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Abstract

Purpose: To achieve motion robust high resolution 3D free-breathing pulmonary MRI utilizing a 

novel dynamic 3D image navigator derived directly from imaging data.

Methods: Five-minute free-breathing scans were acquired with a 3D ultrashort echo time (UTE) 

sequence with 1.25 mm isotropic resolution. From this data, dynamic 3D self-navigating images 

were reconstructed under locally low rank (LLR) constraints and used for motion compensation 

with one of two methods: a soft-gating technique to penalize the respiratory motion induced data 

inconsistency, and a respiratory motion-resolved technique to provide images of all respiratory 

motion states.

Results: Respiratory motion estimation derived from the proposed dynamic 3D self-navigator of 

7.5 mm isotropic reconstruction resolution and a temporal resolution of 300 ms was successful for 

estimating complex respiratory motion patterns. This estimation improved image quality compared 

to respiratory belt and DC-based navigators. Respiratory motion compensation with soft-gating 

and respiratory motion-resolved techniques provided good image quality from highly 

undersampled data in volunteers and clinical patients.

Conclusion: An optimized 3D UTE sequence combined with the proposed reconstruction 

methods can provide high-resolution motion robust pulmonary MRI. Feasibility was shown in 
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patients who had irregular breathing patterns in which our approach could depict clinically 

relevant pulmonary pathologies.

Keywords

3D self-navigator; UTE; free-breathing; soft-gating; respiratory motion-resolved; pulmonary 
imaging

INTRODUCTION

Pulmonary imaging with MRI has potential to characterize soft tissue using the wide range 

of available image contrasts (e.g., T1, T2, diffusion, perfusion, and ventilation). Further, the 

use of MRI in place of CT avoids radiation dose which carries substantial risks with 

repeated radiation exposure (1–4). These benefits of pulmonary MRI are most relevant in 

pediatric diseases requiring longitudinal follow-up, such as cystic fibrosis (CF) and 

assessing pulmonary nodules, and can also enable imaging studies in much more widespread 

lung diseases such as asthma. However, achieving morphological lung MRI with comparable 

diagnostic value to CT is challenging due to the combined factors of short T2
∗, low proton 

density, and respiratory motion.

A variety of pulse sequence techniques and acquisition procedures have been developed to 

address these challenges (5–12). Among these techniques, radial ultrashort echo time (UTE) 

imaging has shown significant promise for high-quality pulmonary imaging due to its ability 

to capture the rapidly decaying signal and its robustness to motion (5,11,12). Recently, 3D 

radial UTE sequences with readout optimized for SNR efficiency have been proposed (12) 

for free-breathing pulmonary imaging. They have shown the potential to provide comparable 

image quality to CT in several recent studies (13,14). While these techniques enable the 

assessment of lung parenchyma, they remain reliant on effective motion compensation 

which can be challenging in the populations in which they are most needed (e.g., pediatrics).

For a respiratory motion compensation model to be effective, accurate motion estimation 

must first be obtained. External respiratory bellows can be used to estimate respiratory 

motion but are prone to errors. Most dominantly, the motion of the abdominal wall is often 

poorly coupled to actual lung motion which leads to inaccurate respiratory motion 

estimation (12,15). Motion information can be alternatively extracted directly from the 

acquired k-space data as a self-navigator. A common approach is to use the k-space center 

(DC), representing the average signal of the excitation volume, as a self-navigation signal 

(15–25). Image-based self-navigation can provide a direct measurement of motion, and 

recent studies have shown that this approach had significantly better image sharpness than 

any of the DC-based self-navigation methods (26,27).

To account for respiratory motion when reconstructing images, a variety of methods have 

been proposed. One class of methods aims to explicitly solve for motion displacement and 

compensate it during the reconstruction. In particular, Batchelor and others (28–30) 

proposed generalized matrix models to incorporate arbitrary motion displacement operators 

into the forward reconstruction model. Methods using image registration (31–39) were also 
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proposed to correct for motion by iteratively alternating between image registration and 

reconstruction. Additionally, Cheng and others proposed local auto-focusing methods 

(21,40–43) to choose the sharpest image in a local region according to a gradient entropy 

metric. While these methods were shown to be effective to reduce motion artifacts in many 

applications, errors in their underlying motion models may introduce artifacts.

For this work, we focus on another class of reconstruction methods that implicitly exploits 

image correlations from different respiratory motion states. While compromising the ability 

to correct for motion, this class of methods is very robust to motion model errors. In 

particular, we focused on soft-gating (44–47) and motion-resolved methods (48). Soft-gating 

is a computationally efficient iterative method in which the data consistency term in the 

optimization is preferentially weighted based on distances from the chosen respiratory 

motion state. The motion-resolved method, on the other hand, divides the data into several 

respiratory motion states and enforces correlations between motion states in an iterative 

reconstruction.

The purpose of this work is to provide motion robust high resolution 3D pulmonary imaging 

using the following approach: I. Data acquisition with an optimized 3D UTE sequence, II. 

