
UC Merced
Proceedings of the Annual Meeting of the Cognitive Science 
Society

Title
Ingredients of a Narrative: How an Abstract Feature Space and Event Position Contribute 
to a Situation Model

Permalink
https://escholarship.org/uc/item/2r4581fz

Journal
Proceedings of the Annual Meeting of the Cognitive Science Society, 46(0)

Authors
Terporten, Rene
Willems, Roel M.
Flecken, Monique
et al.

Publication Date
2024
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/2r4581fz
https://escholarship.org/uc/item/2r4581fz#author
https://escholarship.org
http://www.cdlib.org/


Ingredients of a Narrative: How an Abstract Feature Space and Event Position
Contribute to a Situation Model

Rene Terporten (rene.terporten@donders.ru.nl)
Radboud University, Donders Centre for Cognitive Neuroimaging

Kapittelweg 29, 6525EN, Nijmegen, the Netherlands

Roel M. Willems (roel.willems@ru.nl)
Radboud University, Donders Centre for Cognitive Neuroimaging

Radboud University, Centre for Language Studies
Kapittelweg 29, 6525EN, Nijmegen, The Netherlands

Monique Flecken (m.e.p.flecken@uva.nl)
University of Amsterdam, Department of Linguistics
Spuistraat 134, 1012 VB, Amsterdam, the Netherlands

Silvy H.P. Collin (s.h.p.collin@tilburguniversity.edu)
Tilburg University, Department of Cognitive Science and Artificial Intelligence

Warandelaan 2, 5037 AB, Tilburg, the Netherlands

Abstract
Situation models are known to help structure our experiences
in our memory. But what are the ingredients of a situation
model and to what degree do abstract event features
contribute to updating of situation models? We manipulated
abstract event feature dimensions and narrative specific
factors in an experiment in which participants actively
constructed a narrative from a random order of event
descriptions. We investigated the influence of abstract factors
(“degree of feature-change”, “event position”) on response
speeding during a subsequent oddball task. Participants were
faster for oddballs with a different degree of feature change,
which interacted with whether the oddball was from within
the same story or from another story. When looking at
other-story-oddballs only, we found an interaction between
position within the event structure and degree of feature
change. Our results suggest that people use abstractions of
event features which are important for the instantiation of a
situation model.

Keywords: psychology; memory

Introduction
In everyday life, we seamlessly remember and integrate
experienced events into a coherent life story. Events that
happen in the afternoon, like you applying moisterizing
cream to your skin after you took a shower, can be linked
back to events in the morning, like you getting sunburned on
a beach trip with your friends. We do this on the fly, with
the purpose to glue events and experiences together into a
coherent understanding of the world around us. But how do
we do this? And what components of events are important
for this?
One theory behind event processing is called event

segmentation theory (EST). In event segmentation theory,
perception and memory are organized into discrete and
hierarchically structured events. An event represents a
segment in time and contains information about core
components that make up an event, like locations,

characters, objects and state changes of these characters and
objects (Huff et al., 2014; Su and Swallow, 2024). Our brain
contains so called situation models of our experiences,
mental representations of how events unfold in our
environment, which can be constructed and updated (Brich
et al, 2024; Wahlheim et al., 2022; Radvansky & Zacks,
2014; Pettijohn and Radvansky, 2016; Ferstl & Cramon,
2002; Kurby & Zacks, 2008; Speer et al., 2007; Zacks et al.,
2007; Speer et al, 2003; Kumar et al., 2023; Magliano et al.,
2014; Rouhani et al., 2020). This updating of these situation
models is initiated upon the beginning of a new event.
Incoming sensory information is compared to a current
mental model of the environment, which determines the fit
between the new information with the current situation
model. Incompatible or new information for the current
model indicates an event boundary, a marker for the end of
an old and the beginning of a new event. At such an event
boundary, the current situation model is indeed updated.
However, while there is a lot known about how situation
models use event boundaries and retrieval of past event
features for updating (Hermann et al., 2021), less is known
about the function of the core features of events in situation
model updating. Participants make inferences about
upcoming events based on their position in a sequence and
rely on episodic event representations to make these
sequential inferences (Kurby and Zacks, 2008; DuBrow and
Davachi, 2013). For successful event segmentation, one
needs to keep track of changes in several core event
components. There are five key event components,
including changes in time, location, characters (as well as
object-state changes), intentions and causation (Huff et al.,
2014). You can view these event components at the level of
specific narratives (e.g., “John walked from the kitchen into
the living room after having a coffee”, which represents a
change in location) but also at a more abstract level (e.g.,
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narrative X has a location and object state-change from
event 1 to event 2). Here, we investigated if we keep such
abstractions from core event components in mind during
situation model updating.
We hypothesize that our brain holds these abstractions of

