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Abstract

In this paper we review the benefits of abstract compu-
tational models of cognition and present one such model
of behavior in a flight-control domain. The model’s cen-
tral assumptions are that differences among subjects are
due to differences in sensing skills, and that the main
form of learning involves updating statistics to distin-
guish relevant from irrelevant features. We report an
implementation of this abstract model of sensory learn-
ing, along with a system that searches the space of pa-
rameter settings in order to fit the model to observations.
We compare the sensory-learning framework to an alter-
native based on the power law, finding that the latter fits
the data slightly better but that it requires many more
parameters.

Computational Models of Behavior

Computational models of human cognition date back
to the 1950s, soon after researchers realized that com-
puters had general symbol-processing capability. Early
computer models like GPS (Newell, Shaw, & Simon,
1960) and EpaM (Feigenbaum, 1963) were implemented
in basic list-processing languages like IPL-V and then
in Lisp. Later models of human behavior were cast
in more theory-laden formalisms like production-system
and schema languages (Newell, 1973; Norman & Rumel-
hart, 1975). Ensuing architectures such as ACT (Ander-
son, 1983) and SOAR (Newell, 1990) incorporated addi-
tional knowledge about the human information proces-
sor, forcing models stated within those frameworks to
satisfy further theoretical constraints.

Many cognitive scientists view this progression as
a positive development, leading toward what Newell
(1990) has called unified theories of cognition. Never-
theless, computational models still require developers to
introduce many assumptions, many not central to their
theories, before they can produce behaviors and predic-
tions. Moreover, features of models that developers do
hold central are often not the source of their models’ abil-
ity to explain psychological data. One example comes
from Richman and Simon (1989), who argue that connec-
tionist and discrimination-network explanations of word-
recognition findings are due not to these models’ core
assumptions of parallel versus sequential processing, but
from the way both models structure the task.
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These observations suggest that detailed computer
models of human behavior, though interesting from an
Al perspective, may be misleading or at least unneces-
sary to explain many interesting phenomena. At first
glance, mathematical models seem a natural alternative,
in that they describe behavior at a much more abstract
level. However, computational models were originally
developed in response to perceived limitations of such
mathematical methods, which were constrained to sim-
ple behaviors and often made restrictive assumptions of
their own for the sake of analytical tractability.

Recently, Ohlsson and Jewett (1995; in press) have
proposed a promising compromise between these two
paradigms, which they refer to as abstract models. In
this framework, the scientist still implements a running
computer program that generates behavior, but the sys-
tem omits details that are not essential to the phenom-
ena one aims to explain. For example, to model learning
in problem-solving domains, they suggest retaining the
idea of search through a problem space, but removing
details about the states and operators that define the
space. Rather, one can describe the structure or connec-
tivity of the space, and model the learning process using
mechanisms that add connections or alter the probabil-
ity of moving toward a goal state.

The idea of abstract computational models is not en-
tirely new. For instance, Shrager, Hogg, and Huber-
man (1988) present an explanation very similar to Ohls-
son and Jewett’s for the power law of learning, which
they coupled with a mathematical analysis. Rosenbloom
and Newell (1987) present a different account of power-
law learning, describing both a detailed computer model
and an abstract model of this well-known phenomenon.
Ohlsson and Jewett’s contribution is the realization that
neither the mathematical analysis nor the detailed model
are necessary, and that researchers may often find it use-
ful to work entirely at the level of abstract models.

However, work on abstract models remains rare, and
Ohlsson and Jewett’s research program has focused on
cognitive tasks. In this paper, we adapt the approach
to domains that have a significant sensory-motor com-
ponent. Below we outline the PHOENIX domain, which
involves control of a simulated airplane. After this, we
briefly review ICARUS, a theory of the human cognitive
architecture, and incorporate its core tenets into an ab-
stract model of behavior on the PHOENIX task. Next
we describe a variant model that addresses the influence
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of domain knowledge on sensing strategies, along with a
simple account of sensory learning. Finally, we consider
the model’s fit to human behavior and compare its accu-
racy to that of an alternative account of learning, then
discuss some broader issues that our approach raises.