Motion estimation with a lower-resolution, high frame rate dynamic 3D self-navigator from 

the subset of acquired data with reconstruction that combines parallel imaging (49) and 

compressed sensing (50) with locally low-rank constraints (51,52), III. Motion 

compensation using a retrospective soft-gating technique to reconstruct high-resolution 

images at a chosen motion state, IV. A respiratory motion-resolved technique to provide 

images of all respiratory motion states, and V. The incorporation of L1-ESPIRiT (53), an 

auto-calibrating parallel imaging and compressed sensing method. The proposed methods 

are based on a 5-min free-breathing scan, which is comparable to other free-breathing 

pulmonary MRI sequences (14,39,54). We applied the proposed methods on healthy 

volunteers as well as subjects with CF and pulmonary nodules to demonstrate feasibility for 

clinical applications.

METHODS

Data Acquisition

An optimized free-breathing 3D radial UTE sequence with slab excitation and a bit-reversed 

view ordering from Johnson et al. (12) was implemented. It incorporates variable density 

readout gradients to improve SNR efficiency and slab excitation to reduce the number of 

encodings and artifacts from the fringe of the gradient and B0 fields. The pseudorandom 

view ordering determined by a bit-reversed algorithm mitigates structured artifacts enabling 

free-breathing pulmonary imaging. Specific acquisition parameters are described in the 

following Experiment section.

Based on this sequence, the acquired data is reconstructed in a two-step process illustrated in 

Figure 1. First, high frame rate, lower-resolution dynamic 3D images are reconstructed for 

self-navigation, followed by respiratory motion estimation. Second, these estimates are used 

for a motion compensated high resolution reconstruction using soft-gating L1-ESPIRiT or 

respiratory motion-resolved L1-ESPIRiT reconstructions described below.
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Respiratory Motion Estimation

In radial acquisitions, the center of k-space is sampled repeatedly, which can be exploited for 

motion estimation. Changes in the k-space center (DC) signal reflect changes in average 

image intensity and phase that can be used for motion estimation, and multiple coils can 

further provide localized information (18,55–58). However, DC signals are susceptible to 

signal intensity drifts that could arise from scanner instability by gradient induced heating 

(59,60), and also remain sensitive to bulk motion or the rotating of readout direction. Thus, 

they often lack direct correspondence with respiratory motion. In addition, DC signals are 

non-quantitative and only represent the shape and intensity of the motion qualitatively. 

Motivated by these limitations, we propose a novel image-based self-navigated method 

using lower-resolution dynamic 3D images to quantitatively estimate respiratory motion.

Dynamic 3D Self-Navigator Using Locally Low-Rank Constraints

Here we describe a new method to reconstruct high frame rate, lower-resolution dynamic 3D 

images from the radial UTE central k-space data for motion estimation by exploiting both 

parallel imaging and spatiotemporal correlations with locally low-rank constraints. The 3D 

UTE acquisition uses a pseudo-random view ordering such that every subset of contiguously 

acquired radial profiles covers k-space with a relatively uniform angular distribution, which 

enables resolving lower-resolution dynamic images. However, to achieve sufficient temporal 

resolution (≥ 2 Hz) and acceptable spatial resolution (≤ 1 cm) to visualize respiratory 

motion, it requires more than 200-fold undersampling for every frame with respect to the 

Nyquist criterion for radial sampling. This is far beyond the maximum undersampling factor 

of typical parallel imaging and spatially constrained compressed sensing methods. 

Therefore, we propose to iteratively solve for lower-resolution navigation images from 

consecutive subsets of data by exploiting spatiotemporal correlations with locally low-rank 

(LLR) (51,52) constraints. These constraints provide additional prior information in order to 

better resolve aliased lower-resolution images. We formulate the problem in a parallel 

imaging and compressed sensing manner shown in Equation [1]:

argmin
Mlr

1
2‖DSMlr − ylr‖2

2 + λ ∑
i ∈ Ω

‖LiMlr‖∗ (1)

Here, the first term enforces data consistency in which Mlr represents dynamic lower-

resolution images (3D spatial + 1D temporal size: nx × ny × nz × nt), ylr are acquired multi-

channel data from the central region of radial k-space measurements, S represents the 

sensitivity map operator (which can be estimated by ESPIRiT), and D is the multi-channel 

non-uniform Fourier Transform (3D radial) operator. The second term enforces LLR 

constraint, in which the dynamic images Mlr can be partitioned into a set Ω of small image 

blocks (size: bx × by × bz × nt), Li is the operator that takes the block i of the image to form 

its Casorati matrix with an appropriate block size, and λ is a weighting factor to balance the 

constraints. This optimization problem in Equation [1] was solved by a fast iterative 

shrinkage-thresholding algorithm (FISTA) (61) with singular value thresholding and 

randomized block shifting (62).
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Motion Compensated Reconstruction

At their core, our motion compensated reconstructions use parallel imaging and compressed 

sensing to exploit the coil sensitivities and image transform sparsity for recovering both 

unacquired and corrupted k-space samples. This enables a clinically-feasible 5-min scan, 

which typically has more than 8-fold undersampling with respect to the Nyquist criterion 

when motion is ignored. We propose two motion compensation strategies, soft-gating and 

respiratory motion-resolved, and incorporate them into an L1-ESPIRiT reconstruction 

framework.

