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ray scattering
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Thomas Forrest6, Jeffrey J. Urban5, Amor Abdelkader2, Cinzia Casiraghi4, 

Wajira Mirihanage1, *

1Department of Material, University of Manchester, Manchester M13 9PL, UK
2Department of Engineering Bournemouth University, Poole BH12 5BB, UK
3Nafomat Group, Department of Applied Physics, University of Santiago de Compostela, 
15782, Santiago de Compostela, Spain
4Department of Chemistry, University of Manchester, Manchester M13 9PL, UK
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Abstract 

Chemical exfoliation is an attractive approach for the synthesis of graphene due to low 

cost and simplicity. However, challenges still remain in the characterization of solution-

processed graphene, in particular with atomic resolution. Through this work we 

demonstrate the X-ray pair distribution function as a novel approach to study the 

solution-processed graphene or other 2D materials with atomic resolution, directly in 

solution, produced by liquid-phase and electrochemical exfoliations. The results show 

the disappearance of long-range atomic correlations, in both cases, confirming the 

production of single and few-layer graphene.  In addition, a considerable ring distortion 
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2

has been observed as compared to graphite, irrespective of the solvent used: the normal 

surface angle to the sheet of the powder sample should be less than 6o, compatible with 

ripples formation observed in suspended graphene. We attribute this effect to the 

interaction of solvent molecules with the graphene nanosheets. 

KEYWORDS: Solution-processed graphene, X-ray Pair Distribution Function, atomic 

structure
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3

Introduction

One of the most attractive and industrially scalable methods for graphene production is 

given by chemical exfoliation of graphite [1]–[4]. This approach gives rise to graphene 

dispersions, which can be further processed with simple and low-cost methods such as 

drop casting and inkjet printing [5]–[8]. The most used chemical exfoliation approaches 

are Liquid Phase Exfoliation (LPE) and Electrochemical Exfoliation (EC). The LPE 

method relies on the use of ultrasound and/or shear force to exfoliate bulk graphite into 

graphene suspended in a suitable solvent, such as N-Methyl-2-pyrrolidone (NMP), N,N-

dimethylformamide (DMF), and Cyrene (Cy) [9]–[11]. The EC process is based on 

expanding the graphite layers following the intercalation of ions and small molecules 

driven by an external electric field. According to the charge of the intercalated ions, the 

graphite electrode works as an anode or cathode, hosting oxidation or reduction 

reactions, respectively [12]–[14]. Cathodic EC gives rise to defect-free graphene, but 

exfoliation does require several hours [15], [16], while anodic EC is quick but gives rise 

to slightly oxidised graphene [14].

Despite the use of simple methods to produce solution-processed graphene, its 

characterisation is very challenging because the nanosheets come in different sizes, 
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4

thicknesses and chemical functionalisation [10]. In addition, the lack of metrology 

standards strongly limits the commercialisation of graphene-based products [10], [17], 

[18]. Only recently, the community has defined some guidelines for the characterisation 

of graphene-based materials [19], which led to the development of the first ISO/IEC 

standard (ISO/TS 21356-1:2021) for measuring the structural properties of graphene 

[20]. In particular, information on the atomic structure of solution-processed graphene is 

currently provided by Transmission Electron Microscopy, which requires specific 

sample preparation, and it is time-consuming, so it can only be performed on a selected 

number of nanosheets. The electron beam can also damage or change the structure of the 

nanosheets. 

Synchrotron X-ray based characterisation techniques are increasingly employed in 

material science [21]–[24] because of their high photon energy (shorter wavelengths), 

increased penetration, and short measuring time due to the appreciable photon flux, 

hence providing an elegant solution for materials characterisation. In particular, the X-

ray pair distribution function (XPDF) [24] can provide quantitative information on the 

crystal structure, e.g., the average distances between the neighbouring atoms, enabling 

insights into the material structure with nanoscale resolution. Nevertheless, to the best of 

our knowledge, these types of measurements have been rarely performed on graphene-
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5

based materials. Previous studies with high energy X-rays  [25]–[28] focussed on the 

study of various types of graphitic carbons, including graphene oxide, specifically with 

the aim to identify the type of defects. 

