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Iterative Algorithms for Ptychographic Phase Retrieval

Chao Yang ∗ Jianliang Qian † Andre Schirotzek ‡ Filipe Maia § Stefano Marchesini ¶

May 26, 2011

Abstract

Ptychography promises diffraction limited resolution without the need for high reso-
lution lenses. To achieve high resolution one has to solve the phase problem for many
partially overlapping frames. Here we review some of the existing methods for solving pty-
chographic phase retrieval problem from a numerical analysis point of view, and propose
alternative methods based on numerical optimization.
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1 Introduction

An emerging imaging technique in X-ray science is to use a localized moving probe to collect
multiple diffraction measurements of an unknown object [1, 2, 3, 4, 5, 6, 7, 8]. This technique
is called “ptychography”. In a ptychography experiment, one collects a sequence of diffraction
images of dimension m×m. Each image frame yx(r′) represents the magnitude of the Fourier
transform of a(r)ψ̂(r+x), where a(r) is a localized illumination (window) function or a probe,
ψ̂(r) is the unknown object of interest, and x is a translational vector. We can express yx as

yx(r′) = |F{a(r)ψ̂(r + x)}|, (1)
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where F{f} denotes the Fourier transform of f with respect to r.
In order to reconstruct the unknown object, we must retrieve the phases of the measured

images. A number of methods have been proposed to recover ψ̂(r) from ptychographic mea-
surements yx(r′) [9, 4, 5, 7, 8]. The connection among these methods is not entirely clear
from the existing literature. Furthermore, little detail is provided on the convergence rate or
computational efficiency of these methods.

In this paper, we review some of the existing methods for solving ptychographic phase
retrieval problem from a numerical analysis point of view, and propose to solve the problem
by alternative methods that are standard in the numerical optimization community. In par-
ticular, we formulate the ptychographic phase retrieval problem as an unconstrained nonlinear
minimization problem in section 2, and compare the convergence of several well known itera-
tive methods for solving this type of problem in section 6. We discuss computational details
such as line search and preconditioning that are important for achieving optimal performance
in these methods in section 2. We also describe the connection between optimization based
algorithms and projection algorithms that are often discussed in the phase retrieval literature
in section 4.

We point out that ptychographic minimization problem is not globally convex, which means
that iterative methods can be trapped at a local minimizer if a poor starting guess is chosen.
We show by a numerical example that one way to escape from a local minimizer is to switch
to a different objective function in section 6.

We observed that the convergence of the optimization based iterative algorithms used to
perform ptychographic phase retrieval is accelerated when the amount of overlap between two
adjacent image frames increases. We provide an intuitive explaination on why the amount of
overlap between adjacent frames affects the convergence of iterative optimization algorithms
in section 6.

An alternative approach for performing ptychographic phase retrieval is a method known
as Wigner deconvolution. We review this approach in section 5 and point out its connection
to iterative algorithms and its limitations.

We use standard linear algebra notation whenever possible to describe various quantities
evaluated in the iterative algorithms we present. To simplify notation we use a/b to denote
an element-wise division between two vectors a and b. Similarly, we use a · b to denote an
element-wise multiplication of a and b. We also use a2 and a1/2 occasionally to denote the
element-wise square and square root of a respectively. The conjugate of a complex variable a
is denoted by ā. The real part of a is denoted by Re(a). The conjugate transpose of a matrix
(or a vector) A is denoted by A∗. The |x| symbol is reserved for the magnitude (or absolute
value) of x. The Euclidean norm of x is denoted by ‖x‖ =

√
x∗x. We use Diag (x) to represent

a diagonal matrix with the vector x on its diagonal.

2 Ptychographic reconstruction formulated as an optimization
problem

The problem we would like to solve is to recover ψ̂ from a number of intensity measurements
represented by (1). For a finite set of translational vectors xi, we will denote each measurement
by

bi = |FQiψ̂|, i = 1, 2, ..., k,

where ψ̂ is the sampled unknown object that contains n pixels, bi is a sampled measurement
that contains m pixels, F is the matrix representation of a discrete Fourier transform, and Qi
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is an m× n “illumination matrix” that extracts a frame containing m pixels out of an image
containing n pixels. Each row of Qi contains at most one nonzero element. The nonzero values
in Qi are determined by the illumination function a(r).
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Figure 1: An unknown object of interest ψ̂, and the measured amplitudes zx related by matrix
operations

Given a set of measurements, b1, b2, ..., bk, we may attempt to recover ψ̂ by solving the
least squares problem

min
ψ

1

2

k∑
i=1

‖|zi| − bi‖2, (2)

where zi ≡ FQiψ, and the factor of 1/2 is included here merely for convenience.
An alternative objective function we may use to recover ψ̂ is

ε =
1

2

k∑
i=1

‖|zi|2 − b2i ‖2, (3)

where |zi|2 and b2i denote vectors obtained from squaring each component of |zi| and bi respec-
tively. The advantage of using (3) is that it is more differentiable, hence more amenable to
analysis. In practice, we found the objective function in (2) to be a better choice in terms of
computational efficiency in most cases.

To obtain the minimizers of (2) or (3) using numerical optimization techniques, we often
need to evaluate the gradient and possibly the Hessian of these objective functions. Because
both (2) and (3) are real-valued functions of a (potentially) complex vector ψ, derivative
calculations must be done with care. One can either take the derivative of (2) and (3) with
respect to the real and imaginary parts of ψ independently or follow the CR-calculus formalism
established in [10, 11] by treating ψ and ψ̄ as two independent variables. The latter approach
is what we use throughout this paper.

2.1 Gradient

If we let ri ≡ |zi|2 − b2i , and define

r ≡


r1

r2
...
rk

 ,
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we can rewrite (3) as ε(ψ) = rT r/2. Let the matrix Ji = ∂ri/∂ψ be the Jacobian of ri with
respect to ψ. It follows from the chain rule that the gradient of ε in vector form is

∇ε(ψ) =

(
∂ε

∂ψ

)∗
=

(
∂ε

∂r

∂r

∂ψ

)∗
= J∗r, (4)

where

J ≡


J1

J2
...
Jk

 .

Note that we may rewrite |zi|2 as Diag(zi)
∗zi, where Diag(x) denotes a diagonal matrix

that contains the vector x on its diagonal and zi ≡ FQiψ. Using this observation, we can show
that

Ji =
∂|zi|2
∂ψ

=
∂Diag (z̄i) zi

∂zi

∂zi
∂ψ

+
∂Diag (zi) z̄i

∂z̄i

∂z̄i
∂ψ

= Diag(z̄i)FQi = Diag(FQiψ)∗FQi. (5)

It follows from (4) and the above expression that

∇ε =
k∑
i=1

Q∗iF
∗Diag(zi)[|zi|2 − b2i ]. (6)

The gradient of the objective function in (2), which we will denote by ρ(ψ), is slightly more
complicated. By rewriting |zi| as (|zi|2)1/2, with the understanding that the square root is taken
component-wise, and by using the chain rule and replacing ∂|zi|2/∂ψ with the expression given
in (5), we obtain

Ji =
∂|zi|
∂ψ

=
∂(|zi|2)1/2

∂|zi|2
· ∂|zi|

2

∂ψ
=

1

2
Diag (z̄i/|zi|)FQi,

if |zi| does not contain any zero element for all i = 1, 2, ...,m.
Consequently, we may now express ∇ρ(ψ) as

∇ρ(ψ) = J∗r =

k∑
i=1

J∗i ri

=
1

2

k∑
i=1

Q∗iF
∗Diag

(
zi
|zi|

)
(|zi| − bi)

=
1

2

k∑
i=1

Q∗iF
∗
[
zi −Diag

(
zi
|zi|

)
bi

]

=
1

2

k∑
i=1

Q∗iF
∗
[
FQiψ −Diag

(
zi
|zi|

)
bi

]

=
1

2

k∑
i=1

[
Q∗iQiψ −Q∗iF ∗Diag

(
zi
|zi|

)
bi

]
. (7)

Recall that zi = FQiψ. Thus, the expression Diag(FQiψ)Diag(|zi|)−1bi simply represents
projecting ψ onto the Fourier magnitude constraint imposed by the data bi. Note that the
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expression given above for the gradient of ρ(ψ) is only valid when |zi| does not contain any
zero for all i = 1, 2, ...,m. If |zi| contains a zero component for some i, and if the corresponding
component in bi is nonzero, ∇ρ is not well defined, i.e., ∇ψ has singularities at ψ’s where FQiψ
contains a zero element for some i.