General Reconstruction Framework - L1-ESPIRiT

We use L1-ESPIRiT, a combined parallel imaging and compressed sensing approach, as the 

basic reconstruction framework:

argmin
m

1
2‖DSm − y‖2

2 + λ‖Φm‖1 (2)

Here, m is the desired image (3D spatial size: Nx × Ny × Nz), y is the acquired non-Cartesian 

data, S and D are defined in Equation [1] and Φ is the 3D Daubechies wavelet transform. 

The first term in Equation [2] is a data consistency term that minimizes the difference 

between the acquired data y and the reconstructed image m through the acquisition model. 

The second term enforces sparsity by minimizing the L1-norm of the wavelet coefficients of 

m, λ is the regularization parameter.

Soft-Gating L1-ESPIRiT Reconstruction

A common approach to correct for respiratory motion is gating, which selects a single 

motion state by rejecting data from the other states. This type of gating, which we refer to 

here as hard-gating, results in a relatively low scan efficiency. Alternatively, Johnson et al. 

(44), Cheng et al. (45) and also Forman et al. (46) proposed a simple and retrospective 

approach called soft-gating, in which all data is used but with weighting based on the 

estimated amount of respiratory motion. The concept of soft-gating is illustrated in the top 

branch of Figure 1. The weights effectively take account for motion induced data 

inconsistency. We use the soft-gating approach by modifying the basic image reconstruction 

model (Eq. [2]) to incorporate appropriate weights W:

argmin
m

1
2‖W(DSm − y)‖2

2 + λ‖Φm‖1 (3)

Here, W is a diagonal matrix containing the soft-gating weights, which are applied to the 

data consistency term. Let w[n] be the vector representing the diagonal entries of W. A 

different weight w[n] is estimated for each radial spoke n, ranging between 0 and 1:
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w[n] = eα(d[n] − threshold), if d[n] > threshold
1, otherwise

, (4)

where d[n] represents the estimated respiratory motion with respect to the end of expiration 

or the end of inspiration (we picked the end of expiration state in this manuscript since more 

time is typically spent in expiration during a respiration cycle), threshold is a threshold of 

the respiratory motion, and α is a scaling factor. For data experiencing more respiratory 

motion corruption, their weights are smaller and thus they contribute less to the data 

consistency term in Equation [3].

Soft-gating parameters were experimentally tuned: a small set of parameters were tried and 

image quality was assessed visually to balance between motion blurring and SNR. We found 

that the weighting parameter α suggested by Zhang et al. (47) (3/max (d[n])) provided good 

tradeoff, and hence was used for the rest of the study. The threshold parameter was set as 

25% of the maximum respiratory position. We solved the optimization in Equation [3] using 

FISTA (61).

Respiratory Motion-Resolved L1-ESPIRiT Reconstruction

Another approach we propose to use for pulmonary imaging is a respiratory motion-resolved 

reconstruction. We take a similar approach as XD-GRASP proposed by Feng et al. (48): 

sorting the free-breathing data into an extra respiratory motion-states dimension and 

constraining sparsity along the motion-states dimension by compressed sensing. The 

respiratory motion-resolved approach modifies the basic image reconstruction model (Eq. 

[2]) by extending the desired image to be 4D (3D spatial + 1D motion-states), and enforces 

sparsity along the motion-states dimension:

argmin
M

1
2‖DSM − y‖2

2 + λ1‖ΦM‖1 + λ2‖M‖TV (5)

Here, M is the desired respiratory motion-resolved images (3D spatial + 1D motion-states), 

y is the acquired non-Cartesian data reformatted into different motion states according to 

estimated respiration signal, S is the ESPIRiT sensitivity maps, and D is the non-Cartesian 

Fourier (3D Radial) operator in the first term that enforces data consistency. The second 

term enforces spatial sparsity by minimizing the L1-norm of the wavelet coefficients of M. 

The wavelet transform operator is represented by Φ. The third term enforces motion-state 

sparsity by minimizing the total variation (TV) norm along the extra respiratory motion 

dimension. λ1 and λ2 are the regularization weights for wavelet-domain sparsity and 

motion-state sparsity, respectively. We solved the optimization in Equation [3] using the 

alternating direction method of multipliers (ADMM) (63).

Imaging Studies and Data Processing

The proposed methods were applied on two healthy volunteers and nine clinical patients. All 

in vivo studies conducted were approved by our Institutional Review Board (IRB). Image 
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reconstruction and post-processing were carried out by the Berkeley Advanced 

Reconstruction Toolbox (BART) (64), including gridding and ESPIRiT calibration. In the 

spirit of reproducible research, we provide both MATLAB (MathWorks, Natick, MA) and 

Python (PSF, Wilmington, DE) demonstration code (https://github.com/jiangwenwen1231/

FB_UTE_Recon) and a software package to reproduce some of the results described in this 

article. The software can be downloaded from: https://github.com/mrirecon/bart.

Experiments

All of the in vivo 3D UTE scans shared the following relevant parameters: prescribed field 

of view (FOV) = 32 × 32 × 32 cm3, flip angle = 4°, 1.25 mm isotropic resolution, sampling 

bandwidth = ±250 kHz, readout duration = 1 ms. Gradients were designed to create a 

maximum shift of ±125 kHz across the prescribed FOV. The total scan time was between 5 

min 7 s and 5 min 14 s, and between 75,800 and 109,800 spokes were acquired, which 

results in undersampling ratio ≈ 8 with respect to Nyquist criterion (π× Cartesian 

counterpart) when motion is ignored. TE was in the range of 70–80 μs and TR was in the 

range of 2.9–4.1 ms (TR varies with respect to the gradient hardware limits on different 

scanners).