Herein, we applied the XPDF to the characterisation of solution-processed graphene 

produced by LPE and EC and dispersed in different solvents. The geometrical 

arrangement of carbon atoms in the ring has been obtained from the analysis of the 

XPDF data. We observe structural deformations of the hexagonal carbon ring, compared 

to the perfect planar geometry, inducing possible rippling at the scale of the inter-atomic 

distances, which could be related to the interaction with the solvent molecules, as 

predicted theoretically. 

Results and Discussion

Solution-processed graphene was produced by using cathodic EC and LPE methods, as 

outlined in Fig. 1 a) and b), (and supplementary Fig. S1.a) following the approaches 

reported previously [12], [29]–[31]. The solution process samples contained either NMP 

and Cy are named as Gr LPE(NMP) Gr LPE(Cy), Gr EC(NMP) and Gr EC(Cy) 

(chemical structure of Cy is shown supplementary Fig. S1.b). The measurements were 
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6

performed directly in solution. In the case of EC graphene, the expanded graphite 

powder (EC powder) was also collected and measured in solid form. Commercially 

available graphite was also measured as a reference. The graphene concentration is 

determined by UV-vis spectroscopy using an absorption coefficient of 2207 L g-1 m-1 

[32] and 2460 L g-1 m-1 [11] for EC and LPE graphene, respectively, measured at 660 

nm. The concentrations are reported in Table S1, in the supplementary Information. 

The graphene nanosheets have been characterised by atomic force microscopy (AFM), 

Raman spectroscopy, high resolution transmission electron microscopy (HRTEM) and 

X-ray photoelectron spectroscopy (XPS). The thickness and lateral size distributions of 

A LPE

EC

Exfoliation Centrifugation Collection

B

Intercalation Washing

EC

Figure 1: Schematic illustration of the exfoliation process: (a)Sonication-aided LPE process 

followed by centrifugation; (b) EC process using graphite as cathodic electrode.

Page 6 of 28AUTHOR SUBMITTED MANUSCRIPT - 2DM-107893.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60 A

cc
ep

te
d 

M
an

us
cr

ip
t



7

both LPE and EC graphene flakes were estimated by AFM (Fig. 2A and D). Fig. 2B and 

E shows the statistics of the peak thickness of the LPE and EC graphene, respectively; 

extracted from AFM over 300 individual flakes, revealing that the dispersions are 

mostly composed of thin (<10 layers) graphene flakes. The lateral size distribution of 

LPE and EC graphene in Fig. 2C and F, respectively, shows that the as-prepared 

graphene nanosheets follows a broad distribution in size, where the average lateral size 

for the LPE Gr was ~223 nm and between 1 – 4 µm for the EC Gr. The smaller flake 

size for the LPE Gr compared to the EC Gr is due to the extensive sonication during the 

exfoliation process and is in good agreement with our previous reports [7, 12]. Fig. 2G 

and H shows representative Raman spectra measured on individual flakes produced by 

LPE and EC, respectively. The typical Raman spectrum of LPE and EC Gr shows the D 

and G peaks at ~1350 cm-1 and ~1580 cm-1, respectively [33]. The D peak is activated 

by defects, but the specific activation mechanism is different between the two samples. 

In the case of graphene produced by LPE, the D peak is activated by the edges of the 

nanosheets, having lateral size comparable or smaller than that of the laser spot size [34]. 

