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Abstract 
Networks of every kind and in numerous fields are 

omnipresent in today’s society (e.g. brain networks, social 
networks) and are the intense subject of research. It would 
be of great utility to have a computationally efficient and 
generally applicable method for assessing similarity of 
networks. The field (going back to the 1950s) has not come 
up with such a method (albeit a few moves in this direction 
exist, such as Jaccard coefficients, QAP--quadratic 
assignment procedure, and more recently Menezes & Roth, 
2013, and Asta & Shalizi, 2014). I present a Bayesian-based 
metric for assessing similarity of two networks, possibly of 
different size, that include nodes and links between nodes. I 
assume the nodes are labeled so that both the nodes and 
links between two nodes that are shared between the two 
networks can be identified.   

 
The method calculates similarity as (a monotonic 

transformation of) the odds that the two observed networks, 
termed V and W, were produced by random sampling from 
a single master network, termed G, as opposed to generation 
by two different but similar networks, termed Gv and Gw. 
The simplest form of the method ignores strengths that 
could be assigned to nodes and links, and considers only 
nodes and links that are, or are not, shared by the networks. 
Suppose there are nV nodes and NV links only in V, nW 
nodes and NW links only in W and nc nodes and Nc links 
shared between the networks. Thus the number of nodes in 
V is nc+ nV and the number in W is nc + nW. The number of 
unique nodes in both V and W is nc+ nV + nW = n. The 
number of links in V is Nc+ NV and the number in W is Nc + 
NW. The number of unique links in both V and W is Nc+ NV 
+ NW = N.  

 
The single master network, G, is assumed to consist of the 

union of the nodes and links in the two networks, and has n 
nodes and N links. The probability a given shared node will 
be randomly and independently sampled twice is 
[(nV+nc)/n][(nW+nc)/n]. The probability a given shared link 
will be randomly and independently sampled twice is 
[(NV+Nc)/N][(NW+Nc)/N]. 

 
If there are two generating networks I assume they each 

have n nodes and N links. I also assume they are similar, 

because we would not be comparing dissimilar networks. 
The degree of similarity is controlled by ‘tuning’ 
parameters1: Gv and Gw are assumed to share αn	  nodes and 
βN links. The probability a given shared node will be 
sampled twice is then α[(nV+nc)/n][(nW+nc)/n], and the 
probability a given shared link will be sampled twice is 
β[(NV+Nc)/N][(NW+Nc)/N]. The likelihood ratio λjs for G vs 
(GV, GW) as generator of a given shared node is then 1/α 
and the likelihood ratio πjs of a given shared link is then 1/β.  

 
For a non-shared node, say in V, similar reasoning gives a 

likelihood ratio λkV of  
[1-(nW+nc)/n)] /[1– α(nW+nc)/n]  
   and for a non-shared link a likelihood ratio πkV of  
[1-(NW+Nc)/n)] /[1– α(NW+Nc)/N] 
For a non-shared node or link in W substitute a W 

subscript for the V subscript in these likelihood ratios.  
 
Computational efficiency is a necessity if the similarity 

metric is to be applied to large networks. For this reason I 
do not calculate the exact probabilities for the numbers of 
shared and non-shared nodes and links that are observed 
(the combinatoric complexity of such calculations is 
enormous). Instead I make the simplifying assumption that 
each node and link contribute the likelihood ratios given 
above and that the total odds is obtained by multiplying all 
the likelihood ratios together. This simplification can 
perhaps be justified if similar distortion is produced by this 
simplifying assumption for both the cases of G and (GV,GW) 
as generators. Under this simplifying assumption the overall 
odds becomes: 

 
φ(1/2) = (λjs)nc(λkV)nV(λjW)nW(πjs)Nc(πkV)NV(πjW)NW 

 

Taking the log of this product converts the calculation to 
sums and makes calculation highly efficient.  

 
This abstract is too short to permit giving the different and 

more complex results that hold for the several cases when 
the nodes and/or links have associated strengths. I give a 
summary of some of the results here. The results for links 
and nodes are similar so consider the results for nodes. Let 
there be just one set of strength values, Si for the i-th node. 
Norm these to sum to 1.0. For either generation by G or 
(Gv,Gw) assume sampling is made without replacement and 
proportional to strength. Let Ziv and Ziw be the 
probabilities that node i will be sampled by nv+nc samples, 
or nw+nc samples respectively. The Z’s would be difficult to 
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obtain analytically but could be estimated by Monte Carlo 
sampling. Consider two possibilities for the way that Gv and 
Gw overlap. In Case A the probability a node will be shared 
is simply α,	   independent	   of	   strength.	   In	   Case	   B,	   the	  
probability	   a	   node	   will	   be	   shared	   is	   an	   increasing	  
function	  of	  strength,	  Yi.	  	  
	  