Free-breathing scans were performed on all the subjects with slight different scan details: 

two healthy male volunteer (age 29 and 31) experiments were performed on 3T Discovery™ 

MR750 clinical scanners (GE Healthcare, Waukesha, WI) with an 8-channel cardiac coil and 

20-channel torso coil arrays; eight clinical patients (including 6 CF patients) studies (4 males 

and 4 females, with age ranging from 11 to 72) were performed on 1.5T SIGNA™ HDx and 

3T Discovery™ MR750w (GE Healthcare, Waukesha, WI) clinical scanners, an 8-channel 

cardiac coil and 18-channel torso coil were used as receiver arrays; the patient with 

pulmonary nodules (male, age 73) was scanned on a 3T SIGNA™ PET/MR scanner (GE 

Healthcare, Waukesha, WI) with a 18-channel torso coil. Respiration bellows belts were in 

place during all the scans.

Evaluation of Dynamic 3D Self-Navigator

For the dynamic 3D self-navigator, the beginning 16% of the data along the readout was 

used to reconstruct lower-resolution images and estimate sensitivity maps. This results in 7.5 

mm apparent isotropic spatial resolution. Lower-resolution 3D self-navigators were 

reconstructed on a 80 × 80 × 80 matrix of each frame with a temporal window width of 100 

spokes, which yields an apparent temporal resolution of ≈ 300 ms (depends on TR value). 

Effectively, every frame has the acceleration factor of 200 with respect to the Nyquist 

criterion. We partitioned the images with the block size of 8 × 8 × 8, and applied locally 

low-rank constraints on the temporal domain, using regularization of λ = 0.0005. For 

comparison, we performed a direct 3D gridding reconstruction on the same data of every 

temporal frame.

We compared dynamic 3D self-navigation with DC-based self-navigating and respiratory 

bellows navigation on a group of eight clinical patients with mixed patterns of breathing. 

Motion estimates from the dynamic 3D self-navigator were obtained by measuring the 

superior/inferior (SI) translation motion of the diaphragm by calculating cross correlations 
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on a region-of-interest (ROI) in image domain. For DC-based self-navigation, we applied a 

low-pass (0.5 Hz cut-off frequency) filter on the k-space center to extract the 1D respiration 

motion surrogate. An additional median filter was applied to the raw data. Finally, the 

asymmetric least-squares smoothing method (65) was performed to remove baseline drifts.

Pearson correlation coefficient analysis between different respiratory motion estimation 

methods for each subject was performed, in order to quantify the linear correlation between 

different respiratory motion signals. The motion estimation accuracy was further 

investigated by reconstructing images with the proposed soft-gating L1-ESPIRiT method. 

The soft-gating compensation used the same parameters across different motion estimations, 

including similar effective undersampling factors (which is defined by summing up the 

weighting values with respect to data size). The image quality was assessed by image 

sharpness along lung-liver interfaces with the maximum of the first derivative (MD) (27), 

normalized by the MD value of dynamic 3D self-navigator reconstructed images. A median 

filter was applied before taking the derivative to mitigate the noise sensitivity of the MD 

method. Ten slices were chosen to compute mean and standard deviation for each case.

Evaluation of Motion Compensated Reconstruction

Soft-gating L1-ESPIRiT was evaluated by first extracting the respiratory motion signals 

from the acquired data by the proposed 3D dynamic self-navigator (80 × 80 × 80 × 1000 

matrix). Then, we used 3D Daubechies wavelet basis with regularization values of λ = 0.01 

in the soft-gating L1-ESPIRiT reconstruction. The results were compared with L1-ESPIRiT 

reconstruction without respiratory motion compensation.

For respiratory motion-resolved L1-ESPIRiT reconstruction algorithm, the same respiratory 

navigation signals were used. We divided the data equivalently into five motion states (each 

state has the same number of radial spokes). Regularization values of λ1 and λ2 were 

empirically selected with the qualitative criteria of suppressing aliasing artifacts and 

preventing blurring spatially/between motion states. More specifically, we set λ2 to be zero 

and chose appropriate spatial sparsity weight λ1 first. Then we add the motion-state weight 

λ2 to improve the undersampling aliasing removal while keeping fidelity across motion 

states.

Feasibility for Cystic Fibrosis and Pulmonary Nodules

We also evaluated preliminary feasibility of the proposed methods in pathologies of CF and 

pulmonary nodules. The soft-gating L1-ESPIRiT reconstruction was implemented, with 

similar reconstruction parameters to those described above.

RESULTS

Evaluation of Dynamic 3D Self-Navigator

As seen in Figure 2, dynamic lower-resolution images have strong streaking artifacts when 

only the gridding operation was applied, due to a high level of undersampling (~ 200-fold) 

of every frame. It is extremely challenging to estimate motion information from these 

corrupted images. When parallel imaging and compressed sensing with LLR constraints 
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were applied, the aliasing artifacts were significantly reduced by the dynamic image 

sequence prior. The Supporting Video S1 shows the comparison of gridding and LLR 

images over time.