Note that both (6) and (7) remain real when ψ is real and when bi is obtained from a discrete
Fourier transform of a real image (so that conjugate symmetry is preserved in Diag (zi/|zi|) bi.)

The directional derivatives of ε and ρ along a direction φ are defined by

∂ε

∂ψ
φ+

∂ε

∂ψ̄
φ̄ = 2

k∑
i=1

Re

[
(|zi|2 − b2i )TDiag (zi)

∗ FQiφ

]
(8)

and

∂ρ

∂ψ
φ+

∂ρ

∂ψ̄
φ̄ =

k∑
i=1

Re

[
φ∗Q∗iQiψ − φ∗Q∗iF ∗Diag

(
zi
|zi|

)
bi

]
(9)

respectively

2.2 Hessian

The Hessian of ε(ψ) and ρ(ψ) provides information on the convexity of these objective functions.
A globally convex function has a unique minimizer. Such a minimizer can be obtained by
standard optimization techniques that we will describe in the next section. If the objective
function is not convex everywhere, a standard optimization algorithm may produce a local
minimizer that is not the true solution to ptychographic reconstruction problem.

Again, because both ε(ψ) and ρ(ψ) are real valued functions of a potentially complex vector
ψ, their Hessians are defined as

Ho =

(
Ho
ψψ Ho

ψψ̄

Ho
ψ̄ψ

Ho
ψ̄ψ̄

)
,

where

Ho
ψψ ≡

∂

∂ψ

(
∂f

∂ψ

)∗
, Ho

ψ̄ψ ≡
∂

∂ψ̄

(
∂f

∂ψ

)∗
, Ho

ψψ̄ ≡
∂

∂ψ

(
∂f

∂ψ̄

)∗
, Ho

ψ̄ψ̄ ≡
∂

∂ψ̄

(
∂f

∂ψ̄

)∗
,

and o is either ε or ρ.
It is not difficult to show that

Hε
ψψ =

∑
i

Q∗iF
∗Diag

(
2|zi|2 − b2i

)
FQi, (10)

Hε
ψ̄ψ̄ =

∑
i

QTi F
TDiag

(
2|zi|2 − b2i

)
F̄ Q̄i, (11)

Hε
ψψ̄ =

∑
i

Q∗iF
∗Diag (zi)

2 F̄ Q̄i, (12)

Hε
ψ̄ψ =

(
Hε
ψψ̄

)∗
=
∑
i

QTi F
TDiag (z̄i)

2 FQi. (13)

If we let tji ≡ |tji|eiµji , ζji ≡ |ζji|eiθji and βji be the jth component of ti = FQiφ,
zi = FQiψ and bi respectively, then the curvature τε(ψ, φ) at ψ along any direction φ can be

5



calculated as follows

τε(ψ, φ) = (φ∗ φT )

(
Hε
ψψ Hε

ψψ̄

Hε
ψ̄ψ

Hε
ψ̄ψ̄

)(
φ
φ̄

)
=

∑
i

(t∗i tTi )

(
Diag

(
2|zi|2 − b2i

)
Diag (zi)

2

Diag (z̄i)
2 Diag

(
2|zi|2 − b2i

) )( ti
t̄i

)
=

∑
i

2t∗iDiag
(
2|zi|2 − b2i

)
ti + 2Re[tTi Diag (z̄i)

2 ti]

=
∑
i

2t∗iDiag
(
|zi|2 − b2i

)
ti + 2

(
t∗iDiag (|zi|)2 ti + Re[tTi Diag (z̄i)

2 ti]

)

= 2
k∑
i=1

n∑
j=1

|tji|2(|zji|2 − β2
ji) +

(
|tji|2|zji|2 + Re

[
(tjiz̄ji)

2

])

= 2
k∑
i=1

n∑
j=1

|tji|2(|zji|2 − β2
ji) + 2|tji|2|zji|2 cos2(µji − θji). (14)

At the minimizer of ε(ψ), |zi| = bi. So the first term of (14) is zero. Because the second term
of (14) is nonnegative, τ ≥ 0, i.e., ε is convex at the solution. Moreover, the convexity of ε is
preserved in the area where |zji| ≥ βji.

A similar observation can be made from the curvature of ρ. It is not difficult to show that

Hρ
ψψ =

1

2

(
k∑
i=1

Q∗iQi −
1

2
Q∗iF

∗Diag

(
bi
|zi|

)
FQi

)
, (15)

Hρ

ψ̄ψ̄
=

1

2

(
k∑
i=1

QTi Q̄i −
1

2
QTi F

TDiag

(
bi
|zi|

)
F̄ Q̄i

)
, (16)

Hρ

ψψ̄
=

1

4

k∑
i=1

Q∗iF
∗Diag

(
bi · z2

i

|zi|3
)
F̄ Q̄i, (17)

Hρ

ψ̄ψ
=

1

4

k∑
i=1

QTi F
TDiag

(
bi · z̄i
|zi|

)
FQi. (18)
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It follows that

τρ(ψ, φ) = (φ∗ φT )

(
Hρ
ψψ Hρ

ψψ̄

Hρ

ψ̄ψ
Hρ

ψ̄ψ̄

)(
φ
φ̄

)
(19)

=
1

2

∑
i

(t∗i t̄
T
i )

 I − 1
2Diag

(
bi
|zi|

)
1
2Diag

(
bi
|zi| ·

z2i
|zi|2

)
1
2Diag

(
bi
|zi| ·

z̄2i
|zi|2

)
I − 1

2Diag
(
bi
|zi|

) ( ti
t̄i

)

=
1

2

k∑
i=1

n∑
j=1

(
2|tji|2 − |tji|2

βji
|ζji|

+ Re

[
t̄2ji
βjiζ

2
ji

|ζji|3
])

=
1

2

k∑
i=1

n∑
j=1

|tji|2
(

2− βji
|ζji|

+
βji
|ζji|

Re

[
t̄2ji
|tji|2

ζ2
ji

|ζji|2
])

=
k∑
i=1

n∑
j=1

|tji|2
(

1− βji
|ζji|

sin2(µji − θji)
)
. (20)

Thus, τρ ≥ 0 when |ζji| ≥ βji for all j = 1, 2, ..., n and i = 1, 2, ..., k. Even if |ζji| is slightly less
than βji for some j and i, τρ may remain positive when the corresponding sin2(µji − θji) is
sufficiently small and other terms in the summation in (20) are sufficiently large and positive.

A typical problem encountered in optics is when k = 1. When only one diffraction image
is recorded, experience shows that local minima are common. Regions of negative curvature
separate local minima from the global solution.

3 Iterative Algorithms based on Nonlinear Optimization

Because the gradient and Hessian of (2) and (3) are relatively easy to evaluate, we may use
standard minimization algorithms such as the steepest descent method, the Newton’s method
and the nonlinear conjugate gradient method to find the solution to the ptychographic re-
construction problem. We will review some of these methods in section 3.1 and discuss some
techniques for improving the performance of these algorithms in the rest of this section.

3.1 Basic Algorithms

In many standard numerical optimization algorithms, we construct a sequence of approxima-
tions to ψ̂ by

ψ(`+1) = ψ(`) + βp(`), (21)

where p(`) is a search direction along which the objective function (2) or (3) decreases, and
β > 0 is an appropriate step length.