core event components in mind as placeholders for
event-specific information. Concepts are suggested to be
represented in a distributed manner at different levels of
abstraction (Morton et al., 2020). In line with this,
Constantinescu et al (2016) indicates that we have global
relational codes that allow us to represent conceptual
knowledge as a mental map. Narrative processing is
therefore supported by an active event segmentation
process, in which abstraction provides a placeholder for
event specific information.

While event segmentation theory has been linked to a
variety of cognitive domains, event segmentation in
narrative processing still requires deeper investigation. It
remains to be elaborated what exactly the ingredients of a
situation model are and to what degree abstract event
features contribute to the updating cycle of such a model.
To that end we make use of a newly designed event card

experiment, in which we manipulate abstract event feature
dimensions and narrative specific factors, like the position
of described events within a narrative (i.e., position
resembling a change in time, which is one of the key event
features, Huff et al., 2014). In a two part validation
approach, we let participants actively construct a narrative
from a random order of event descriptions, presented as
event cards. We tested participants’ memory for the
narratives implicitly in an oddball paradigm, relying on
repetition priming to influence reaction times when related
events follow each other compared to events unrelated to
each other (Schacter and Buckner, 1998). We measured
response speeding to the oddball event cards and
hypothesized that reaction times will be influenced by an
interaction between oddball cards from within the same
narrative (i.e., out of order cards) or from a different
narrative, and the degree of abstract event feature change.
Investigating this hypothesis will allow us to draw
conclusions about whether abstract event features contribute
to updating of a situation model. We also expected to
observe an interaction as reflected by reaction times
between event position within a narrative and the degree of
change of abstract event features. Furthermore, we also
investigated the influence of visual similarity between event
cards on overall reaction times to determine whether visual
similarity might be a factor to take into account when
drawing conclusions on our main research question.
In short, we were able to show that abstractions of factors

like narrative, narrative position and changes in an event
feature space have a profound influence on how participants
are able to remember and segment events. We argue that
people are able to use an abstraction of event features (e.g.,
narrative has location change from event 1 to event 2) as an
important contribution for the instantiation of a situation

model, while low level factors like visual similarity
represent only a minor contribution.

Methods

Participants
In total, 134 participants participated in the experiment. The
experiment took place online. These 134 participants were
divided into two batches, whereas the first 34 participants
(mean age 29 years, range 19-61, 17 males) were tested and
their data was analyzed. After analysis, the second batch of
100 participants (mean age 29 years, range 18-63, 50 males)
was tested and analyzed to validate the results of the first
batch. All sections of the methods are relevant to both the
first and second experiment (as these two experiments are
identical). All participants were recruited on Prolific
(https://www.prolific.co/) and were Dutch native speakers.
Participants completed the experiment on Gorilla
(https://gorilla.sc) and were sent back to Prolific after
completion. All participants gave written informed consent
before participating in the experiment. The study was
approved by the local ethics committee (CMO
Arnhem-Nijmegen, Netherlands). The data of three
participants were excluded from further analyses because
they did not finish the experiment.

Figure 1: Stimulus material. (A) Example of a story image
(used to introduce a trial in the learning as well as oddball
task) and introductory text (used to introduce a trial in the
learning task, alongside the story image. (B) Example trial
of the learning task. Participants had to enter the correct
number order to create a coherent story. Stimuli were in
Dutch, but this example story is translated to English to
explain the design in this figure. All twelve stories (images
as well as text) can be found online [https://osf.io/ydpsk/].
In this example, the correct order is: 314526. To illustrate
the logic as to how the event features change from one event
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to the next, here in the fourth event (on card 5 in the figure)
to the fifth event (on card 2 in the figure), there is a change
in location (from giant door to old grave), characters present
(from hero and bat present to only hero present), objects
present (old golden chest introduced), obj change (chest
from closed to open).

