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ABSTRACT OF THE DISSERTATION

Inference and Forecasting Using Infectious Disease Surveillance Data

By

Damon Bayer

Doctor of Philosophy in Statistics

University of California, Irvine, 2023

Professor Volodymyr Minin, Chair

Statistical modeling of infectious disease data is among the oldest applications of statistics.

Today, it is an increasingly relevant application of research, due to globalization that en-

ables diseases to spread further and faster, as well as the abundance of relevant data from

electronic surveillance systems, seroprevalence studies, and genetic sequencing of pathogens.

In this work, we develop novel statistical methods to combine varied data sources to im-

prove both inference and forecasting. First, we work with data from assay validation studies

and active surveillance studies to develop confidence intervals for prevalence estimates from

complex surveys with imperfect assays. In this complicated setting, there are no established

competitive methods, and ours exhibits at least nominal coverage. In addition, we apply

our model in simplified cases where competitors exist and demonstrate desirable proper-

ties. Next, we develop a semi-parametric Bayesian compartmental model that effectively

integrates passively collected time series of diagnostic tests and mortality data, as well as

actively collected seroprevalence data. We emphasize retrospective inference and evaluate

the utility of each data stream in the context of short-term forecasting. Finally, we focus

on healthcare demand forecasting during epidemic surges of pathogen variants capable of

immune escape. We build upon our Bayesian compartmental model to incorporate time

series of cases, hospitalizations, ICU admissions, deaths, and genetic sequence counts. We

show that using genetic information leads to superior forecasting performance, compared to

ix



traditional models. Throughout each project, we employ our methods to analyze a variety

of COVID-19 data sets at the county, state, and national levels.
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Chapter 1

Introduction

The statistical modeling of infectious disease data is among the oldest applications of statis-

tics, beginning with Bernoulli’s work on smallpox in the 18th century [Bernoulli and Blower,

2004]. Today, it is an increasingly relevant application of research, due to globalization that

enables diseases to spread further and faster, as well as the abundance of relevant data from

electronic surveillance systems, social contact and mobility patterns from mobile phones, and

genetic sequencing of pathogens. The importance of this pursuit is apparent when reflect-

ing on the recent COVID-19 pandemic, which resulted in millions of deaths and the largest

global recession in nearly a century [WHO, 2020, Zumbrun, 2020].

1.1 Epidemic Surveillance Data and Its Applications

Infectious disease data differs from data used in traditional statistical applications because

they are highly dependent in time and space, and are almost always partially observed [Held

et al., 2019]. People without healthcare access or who do not exhibit disease symptoms may

not seek diagnosis, leading to systematic bias and under-reporting in case counts. Among
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those who seek diagnosis, their disease status may not be correctly identified, and their

results may not be reported to a centralized database. Even among those who receive

a correct diagnosis and whose diagnostic test results are reported, the precise timing of

infection, transmission, and recovery are generally unknown. These factors make inference

and forecasting challenging. For instance, a small outbreak with a high reporting rate may

produce similar observed case counts as a large outbreak with a low reporting rate.

Infectious disease surveillance data can be reported at a variety of resolutions and used for

a variety of tasks. Some methods are designed to work with detailed data from a specific,

relatively small outbreak, while others are more suitable for widespread diseases observed

with less detail. This work is primarily concerned with the latter scenario and uses both

passively and actively collected surveillance data. These data sources traditionally take the

form of aggregated counts of incidence data (e.g., new tests, new cases, and new deaths),

counts of prevalence data (e.g., the number of hospitalized patients with a disease or the

number of people with seropositive tests from a sampled population) at some coarse demo-

graphic, spatial, and temporal resolution (e.g., stratified by age and county and documented

weekly). Our work and other recent advances seek to integrate other forms of data into this

framework [Rasmussen et al., 2011, Tang et al., 2023].

These data and models are vital tools for both inference and forecasting tasks. One major

goal in the inference context is nowcasting, which typically involves estimating the effective

reproduction number, Rt, in real time [Cori et al., 2013]. This parameter is defined as the ex-

pected number of secondary cases that arise from a primary case and is influenced by factors

inherent to the pathogen, as well as the environmental conditions. For example, consider

the case of a new virus variant emerging in the summer. The new variant may be inherently

more transmissible than the previously circulating strain, driving up the effective reproduc-

tion number. Simultaneously, the warmer weather and school closures work to decrease the

effective reproduction number. Of most concern is the threshold Rt = 1. When Rt < 1, the

2



average primary case produces fewer than one secondary case. If this is sustained, prevalence

will decrease. When Rt > 1, the average primary case produces more than one secondary

case, leading to an exponential increase in cases. Other inference tasks involve quantifying

the effects of interventions, whether they be pharmaceutical (e.g., vaccination campaigns)

or non-pharmaceutical (e.g., mask mandates). Other inference tasks may be more basic.