The simplest type of search direction is the steepest descent direction

p
(`)
sd = −∇ψo(ψ(`), ψ̄(`)),

where o is either ε or ρ. When the Hessian of ρ or ε is positive definite at ψ(`), the Newton’s

direction p
(`)
nt , which is the solution of(

Ho
ψψ Ho

ψψ̄

Ho
ψ̄ψ

Ho
ψ̄ψ̄

)(
p

(`)
nt

p̄
(`)
nt

)
=

(
p

(`)
sd

p̄
(`)
sd

)
, (22)
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is also a descent direction.
Due to the nonlinear least squares nature of the objective functions (2) and (3), we may

replace the true Hessian in (22) by a simpler approximation constructed from the Jacobian
of the residual functions |zi| − bi or |zi|2 − b2i for i = 1, 2, ..., k. This technique yields the
Gauss-Newton (GN) search directions.

Both Newton’s method and the Gauss-Newton method require solving a system of linear
equations at each step in order to obtain a search direction. Because the dimension of these
linear systems is n × n, where n is the number of pixels in the image to be reconstructed,
constructing the Hessian or Jacobian and solving these equations by matrix factorization based
methods will be prohibitively expensive. Iterative methods that make use of matrix vector
multiplications without forming the Hessian or the J matrix explicitly are more appropriate.
However, several iterations may be required to reach a desired accuracy needed to produce a
good search direction. Hence methods based on Newton or Gauss-Newton search directions
tend to be more expensive.

The Hessian in (22) can also be replaced by approximations constructed from changes
in the gradient computed at each iteration. Such approximation yields Quasi-Newton search
directions.

Another commonly used search direction is the conjugate gradient direction defined by

p(`)
cg = −g(`) + αp(`−1)

cg ,

where g(`) is the gradient of (2) or (3) at ψ(`) and α is often chosen to be

α =
Re
[
(g(`))∗(g(`) − g(`−1))

]
‖g(`−1)‖2 .

This choice of α yields what is known as the Polak-Ribiere conjugate gradient method.
There are a variety of ways to choose an appropriate step length β in (21). They are often

referred to as line search methods. The purpose of line search is to ensure that the objective
function decreases as we move from ψ(`) to ψ(`+1) so that ψ(`) will converge to at least a local
minimizer as ` increases. Such type of convergence is often called global convergence.

Another way to achieve global convergence in an iterative optimization procedure is to
use the trust region technique to determine a search direction and step length simultaneously.
Under the trust region framework, we minimize the true objective function by minimizing
a sequence of simpler “surrogate” functions that mimic the behavior of the true objective
function within a small neighborhood of the current approximations. That is, in each step of
this iterative optimization procedure, we solve what is called a trust region subproblem

min
‖φ‖≤∆

q(ψ(`) + φ), (23)

where q(ψ) is the surrogate function, and the parameter ∆ is known as a trust region radius
that defines the region in which q(ψ) approximates ρ(ψ) or ε(ρ) well. Such a radius must be
chosen carefully. It may need to be adjusted iteratively based on the ratio of the reduction in
the surrogate and the reduction in the true objective function achieved by the solution to (23).

A commonly used surrogate function is the second order Taylor expansion of the true ob-
jective function. The minimizer of this particular surrogate gives a full step Newton direction.
However, the Newton step may not satisfy the trust region constraint, thus may not be the
solution to (23).
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The trust region subproblem can be solved either exactly or approximately depending on
the cost of evaluating q(ψ) and its derivatives. If the second order Taylor expansion is chosen
as the surrogate, most methods need to solve the Newton equation

∇2q(φ)s = −∇q(φ),

where ∇2q is the Hessian of the true objective at the current iterate ψ. This equation can be
solved approximately by the (linear) conjugate gradient algorithm when ∇2 is positive definite.
When ∇2q is not positive definite, (23) can also be solved by following a negative curvature
direction to the boundary of the trust region. These techniques are used in an efficient iterative
procedure for solving a large-scale trust region subproblem developed by Steihaug [12]. The
method requires compute the matrix vector product ∇2qv for some vector v. This product can
be approximated by a finite difference approximation

(∇2q)v ≈ ∇q(φ+ ηv)−∇(φ)

η
,

for some small η. Therefore, it is not necessary to explicitly construct the Hessian of the
objective function in Steihaug’s method.

3.2 Weighted Objective and Precondition

The least squares objective function in (2) and (3) can be expressed as

ρ(ψ) =
1

2

k∑
i=1

〈|zi| − bi, |zi| − bi〉,

and

ε(ψ) =
1

2

k∑
i=1

〈|zi|2 − b2i , |zi|2 − b2i 〉

respectively, where 〈x, y〉 = x∗y denotes the standard Euclidean inner product. This inner
product can be replaced by a weighted inner product 〈x, y〉B = x∗By, where B is a symmetric
positive definite matrix, to accelerate the convergence of iterative methods used to recover the
unknown image ψ. As we will show in section 6, the choice of B = Diag(bi)

−1 is particularly
useful for accelerating the convergence of all iterative methods we have looked at. To maintain
numerical stability and reduce noise amplification, it is often necessary to add a small constant
to the diagonal of B to prevent it from becoming singular or ill-conditioned.

Another useful technique for accelerating iterative methods for solving unconstrained min-
imization problem is preconditioning. Instead of minimizing ρ(ψ) or ε(ψ), we make a change
of variable and minimize ρ̂(φ) and ε̂(φ), where φ = Kψ, and K is a preconditioner that is
usually required to be Hermitian and positive definite. The purpose of introducing the precon-
ditioner K is to reduce the condition number of the Hessian of the objective function. A highly
ill-conditioned Hessian often leads to slow convergence of an iterative method. A well-known
example is the zig-zag behavior of the steepest descent algorithm when it is applied to the
Rosenbrock function.

It follows from the chain rule and (7) that the gradient of ρ̂(ψ) is simply

∇ρ̂(ψ) =
1

2
K−1

k∑
i=1

[Q∗iQiψ −Q∗iF ∗Diag

(
zi
|zi|

)
bi],

9



where zi = FQiψ.
If we take the preconditioner to be the constant term on the diagonal blocks of Hρ

ψψ, i.e.,

K =
k∑
i=1

Q∗iQi, (24)

which is a diagonal matrix, the gradient of ρ̂ simply becomes

∇ρ̂(ψ) =
1

2

[
ψ −

( k∑
i=1

Q∗iQi

)−1( k∑
i=1

Q∗iF
∗Diag

(
zi
|zi|

)
bi

)]
,

and the corresponding preconditioned steepest descent algorithm with a constant step length
of 2 yields the following updating formula:

ψ(`+1) =

( k∑
i=1

Q∗iQi

)−1( k∑
i=1

Q∗iF
∗Diag

(
z

(`)
i

|z(`)
i |

)
bi

)
,

where z
(`)
i = FQiψ

(`). This updating formula is identical to that used in the error reduction
algorithm or alternate projection algorithm mentioned in the standard phase retrieval literature
[18], which is guaranteed to converge to at least a local minimizer as shown in section 4.

3.3 Line Search

The global convergence of an unconstrained optimization algorithm depends on effective line
search strategies. Assuming that φ is a descent direction for ρ(ψ) at ψ, i.e., ∇ρ(ψ)Tφ < 0, we
would like to seek an appropriate step length α so that

ρ(ψ + αφ) < ρ(ψ).

One way to obtain such a step length is to minimize the scalar function ξ(α) = ρ(ψ + αφ)
with respect to α. This can be done by applying the Newton’s method to generate a sequence
of α’s that satisfy

αi+1 = αi+1 −
ξ′(αi)

ξ′′(αi)
, (25)

and accepting an αi that satisfies

ξ(αi) < c1ξ(0), and |ξ′(αi)| < c2|ξ′(αi−1)|,

for some small constants 0 < c1, c2 < 1. In order to obtain the values of ξ′(αi) and ξ′′(αi)
required in (25), we need to evaluate the directional derivative and curvature of ρ at ψ + αiφ
along the search direction φ. That is,

ξ′(αi) = 2Re(φ∗∇ρ(ψ + αiφ))

ξ′′(αi) = τρ(ψ + αiφ, φ).