Stimulus Material
For the experiment, twelve stories were created (see
https://osf.io/ydpsk/), and each story consisted of six events.
Each event was designed as an event gaming card with a
front and a back. The back of each event card contained a
written description of the event, while the front of the card
displayed the specific event visually. The written event
description always concerned a hero who found himself in a
particular event situation. Five key dimensions including
location, character, character state change, object and object
state change were used as ingredients for the event
description. These key dimensions were a priori defined
based on the work of Huff et al (2014), identifying core
components that make up an event. All event descriptions
were written in Dutch and had an average length of 47
words with a standard deviation of 11,3. The front of the
event cards displayed a visual representation of the end state
of an event. For that, the card was subdivided into five
sections. Four of these sections were reserved for the
corners of the card. These corners had a white square as
background and were placeholders for characters and
objects. Characters were always put into the upper and
lower corner on the left side of each card, while objects
were put on the right side of each card. Characters and
objects were always presented in their end state, which
means that whenever for example an object was described to
break within the event, a broken object was also displayed
visually on the front of the card. The last section filled in the
rest of the event card, which was spared by the white
squares in the corners. Within this section, the scenery of the
location was depicted. Which and how many of the event
features changed was counterbalanced within and across
stories. In addition to the six event cards, each story also had
a written introduction and an overall story image. Together,
these were meant to on the one hand frame the context of
the story, and on the other hand the image was used later as
a story prime in the oddball task. All visual representations
were clipart, which in turn were created on Pixton
(https://www.pixton.com) and adapted with Adobe
Photoshop.

Experimental Procedure
After informed consent, the participants were presented with
the instructions of the experiment. The instruction
foreshadowed that they were asked to complete two parts of
the experiment: a first part (i.e., learning task) in which they
were asked to find and memorize the correct order of events,
and a second part, in which their memory was tested (i.e.,
oddball task). During the learning task, participants were
first presented with a story introduction, including a story

image (e.g., an image of a pyramid), a story title and a
written description (see Figure 1A). Upon button press,
participants proceeded to the actual task, in which they had
to find the correct order of an event sequence to fit a story.
For that, participants were faced with six event cards on one
screen (see Figure 1B). Each card’s visual front and written
back were displayed at the same time, with the back of the
card in the upper row and the belonging front of the card
just underneath, in the lower row. The front and the back of
each event card were marked with a number between 1 and
6. At the lower part of the screen, a text field was presented
in which participants had to type in the correct order of
numbers (e.g., 315264) and press ‘Return’ in order to
continue to the next story. Only with a correct number entry,
the participants were able to proceed. There is no limit as to
how often a participant could try. The order of stories and
the order of event cards within a story were randomized for
each participant. After a correct entry, a succession of
individual event card presentations followed (after a
1-second fixation cross display). Each card’s visual front
was presented in correct order and individually for 3
seconds in succession. The successive presentation of cards
ensured that participants memorized the event visuals and
their correct order for the oddball task after the learning
task. The successive presentation contained no written text.
After the successive event card presentation ended, another
1-second fixation cross display followed and subsequently a
new trial began and a new story was introduced. Again an
array of 6 event card fronts and 6 event card backs was
presented for which the correct order needed to be found.
Participants encountered each of the 12 stories only once
during the learning part.
After the correct order of events was found for each of the

12 stories, participants started the oddball task. They were
instructed to find and react by button press as quickly as
possible to the odd card within a successive event card
presentation. For that, each trial began with the display of
the story image to prepare participants to recall the correct
order of events belonging to that particular story. They had
to press a button to start the trial. Subsequently, a 1-second
fixation cross display was shown after which each visual
front of an event card was displayed in correct order
successively for 1500 ms with an inter stimulus interval of
250 ms in which a fixation cross was displayed. Participants
were asked to press their space bar upon identification of an
odd event card. After button press, feedback was presented
underneath the card in the form of either a green checkmark
for a correct response or a red cross for an incorrect
response. After completion of the oddball detection trial, the
same order of the event card’s fronts but without any
oddball was presented successively, again introduced by the
story image. This was to ensure that participants do not
forget about the actual events for each story. Images were
presented for 3 seconds each. Subsequently, a new trial
began. Participants encountered 4 blocks, with each block
containing a randomized order of the 12 stories. After each
block, participants were able to take a self-paced break. The
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experiment lasted on average 1.5 hours and after
completion, participants were sent back to prolific with a
completion code. For the oddball task, event cards were
used that either came from within the same story or from
another story. Additionally, the odd event cards were chosen
as such that the following dimensions were manipulated:
story (within or across), position (same or different) and
feature change (same or different). An odd event card could
therefore come from either within the same story or from
across a different story. It could have the same or a different
degree of feature change as the replaced card, and have the
same or a different position within the event structure as the
replaced card, whenever it came from across a different
story. The degree to which these dimensions differed across
odd event cards was counterbalanced across the blocks.
Each story used for an odd event card from across a story
was only used once per block. No specific odd event card
was used more than once within and across blocks.