The D peak in the Raman spectrum of EC graphene (Fig. 2H) is likely activated by 

introducing functional groups during the electrochemical treatment, as evidenced by the 
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XPS results. It should also be noted that the gas bubbles collapse on the electrodes could 

form different kinds of defects in the graphene basal plane, including generating some 

vacancies. These defects could also be a result of structural defects introduced by the gas 

evolution between the layers caused by the repeated ion intercalation/deintercalation 

process during the exfoliation process. 
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Figure 2: (A) Typical AFM image of LPE graphene drop-casted on SiO2/Si 

substrate; (B) thickness and (C) lateral size distribution of LPE graphene measured 

by AFM; (D) typical AFM image of EC graphene; (E) number of layers and (F) 

lateral size distribution of EC  graphene measured by AFM; (G) and (H) 

representative Raman spectra of LPE and EG graphene measured with 514.5 nm 

laser, respectively; (I) HRTEM images of LPE graphene, inset shows the 

corresponding FFT image; (J) TEM image of the EC graphene, inset is the SAED 

pattern; (K) and (L) XPS C1s spectra of LPE and EC graphene, respectively.
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High resolution TEM (HRTEM) images reveal that the graphene nanosheets produced 

by the LPE and EC processes are clean and high crystallinity. Moreover, both the FFT 

and SAED patterns of LPE and EC graphene (inset of Fig. 2I and J, respectively) reveals 

the bright inner ring of {0-110} spots and faint outer ring of {1-210} spots, revealing the 

typical diffraction pattern of monolayer graphene.  Moreover, the High-Angle Annular 

Dark Field (HAADF) and the corresponding Energy Disperse Spectroscopy (EDS) 

mapping of the graphene flake (supplementary Fig. S2) demonstrates the graphene 

produced by the LPE process consists of pristine flakes without any impurities.

The chemical composition of the as-prepared graphene was further investigated by the 

XPS. As shown in Fig. 2 J and K, both the XPS spectra of the LPE and EC graphene 

show asymmetric C1s peak centred ~284 eV corresponding to sp2 C-C bond. Noticeably, 

only a tiny amount of oxygen related functional groups (i.e. C-OH and C=O groups at 

285.5 eV and 288.4 eV, respectively) were observed in LPE Gr, which mainly inherited 

form the starting graphite used for the exfoliation process [35] . On the other hand, the 

oxygen content of the EC Gr was found to be around 7.8 at% compared to the 5.5 at% of 

pure graphite (supplementary Figs. S3 and Fig.S4), supporting the assumption the EC 

exfoliation process used is largely nonoxidative. Therefore, both the LPE and EC Gr 
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used in this study are of high quality and crystallinity as supported by different 

characterization methods discussed above.  

For X-ray characterization, the samples were packed in a borosilicate capillary with 1.5 

mm diameter. The background signal measurement is conducted, (as shown in 

supplementary Fig. S5) and  subtracted from the signal of the graphene. As shown in Fig. 

3A, during the synchrotron X-ray experiments, the capillaries are mounted horizontally 

and rotated about its long axis centring the X-ray beam at the upper half of the capillary 

to avoid any precipitations of the highly concentrated solution sample. The exposure 

time for each X-ray scattering measurement was 300 s. The experimentally collected 

diffraction intensity data, including Bragg’s scattering signal and high Q range scattering 

signal can be primarily processed into the total scattering structure function, S (Q), 

representing the normalised scattering cross-section form [21]. A highly monochromatic 

synchrotron X-ray beam was used; hence zero bremsstrahlung contribution can be 

assumed. The top-hat width for the Lorch function of 1.0 Å-1 was utilised, and a 

minimum Fourier filter radius of 1.25 Å-1 was used for the Fourier transform. 

Fig. 3B shows the S(Q) of all the samples with subtraction of the background. In the 

case of graphite, the intense peak-like features are characteristic of a 3-dimensional and 
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highly crystalline structure. In the case of EC powder, the peaks over Q = 3 Å-1 decrease 

in intensity, while the intensity of the peak just below Q = 2 Å-1 increases. The solution-

processed graphene obtained by LPE and by cathodic EC show a similar spectrum, 

characterised by a broad peak at about Q = 1.1 Å-1. The missing/decreased intensity of 

the peaks is related to a change in structure, associated with a reduced ordered 

configuration of the atoms. The processed XPDF spectra up to 25 Å is shown in Fig. 3C. 