To demonstrate the dynamics captured by the dynamic 3D self-navigator, we selected cross 

lines perpendicular to the diaphragm, front chest wall, at the apex of the lung, in which 

complex breathing patterns were observed. In both case 1 and case 2 in Figure 2, the 

dynamic 3D navigators were capable of displaying the full chest motion pattern well, 

including lung–liver interface displacement, chest wall expanding, as well as movement of 

pulmonary vessels within the lung. Both subjects had a mixture of deep and shallow 

breathing patterns with variable rates. The Supporting Videos S2 and S3 clearly illustrate the 

full respiratory motion captured by the LLR reconstruction on two CF patients with complex 

breathing patterns.

Comparisons of the motion estimation signals and corresponding reconstructed images for 

two challenging clinical cases in which patients had mildly irregular breathing and strongly 

irregular breathing are shown in Figure 3, and quantitative comparisons across eight clinical 

cases are shown in Figure 4. The Supporting Video S4 shows the breathing pattern of the 

eight clinical patients evaluated in the Figure 4.

Case 1, shown in the left of Figure 3, had mildly irregular breathing, with periods of regular 

motion but also some deep/shallow inhalation. Both DC-based self-navigation and dynamic 

3D navigator were able to delineate the deep and shallow inhalation (shaded areas at ≈ 30 s, 

140 s) while the respiratory belt failed to capture this variation. The motion estimation 

accuracy was evaluated qualitatively by applying a soft-gating L1-ESPIRiT reconstruction, 

which is shown below the respiratory motion estimation plot in Figure 3. As the yellow 

arrows show, the sharpness of the small vessels was slightly deteriorated with respiratory 

belt navigation and DC-based self-navigation, while the dynamic 3D self-navigator most 

clearly depicts these fine structures and improves the conspicuity of the small vessels. 

Although the DC-based self-navigation motion estimation appeared to correctly capture 

deep and shallow inhalation and was strongly correlated with dynamic 3D navigator-based 

1D motion estimation (R = 0.8187, Fig. 4), the blurred vessels in the reconstructed images 

indicate some inaccuracies. Both belt navigation and DC-based self-navigation resulted in 

lower average MD sharpness values at the lung-liver interface compared with 3D self-

navigation (Fig. 4). The 3D self-navigator videos are included in the supplementary 

materials (Supporting Video S2).

Case 2, shown in the right of Figure 3, had a strongly irregular breathing pattern. Differences 

in the motion estimation results are largely due to the fact that respiratory belt and DC-based 

self-navigation cannot capture the bulk displacement of the lung and the diaphragm that 

occurred during this study. During several abrupt movements (shaded areas at ≈ 20 s, 70 s 

and 150 s), the respiration belt failed to match the actual displacement of diaphragm. We 

suspect this patient was coughing during the first minute of the scan. As the reconstructed 

images show below the respiratory motion estimation plot in Figure 3, images reconstructed 

utilizing DC-based self-navigation and respiratory belt had low vessel conspicuity and 

substantial blurring observed at the dome of the liver. This suggests both the DC and bellows 
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signals did not accurately represent chest wall and diaphragm motion. The dynamic 3D 

navigator gating clearly improves the image quality in this case, sharply recovering fine 

vascular structures within the lung. The significantly lower MD sharpness values from belt 

navigation and DC-based navigation of Case 2 in Figure 4 also support this result. In the 

supplementary materials, we provide the Supporting Video S3 showing the dynamic 3D 

navigator for this patient during the 5-min scan.

For the eight clinical patient studies, we compared the respiration estimation signals and the 

resulting image sharpness at the diaphragm from the dynamic 3D self-navigator, a DC-based 

self-navigator, and respiratory bellows belt-based navigation (Fig. 4). For the subjects with 

regular breathing patterns (Cases 4,7,8), respiratory bellow and DC-based self-navigation 

motion estimation signals had strong correlation with the dynamic 3D navigator based 

motion estimation (> 0.85). However, there was substantial disagreement for subjects with 

irregular breathing patterns (Cases 1,2,5,6) as indicated by lower correlation coefficients. 

Similar results across cases were observed in the diaphragm sharpness of soft-gating L1-

ESPIRiT reconstructed images, as measured by the maximum derivative metric (27). For the 

subjects with regular breathing patterns (Cases 4,7,8), the different respiration estimation 

methods resulted in similar sharpness measures. For the subjects with irregular breathing 

patterns (Cases 1,2,5,6), using the dynamic 3D self-navigator for motion estimation had 

notably better sharpness measures than both DC-based self-navigation and respiratory 

bellow based images. In all our cases, using the dynamic 3D self-navigator for motion 

estimation provided equivalent or better image sharpness compared to respiratory bellows 

and DC-based self-navigation motion estimation.

(Respiratory motion dynamics of these eight clinical patients can be found in the Supporting 

Video S4).