Data analysis
From the learning task, reaction times and number of tries
until identification of the correct event sequence per story,
were analyzed. For the oddball identification task, number
of hits, false positives, misses and reaction times were
analyzed. Subject performance was evaluated based on a
d-prime calculation (relative performance of hits minus false
alarms, Swets et al., 1961), and subjects with a d-prime
score of lower or equal to zero were disregarded from all
further analyses. Analyses were executed by looking at a
story Comparison (within or across) and degree of Feature
Change (same or different) interaction, and a Position (same
or different) and degree of Feature Change (same or
different) interaction separately. This split in the analytic
approach was due to an incompatibility of a Comparison
and Position interaction, as Position cannot be the same for
within a story. In such a case, the oddball would be exactly
the original event card, and therefore it would not be
classified as an oddball. Hence, the Position and Feature
Change interaction only considered oddball hits from across
different stories. In addition to the behavioral data, the
visual similarity between an oddball event card and the
original card was also investigated. For that, the Python
package scikit-image was used, which calculates similarity
in the RGB and grayscale space between smaller quadrants
of the PNGs of the to be compared cards (van der Walt et
al., 2014). The similarity score for the red, green, blue and
gray scales was averaged into one score to express overall
similarity. A score closer to 1.0 indicates higher similarity.
Visual similarity was included in the statistical analyses to
control for low level visual differences which could
potentially influence reaction times, even after
counterbalancing the oddball event cards. Statistics were
evaluated by an ANOVA of the model fit of a linear mixed
model. For the Comparison and Feature Change interaction,
reaction time was the dependent variable, Comparison and
Feature change were modeled as interaction, visual
similarity was added as a fixed factor. Participants were

modeled as random slope to account for intersubject
variability. The Comparison and Feature Change interaction,
plus visual similarity were included as random slope as
well, resulting in the following model: Reaction Times ~
Comparison*Feature Change + Visual Similarity +
(Comparison*Feature Change + Visual Similarity | Subject).
For the Position and Feature Change interaction, a similar
model was used by replacing the factor Comparison with
Position: Reaction Times ~ Position*Feature Change +
Visual Similarity + (Position*Feature Change + Visual
Similarity | Subject). An ANOVA was used on the model fit
of these models to get statistical significance (p-values,
F-values and degrees of freedom, using Satterthwaite
approximations, are reported). Besides that, means and SDs
are reported for all factors in all analyses. All general
analyses and figures were produced with Python, within the
Jupyter Lab environment, including the Pandas package (the
Pandas development team, 2023). Statistics and the
evaluation of the linear mixed model were performed in R,
including the lmer package (Kuznetsova et al., 2017).

Results

Experiment 1 and experiment 2 are identical and meant as
pilot experiment (i.e., experiment 1) and validation
experiment (i.e., experiment 2). Due to space limitations, we
only report the results from experiment 2 (which confirmed
the results discovered in the pilot experiment).

Experiment 2
Learning Task
On average, participants needed 209.894 seconds (SD =
101.434 s) and 2.079 attempts (SD = 1.405) to find the
solution for each story.

Oddball identification task
Performance: Performance of the participants was evaluated
by calculating d-prime. Overall, an independent samples
t-test (two-tailed) indicated that d-prime scores across all
subjects (M = 6.103e-17, SD = 2.815e-16) were
significantly greater than zero (t(59) = 10.116, p < .001).
The effect size was very large, with Cohen’s d = 1.87. This
result indicates that overall participants performed the task
well. Participants that were on average scoring below zero
were excluded from further analysis, leaving 63 participants
for the subsequent analysis pipeline. On average,
participants show 8.849 oddball hits (SD = 2.779) out of 12
possible hits, 4.385 false positives (SD = 5.473) out of 20
possible false positives, and 3.156 misses (SD = 2.678).
With regard to the factors of interest, participants reacted
fastest for oddballs coming from across a different story (M
= 702.941 ms, SD = 194.191 ms), than from within the
same story (M = 832.176 ms, SD = 250.978 ms).
Participants were also overall responding faster to oddballs
with a different degree of Feature Change (M = 748.805 ms,
SD = 221.577 ms) than for the same Feature Change (M =
761.457 ms, SD = 234.307 ms). Position seemed to overall
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not differ in reaction times between oddballs with a different
position (M = 705.005 ms, SD = 195.039 ms) and oddballs
with the same position (M = 700.877 ms, SD = 193.47 ms).