The Sensory-Rich PHOENIX Domain

Goettl (1993, 1994) has described the PHOENIX domain,
a simulated training environment that involves flying a
simulated airplane through a series of rectangular gates
that constitute a three-dimensional slalom course. The
aim is to navigate the plane through these gates, prefer-
ably following as direct a route as possible. A cockpit
window gives subjects information about the size, loca-
tion, and orientation of the nearest gates as they would
appear from an actual plane, along with a horizon line
that reflects the plane’s pitch and roll. The console dis-
play also gives numeric information on the flight speed,
thrust, and altitude.

The gates are suspended in air, perpendicular to the
ground and parallel to each other. The PHOENIX task
begins with the plane facing and heading roughly in the
direction of the nearest gate, but the subject must al-
ter the plane's course to accomplish the task of flying
through the gates in sequence. A joystick lets the sub-
ject affect the plane’s pitch and roll, and thus its altitude
and heading; additional controls can change thrust and
thus flight speed, but this is less central to the basic task.

Goettl (1993) has analyzed the PHOENIX task into 19
separate component skills, which involve subtasks such
as changing heading and changing altitude, which in turn
break down into even more basic skills like altering the
plane’s pitch and roll. His experiments revealed a num-
ber of regularities in subjects’ behavior on this task. For
instance, he found that ability on most of the componunt
skills identified during the task analysis were closely as-
sociated with ability on the overall slalom task. He also
noted major differences in performance, especially be-
tween men and women, but also among subjects of the
same sex. Determinants of task difficulty included the
size of the gates and their distance apart.

Naturally, subjects improve their ability to fly the
slalom course with practice. However, Goettl also found
that part-task subjects (trained on the component skills)
learned more slowly than those in the whole-task group
(trained on the overall task), though the former did show
positive transfer from practice on the component prob-
lems. In studies of a related task that involves shoot-
ing stationary targets, Goettl (1994) found that subjects
trained on component tasks outperformed those trained
on the whole task, provided they get interleaved practice
on the components (i.e., one trial on each component per
block), but not when they get segregated practice.

We will not attempt to explain all of the above phe-
nomena here; for now we will focus on the basic fact of
improvement with experience. However, the variety of
results suggests the fertility of this domain for exploring
behavior on complex sensory-motor tasks, which recom-
mends it as a testbed for our ideas on abstract models.
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A Model of Unskilled Sensing

Our approach to modeling human behavior in the
PHOENIX domain builds on the ICARUS architecture
(Langley, 1996), in which the basic unit of knowledge
is the qualitative state. Each state S specifies a set of
conditions that must hold for S to be active, along with
optional information about actions to be performed dur-
ing S, the effects of these actions, and likely successor
states. The architecture operates in cycles, checking the
conditions of the current state if one is active and se-
lecting a new state from long-term memory otherwise.
Constraints on perceptual attention limit the number of
sensors updated on each cycle, with the system assuming
that the values of unsensed features remain unchanged.
When ICARUS detects that the activation conditions for
the current state no longer hold, it checks to determine
which successor state should become active or, if none
hold, which other state seems most appropriate.

For this study, we assume that the agent has already
mastered the basic skill of flying through a series of gates,
which involves both knowledge of the component skills
(states) and the order in which they should occur. Fig-
ure 1 shows one possible sequence of states involved in
traversing a single gate, and the resulting flight path seen
from above the plane. This sequence involves rolling the
plane to the left, continuing the roll at the maximum
allowed for some period, unrolling the plane right, and
taking no action once the plane is aligned with the gate.
This sequence assumes the plane is already aligned ver-
tically; if the plane were below the gate, the sequence
would also include states for altering the pitch to ascend
followed by another state to level out. Alternative lo-
cations relative to the gate would produce similar paths
based on analogous states, such as decreasing pitch and
rolling right. We will not assume this precise decompo-
sition of the slalom task, as other decompositions into
states are possible, but we will posit a small number of
states for each gate traversal.

Our model of behavior on the slalom task abstracts
away from the details of ICARUS and the domain, and
focuses on only a few essential parameters. In particu-
lar, we suppose that flying through each gate requires
a sequence of s states and that each state has r + 1 ac-
tivation conditions that involve sensing, but that only
r of these conditions actually differ between each state
and its successor. This means that, in order to detect
that the current state is no longer active, the agent need
only sense one of these r relevant features. However, if
the agent does not know which features to sense, its de-
tection of state failure may be delayed, and thus it may
continue carrying out the current actions longer than
appropriate.