Evaluation of Motion Compensated Image Reconstruction

Figure 5 shows a comparison of non-gated L1-ESPIRiT reconstruction (left) with our soft-

gating L1-ESPIRiT reconstruction (right) in a healthy volunteer and a CF patient. The 

zoomed-in red boxes show that the fine pulmonary structures are delineated well with soft-

gating L1-ESPIRiT. Red arrows point out where vessels and fine structures were blurred out 

by the respiratory motion when the non-gated reconstruction was used, while soft-gating L1-

ESPIRiT was able to visualize the fine structures and diaphragm. Overall, soft-gating L1-

ESPIRiT reconstruction also provides comparable apparent SNR, since it removes the both 

streaking and noise-like artifacts while enforcing sparsity in the image wavelet domain.

For motion-resolved reconstruction’s selection of the two regularization parameters (λ1 and 

λ2), Figure 6 shows the results for six representative regularization combinations on the 

same volunteer in Figure 5. Both λ1 of the wavelet sparsity and λ2 of the motion states 

sparsity help to suppress undersampling aliasing artifacts. λ1 promotes 3D spatial sparsity, 

effectively removing aliasing artifacts (shown in the top row of Fig. 6). Very high values of 

λ1 introduce over-smoothing of images (the last figure in the first row). Usage of the 

additional sparsity constraint along the additional respiratory-state dimension improved the 

removal of undersampling artifacts (shown in the second row of Fig. 6). Not using motion 

states sparsity (λ2 = 0) resulted in residual aliasing artifacts (the first figure in the second 
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row), while very high values of λ2 introduced blurring over respiratory motion states (the 

last figure in the second row). Regularization values on the order of λ1 = 0.01 and λ2 = 0.02 

were empirically tuned and used for reconstruction.

Figure 7 shows the respiratory motion-resolved images of all the respiratory motion-states 

(from left to right) from the same volunteer as Figure 5. They clearly depict respiratory 

motion without suffering from undersampling-induced aliasing. See the Supporting Video 

S5 for an animated version of the respiratory motion-resolved images.

Figure 8 shows a side-by-side comparison of the soft-gating and respiratory motion-resolved 

reconstructions on the same volunteer. Both soft-gating and respiratory motion-resolved 

techniques were able to significantly reduce motion blurring and artifacts due to 

undersampling. The two reconstructions have similar apparent image quality. While 

respiratory motion-resolved imaging provides all the motion states that could be valuable for 

dynamic evaluations (e.g., ventilation, air trapping), the soft-gating reconstruction is 

computationally more efficient. In this comparison carried out on a machine equipped with a 

four-socket Intel Xeon E7-8870 with a total of 144 cores at 2.10 GHz, our implementation 

of the motion-resolved L1-ESPIRiT reconstruction takes 156 GB memory and 5 h with our 

parallelized implementation, while soft-gating reconstruction takes 43 GB and 2 h on the 

same dataset.

To illustrate the performance of the motion compensated reconstructions in a subject with 

irregular breathing, Figure 9 shows a side-by-side comparison of the soft-gating and 

respiratory motion-resolved reconstructions for the CF patient Case 2 (also shown in Fig. 3). 

This subject had a strongly irregular breathing pattern and respiration drifts. Although the 

soft-gating technique was able to significantly reduce motion blurring and recover most of 

the vascular structures conspicuity within the lung, it resulted in blurring of some features 

(e.g., diaphragm and vessels, shown with yellow arrows). Due to the large variation of the 

respiratory motion and drifts, especially during inspiration state, we kept 60% of the data as 

shown in Figure 9 and then segmented the remaining data equally into five motion states to 

perform respiratory motion-resolved reconstruction. This respiratory motion-resolved 

reconstruction was able to delineate the small pulmonary vessels and sharp diaphragm, 

without deteriorating image quality. This is because each respiratory motion state represents 

smaller motion range compared with the soft-gating technique’s single motion state.

Feasibility for Cystic Fibrosis and Pulmonary Nodules

The top row of Figure 10 shows exemplary pathologies in CF that were well visualized 

when using the soft-gating L1-ESPIRiT reconstruction. The left case shows atelectasis along 

the major fissure (red arrow), and the middle and right cases show bronchiectasis. The 

middle case also shows mucus plugging, shown in the red circle. The air trapping is seen in 

the left lower lobe in the right case (red arrow). These demonstrate the potential of our 

approach to depict clinically relevant imaging features in the lung. Bottom row of Figure 10 

shows clinical examples of a 3 mm, 5 mm, and 1 cm pulmonary nodules (green circles) 

when using the soft-gating L1-ESPIRiT reconstruction. The 3 mm nodule was an incidental 

finding from a volunteer study. This approach is able to depict a range of nodule sizes, 

shapes, and contrast as shown in these examples.
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DISCUSSION

In this work, we present a motion robust method for high-resolution 3D pulmonary MRI. It 

is based on an optimized 3D UTE sequence and a free-breathing 5-min acquisition. The 

proposed methods include dynamic 3D images for self-navigation and motion estimation 

along with soft-gating L1-ESPIRiT and respiratory motion-resolved L1-ESPIRiT for robust 

motion compensated image reconstruction. With the proposed techniques, we have 

demonstrated that pulmonary structures are well delineated with good SNR, and overall 

improved image quality compared with traditional reconstructions.

Dynamic 3D Self-Navigator

The proposed lower-resolution dynamic 3D self-navigator utilizes locally low-rank 

constraints to reconstruct dynamic images from highly undersampled data. The resulting 

images can be used to robustly extract volumetric motion information of the entire chest. For 

patients with regular breathing patterns, we found that self-navigation based on DC signals 

provided similar gating quality compared with dynamic 3D navigator self-navigation. 