Although these derivative calculations will incur additional computation, the cost of these
computation can be kept at a minimal by keeping FQiφ in memory as we will discuss at the
end of this section.
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We should note that the Newton’s method may not always succeed in finding an appropriate
α due to the fact that ξ(α) is generally not globally convex. The convergence of the Newton’s
method will depend on the choice of the starting guess. When a good starting guess is chosen,
we typically need to run only a few Newton iterations to reach a reasonable α value. Because
the purpose of line search is to identify a step length that would lead to a sufficient reduction
in the objective function, it is not necessary to find the actual minimizer of ξ(α).

However, an exact line search may not satisfy what is known as the second Wolfe condition

∇ρ(ψ + αφ)∗p ≥ c2∇ρ(ψ)Tφ,

where 0 < c2 < 1 is typically chosen to be 0.9. This condition on the change of the curvature
of the objective function and the first Wolfe condition

ρ(ψ + αφ) ≤ ρ(ψ) + c1α∇ρ(ψ)∗φ,

for some constant c1 typically chosen to be 10−3, which is a condition that guarantees a
sufficient decrease in the objective function, are required to prove the global convergence of
the sequence {ψ(`)} generated by (21) in many optimization algorithms. Line search techniques
that satisfy both Wolfe conditions can be found in [13] and many other standard optimization
textbooks [14]. We should note that these techniques may also be sensitive to the choice of
the initial guesses to the step length as well as the choice of c1 and c2 parameters. When a
poor initial guess is chosen, these techniques can yield α values that are too small. Strategies
for choosing a good starting guess of α can be found in [14] also.

Regardless which line search technique one uses, one typically needs to evaluate the objec-
tive function ε(ψ + αφ) or ρ(ψ + αφ) and its directional derivatives for a number of different
α values. If we compute ψ̃ = ψ + αφ first and use the formulae given in (2), (3), (8) and
(9) to evaluate the objective function and directional derivative (by replacing ψ with ψ̃), each
evaluation will perform k FFTs. To reduce the cost of line search, we may evaluate ti = FQiφ
in advance so that no FFT is required in the the line search procedure itself. For example, to
evaluate (2), we can simply compute

ρ(ψ̃) =

k∑
i=1

‖|zi + αti| − bi‖2 ,

where zi = FQiψ and ti have been computed already. Similarly, the direction derivative of ρ
at ψ + αφ can be obtained from

k∑
i=1

Re

[
t∗i (zi + αti)− t∗iDiag

(
zi + αti
|zi + αti|

)
bi

]
.

Also, notice that no FFT is required in the curvature calculation (20) once ti’s are available.

4 Fixed-Point Iteration and Projection Algorithms

An alternative approach to finding a minimizer of (2) is to set its gradient to zero and seek ψ
that satisfies the first order necessary condition of the minimization problem. If

∑k
i=1Q

∗
iQi is

nonsingular, by setting ∇ρ(ψ) = 1
2

∑k
i=1

[
Q∗iQiψ −Q∗iF ∗Diag

(
zi
|zi|

)
bi

]
to 0, we obtain

ψ = f(ψ) (26)
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where

f(ψ) =

( k∑
i=1

Q∗iQi

)−1
[

k∑
i=1

Q∗iF
∗Diag

(
zi
|zi|

)
bi

]
. (27)

Recall that zi ≡ FQiψ. Clearly, ψ is a fixed point of the function f .
A simple iterative technique one may use to find the solution to (27) is the fixed point

iteration that has the form
ψ(`+1) = f(ψ(`)).

Replacing f with the right hand size of (27) yields

ψ(`+1) =

(
k∑
i=1

Q∗iQi

)−1 [ k∑
i=1

Q∗iF
∗Diag

(
z

(`)
i

|zi|(`)

)
bi

]
, (28)

where z
(`)
i ≡ FQiψ

(`). This is the same sequence of iterates produced in what is known as
the error reduction algorithm in standard phase retrieval literature [18]. This method is also
known as the alternate projection algorithm for reasons to be discussed below.

It is easy to verify that the updating formula in (28) is identical to that produced by
a preconditioned steepest descent algorithm in which the preconditioner K is chosen to be
K =

∑k
i=1Q

∗
iQi, and a constant step length of 2 is taken at each iteration, i.e.,

ψ(`+1) = ψ(`) − 2∇ρ(ψ(`)).

The sequence of iterates {ψ(`)} produced by (28) is guaranteed to converge to the fixed
point of f(ψ) from any starting point {ψ(0)}, if the spectral radius (i.e., the largest eigenvalue)
of the Jacobian of f (with respect to ψ) is strictly less than 1. Because the function f in (26)
can be viewed as a function of ψ and ψ̄, we should examine the Jacobian matrix of the system

ψ =

(
k∑
i=1

Q∗iQi

)−1 [ k∑
i=1

Q∗iF
∗Diag

(
zi
|zi|

)
bi

]
, (29)

ψ̄ = (

k∑
i=1

QTi Q̄i)
−1

[
k∑
i=1

QTi F
TDiag

(
z̄i
|zi|

)
bi,

]
(30)

where (30) is simply the conjugate of (29). It is not difficult to show that this Jacobian matrix
has the form

J =

(
K−1 0

0 K̄−1

)(
K − 2Hρ

ψψ −2Hρ

ψψ̄

−2Hρ

ψ̄ψ
K̄ − 2Hρ

ψ̄ψ̄

)
, (31)

where Hρ
ψψ, Hρ

ψψ̄
, Hρ

ψ̄ψ
and Hρ

ψ̄ψ̄
are as defined in (15), (17), (18) and (16) respectively.

If (λ, φ) is an eigenpair of J , we can easily show that

2

(
Hρ
ψψ Hρ

ψψ̄

Hρ

ψ̄ψ
Hρ

ψ̄ψ̄

)(
φ
φ̄

)
= (1− λ)

(
K 0
0 K̄

)(
φ
φ̄

)
.

If we again let tji ≡ |tji|eiµji , ζji ≡ |ζji|eiθji and βji be the jth component of the vectors
ti = FQiφ, zi = FQiψ and bi respectively, we can easily show that

λ =

∑k
i=1

∑n
j=1 sin2(µji − θji)|tji|2βji/|ζji|∑k

i=1

∑n
j=1 |tji|2

. (32)
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Clearly, when βji ≤ |ζji| for all j = 1, 2, ...,m and i = 1, 2, ...n, |λ| ≤ 1, and the fixed point
iteration is guaranteed to converge to at least a local minimizer of ρ.

The fixed point of f may also be obtained by applying Newton’s algorithm to seek the root
of r(ψ) = 0, where r(ψ) = ψ − f(ψ). The Newton’s method produces a sequences of iterates
{ψ(`)} that satisfy

ψ(`+1) = ψ(`) − J(ψ(`))−1r(ψ(`)),

where the J matrix here is the Jacobian of r with respect to ψ. This approach is equivalent
to applying Newton’s algorithm (with appropriate line search and trust region strategies) to
minimize ρ(ψ).

Successive approximations to J can be constructed from ψ(`) and r(ψ(`)) using Broyden’s
technique. This is similar to the Quasi-Newton algorithm discussed in the previous section.
As a special case, replacing J with the crudest approximation, the identity matrix I, yields
the standard error reduction algorithm.

If we multiply (29) from the left by Qi for i = 1, 2, ..., k, and let y(`) = Qψ(`), where
Q = (Q∗1 Q∗2 ... Q∗k)

∗, we obtain

y(`+1) = PQPF (y(`)), (33)

where PQ = Q(Q∗Q)−1Q∗, and

PF (y) = F̂ ∗
y

|y| · b,

where F̂ = Diag (F, F, ..., F ) and b = (bT1 bT2 ... bTk )T .
Because a fixed point y of PQPF is in the range of Q, which is typically full rank when

mk > n, we may recover the corresponding fixed point of f from y via the least squares solution
ψ(`) = (Q∗Q)−1Q∗y(`).