Our explanation of errors in this framework revolves
around the idea that the agent must reach the final ‘Fly
Toward’ state, in which the plane is aligned with the
gate, before passing the gate’s location. For a given lo-
cation of the plane with respect to the gate at the outset
of the state sequence, there will be a minimum number
of time steps, ignoring time for sensing, for the agent
to enter this final state. We will use t to represent the
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Figure 1:

A four-state sequence that takes a plane through a gate when already vertically aligned.

Each state

continues for a number a time steps, until its activation conditions are no longer satisfied.

number of additional time steps available, beyond this
minimum, before the plane passes the gate. Thus, the
parameter ¢ corresponds to the amount of ‘slack’ in a
particular slalom task, with smaller values making the
problem harder and larger ones making it easier.

According to this account, an agent that knows how
to fly through a gate can still make errors because the
number of time steps needed to detect a state shift may
exceed the slack parameter t, causing the plane to miss
the gate. We assume that the agent can sense only one
feature on each time step, so that whether it notices a
state shift depends on whether it senses relevant or irrel-
evant features. Lacking any knowledge of which features
are relevant, we assume that the true novice has a prob-
ability

"
r+1

of selecting a relevant feature on each time step, and thus
the same probability of noticing a state shift, once such
a change occurs.

This model appears to have four parameters but ac-
tually has fewer. Note that the important factor is not
the overall slack parameter ¢, but rather than amount
of slack per state, d = t/s. Also, the actual number
of relevant features r and irrelevant ones i matters less
than p, the probability of detecting a state shift when
one occurs. However, this quantity is determined not by
r and @ but by their ratio, u = :/r, which gives

1
1+u’

Taken together, the parameters d and u specify our
abstract model of novice behavior on the PHOENIX
slalom task, though it should apply equally well to other
sensory-rich domains.

p

p
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A Model of Skilled Sensing and Learning

The above model posits that the agent samples from
among the r + 7 state activation conditions from a uni-
form distribution, which produces the probability

1
1+u

r

r+1

P

of detecting a state shift on each time step after the shift
occurs. However, if the agent has additional knowledge
about the probability of each condition ceasing to hold,
it can use a more selective strategy, based on nonuniform
sensing, that produces a higher probability of detecting
a state change when one occurs.

In order to model such skilled sensing behavior, we
need some additional assumptions. The Icarus archi-
tecture assumes that the agent associates a probability
with each activating condition f of a state s, such that,
when s is active and f is true, f will still hold on the next
time step. Based on these estimates, I[CARUS computes
the probability that each activation condition (feature)
of the current state has changed. Having limited at-
tentional resources, the architecture must choose which
features to sense. Here we assume that subjects use a
probability matching strategy, which samples from among
the available features in direct proportion to their esti-
mated probability of changing when a state shift occurs.
Probability matching has been implicated in a variety of
decision tasks, making it a plausible candidate here.

We can model a subject’s knowledge about the rele-
vance of features with one additional parameter, k, that
represents the number of times the subject has observed
a particular state transition in which the relevant fea-
tures have changed and the irrelevant ones have not. We
can incorporate this information into the probability of
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Figure 2: The probability of detecting a state shift as a function of (a) parameters k and u in the novice model and
(b) parameters n and ¢, when u = 4, in the skilled model.

selecting a relevant feature, which becomes

ke kK
PE Erd s~ Bvu’

This expression is equivalent to the novice quantity,
1/(1+u), when k = 1, but the ratio approaches 1 as
k goes to infinity. Figure 2 (a) shows the effect of k on
p for different values of i/r = u.

Naturally, we do not claim that k remains constant,
since subjects learn from their experience in the domain.
Here we assume that the subject simply increments the
value for k by 1 each time he observes a shift from one
state to another, thus increasing the probability p of
sensing a relevant feature. This suggests that we let
k = n, where n is the number of times the subject has
encountered the task. However, inspection of data for
the slalom task reveals that some subjects start with
much higher success rates than others. We can model
these differences by introducing another parameter, c,
that determines each subject’s initial probability of sens-
ing irrelevant features. In this revised model, we have
k = ¢+ n, so that

_ (e+n)-r  c+n
P=GCrn)rri  crn+tu’

where the value for ¢ partly determines the intercept in
each subject’s learning curve. Figure 2 (b) shows the
effect of n on p for different values of ¢ when u = 4.