However, for patients with any irregular breathing or bulk motion, the dynamic 3D navigator 

was necessary to estimate the true motion. Being able to compensate for irregular breathing 

with the proposed method is critical for clinical pulmonary imaging applications, as these 

patients are more likely to have difficulty in breathing regularly.

Through comparing bellow-based, DC-based and dynamic 3D self-navigator based soft-

gating reconstructions, we have shown that the accuracy of the 1D superior/inferior 

translation motion of the diaphragm affects the final image quality (Figs. 3 and 4). If the 

navigation signal results in inappropriate motion penalties for soft-gating reconstruction or 

incorrect motion bins for motion-resolved reconstruction, then the final image quality will 

degrade. We also compared motion-resolved reconstruction using DC-based motion 

estimation and dynamic 3D self-navigator for case 5, a CF patient, shown in Supporting 

Figure S1. In this patient, the Pearson correlation coefficient between DC and self-navigator 

is 0.4. Supporting Figure S1 shows representative images from three respiratory states—

inspiration, transition, and expiration. In all of the motion states, many vessels are blurred 

out in DC-based reconstructed images, as indicated by the red arrows. Meanwhile, the 

diaphragm is sharper with 3D self-navigator based images as the yellow arrows show.

With the proposed lower-resolution dynamic 3D self-navigator, we have used it to estimate 

superior/inferior translation of the diaphragm. In our studies, the selection of particular 

location on the diaphragm did not make a noticeable difference as long as the diaphragm 

motion rhythm was spatially consistent. We believe the 3D navigator will allow for more 

detailed investigations into selection of this location and enhanced motion correction, but 

this is beyond the scope of the current work. In addition, there is abundant motion 

information that can be potentially utilized. With more comprehensive motion information, 

we could integrate the proposed 3D navigator with a more explicit motion compensation 

model. The lower-resolution dynamic 3D images itself may also provide additional 

diagnostic information about respiratory mechanics, including ventilation (66).
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In addition, the proposed 3D navigator is not limited to 3D radial trajectory with bit-reversed 

pseudo-random ordering that was used in this study. It is easily translatable to other pseudo-

random ordering schemes, like multi-dimensional golden angle ordering or other 3D 

trajectories, like 3D cones or radial-cones (42,67–69).

Soft-Gating versus Respiratory Motion-Resolved Method

The respiratory motion-resolved approach provides 4D results (3D spatial + motion-states), 

allowing comprehensive evaluations of pulmonary function such as ventilation and air 

trapping. Its primary limitation is that it is computationally expensive.

When relatively more time is spent in a single respiration motion state, as often occurs at 

end expiration, the soft-gating reconstruction is a practical choice to provide a high-quality 

image of that motion state, with reduced computational requirements. In some cases with 

irregular breathing patterns or drifts, motion blurring may still remain for soft-gating 

respiratory when the data below the threshold has experienced a large motion range. The 

motion-resolved reconstruction could provide improved results when each motion state data 

experiences less motion if they are carefully chosen. Both methods benefit from the 

quantitative and accurate estimation of the respiratory motion from the dynamic 3D self-

navigator.

Several factors might contribute to the apparent SNR of the two reconstruction methods, 

such as the effective data sampling efficiency and regularization. The soft-gating sampling 

efficiency was about 40%, which is given by summing up the weighting values with respect 

to data size, and is higher than a single state data size of 20% in the respiratory motion-

resolved method. The regularization parameters are also fundamentally different in the two 

reconstructions. Since the respiratory-motion resolved reconstruction has additional motion-

state constraints, it is hard to make a fair comparison of SNR. However, the apparent SNR 

difference by subjective visual inspection between two reconstruction methods is not 

noticeable for the volunteer study in Figure 8.

One limitation of our proposed motion estimation method is that the overall process is not 

fully automated, as the identification of diaphragm was done manually. An accurate 

detection of the diaphragm could potentially be obtained using image segmentation. 

Furthermore, there is volumetric motion information beyond a single location in the 

diaphragm that can be potentially utilized. Further efforts are needed to minimize user 

interaction and leverage all motion information. Another limitation of the current 

implementation is that the reconstruction time is in the range of hours for both the dynamic 

3D self-navigator and motion-resolved reconstructions on CPUs. We expect the computation 

time to be significantly reduced if our method is implemented on GPUs or clusters. For 

example, there is an upcoming distributed release of BART (64) with the potential for sub-

second computations per iteration, which would be sufficient for clinical translation.

This work showed promising preliminary feasibility results of CF and pulmonary nodules, 

all within a 5-min scan time. Substantial clinical evaluations are still needed to verify the 

efficacy and robustness of the proposed method in these applications.
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CONCLUSION

In this work, we have achieved motion robust high resolution 3D pulmonary imaging with 

MRI. We developed a method based on 5-min free-breathing scan using an optimized 3D 

radial UTE sequence and a dynamic 3D self-navigator for motion estimation, combined with 

state-of-the-art motion compensated reconstructions. This method was able to effectively 

eliminate motion artifacts even in the presence of strongly irregular breathing patterns, and 

reconstruct aliasing artifact-free images from highly undersampled data.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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FIG. 1. 
Illustration of the proposed methods: (top branch) Respiratory motion estimation from a 

dynamic 3D self-navigator, reconstructed using a central k-space region. This estimation is 

used to derive motion compensation information for the soft-gating and motion-resolved 

methods. The red line in the top respiration signal plot illustrates the soft-gating threshold. 