This nonlinear map is the composition of a (linear) orthogonal projector PQ and a (non-
linear) Fourier magnitude projector PF . A fixed point iteration based on (33) is also called
alternating projection (AP) algorithm in the phase retrieval literature because the approxima-
tion to the solution of (33) is obtained by applying PQ and PF in an alternating fashion.

It is easy to verify that PF is indeed a projection operator in the sense that

‖PF (y)− y‖ ≤ ‖w − y‖ for all w ∈ {w|w = PF (w)}. (34)

This property of PF , together with the fact that PQ is an orthogonal projection operator,
i.e. ‖PQy − y‖ ≤ ‖w − y‖ for all w ∈ Range(Q), allows us to show that the residual error
‖PQPF (y(`))−y(`)‖ decreases monotonically in the AP algorithm. The proof of this observation
was shown by Fienup in [15], which we summarize below.

Let y(`) be the vector produced in the `-th AP iterate. Clearly, y(`) ∈ Range(Q). Because
PQ is an orthogonal projector, we have

‖PQPF (y(`))− PF (y(`))‖ ≤ ‖PQPF (y(`))− y(`)‖ = ‖y(`+1) − y(`)‖. (35)

Because PF (y(`)) ∈ {w|w = PF (w)}, it follows from (34) that

‖PF (y(`+1))− y(`+1)‖ = ‖PF (PQPF (y(`)))− PQPF (y(`))‖ ≤ ‖PQPF (y(`))− PF (y(`))‖. (36)

Consequently, we can deduce from (35) and (36) that

‖PF (y(`+1))− y(`+1)‖ ≤ ‖y(`+1) − y(`)‖.
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Finally, it follows from the following inequality

‖PQ(PF (y(`+1))− y(`+1))‖ ≤ ‖PF (y(`+1))− y(`+1)‖,

and the fact that y(`+1) ∈ Range(Q) that

‖y(`+2) − y(`+1)‖ ≤ ‖y(`+1) − y(`)‖. (37)

The equality in (37) holds only when PF (y(`)) = y(`), i.e., when convergence is reached.
The inequality (37) shows that the AP algorithm converges to a stationary point. However,

the convergence can be extremely slow because

‖z(`+1)‖ = ‖Fy(`+1)‖ = ‖y(`+1)‖ = ‖PQPF (y(`))‖ ≤ ‖PF (y(`))‖ = ‖b‖,

and many of the terms βji/ζji, i = 1, 2, ..., k and j = 1, 2, ...,m, in (32) may be great than 1.
Only when y(`) is very close to the fixed point of PQPF , the spectral radius of the Jacobian of
(27) may become much smaller than 1 in (32) due to the reduction effect of the sin2(µji− θji)
terms.

The simple alternating projection algorithm has been extended to the hybrid input-output
(HIO) algorithm [15], the relaxed averaged alternating reflection (RAAR) algorithm [16], and
many other variants [17, 18] in the phase retrieval literature. Just to give a few examples,
in the HIO and RAAR algorithms, the approximation to the solutions of (30) and (33) are
updated by

y(`+1) = [PQPF + (I − PQ)(I − βPF )] y(`), HIO,

y(`+1) = [2βPQPF + (1− 2β)PF + β(PQ − I)] y(`), RAAR.

ψ(`+1) = (Q∗Q)−1Q∗y(`),

where β is a constant often chosen to be between 0 and 1.
Although these algorithms tend to accelerate the convergence of y(`), their convergence

behavior is less predictable and not well understood.

5 Wigner Deconvolution

Long before iterative methods were applied to solve the ptychography problem, Rodenburg
and his colleagues suggested that the problem can be solved via what they called Wigner
deconvolution [9].

To explain the basic idea behind Wigner deconvolution, we need to state a continuum
version of the ptychography problem. If the set of translation vectors {x} forms a continuum
in 2D, then it can be shown [19] that the Fourier transform of y2

x ≡ |F{a(r)ψ̂(r + x)}|2 with
respect to x, which we denote by Fx{y2

x}, can be written as the convolution of two functions
with respect to r′, i.e.,

Fx{y2
x(r)} = [A(r′)Ā(r′ + x′)] ?r′ [Ψ(r′)Ψ̄(r′ − x′)], (38)

where A(r′) = F{a(r)}, Ψ(r′) = F{ψ(r)}, Ā denotes the conjugate of A, Ψ̄ denotes the
conjugate of Ψ, and ?r′ denotes a convolution operation with respect to r′. Note that Fx{y2

x(r)}
is a function of x′. The Fourier transform of A(r′)Ā(r′+x′) or Ψ(r′)Ψ̄(r′−x′) is called a Wigner
distribution in [9].
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The Fourier transforms used in the definition of A(r′) and Ψ(r′) can be replaced by discrete
Fourier transforms (DFT) if both a(r) and ψ(r) are band-limited and they are sampled at or
beyond the Nyquist frequency. The Fourier transform of y2

x with respect to x can be replaced
by a DFT only if the translation vector x is sampled at or beyond the Nyquist frequency of
ψ(r).

We will define a fully sampled Ψ(r′) by a column vector

f = (f1 f2 · · · fn)T ,

where fi = Ψ(r′i). Note that, when appeared by itself in Ψ, the variable x′ and r′ can be used
interchangeably, i.e., fi = Ψ(x′i) holds also.

There are at least two ways to represent Ψ(r′)Ψ̄(r′ − x′) systematically in a vector form.
We choose to write it as

u(f) =


Diag (f)P T1 f̄
Diag (f)P T2 f̄

...
Diag (f)P Tn f̄

 ,

where Pi is a permutation matrix that shifts f̄ cyclically by i − 1 pixels, and f̄ denotes the
conjugate of f . This representation corresponds to writing down Ψ(r′)Ψ̄(r′ − x′) by having r′

as the fastest changing index. By enumerating x′ first, we can represent Ψ(r′)Ψ̄(r′ − x′) in an
alternative form

Πu(f) =


f1P

T
1 f̄

f2P
T
2 f̄
...

fnP
T
n f̄

 , (39)

where Π is an n2 × n2 permutation matrix that reorders x′ and r′.
Employing the same ordering we use to represent the fully sampled Ψ(r′)Ψ̄(r′ − x′), we

can express the convolution kernel A(r′)A(r′ + x′) by a matrix W . This matrix has a block
diagonal form, i.e.,

W =


W1

W2

. . .

Wn

 ,

where Wi is a block cyclic matrix with cyclic blocks (BCCB). This type of BCCB structure
allow the convolution WiDiag (f)Pif̄ to be carried out efficiently by using FFTs.

Using the notation established above, we can now express the sampled version of (38) as

ΠWu(f) = b̄2,

where

b̄2 = F̂Π


b21
b22
...
b2m

 , F̂ =


F

F
. . .

F

 ,

and F is the matrix representation of a 2D discrete Fourier transform of an image with n
pixels.
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If W is nonsingular, i.e., Wi is nonsingular for all i = 1, 2, ..., n, we can recover u(f)) by
simply inverting W , i.e.

u(f) = W−1ΠT b̄2, (40)

Equation (40) represents a deconvolution process, and is known as Wigner deconvolution [9].
The application of W−1 to the vector ΠT b̄2 can be achieved through an FFT based fast
deconvolution or an iterative solver such as the conjugate gradient algorithm. We do not need
to explicitly invert the matrix W . If W is singular or ill-conditioned, we may add a small
constant to the diagonal of W to regularize the deconvolution.

Applying the permutation Π to u(f) allows us to rewrite the solution of the deconvolution
problem in the form of (39). If fi 6= 0 for i = 1, 2, ..., n, we define ci = 1/fi. Furthermore, let
us define ĝ2 = ΠW−1ΠT f̄2, which can be partitioned as

ĝ2 =


ĝ2

1

ĝ2
2
...
ĝ2
n

 .

where ĝ2
i ∈ Cn×1.