For example, an infectious disease modeler may simply want to infer the true proportion

of the population that has been infected with a disease. Beyond inference, modelers may

also be interested in forecasting future disease burden, often with special attention to severe

outcomes like hospitalizations and deaths [Pollett et al., 2021]. Relatedly, modelers may

consider potential future scenarios to drive public policy by answering questions like “in

the presence of a more transmissible variant, how many people do we need to vaccinate to

prevent the healthcare system from being overwhelmed?”

In the next section, we provide an overview of surveillance data available to infectious disease

modelers to motivate our methodological contributions.

1.2 Motivating Examples

In Chapter 3, we work with data originally analyzed by Kalish et al. [2021]. This data set

was collected to estimate the cumulative incidence of SARS-CoV-2 in undiagnosed adults

in the United States between May and July 2020. The data consists of 304 seropositive

samples among the 8058 total antibody tests. The samples are weighted based on a variety

of socioeconomic factors. The assay used is estimated to have perfect sensitivity, based on 56

tests on individuals with confirmed SARS-CoV-2 and perfect specificity based on 300 tests

on individuals confirmed to not have SARS-CoV-2.

In Chapter 4, we analyze data from Orange County, California between March 2020 and

3



February 2021. This data includes case and mortality data provided by Orange County

Health Care Agency, including individual-level records of all negative and positive PCR

tests during the modeling period. The aggregated counts of cases, tests, deaths, and test-

positivity (cases / tests) are presented in Figure 1.1. This figure is labelled with three periods.

In each period, there is some tension in the trend portrayed by the various data streams,

each of which we believe to be reflective of the underlying number of infections. In the first

period, there is a gradual increase in both tests and deaths, a sudden increase in cases, and

a gradual decline in test positivity, which is followed by a sudden increase. In the second

period, tests rise slightly, while deaths, cases, and test positivity remain nearly constant. In

the final period, there is a sharp increase and decrease in deaths and test positivity, while

tests and cases have a large dip in the middle of this period. Resolving the conflicting signals

between these data streams is the goal of Chapter 4. To achieve this goal, we also use data

from Bruckner et al. [2021], a study conducted to estimate the seroprevalence in Orange

County from a population-representative sample, which consists of 343 seropositive cases

among 2979 tests conducted between July 10 and August 16, 2020.
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Figure 1.1: COVID-19 surveillance data from Orange County, California used in Chapter 4.
The figure shows weekly counts of tests, cases (positive tests), reported deaths due to COVID-
19, as well as testing positivity. The distinct periods labelled with different background colors
are explained in Section 1.2.

In Chapter 5, we again analyze data from Orange County, as well as statewide data from

California, with a focus on forecasting healthcare demand during the Omicron BA.1 wave of

winter 2022. Counts of cases, hospital occupancy, ICU occupancy, and deaths are provided to

us by the California Department of Public Health. The counts of virus sequence by variant

are provided by the Global Initiative on Sharing All Influenza Data (GISAID) [Shu and

McCauley, 2017] via Outbreak.info [Gangavarapu et al., 2023]. The aggregated counts of

cases, hospital occupancy, ICU occupancy, deaths, and sequence counts of the BA.1 and non-

BA.1 variants are presented in Figure 1.2 for Orange County and Figure 1.3 at the statewide

level. The gray highlighted regions indicate the times for which we create forecasts. The

objective of this chapter is to develop a model that uses the proportion of BA.1 sequences

to improve forecasting during this time of rapidly changing dynamics.
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Figure 1.2: COVID-19 surveillance data from Orange County, California used in Chapter 5.
The plots show weekly counts of cases, hospital and ICU occupancy of patients with COVID-
19, reported deaths due to COVID-19, as well as counts of virus sequences for Omicron BA.1
and all lineages, and the proportion of BA.1 lineages. The gray highlighted regions indicate
the times for which we produce forecasts.
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Figure 1.3: Statewide COVID-19 surveillance data from California used in Chapter 5. The
plots show weekly counts of cases, hospital and ICU occupancy of patients with COVID-19,
reported deaths due to COVID-19, as well as counts of virus sequences for Omicron BA.1
and all lineages, and the proportion of BA.1 lineages. The gray highlighted regions indicate
the times for which we produce forecasts.
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1.3 Overview of this dissertation

Chapter 2 provides background information on areas of statistics essential to understanding

the methods proposed and assessed in this dissertation. The topics covered include math-

ematical models for the spread of infectious diseases, Bayesian inference and Markov chain

Monte Carlo, forecast assessment, and fiducial inference.