Let us review the model and its structure. We have
one parameter, d = t/s, that represents the difficulty of
the task. We have a second parameter, u = i/r, that in-
dicates the ratio of irrelevant to relevant features. Both
d and u take on the same value for all subjects, since they
are characteristics of the domain. However, we have a
third parameter, c, that is specific to each subject, repre-
senting that person’s initial bias toward sensing relevant
features. The variable n also plays a role in the model,
but we assume this represents the number of problems
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the subject has solved.? Thus, given v subjects with w
observations each, we must fit a model with v+ 2 param-
eters to v - w data points. For the slalom task, we have
46 subjects and 8 measurements each, giving 46-8 = 368
values to constrain 46 + 2 = 48 overall parameters.

Fitting the Model to Observations

In principle, we might derive a set of equations that fol-
low from our model and use established statistical meth-
ods to determine the best-fitting values for each param-
eter. However, we have not found any closed-form solu-
tions for the model, which rules out this approach. But
it does not preclude us from incorporating the model’s
assumptions into an abstract computer program, using
this program to predict results for given parameter set-
tings, and searching the space of settings to find a good
fit to the data.

We implemented the assumptions of the model in such
a program, which we embedded in another program de-
signed to search the space of parameter settings. The
running model accepted the four variables described ear-
lier - d, u, ¢, and n - as input and applied the strategy for
selective sensing 1000 times to estimate the probability
of successfully traversing a gate. The higher-level system
computed the squared difference between the predicted
and observed probability for each combination of sub-
ject and practice level. For the parameter d we told the
system to consider only settings between 1 and 3; for u
it examined settings from 1 to 20; and for c it considered
values from 1 to 10.

The search program involves a number of iterative
loops, the outermost devoted to finding the best d value
and the next to finding the u setting. The three inner-
most levels iterate through the set of subjects, through

% Actually, each subject score is an average over 16 three-
minute trials that involved separate passes through the
slalom course, but these hold across subjects and thus are
constant factors.



Table 1: (a) Sample parameter settings for the abstract
sensory-learning model and the variance they explain
(r?) on data from the slalom task, along with (b) the
parameters and r? for the power-law model. The best
fit for the sensory-learning model (d = 2, u = 19) ac-
counts for less variance than the power law but involves
many fewer parameters.

(a) SENSORY-LEARNING MODEL

DIFFICULTY d RATIO u INIT. BIAS ¢ r?
1 4 (1-8) 0.111
1 12 [1-10 0.651
2 12 [1-10] 0.580
2 19 (1-10] 0.680
3 12 [1-7) 0.317
3 20 (1-10] 0.652
(b) PowER-LAW MODEL
SLOPE a INTERCEPT b r?
[1.17-0.07)  [-1.63-0.57) 0.827

values of n, and through settings for c. Inspection of the
model’s behavior over this parameter space suggested
that, when only one parameter varies, the model’s fit to
the data follows a U-shaped curve. Thus, the system lim-
ited search somewhat by starting with a small parameter
value and incrementing it only as long as this improved
the fit, at which point it halted, having reached a local
optimum given the values of other parameters.

Table 1 shows the variance explained (r?) for a num-
ber of parameter settings, including the one that pro-
vides the best fit for Goettl’s 46-subject data. The table
includes a range of values for ¢, since this parameter var-
ied across different subjects. Note that the best setting
for u is 19, accounting for 68 percent of the variance,
which implies that subjects considered 19 times as many
irrelevant features as relevant ones. The PHOENIX flight
simulator does have a complex display, so this value is
not impossible, though it is higher than we expected.

One natural issue concerns how well our sensory-
learning model compares to alternative explanations of
the data. We plan to explore this question at length
in future work, but we have already done some initial
studies along these lines with a popular model that as-
sumes learning obeys a negatively accelerated power law.
Rosenbloom and Newell (1987) and Shrager et al. (1988)
have shown that one can derive this law from assump-
tions about the task environment and learner, but both
analyses deal with reaction times rather than error rates.

Here we simply assume that learning follows a power
law of the form E = bN~°, where E is the percent error
after NV training experiences, and where a and b are pa-
rameters specific to each subject. Taking the log of both
sides gives the linear relation log(E) = log(b)—a-log(N),
which we can fit to the data using linear regression.
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Table 1 also shows the parameter ranges and the r?
that result from this process. The power law explains
somewhat more variance (83 percent) than the sensory-
learning model but includes nearly twice as many param-
eters; thus, we cannot claim that either is superior to the
other on these data, and additional studies would appear
necessary before we can draw any firm conclusions.