Interaction Comparison and Feature Change: Overall,
participants’ response speeding was fastest for identifying
oddballs that come from across another story, but had the
same degree of feature change (M = 703.729 ms, SD =
133.808 ms). Participants reacted the slowest to oddballs
that come from within the same story and had the same
degree of feature change (M = 874.781 ms, SD = 135.63
ms). The other two conditional combinations of Comparison
(across) with Feature Change (within) (M = 708.559 ms, SD
= 116.989 ms), and Comparison (within) with Feature
Change (different) (M = 838.935 ms, SD = 165.893 ms)
were in between these extremes (Fig. 2). The statistical
analysis of the model fit for the interaction of Comparison
and Feature Change showed a significant interaction
(F(1,55.1) = 15.56, p = .0002), a significant main effect of
comparison (F(1,53.8) = 196.6, p < .001) and a significant
main effect of Feature Change (F(1,120.9) = 5.241, p =
.024). The main effect of Visual Similarity was not
significant, but the statistics indicate a trend (F(1,52.4) =
3.866, p = .055). These differences in reaction times reveal
that participants were able to keep track of abstract narrative
ingredients like the specificity of the story and event
specific feature changes, which are in turn relevant to build
a holistic narrative.

Figure 2. Interaction Comparison and Feature Change.

Interaction Position and Feature Change: We were also
interested in the interaction between the Position of an
oddball within a narrative and the degrees of Feature
Change. For that, we selected only oddball trials that come
from across a different story to be able to either have the
same or a different oddball position. On average,
participants were fastest to respond to an oddball from the
same position and the same degree of feature change as the
original event card (M = 676.243 ms, SD = 138.515 ms).
Participants were on average slowest to react to an oddball
coming from a different event position with the same degree
of feature change (M = 728.178 ms, SD = 148.111 ms) (Fig.
3). Other conditional combinations were within these
extremes, including Position (different) with Feature
Change (different) (M = 698.5 ms, SD = 133.542 ms), and

Position (same) with Feature Change (different) (M =
720.178 ms, SD = 125.367 ms). The interaction between
Position and Feature Change was significant (F(1,488) =
19.53, p < .001). No significant main effect of either
Position (F(1,225) = 1.904, p = 0.169) or Feature Change
(F(1,82.6) = 0.925, p = .339) was found. There was no
significant main effect of Visual Similarity, yet the statistics
can be interpreted as a trend (F(1,60.3) = 3.37, p =.071).

Figure 3. Interaction Position and Feature Change.

Possible influence of visual similarity: To exclude the
possibility that the card visuals are confounding our main
factors of interest, we ran various control analysis. This
approach revealed only one significant correlation between
Visual Similarity and a factor combination of Comparison
(across story) and Feature Change (different) (r = -0.284, p
= 0.028). This result indicates that the higher the visual
similarity between an oddball, which comes from a different
story and has a different degree of feature change, and the
original event card, the slower the reaction time of the
participants. All other combinations of Comparison and
Feature Change yielded no significant correlation with
Visual Similarity: Comparison (across) and Feature Change
(same) (r = -0.154, p = .024), Comparison (within) and
Feature Change (different) (r = 0.112, p = .401),
Comparison (within) and Feature Change (same) (r = 0.042,
p = .105). For different combinations of the factors Position
and Feature Change, only one significant correlation with
Visual Similarity was found. For oddballs that come from a
different position and have a different degree of feature
change, a negative correlation was found with Visual
Similarity (r = -0.334, p = 0.009). Participants became
slower with increasing visual similarity for oddball from
this particular combination of factors. No significant
correlation could be identified for other combinations of the
factors Position and Feature Change with Visual Similarity.
Taken together, the correlation data highlights that Visual

Similarity only has a minor influence on reaction times.
Only for conditional combinations in which the oddball
event card differed the most from its original event card,
visual similarity is likely to have an influence on reaction
times. In this particular case, higher visual similarities could
interfere with the otherwise vastly different setup of the
oddball event card. Because of this specificity of visual
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similarity for a limited and particular combination of
relevant factors, we conclude that visual similarity is not an
influential factor on overall response speeding.