By treating ci as a separate set of unknowns, with the exception of of c1, which we will
set to an arbitrary constant, e.g., 1, we can turn (40) into a linear least squares problem by
minimizing the norm of

r =


P T1
P T2 −Diag

(
ĝ2

2

)
...

. . .

P Tn −Diag
(
ĝ2
n

)



f̂
c2
...
cn

−


c1ĝ
2
1

0
...
0

 . (41)

The minimization of ‖r‖ can be easily solved by back substitution. This is essentially the
“stepping out” procedure described in [9]. The reason that we can set c1 to an arbitrary con-
stant is that we are often interested in the relative amplitudes and phases of ψ̂(r), multiplying
the entire image ψ(r) or Ψ(r′) by a constant does not change the quality of the image.

It may seem that the use of iterative method is not necessary if we can solve the ptychog-
raphy problem by Wigner deconvolution, which can be viewed as a linear inversion scheme.
However, as we will show below, the Wigner deconvolution problem cannot be solved directly
(using an FFT based deconvolution scheme) if x is sampled below the Nyquist frequency,
i.e. when the amount of probe translation is larger than the resolution of the image to be
reconstructed.

When x is sampled below the Nyquist frequency, which can occur in an experiment, we
must modify (38) by introducing an aliasing operator Sx′ . Because a(r) is a localized window
in practice, A(r′) is subsampled in the reciprocal space. Therefore a subsampling operator Sr′

must be included in a finite-dimensional analog of (38) to account for this effect.
With these additional operators, the sampled version of equation (38) can be expressed as

Sx′ΠSr′Wu(f) = b̄2, (42)

where the dimensions of Π, W , u(f) and b̄2 need to be adjusted to reflect fewer pixel samples
per diffraction frame and fewer frames resulting from increased distance x between two adjacent
frames. For simplicity, let us assume that f and each frame b2i are square images with n and m
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pixels respectively, and the distance between two adjacent frames is dx (in either the horizontal
or the vertical direction). Then, the aliasing operator Sx′ in (42) is a block diagonal matrix
consisting of nf diagonal blocks of dimension m×n, where nf = b√n/√mc. The subsampling
operator Sr′ is a block diagonal matrix consisting of m diagonal blocks of dimension nf × n,
and Π is an nfm× nfm row permutation matrix that reshuffles the rows of Sr′Wu(f) so that
x′ is the fastest changing index. For 1D signals, a diagonal block of Sx′ can be represented by

(Im Im · · · Im),

where Im is an m×m identity matrix. Similarly, a typical diagonal block of Sr′ has the form

(· · · 0 Inf
0 · · · ),

where Inf
is an nf × nf identity matrix.

Because Sx′ , Π and Sr′ are not square matrices, we cannot obtain u(f) by simply applying
the inverse of these matrices and W−1 to b̄2.

Instead, we must recover f , hence the fully sampled ψ̂(r), by solving the following nonlinear
least squares problem

min
f
‖Sx′ΠSr′Wu(f)− b̄2‖2. (43)

It is not difficult to see that the objective function in the nonlinear least squares problem
(43) is equivalent to (3). Therefore, iterative optimization techniques applied to minimize (3)
can be used to solve (43) also. However, the evaluation of the objective function in (43) and
its derivatives, which we will not show here, are more costly because evaluating u(f) requires
at least O(n2) operations, and multiplying W with u(f) requires an additional O(n2 log(n))
operations. This operation count is much higher than that associated with evaluating (3),
which is O(mnf log(nf ) +mnf ).

We should mention that, if one is interested a reconstruction of limited resolution, f̃ , which
is a cropped version of Ψ(−x′), the objective function in (43) can be modified to become

‖Sx′Π(Sr′WSTr′)ũ(f̃)− b̄2‖2,

where ũ(f̃) ∈ Cm×1. Furthermore, if the translation of the frame x′ is chosen to be commen-
surate with the size of each frame, e.g., x′ =

√
n/m, then Sx′ becomes an identity matrix.

Consequently, one may obtain ũ(f̃) (and subsequently f̃) by performing a Wigner deconvolu-
tion.

6 Numerical Examples

In this section, we demonstrate and compare the convergence of iterative algorithms for pty-
chographic reconstruction using two test images. The first test image is a 256×256 real-valued
cameraman image shown in Figure 2. The image is often used in the image processing com-
munity to test image reconstruction and restoration algorithms. The second test image is a
complex valued image. It also contains 256× 256 pixels that correspond to the complex trans-
mission coefficients of a collection of gold balls embedded in some medium. The amplitude
and phase angles of these pixels are shown in Figure 3.

All numerical examples presented in this paper are performed in MATLAB.
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Figure 2: The cameraman test image.

(a) Amplitude (b) Phase

Figure 3: The amplitude and phase of the transmission coefficient of a collection of gold balls.
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6.1 Comparison of Convergence Rate

In this section, we show the convergence behavior of different iterative algorithms we discussed
in section 3 by numerical experiments. In the cameraman image reconstruction experiment,
we choose the illuminating probe a(r) to be a 64 × 64 binary probe shown in Figure 4(a).
The pixels within the 32 × 32 square at the center of the probe assume the value of 1. All
other pixels take the value of 0. The zero padding of the inner 32 × 32 square ensures that
the diffraction pattern of a 64 × 64 frame associated with this probe is oversampled in the
reciprocal space. In the gold ball image reconstruction experiment, the illuminating probe is
chosen to be the amplitude of the Fourier transform of an annular ring with inner radius of
r1 ≈ 5.4 and outer radius of r2 ≈ 19.4. This probe mimics the true illumination used in a
physical experiment.

(a) The binary probe used in the reconstruction of
the cameraman image.

(b) The probe used in the reconstruction of the gold
ball image.

Figure 4: The illuminating probes a(r) used in ptychographic reconstructions of the cameraman
and gold ball images.

In the cameraman experiment, the probe is translated by 8 pixels at a time in either
horizontal or vertical direction. To prepare a stack of k diffraction images bi, i = 1, 2, ..., k,
we start from the upper left corner of the true image, extract a 64 × 64 frame, and multiply
it with the probe, and then apply a 2D FFT to the product. The magnitude of transform is
recorded and saved before we move either horizontally or vertically to obtain the next frame.
If the lower right corner of the frame goes outside of the image (which does not happen in this
particular case), we simply “wrap the probe around” the image as if the image is periodically
extended. As a result, the total number of diffraction frames we use for each reconstruction is

k =
256

8
· 256

8
= 1024.

As we will show in section 6.4, the size of translation, which determines the amount of
overlap between adjacent frames, has a noticeable effect on the convergence of the iterative
reconstruction algorithms.

Figure 5 shows the convergence history of several iterative algorithms discussed in section 3
when they are applied to the diffraction frames extracted from the cameraman image. We plot
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both the relative residual norm defined by

res =

√∑k
i=1 ‖|zi|(`) − bi‖2√∑k

i=1 ‖bi‖2
, (44)

where |zi|(`) = |FQiψ(`)| and ` is the iteration number, and the relative error of the recon-
structed image defined by

err =
‖ψ(`) − ψ̂‖
‖ψ̂‖

.

In these runs, an exact line search is used in the steepest descent (SD), nonlinear conju-

(a) Change of the relative residual norm (res) for the
reconstruction of the cameraman image.

(b) Change of the relative error (err) for the recon-
struction of the cameraman image.

Figure 5: A comparison of the convergence behavior of different iterative ptychographic recon-
struction algorithms for the cameraman image.

gate gradient (CG). The Steihaug’s trust region technique implemented in [20] is used in the
Newton’s method (NT). We set the starting guess of the solution ψ̂ to

ψ(0) =

(
k∑
i=1

Q∗iQi

)−1 k∑
i=1

Q∗i bi.