Preliminary analyses of results from another PHOENIX
study, involving part-task training, suggest that rapid
learners are less affected by the introduction of irrelevant
features than slow learners (Goettl, personal communi-
cation, 1996). This appears consistent with our sensory-
learning theory, but developing a detailed model for this
experimental situation, and fitting it to the data, must
await future work.

Discussion

Before closing, we should reexamine the theoretical sta-
tus of our model and its relation to alternative frame-
works. We have noted our debt to Ohlsson and Jew-
ett for the notion of an abstract computational model,
but our application of this idea differs somewhat from
their own. We have used our abstract model, combined
with a search engine, to fit data on particular subjects,
whereas Ohlsson and Jewett instead explore how alter-
native models react to variations in parameter values,
in order to determine whether their ability to cover phe-
nomena depends on the underlying mechanism or on for-
tuitous parameter settings. These two approaches are
not antithetical, but they do emphasize different issues.

Some readers will detect that our model of sensory
learning has features in common with Estes’ stimulus
sampling theory, the basis for a wide variety of math-
ematical learning models. The two accounts both as-
sume that subjects’ decisions are probabilistic in nature,
that they invoke a probability matching strategy, and
that learning follows from simple changes to probability
distributions. However, the details of the equations for
performance and learning differ considerably, as do the
underlying accounts that accompany the expressions.

Another issue concerns the degree to which our model,
and others like it, explains the data or merely describes
it. We hold that the model’s processes and associated
equations provide explanatory structure, whereas the pa-
rameter settings handle description within the structure.
A more interesting question concerns the extent to which
various model assumptions are necessary or merely suf-
ficient to produce the data. A sufficient assumption can
be replaced by another one that, with different parame-
ter values, gives nearly the same results. In contrast, a
necessary assumption seems required, in that no alterna-
tives can fit the data, regardless of parameter settings.
We have not yet attempted to analyze our account in
this fashion, but abstract models seem well suited for
such studies, as Ohlsson and Jewett have shown.

A final matter involves the generality of the abstract
approach to modeling behavior. Our treatment has ig-
nored many details of the PHOENIX task, such as par-
ticular sensory variables and component skills (states),
and Obhlsson and Jewett have followed a similar line.



However, we might instead have developed an abstract
model that included a separate parameter for each skill,
provided data were available (e.g., from part-task stud-
ies) to estimate expertise on each. This approach to
content-oriented abstract models might even let one dis-
tinguish between classes of knowledge, such as functional
and structural (e.g., Stroulia & Goel, 1992), given these
classes have different implications for subject’s behavior.

Concluding Remarks

In this paper we reviewed an approach to cognitive sim-
ulation that Ohlsson and Jewett (1995) have called ab-
stract models. We considered the advantages of this ap-
proach over traditional Al models of human behavior,
which force one to specify a complete procedure that op-
erates in the task domain even when the data provide in-
sufficient constraints to justify such detail. We described
a domain of this sort, studied by Goettl (1993, 1994), in
which subjects must fly a simulated aircraft through a
three-dimensional slalom course. Although we have im-
plemented an AI system for this task, cast within the
framework of a cognitive architecture, we found this sys-
tem too complex for useful modeling of available data.

In response, we developed an abstract model of behav-
ior on this task that incorporated parameters for task
difficulty, the ratio of irrelevant to relevant features, and
initial subject knowledge. The model’s central assump-
tions are that skilled performance on this task involves
selective sensing of relevant rather than irrelevant fea-
tures, and that improvement comes from simple statisti-
cal learning about feature relevance. We implemented a
program to search the space of parameter settings, and in
this way found an instantiated form of the model which
approached the fit for a power-law model that had twice
as many parameters. These results do not prove that
our sensory-learning account is the correct one, but they
encourage us to continue exploring this class of models.

In future work, we plan to evaluate our abstract model
on more detailed data that Goettl has collected for the
PHOENIX domain, as well as compare it to other alter-
natives besides the power law. We also plan to draw on
more sophisticated methods, some available in the sta-
tistical literature, for searching the space of parameter
settings, and to produce more general tools that can be
used with a broad class of abstract models. In the longer
term, we hope to use the resulting system to develop and
evaluate abstract models for a variety of learning tasks,
in an effort to understand the potential of this approach
to cognitive simulation.
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