Graphite shows obvious atomic correlations up to 15 Å or more. In the case of the 

graphite powder, the correlation is visible up to 10 Å. On the other hand, in the case of 

solution-processed graphene, long-distance correlations are completely missing. The 

absence of long-distance correlation peaks indicates the disappearance of the three-

dimensional (3D) structure due to the exfoliation (as in the case of LPE and EC samples). 

The exfoliation caused lack of repeated atomic correlation between the layers of graphite 

(i.e., loss of AB-stacking), as in the case of the EC powder. 
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In the case of solution-processed graphene, only the two peaks at short correlation 

distances (< 5 Å) are clearly visible. However, a closer look in this region, Fig. 4A, 

shows that the number of peaks and their positions is slightly different, depending on the 

Figure 3: (a) Schematic illustration of the synchrotron x-ray experiment set up with 

2D area detector; (b) Structure factor results calculated from the collected diffraction 

intensity; (c) XPDF results of LPE, EC exfoliated graphene and Bulk graphite 

samples up to 25 Å. The XPDF result is obtained by Fourier transformation of 

structure factor.
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sample considered. These peaks are very important because their position is associated 

with the C-C atomic distance in the ring: by using the carbon hexagon model from 

graphite in Fig. 4B, one would expect to see 5 peaks at the distances 1.41 Å, 2.42 Å, 

2.86 Å, 3.74 Å, 4.22 Å, corresponding to the C1-C2, C1-C3, CI-C4, C1-C5, C1-C6 

atomic distances, respectively. This is well observed with the selected Q range of  XPDF 

spectrum, as shown in Fig. 4A, which also agrees with the previous research [36], [37].  

Fig. 4C shows that the C1-C2 bonding in graphite powder increases up to 1.46 Å, while 

it is fixed at 1.43 Å or 1.44 Å for solution-processed graphene, irrespective of the 

exfoliation method used. Note that cathodic graphene has a size comparable to graphene 

flakes made by LPE [12]. The C1-C3 distance slightly increases in graphite powder 

compared to bulk graphite, while it is much smaller in the case of solution-processed 

graphene. The same is observed for C1-C4, although the signal of solution-processed 

graphene is rather weak with a broad peak but can still be recognised at about 2.85 Å, 

which indicates that the C1-C4 atomic correlation is hardly visible measured as a fixed 

value. In the case of the C1-C5 distance, no significant differences are observed between 

bulk graphite and EC graphite powder. In contrast, the C1-C5 distances are reduced in 

the case of solution-processed graphene, with no dependence on the exfoliation method. 
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The peak associated with C1-C6 is missing in the case of solution-processed graphene. 

The correlation of longer distance C1-C6 becomes too weak to be detected by the XPDF, 

which can be regarded as uncorrelated pair. 

Interestingly, any correlation associated with NMP or Cyrene (for structure details 

readers are referred to ref. [29])  is not observed in solution-processed graphene. The 

intermolecular correlation of the solvent molecules could be visible if the molecules are 

ordered in space. However, the NMP and Cyrene molecules are probably randomly 

spaced with relatively low concentration, which means no constructive scattering can 

occur even without removing the background. Therefore, all of the characteristic peaks 

of the solvent molecules are not observed in our spectra. All the correlation peaks, and 

in particular the one at 1.43-1.44 Å for solution-processed graphene, are doubtlessly 

coming from graphene. Thus, the difference between graphene in NMP and Cyrene is 

minimal and can be neglected [29].
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The XPDF results confirm that cathodic EC and LPE can provide nanosheets with 

thickness small enough to be considered 2-dimensional. However, slightly different 

geometric arrangements of the atoms in the hexagonal ring have been observed as 

compared to graphite. Fig. 4 c) shows the resulting carbon hexagon models for solution-

processed graphene in NMP and EC graphite powder compared to that of graphite. Our 

results show that ion intercalation and related layers' expansion, caused by the cathodic 

Figure 4: (a) XPDF results of a carbon hexagon range up to 4.5 Å; (b) Carbon hexagon model 

from graphite. Distances between atoms are noted; (c) Carbon hexagon models with 

distortion of single layer graphene in bulk graphite, EC expanded graphite powder, graphene 

dispersion in NMP solution.
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EC process, gives rise to a small ring distortion compared to pristine graphene. However, 

the ring distortion further increases when the material is dispersed in a solvent. 