Discussion
We used an experiment with event cards that contained
systematically manipulated abstract event feature
dimensions. Participants received these event cards in
random order and were asked to actively create coherent
stories from these event cards, followed by an oddball task
to test their memory for these stories. We investigated the
influence of the abstract factors “degree of feature change”
and “position within the story” on response speeding during
the oddball task. We discovered that participants’ response
to oddballs was indeed influenced by an abstract factor
degree of feature change, participants were faster for
oddballs with a different degree of feature change. The
degree of feature change reaction time interacted with
whether the oddball was from within the same story or from
another story. Participants responded fastest to oddballs
from another story but with the same degree of feature
change. Participants were slowest in identifying oddballs
from within the same story and with the same degree of
feature change. When zooming in on oddballs from other
stories only, we found an interaction between position
within the event structure and degree of feature change. In
more detail, participants were fastest for oddballs with the
same position in the event structure and the same degree of
feature change. These results suggest that people make use
of an abstraction for keeping track of an event feature space
and narrative specific representations like position.
Furthermore, the feature space seems more dominant as a
factor than position of the event. Low level features (like
visual similarity) only have a minor impact.
Information from across events needs to be integrated in

order to form a coherent narrative (Leshinskaya et al., 2023;
Morton et al., 2017; Ezzyat & Davachi, 2014; Richmond &
Zacks, 2017; Cohn-Sheehy et al., 2021). Our research
reveals that this integration across events is highly
influenced by abstract event features, since events with the
same degree of feature change are treated as more similar to
each other than events with a different degree of feature
change (even when all these events come from different
stories altogether). This is in line with the view that an
abstraction of event specific information is necessary during
narrative processing (Lupyan and Bergen, 2015). In order to
update a situation model, humans might use abstraction of
event features as well as event specific information in order
to determine whether the current situation model needs to be
updated or not.
Interestingly, participants were particularly fast in

identifying odd events when the odd event had the same
degree of feature change as well as the same position in the
story compared to the correct event. Following our initial
prediction, we would have expected participants to be
slower in identifying odd events that were so similar to the
correct event (due to the degree of overlap between the

correct event and the to be identified odd event). We expect
that this surprising aspect might originate from being
influenced by pattern separation processes; research has
shown that our brain creates highly different representations
for information that is in fact highly similar, which enables
us to distinguish highly similar experiences in memory
(Yassa and Stark, 2011). Possibly, odd events that are both
the same in degree of feature change but also the same in
position in the story are so highly similar to the original
(correct) event that pattern separation was necessary to
enable the participant to correctly determine whether the
event was correct or an oddball. We speculate that pattern
separation might possibly be necessary in order to relate
event specific information more easily to its corresponding
abstract representation.
Thus, our results suggest that we indeed make use of

abstract event features. However, their involvement seems
to depend on similarity and pattern separation. In line with
Lupyan and Bergen (2015), we provide evidence that
abstraction initiated by language helps as a scaffold to
generalize. However, the strategy for abstraction seems to
depend on the context. We would suggest that this process is
related to schema formation, patterns across events that are
formed slowly over time (schemas defined as our schematic
prior knowledge of how events generally unfold, Bower et
al., 1979). Our results suggest that these abstractions can be
created dynamically, depending on the context. However,
based on the current research it is difficult to be certain
whether these abstractions are truly dynamic or whether
event abstractions have cognitive “slots” (“slots” for
characters, objects, etc.). It would be interesting to
investigate whether these abstractions are truly dynamic and
can be created on the fly (rather than abstractions being
instantiated with standard event building blocks). Another
open question remains what specifically the ingredients for
a situation model are that have the largest influence. Does
for example having a change in location have the biggest
impact or is it a change in character? Our parametric results
show that there might not be a systematic difference once
we zoom into individual features, however, research more
targeted towards investigated specific features individually
would be necessary to answer that remaining question.
Another interesting avenue for future research is to study
how event specific information exactly can be linked to its
abstraction. Is there some hierarchical processing in place,
and if so, how does this support it? Additionally, future
research is necessary to determine the precise
generalizability of the findings, especially across different
types of stimuli.
In conclusion, we argue that people are able to use an

abstraction of event features as an important contribution for
the instantiation of a situation model. People use these
abstractions to dynamically form their event feature space.
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