It is clear from Figure 5 that NT converges much faster than the other algorithms. Its perfor-
mance is followed by the CG algorithm which is much faster than the error reduction (ER),
SD, Gauss-Newton (GN) and the hybrid input-output (HIO) algorithms. Similar convergence
behavior is observed when other random starting guesses are used, although occasionally, a
random starting guess can lead to stagnation or convergence to a local minimizer. We will dis-
cuss this issue in section 6.3. We set the maximum number of iterations allowed in all runs to
30. This is somewhat excessive for both NT and CG algorithms. Typically, when the relative
error of the reconstructed image falls below 10−3, it is nearly impossible to visually distinguish
the reconstruction from the true image. When the relative error is larger, the reconstructed
cameraman images may contain visible artifacts such as those shown in Figures 6(a) and 6(b)
which are produced at the end of the 30th ER and SD iterations respectively.

It is somewhat surprising that GN performs poorly on this problem. We believe the problem
is that we used the MATLAB implementation of the large-scale Gauss-Newton algorithm,
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(a) ER reconstruction (b) SD reconstruction

Figure 6: The reconstructed cameraman images by ER and SD algorithms contain visible
ringing artifacts.

i.e., the function lsqnonlin in the MATLAB’s Optimization Toolbox, which does not handle
functions of complex variable very well. Moreover, it is not easy to obtain the relative error
associated with the approximate reconstruction produced at each iteration from this function.

For the reconstruction of the gold ball image, we choose the starting guess to be

ψ(0) =

(
k∑
i=1

Q∗iQi

)−1 k∑
i=1

Q∗iDiag (bi) Diag (|ui|)−1 ui,

where ui is a complex random vector, and the real and imaginary part of each component has
a uniform distribution within [−1, 1].

In this experiment, the probe is translated by a larger amount (16 pixels) in either horizontal
or vertical direction. Figure 7 shows the convergence history of ER, SD, CG, HIO, and NT.
From Figure 7(a), it appears that CG is the best among all the methods we tried. The
HIO algorithm performs well in the first 60 iterations, but then stagnates. As we can see
from Figure 7 that the neither the residual norm nor the relative error associated with HIO
changes monotonically. This is not completely surprising because HIO does not try to minimize
either objective functions. For this example, the performance of NT lags behind CG by a
large margin although both algorithms exhibit monotonic convergence with a more predictable
error reduction. We should mention that to measure the relative error associated with a
reconstructed gold ball image ψ(`), we need to multiply it by a constant phase factor γ first,
i.e., the relative error is defined as

err =
‖γψ(`) − ψ̂‖
‖ψ̂‖

.

In Figure 8, we can clearly see that the magnitude of the reconstructed images produced
by CG (Figure 8(a)) and HIO (Figure 8(c)) are nearly indistinguishable from the magnitude
of the true image. However, the phase angles of the reconstructed image produced by CG
(Figure 8(d)) appear to be better than those produced by HIO, which is indicated by the
magnitude of the absolute errors |γψ(`) − ψ̂| shown in Figures 8(b) and 8(d).
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(a) Change of the relative residual norm (res) for the
reconstruction of the gold ball image.

(b) Change of the relative error (err) for the recon-
struction of the gold ball image.

Figure 7: A comparison of the convergence behavior of different iterative ptychographic recon-
struction algorithms for the gold ball image.

(a) The magnitude of the reconstructed gold ball
image produced by the CG algorithm.

(b) The magnitude of the error associated with the
reconstructed gold ball image produced by the CG
algorithm.

(c) The magnitude of the reconstructed gold ball im-
age produced by the HIO algorithm.

(d) The magnitude of the error associated with the
reconstructed gold ball image produced by the HIO
algorithm.

Figure 8: The reconstructed cameraman images produced by CG and HIO.
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6.2 The Effect of Preconditioning

As we indicated in Section 3.2, the use of a preconditioner can enhance the convergence of SD
and CG. A natural preconditioner that is easy to construct is (24). However, this preconditioner
is only effective, when the condition number of K is relatively large. For the binary probe used
in the reconstruction of the cameraman image, K = 4I. The condition number of this matrix
is 1. Hence, using this preconditioner has no effect on the convergence of the CG iteration,
as we can clearly see in Figure 9(a). The condition number associated with the probe used
in the gold ball image reconstruction is around 4.5. Hence the effect of the preconditioner is
negligible as we can see from Figure 9(b).

(a) The effect of the preconditioner on the conver-
gence of SD.

(b) The effect of the preconditioner on the conver-
gence of CG.

Figure 9: The effect of a preconditioner on the convergence of the CG algorithms applied to
cameraman and gold ball image reconstruction.

6.3 Local Minimizer and the Choice of the Objective Function

As we indicated in section 2.2, based on the analytic Hessian and curvature expression, that
neither ε(ψ) nor ρ(ψ) is globally convex. This observation suggests that all iterative optimiza-
tion algorithm discussed above may converge to a local minimizer. Although we found that in
practice, local minimizers are not easy to find, they do exist as the following example show.

In order to find a local minimizer, we construct many random starting guesses using the
MATLAB rand function. To save time, we chose to reconstruct a 64 × 64 subimage of the
cameraman image shown in Figure 2. This subimage is shown in Figure 12(a). A 16 × 16
binary probe that has a value 1 in the 8× 8 center of the probe and 0 elsewhere is used. The
diffraction stack consisting of 64 diffraction images is obtained by translating the probe 4 pixels
a time in either the horizontal and vertical direction.

Figure 10 shows that one of the random starting guesses lead to the convergence of the CG
algorithm to a local minimizer. In particular, the relative residual (44) which is proportional
to the objective function ρ stagnates around 0.9 after the first 15 iterations (Figure 10(a)),
whereas the relative gradient ‖∇ρ(ψ(`))‖/‖ψ̂‖ decreases to 10−8 after 40 iterations.

Figure 12(b) shows how the reconstructed image compares with the true image for this
particular starting guess used. In this case, the local minimizer appears to contain visible
artifacts in a small region near top of the tripod. The amplitude of this localized error is also
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revealed in the relative error plot shown in Figure 11(a). The phase error associated with a
particular frame of the reconstruction obtained from

Qiψ

|Qiψ|
· Qiψ̂
|Qiψ̂|

,

for some particular Qi is shown in Figure 11(b).

(a) Change of the relative residual norm (res). (b) Change of the relative gradient.

Figure 10: The convergence of CG to a local minimizer.

(a) Amplitude error in the reconstruct image (b) Phase error in degrees associated with a partic-
ular frame

Figure 11: The error associated with a local minimizer.

We should also note that for this particular starting guess, all methods we tried converged
to the same local minmizer. This is not all that surprising. It simply shows (empirically) that
local minimizers of (2) exists, and our starting guess is sufficiently close to it.

However, what is interesting is that if we choose to minimize (3) by using any one of the
iterative methods discussed above from the same starting guess, we are able to obtain the
correct solution. For examples, Figure 13(a) shows that when the NT applied to the weighted
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(a) True image. (b) The reconstructed image (a local minimizer).

Figure 12: The artifacts produced by a local minimizer of ρ.

(scaled) objective function

ε̃(ψ) =
1

2

k∑
i=1

(|zi|2 − b2i )TDiag (bi)
−1 (|zi|2 − b2i ), (45)

where |zi| = |FQiψ| and bi = |FQiψ̂|, an accurate reconstruction can be obtained in roughly
350 iterations. Admittedly, the convergence rate is much slower in this case when compared to
the convergence of NT when it’s applied to (2) from a different starting point. The convergence
is even slower if no weighting (or scaling) is used, i.e. when (3) is used as the objective
function. However, the fact that convergence can be reached for (45) but not (2) from the
same starting point is quite interesting. Furthermore, Figure 13(b) shows that if we take
the local minimizer returned from an iterative minimization of (2) as the starting guess for
minimizing (45), convergence can be reached in 12 iterations. This experiment suggests that
it may be useful to have a hybrid optimization scheme in which (2) is minimized first. If a
local minimizer of (2) is identified, one can then try to minimize (45) starting from the local
minimizer of (2).