Remarkably, as both LPE and EC graphene dispersed in the same solvent show exactly 

the same type of distortion of the hexagonal ring, this effect is likely to be caused by the 

interaction between solvent molecules and graphene. Nevertheless, careful further 

research needs to be drawing any such conclusions beyond the doubts. In such case, 

XPDF can emerge as one the key technique that can be providing valuable experimental 

measurements. 

Remarkably, Meyer et al. [38] have suggested ripples in suspended graphene through 

TEM investigations, as confirmed by other groups [39]–[41]. In particular, an average of  

0.7 Å height fluctuation (i.e. ripple height normal to the sheet) was found by using 

Monte Carlo simulation [42].  The bond length deviation is predicted from 1.31 Å to 

1.54 Å. This could include the short double bond of 1.31 Å, a conjugated bond of 1.42 Å, 

and up to a long single bond of 1.54 Å. Hence, the three bonds of each carbon atom 

within the hexagon could be different. Our results show ring distortions compatible with 

the proposed model for suspended graphene [39]; as the C1-C3 atomic distance of 

solution-processed graphene becomes shorter than the bulk graphite. However, it needs 
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to be noted that TEM measurements were done on the suspended graphene while our 

measurements details were here obtained while the graphene in solution, where we 

found some indications for influence the distortion. The increasing bond lengths 

differences indicate that the graphene's increased density is not perfectly planar when 

dispersed in a solvent. The bonding angle between C1-C2-C3 is calculated as 111.9o and 

114o for graphene dispersion and powder. The normal surface angle to the sheet of the 

powder sample should be less than 6o (i.e. the angle deviation of 114o from 120o), and 

this result is consistent with the angle deviation of the result from Meyer's result  [38], 

where the angle deviation from the sheet is ± 5o. Likely, this effect is caused by the 

specific interaction of the solvent with graphene. 

Conclusions

Our work presents the first characterisation of solution-processed graphene in NMP and 

Cyrene by high energy X-ray scattering and related XPDF analysis. The results show the 

disappearance of long-range atomic correlations, confirming the production of 2D 

nanosheets and that the hexagonal atomic structure is strongly distorted when graphene 

is suspended in a medium. In particular, the first C-C distance slightly increases, while 

the second C-C distance decreases, resulting in a distortion that could be compatible 
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with ripples formation observed in suspended graphene, likely to be caused by the 

interaction of solvent molecules with the graphene nanosheets.  Our results demonstrate 

the potential of XPDF as a powerful tool to characterise 2D materials and acquire 

quantitative structural information with atomic resolution.

Methods

Materials. High purity graphite foil (99.8% metal basis), graphite rod (99.99% metal 

basis) and ammonium sulfate ((NH4)2SO4, 98+%) were purchased from Alfa Aesar. 

Anhydrous dimethyl sulfoxide (DMSO) (99.9%), graphite flakes (100+ mesh), 1-

Pyrenesulfonic acid sodium salt (PS1) and isopropyl alcohol (IPA) were purchased from 

Sigma-Aldrich. Isomolded graphite (>99.95%) rods were purchased from GraphiteStore. 

Cesium perchlorate (99%) was obtained from Fisher Scientific. The natural kish graphite 

was bought from Graphexel ltd. All the chemicals and materials were used as received.

