent 2100 Bioanalyzer (Agilent Technolo-
gies) [53].

Culture filtrate samples (10 mL) were taken after 24 h 
and 48 h and centrifuged for 10 min, at ~ 10,000×g, 4 °C 
to separate the solid fraction from the supernatant and 
stored at − 20  °C. 150 µL of these culture filtrates from 
reference and Δxyr1 strains at 24 h and 48 h of cultiva-
tion were added to 50 µL of loading buffer (10% of 1 M 
Tris–HCl, pH 6.8; 42% Glycerol, 4% (w/v) SDS; 0.02% 
(w/v) bromophenol blue; 4% of 14.7  M Mercaptoetha-
nol), boiled for 2 min to denature the proteins, cooled on 
ice for 2 min and centrifuged at ~ 10,000×g for 2 min to 
remove insoluble material. 20 µL was then loaded onto 
12% (w/v) acrylamide SDS-PAGE gels and a molecular 
weight marker (Bio-Rad unstained marker) was used to 
identify the molecular mass of the protein bands. The 
gels were silver stained [57] and documented using the 
HP scanner 4400c.

RNA sequencing and read mapping
RNA samples (5–41  μg DNase-treated total RNA) were 
processed by Joint Genome Institute. RNA sequenc-
ing was performed using Illumina HiSeq  2500 (yield 
1  TB of 1 ×  101  bp). Raw fastq file reads were filtered 
and trimmed using the JGI QC pipeline. Using BBDuk 
[BBDuk: https ://sourc eforg e.net/proje cts/bbmap /] 
raw reads were evaluated for artifact sequence by kmer 
matching (kmer = 25), allowing 1 mismatch and detected 
artifact was trimmed from the 3′ end of the reads. RNA 
spike-in reads, PhiX reads and reads containing any Ns 
were removed. Quality trimming was performed using 
the phred trimming method set at Q6. Reads under the 
length threshold were removed. Filtered reads from each 
library were aligned to the reference genome (https ://
genom e.jgi.doe.gov/Trire 2/Trire 2.home.html) using 
HISAT version 0.1.4-beta [58]. featureCounts [59] was 
used to generate the raw gene counts using gff3 anno-
tations. On average 94% of the reads mapped to the 
genome. The RNA-seq data have been deposited at the 
Sequence Read Archive at NCBI with individual sam-
ple BioProject Accession numbers (PRJNA440083 to 
PRJNA440152 and PRJNA442529 to PRJNA442538.

https://sourceforge.net/projects/bbmap/
https://genome.jgi.doe.gov/Trire2/Trire2.home.html
https://genome.jgi.doe.gov/Trire2/Trire2.home.html
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RNA‑seq data analysis
Raw gene counts were used to evaluate the level of corre-
lation between biological replicates using Pearson’s corre-
lation matrix (Additional file 5). DESeq 2 (version 1.10.0) 
[60] was used to determine which genes were differen-
tially expressed (DE) between pairs of conditions. The 
parameters used to call a gene DE between conditions 
were adjusted p value ≤ 0.05, foldchange > 2.5 (log2fold-
change > 1.32) and FPKM ≥ 18 in at least one condition. 
Genes with FPKM values < 18 in every condition were 
considered lowly expressed and ignored in the analysis.

Transcriptomics analysis focused only on genes encod-
ing PBD CAZyme (plant biomass degrading enzymes), 
carbon catabolic enzymes and TFs (Additional file  4), 
using the list we built previously [9, 61].

PBD CAZyme (which had FPKM ≥ 18 in at least one of 
the conditions for a particular heatmap) or TF (all were 
clustered without regard to their minimum FPKM value) 
genes were hierarchically clustered using the heatmap.2 
function (with default parameters: Euclidean distance, and 
complete linkage clustering method) from the gplots_3.0.1 
package in R statistical language and environment 3.4.0. 
Log2 FPKM values were used for the color gradient of the 
heatmap and FPKM values < 1 were assigned to 1.

Additional files

Additional file 1. Table with sugar composition of corn stover (CS) and 
soybean hulls (SBH). According to literature lignin content (W/W) is 
around 15–21% in CS [19] and 1–4% in SBH [20].

Additional file 2. Southern blot of Δxki1 strains. Positive gene deletion 
required bands of 6.4 kb and 10.8 kb for Δxki1. Both Δxki1 strains were 
correct.

Additional file 3. Table with PCR primers used in this study.

Additional file 4. Enzyme activity abbreviations and transcriptome 
dataset tables. Table with enzyme activity, their abbreviations and their 
predicted target substrate used in this study. The same color scheme for 
target substrates was used in the main text. A gene to be assigned as 
expressed more on a substrate (CS or SBH) requires a foldchange > 2.5, 
p ≤ 0.05 and at least 18 FPKM of expression in at least one condition. 
Genes with expression < 18 FPKM in each condition were excluded from 
subsequent analysis, because they were considered to be too poorly 
expressed.

Additional file 5. Pearson correlation matrix of Trichoderma reesei 
transcriptomes. Raw gene counts were used to evaluate the level of cor‑
relation between biological replicates using Pearson’s correlation. Pearson 
correlation matrix were performed in R (v3.4.0) statistical language and 
environment, the core function from the stats base package and the 
corrplot (v 0.77) package were used for the analysis. One sample (refer‑
ence strain on SBH at 48 h) was removed from the dataset because it 
correlated poorly with its replicates.

Additional file 6. Analysis of the protein banding patterns from the three 
replicate culture supernatants of T. reesei reference (ref ) and Δxyr1 strains 
cultured with either corn stover or soybean hulls for 24 h and 48 h. The 
same volume of culture supernatant was loaded for all samples.
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