In Chapter 3, we eschew the temporal complications of analyzing infectious disease data and

focus on issues of sampling schemes and diagnostic test accuracy. While there are established

methods for estimating disease prevalence with associated confidence intervals for complex

surveys with perfect assays and simple random sample surveys with imperfect assays, the

case of complex surveys with imperfect assays remains relatively unexplored. We develop

and study new methods for this setting. The new methods use the melding method to

combine gamma intervals for directly standardized rates and established adjustments for

imperfect assays by estimating sensitivity and specificity. One of the new methods appears

to have at least nominal coverage in all simulated scenarios. We compare our new methods to

established methods in special cases (complex surveys with perfect assays or simple surveys

with imperfect assays). In some simulations, our methods appear to guarantee coverage,

while competing methods have much lower than nominal coverage, especially when overall

prevalence is very low. In other settings, our methods are shown to have higher than nominal

coverage. We apply our method to a seroprevalence survey of SARS-CoV-2 in undiagnosed

adults in the United States between May and July 2020 and find that our methods estimate

less overall prevalence than a method which does not account for imperfections in the assay.

In Chapter 4, we turn our attention to the temporal dynamics of infectious diseases in the

presence of changing policy and behavior. Mechanistic models fit to streaming surveillance

data are critical for understanding the transmission dynamics of an outbreak as it unfolds in

real-time. However, transmission model parameter estimation can be imprecise, and some-
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times even impossible because surveillance data are noisy and not informative about all

aspects of the mechanistic model. To partially overcome this obstacle, Bayesian models have

been proposed to integrate multiple surveillance data streams. We devise a modeling frame-

work for integrating SARS-CoV-2 diagnostics test and mortality time series data, as well

as seroprevalence data from cross-sectional studies, and tested the importance of individual

data streams for both inference and forecasting. Importantly, our model for incidence data

accounts for changes in the total number of tests performed. We apply our Bayesian data

integration method to COVID-19 surveillance data collected in Orange County, California

between March 2020 and February 2021 and find that 32–72% of the Orange County resi-

dents experienced SARS-CoV-2 infection by mid-January, 2021. Despite this high number

of infections, our results suggest that the abrupt end of the winter surge in January 2021

was due to both behavioral changes and a high level of accumulated natural immunity.

In Chapter 5, we work in a similar setting as Chapter 4, but where the changing disease

dynamics are due to novel disease variants, rather than changing policy and behavior. In

this chapter, we are primarily concerned with forecasting, rather than inference. Accurate

forecasting of epidemic surges is an important tool for public health agencies to make in-

formed decisions about interventions and resource allocation. Forecasting is particularly

challenging when a new variant arises, which may result in increased transmissibility, sever-

ity, or immune evasion, leading to surges in cases, hospitalizations, or deaths. To improve

forecasting in these scenarios, we propose a way to integrate raw counts of variant sequences

into a Bayesian compartmental model. We assume that the observed count of sequences

of a novel variant has a beta-binomial distribution whose mean is a product of the total

number of observed genetic sequences and the proportion of the infectious population with

the novel variant. We then model the average duration of immunity as a flexible function

of this proportion. We evaluate our method in a simulation study wherein novel variants

become dominant at varying rates and to data from the Omicron wave in Orange County,

California and the state of California as a whole. In these assessments, our model is shown
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to have superior forecasting performance and is especially better at forecasting the timing

and magnitude of the peak hospital occupancy, a metric crucial for public health officers and

hospital managers making staffing decisions.

We conclude with a summary of our work in Chapter 6 and discuss opportunities for future

research in inference and forecasting using infectious disease surveillance data.
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Chapter 2

Background

2.1 Bayesian Inference

When performing Bayesian statistical inference, we aim to quantify uncertainty about pa-

rameters of interest, θ, conditional on some observed data, X. To accomplish this, we

employ a prior distribution, which expresses our beliefs about θ without data, and a sam-

pling distribution for X. Formally, by Bayes’ theorem and the law of total probability, we

have

π (θ | X) =
π (X | θ) π (θ)

π (X)
=

π (X | θ) π (θ)∫
π (X | θ)π (θ) dθ

, (2.1)

where π (X | θ) is the likelihood for X and π (θ) is the prior distribution. Because π (X) is

constant, with respect to θ, we typically work with an unnormalized posterior
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π (θ | X) ∝ π (X | θ) π (θ) . (2.2)

In practice, the posterior distribution, π (θ | X), rarely exists in closed form. However,

we can approximate the posterior distribution via Markov chain Monte Carlo, wherein we

construct a Markov Chain whose stationary distribution is the posterior distribution.