Exfoliation. The LPE graphene in NMP was prepared by adding 300 mg of graphite 

flakes into 100 mL of NMP, followed by sonicating the mixture at 600 W using Hilsonic 

bath sonicator for 5 days. Afterwards, the dispersion was centrifuged using a Sigma 1-

14k refrigerated centrifuge at 903g for 20 min to remove un-exfoliated graphite. To 
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obtain highly concentrated graphene, the dispersion was further centrifuged at 16600 g 

for 1 hr., followed by re-dispersing the sedimented graphene into a small volume of 

NMP. The EC is prepared by the cathodic electrochemical exfoliation as described in 

our previous work [12]. Briefly, a pellet of natural graphite is used as a cathode, and Pt 

mesh was used as the anode. The electrolyte was 1M lithium chloride (Sigma Aldrich, 

99.9%), and Triethylamine hydrochloride in dimethyl sulfoxide. The exfoliation 

products were washed to remove the electrolyte with water and ethanol until the pH was 

neutral, and the products were separated by filtration using Anodisc alumina membranes 

with 100 nm pore size and then dried at 200 oC under Ar atmosphere. The dry powder 

was then dispersed in a small amount of NMA, as in the LPE samples. 

Materials characterization. UV-Vis spectroscopy of the graphene dispersions were 

measured by using a PerkinElmer I-900 UV-Vis-NIR spectrometer. A Bruker Atomic 

Froce Microscope (MultiMode 8) in Peak Force Tapping mode, equipped with 

ScanAsyst-Air tips is used to determine the lateral size and thickness distribution of the 

graphene flakes. The samples were prepared by drop casting the dispersion on a clean 

silicon substrate; several hundreds of individual flakes were selected, after complete 

solvent evaporation, for lateral size and thickness analysis. The same sample preparation 
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has been used for Raman measurements. Raman measurements were performed using a 

Renishaw Invia Raman spectrometer equipped with a 514.5 nm excitation line with 1 

mW laser power. 100X NA0.85 objective lens, giving a spatial resolution of ~500 nm, 

and 2400 grooves/nm grating were used for the measurements. The X-ray photoelectron 

spectroscopy (XPS) measurements were performed using the K-Alpha X-ray 

Photoelectron Spectrometer (XPS) System from Thermo Scientific. The photon source 

was a monochromatized Al K α line (hν = 1486.6 eV). The spectra were acquired using 

a spot size of 300µm and constant pass energy (150 eV for survey and 20 eV for high 

resolution spectra). A flood gun with combined electrons and low energy Ar ions is used 

during the measurements. HRTEM images were acquired on a JEOL 2100-F microscope 

with a field-emission gun operated at 200 kV accelerating voltage providing direct 

images of the atomic structure. A High-Angle Annular Dark Field (HAADF) detector 

and an Oxford high solid-angle Silicon Drift Detector (SDD) X-Ray Energy Dispersive 

Spectrometer (EDS) system was used for chemical elemental analysis.

X-Ray Scattering. The synchrotron X-ray scattering experiments were conducted in I15-

1 beamline, Diamond Light Source, U.K. The monochromatic X-ray beam with 76.7 

keV (wavelength of 0.161669 Å) was employed [43]. A 2D Perkin Elmer XRD detector 
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with active area of 409.6×409.6 mm2, and pixel size of 100 µm was applied close to 

sample to provide large Q range and high-quality scattering data. Here Q = (4π sinθ) ⁄λ, 

where λ is the wavelength and 2θ is the angle between incident and scattered X-rays. 

The collected diffraction intensity data is processed by software GudrunX [44] which 

subtracts the self-scattering intensity, Compton scattering and multiple scattering, etc. 

Then, the total scattering structure factor, S(Q) and X-ray pair distribution function 

(XPDF), G(r) are obtained as;

              (1)𝑆 (𝑄) =
𝐼(𝑄)
〈𝑏2〉

 (2)𝐺(𝑟) =
2
𝜋∫𝑄𝑚𝑎𝑥

𝑄𝑚𝑖𝑛
𝑄 [𝑆(𝑄) ― 1]𝑠𝑖𝑛 (𝑄𝑟)𝑑𝑄

where I(Q) is the collected and processed diffraction intensity. The coherent single-

scattering intensity is desired; b is the element scattering amplitude (f is used for x-ray 

scattering); <…> denotes an averaging process. For detailed theory, ref. [21], [45] is 

referred. 
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