(bottom branch) Respiratory motion compensated reconstruction of high resolution images 

based on soft-gating and respiratory motion-resolved methods using the 1D motion 

surrogate signal derived from top branch.
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FIG. 2. 
Dynamic 3D self-navigator: (top) Comparison of gridding and locally low-rank constrained 

lower-resolution images as navigators (Please see Supporting Video S1); (bottom) Motion 

measured by the LLR dynamic 3D self-navigator for two subjects with CF in which complex 

breathing patterns were observed. The cross lines of particular positions over time show 

multiple directions of chest motion. (Please see Supporting Videos S2 and S3 of these two 

cases.).
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FIG. 3. 
Comparison of different respiration estimation methods in CF patient case 1 with a mildly 

irregular breathing pattern and CF patient case 2 with a strongly irregular breathing pattern: 

In plots, (blue) respiration motion estimated by the respiratory bellows belt (“bellows”); (red 

dashed) respiration motion derived from the center of k-space (“DC”); (green) respiration SI 

motion derived from the dynamic 3D navigator (“Im-based”). Note that the only dynamic 

3D self-navigation signal is quantitative (units of cm) whereas the DC-based and bellows are 

only relative measurements. Gray shaded boxes highlighted the time points where bellow 

signal/DC-based self-navigation differ a lot with dynamic 3D navigator. Comparisons of 
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soft-gating L1-ESPIRiT reconstructions based on corresponding respiration estimations are 

shown below the plots. These reconstructions are based on a soft weighting window centered 

at the end of expiration. The arrows indicate vessels with varying conspicuity based on 

different respiration estimations.

Jiang et al. Page 21

Magn Reson Med. Author manuscript; available in PMC 2019 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



FIG. 4. 
Quantitative comparison of respiration estimation methods among eight clinical patients: 

(Top) Pearson correlation coefficients between the dynamic 3D self-navigator signal and 

respiratory bellow signal (blue), and between dynamic 3D self-navigator signal and DC-

based self-navigation signal (yellow); (Bottom) Comparison of diaphragm sharpness by the 

maximum derivative (MD) method. The MD values are normalized by the sharpness value 

of the dynamic 3D self-navigator reconstruction (reference MD value = 1).
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FIG. 5. 
Comparison of soft-gating L1-ESPIRiT reconstruction with non-gated L1-ESPIRiT 

reconstruction showing a single coronal slice from a healthy volunteer (top row) and a cystic 

fibrosis patient (bottom row). Red boxes are zoomed-in views of fine structures, and arrows 

point out where vessels and fine structures were blurred out by the respiratory motion when 

the non-gated L1-ESPIRiT reconstruction was used, while soft-gating L1-ESPIRiT was able 

to visualize the fine structures and diaphragm.
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FIG. 6. 
Respiratory motion-resolved reconstruction results for representative regularization 

parameters combinations on a healthy volunteer. λ1 (wavelet sparsity) promotes 3D spatial 

sparsity, effectively removing many aliasing artifacts (shown in the top row). Usage of 

additional sparsity constraint along the additional respiratory-state dimension (λ2) improved 

the removal of undersampling artifacts (shown in the second row). Very high values of λ1 

introduce over-smoothing of images (last figure in the first row), while very high values of 

λ2 introduce blurring over respiratory motion states (last figure in the second row).
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FIG. 7. 
Respiratory motion-resolved L1-ESPIRiT reconstruction (images of different motion states 

are displayed from left to right). Please see the Supporting Video S5 for animated version of 

this result. The red line denotes the location of the diaphragm at end expiration.
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FIG. 8. 
Comparison of soft-gating and respiratory motion-resolved L1-ESPIRiT reconstructions at 

end-expiration in a healthy volunteer.
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FIG. 9. 
Comparison of soft-gating L1-ESPIRiT at end-expiration and respiratory motion-resolved 

L1-ESPIRiT reconstruction in a CF patient with strongly irregular breathing and respiration 

drifts (also shown in Fig 3 and Supporting Video S3). Due to the large variation of the 

respiratory motion and drifts, we kept 60% of the data as shown above and then performed 

respiratory motion-resolved L1-ESPIRiT reconstruction on the remaining data. Yellow 

arrows point out the features that still suffered from blurring artifacts with soft-gating, while 

the respiratory motion-resolved method was able to delineate the small pulmonary vessels 

and provide a sharp diaphragm.
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FIG. 10. 
Top: soft-gating L1-ESPIRiT reconstruction in cystic fibrosis patients at end expiration: 

atelectasis (in the left case) along the major fissure, bronchiectasis and mucus plugging (in 

the middle case), bronchiectasis and air trapping (in the right case). Bottom: soft-gating L1-

ESPIRiT reconstruction showing 3 mm, 5 mm, and 1 cm pulmonary nodules in different 

subjects.
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