For	  Case	  A	   the	   likelihood	  ratio	   for	  a	  shared	  node	   i	   is:	  

1/α.	  For	  a	  node	  k	  only	   in	  V	   the	   likelihood	  ratio	   is:	  λkV	  =	  
(1-‐Zkw)/{1	  –	  α	  (1-‐Zkw)}.	  For	  a	  node	  only	  in	  W	  exchange	  
the	  subscripts	  v	  and	  w.	  Then	  we	  have	  for	  the	  odds	  due	  to	  
nodes:	  φD	  =	  (1/α)ncΠk(λkV)Πj	  (λjW).	  
	  
For	   Case	  B	   the	   likelihood	   ratio	   for	   a	   shared	  node	   i	   is	  

1/Yi.	  For	  a	  node	  k	  only	  in	  V	  the	  likelihood	  ratio	  is:	  λkV	  =	  
(1-‐Zkw)/{1–Yk(1-‐Zkw)}.	  Again	  switch	  v	  and	  w	  subscripts	  
for	  a	  node	  only	  in	  W.	  Then	  we	  have	  for	  the	  	  odds	  due	  to	  
nodes:	  φD	  =	  Πi(1/Yi)Πk(λkV)Πj	  (λjW).	  	  
	  
These	   expressions	   would	   have	   analogous	   forms	   for	  

links,	  with	  different	  Ns,	  Z’s	  and	  Y’s,	  and	  the	  overall	  odds	  
would,	  as	  before,	  be	  a	  product	  of	  the	  odds	  for	  nodes	  and	  
the	  odds	  for	  links.	  	  
	  
The	   critical	   difference	   between	   Cases	   A	   and	   B	   is	   the	  

degree	   to	  which	  evidence	  based	  on	  an	  observed	  shared	  
node	   or	   link	   is	   strength	   dependent:	   For	   Case	   B	   this	  
evidence	   rises	  as	   strength	  decreases.	   	  This	   should	   raise	  
concerns:	  However	  strengths	  are	  obtained	  there	  is	  likely	  
to	  be	  measurement	  noise	   that	   reduces	   the	   reliability	   of	  
low	   strength	   values.	   This	  might	   argue	   in	   favor	   of	   using	  
Case	  A,	  or	  if	  one	  preferred	  Case	  B	  to	  restrict	  the	  Yi	  values	  
to	   lie	   above	   a	   lower	   bound.	   The	   idea	   would	   be	   to	   let	  
evidence	  depend	  most	  on	   the	  nodes	   (or	   links	  with	  high	  
strength	  values.	  	  
	  
It should be observed that the existence of a 

computationally efficient and generally applicable metric 
for network similarity would allow alignment of non-
labeled networks. One would search for the alignment of 
nodes that would maximize the metric.  

 
I have many relevant publications demonstrating some 

degree of expertise in Bayesian modeling (e.g.: Shiffrin & 
Chandramouli, in press; Shiffrin, Chandramouli, & 
Grünwald, 2015; Chandramouli & Shiffrin, 2015; Nelson & 
Shiffrin, 2013; Cox & Shiffrin, 2012; Shiffrin, Lee, Kim, & 
Wagenmakers, 2008; Cohen, Shiffrin, Gold, Ross, & Ross, 
2007; Denton & Shiffrin; Huber, Shiffrin, Lyle, & Ruys, 
2001; Shiffrin & Steyvers, 1997). I note that the present 
results are in a vague sense an extension of the metric 
proposed for matching memory probes to memory traces 
that are given in Cox and Shiffrin (2012) and in the 
appendix of Nelsonb and Shiffrin (2013). 
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1. α	   and	   β	   would	   have	   to	   be	   quite	   large	   to	   produce	  
reasonable	  similarity	  values.	  Research	  will	  be	  needed	  
to	   determine	   whether	   the	   values	   can	   be	   fixed	   for	   all	  
types	   of	   networks	   being	   compared,	   or	   adjusted	   for	  
different	  network	  types. 
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