6.4 The Effect of Overlapping on the Convergence of Iterative Algorithm

As we alluded to earlier, the amount of overlap between two adjacent diffraction frames has a
noticeable effect on the convergence of optimization based iteration algorithms (e.g., CG, NT,
SD etc.) used to reconstruct the true image. Although we currently do not have a clear way
to quantify such an effect mathematically, the following examples demonstrate this effect.

In the first example, we try to reconstruct the gold ball image from four different diffraction
stacks. Each stack contains a set of 64 × 64 diffraction frames. These frames are generated
by translating the probe shown in Figure 4(b) by different amount in horizontal and vertical
directions. The larger the translation, the smaller the overlap is between two adjacent images.
Figure 15(a) shows that CG converges very slowly when the diffraction stack contains diffrac-
tion frames obtained by translating the probe 20 pixels at a time (the black curve). Faster
convergence is observed when the amount of translation is decreased to ∆x = 16, 12, 8. It is
interesting to see from Figure 15(b) that the amount of overlap does not affect the convergence
of the HIO algorithm.
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(a) The convergence of the NT algorithm when it
is applied to (3) (red) and (45). The starting guess
chosen in these runs is the same one used in the
minimization of (2).

(b) The convergence of the NT algorithm when the
starting guess is chosen to be the local minimizer
shown in Figure 12(b)

Figure 13: The convergence of the NT algorithm when applied to (3) (red) and (45) (blue).

In the second example, we try to reconstruct the gold ball image from 1024 diffraction
frames of 128× 128 pixels. The illumination function is similar to that used in Figure 4. It is
scaled by a factor of 2 to 128 × 128 pixels. The probe FWHM (full width at half maximum)
is 30 pixels. We choose to fix the number of frames. So the reconstructed area increases with
step size. When probe is near the edge of the image, we “wrap it around the edge” as if the
image itself is periodically extended. The overlap is varied by changing the step size ∆x. The
larger the ∆x, the smaller the amount of overlap.

The starting point is produced from a random number generator for each test. A range of
step sizes between 6 and 30 pixels have been tried. For a fixed step size, the test is repeated 100
times. We observe that the step size ∆x does not influence the convergence rate up to ∆x ' 20.
Figures 14(a) and 14(c) show that the conjugate gradient method converges in less than 400
iterations, while the RAAR algorithm requires almost 1500 iterations. Figures 14(b) and 14(d)
illustrate the percentage of successful runs started from a random guess for each of the step
sizes 0 ≤ ∆x ≤ 30. The percentage of successful runs (shown in color) is plotted against the
maximum number of allowed iterations. When ∆x ≤ 20, both CG and RAAR converge nearly
100% of the time when a relatively small number of iterations are used in these methods.
However, when 20 ≤ ∆x ≤ 25, more iterations are required to ensure the convergence of CG
and RAAR. When 25 ≤ ∆x ≤ 30, CG appears to stagnate for all random starting guesses we
tried, whereas RAAR can still converge when a very large number of iterations are taken.

To explain the effect of overlapping on the convergence of optimization based iterative
algorithms such as the nonlinear CG, we examine the structure of the Hessian of the objective
function ρ in (2). It follows from (15)-(16) that the Hρ can be written as

Hρ =
(

(F̂Q)∗ (F̂Q)T
)( B11 B12

B21 B22

)(
F̂Q
¯̂
FQ̄

)
, (46)

where B11 = B22 and B12 = B∗21 are all diagonal, F̂ is a block diagonal matrix of discrete
Fourier transforms, i.e. F̂ = Diag (F, F, ..., F ), and Q = (Q∗1Q

∗
2 ...Q

∗
k)
∗. The diagonal elements

of B11 and B12 are simply 1− βji/(2ζji) and βjiζ
2
ji/(2|ζji|3) respectively for i = 1, 2, ..., k and

j = 1, 2, ...,m.
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(a) convergence of CG from 100 random starts ∆x =
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(d) percentage of RAAR iterations that converge to
an error of 10−4

Figure 14: The convergence rate of the CG and RAAR methods from different random starting
points.
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We will show that Hρ is diagonal dominant when there is a sufficient amount of overlap
between adjacent diffraction frames. To simplify our discussion, let us assume for the moment
that bi is a 1D diffraction pattern obtained from a binary probe that illuminates three pixels at
a time, and the probe is translated one pixel at a time so that the image frame that produces
bi overlaps with that produces bi−1 by two pixels. In this case, the F̂Q term in (46) has the
form 

f1 f2 f3 . . . 0

0 f2 f3
. . .

...

0 0 f3
. . . fk

f1 0 0
. . . fk

f1 f2 0 . . . fk


,

where fi is the ith column of F .
As a result, a typical diagonal term of Hρ has the form

Hρ
i,i = f∗i Di−2fi + f∗i Di−1fi + f∗i Difi = trace(Di−2 +Di−1 +Di), (47)

where Di is a diagonal matrix that contains elements 1− βji/(2ζji) for j = 1, 2, 3.
When ψ is near the solution, zi is close to bi. Hence, Di is likely to contain positive

entries only. Therefore, the diagonal elements of Hρ are likely to be much larger compared
to the nonzero off-diagonal elements which contain terms in the form of either f∗jDif` and

its conjugate, where j 6= `, or fTj Eif` and its conjugate, where Ei is a diagonal matrix (and

part of B12) that contains elements βjiζ
2
ji/(2|ζji|3) for j = 1, 2, 3. Due to the phase difference

between fj and f`, Di’s do not add up “coherently” on the off-diagonal of Hρ as they do on
the diagonal. Neither do nonzero entries in Ei’s add up coherently on the off-diagonal blocks
of Hρ either. Hence, the matrix Hρ becomes diagonal dominant when there is larger amount
of overlap between two adjacent frames. In fact, the diagonal of Hρ may become so dominant
that the spectral property of Hρ is determined largely by the diagonal part of the matrix, which
is typically well conditioned due to the averaging of Di in (47). This observation provides an
intuitive explaination on why increasing the amount of overlap between adjacent frames tends
to improve the convergence rate of CG and other optimization based iterative ptychographical
phase retrieval algorithms. Although this is not a precise analysis of the spectral property of
Hρ, the analysis does match with observations made in our numerical expriments. Moreover,
this type of analysis can be extended to the 2D case in which F is represented as a tensor
product of two 1D discrete Fourier transforms.

7 Conclusion

We formulated the ptychographic phase retrieval problem as a nonlinear optimization problem
and discussed how standard iterative optimization algorithms can be applied to solve this
problem.

We showed that the optimization problems we solve are not globally convex. Hence stan-
dard optimization algorithms can produce local minimizers. However, the Hessian of the
objective functions we minimize do have special structures that may be exploited.

We compared the performance of several optimization algorithms and found that Newton’s
method with Steihaug’s trust region technique gave the best performance on a real valued
image. For a complex valued image, the nonlinear conjugate gradient algorithm appears to
perform better.
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(a) The effect of overlapping on the convergence of
CG for the gold ball image reconstruction.

(b) The effect of overlapping on the convergence of
HIO for the gold ball image reconstruction.

Figure 15: The effect of overlapping on the convergence of CG and HIO algorithms.

We discussed the effect of preconditioning on convergence of the CG algorithm. We also
demonstrated it is possible for an optimization algorithm to converge to a local minimizer
although in practice such type of convergence failure is rare, especially when the amount of
overlap between two adjacent diffraction frames is large.

We demonstrated by a numerical example that the convergence rate of an optimization
algorithm depends on the amount of overlapping between two adjacent diffraction frames. We
provided an intuitive analysis on why this occurs. More research is needed to provide a more
precise analysis on this phenonmenon.

We identified the connection between the optimization based approach with both Wigner
deconvolution and projection algorithms often used in phase retrieval literatures. We pointed
out the limitation of Wigner deconvolution and showed that the optimization based algorithm
tend to perform better than projection algorithms such as HIO when the amount of overlap
between adjacent images is sufficiently large.
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