A foundational algorithm for sampling from the posterior distribution is the Metropolis-

Hastings algorithm [Hastings, 1970]. In this algorithm, at each step in the Markov chain, a

new state, θ′, is proposed by sampling from a proposal distribution q. The proposed value

θ′, is accepted with probability

α (θ,θ′) =min

{
1,
π (θ′ | X)

π (θ | X)

q (θ | θ′)

q (θ′ | θ)

}
(2.3)

=min

{
1,
π (X | θ′)

π (X | θ)
π (θ′)

π (θ)

q (θ | θ′)

q (θ′ | θ)

}
. (2.4)

Efficiently exploring the posterior distribution using Metropolis-Hastings requires selecting

a proposal distribution that produces proposals that are far enough away from the current

parameters to explore the parameter space quickly, but not so widely distributed that they

have a very low probability of acceptance. As θ increases in dimensionality, striking this

balance becomes more difficult, and Markov chains constructed with relatively simple al-

gorithms tend to become “stuck” in a small region, unable to explore the full posterior.

Sophisticated methods, such as the Metropolis-adjusted Langevin algorithm [Besag, 1994],

elliptical slice sampling [Murray et al., 2010], and Hamiltonian Monte Carlo [Duane et al.,

1987] have been developed to improve this efficiency in high dimensional settings.

Throughout this dissertation, we rely on the Hamiltonian Monte Carlo. Briefly, Hamilto-
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nian Monte Carlo is a form of the Metropolis–Hastings algorithm which uses Hamiltonian

dynamics to generate proposals. To accomplish this, the parameter space is augmented with

“momentum” variables which guide the proposals through regions of high probability. For

a detailed overview, see [Neal, 2011] and [Betancourt, 2018].

2.2 Confidence Distributions

Confidence distributions are a frequentist estimators of a parameter, although they are histor-

ically associated with the fiducial distribution from fiducial statistics [Xie and Singh, 2013].

They are “distribution estimators,” similar in spirit to the bootstrap and the posterior dis-

tribution from Bayesian inference (see section 2.1). A modern definition and short history of

confidence distributions is available in [Xie and Singh, 2013]. For clarity, we present a more

classical derivation, which relies on previously derived confidence interval procedures.

Under the classical derivation, we can create random variables associated with the lower and

upper confidence distributions from two one-sided, nested, confidence interval procedures.

For a nested confidence interval procedure, the (1 − α1) interval is a subset of the (1 − α2)

interval whenever (1− α1) ≤ (1− α2). Denote those one-sided intervals by [L(x, 1− α),∞)

and (−∞, U(x, 1− α)], which are defined for any observed data x, and (1− α) ∈ (0, 1). For

fixed x, define the lower and upper confidence distribution random variables as L(x, A) and

U(x, B), where A and B are independent uniform random variables. Then a 100(1 − α)%

central confidence interval has the (α/2)th quantile of L(x, A) as the lower limit, and the

(1− α/2)th quantile of U(x, B) as the upper limit.

As an example, let X1, . . . , Xn be independently and identically distributed Normal(µ, σ2).
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With σ2 known, a (1− α)% confidence interval for µ is

[
x̄− zα/2

σ√
n
, x̄+ zα/2

σ√
n

]
, (2.5)

where x̄ is the sample mean and zα/2 satisfies P (Z ≥ zα/2) = α/2 and Z ∼ Normal(0, 1).

Letting Lµ(x, q) = Uµ(x, q) = x̄ − σ√
n
Φ−1(q), we have Lµ(x, A) ∼ Normal

(
x̄, σ

2

n

)
and

Uµ(x, A) ∼ Normal
(
x̄, σ

2

n

)
.

We now note that (2.5) is equivalent to

[
F−1
Lµ

(α/2), F−1
Uµ

(1− α/2)
]
, (2.6)

where F−1
Y indicates the inverse of the cumulative distribution function of a random variable

Y . Thus, by definition, Lµ and Uµ are lower and upper confidence distribution random

variables for µ.

While the focus of our work is on combining confidence distributions of different variables

to produce confidence intervals, the distributions have additional uses. For instance, we can

create point estimators by considering the mean, median, or mode of a confidence distribu-

tion. Under modest conditions, these can be shown to be consistent estimators. We can also

perform hypothesis tests using confidence distributions. For a one-sided hypotheses test at

the level α of H0 : θ ∈ C versus H0 : θ /∈ C, where C is an interval of the form [b,∞] or

−∞, b, we reject H0 if the integral of the confidence distribution under C is less than α.
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2.3 Mathematical Models for the Spread of Infectious

Diseases

2.3.1 Compartmental Models

The compartmental model is a popular tool used to describe the spread of an infectious

disease agent. The most basic and prominent of these models is the Susceptible-Infected-

Removed (SIR) model, which we use as an example in this section. In these models, the

population of interest is divided into compartments that indicate a disease status (e.g., sus-

ceptible, infectious, and recovered), and individuals transition between compartments at

a specified rate (e.g., transitions from infectious compartment to recovered compartment

happen at a rate proportional to the number of infectious individuals). Overviews of mech-

anistic compartmental models for disease dynamics can be found in [Anderson and May,

1992, Brauer et al., 2008, Keeling and Rohani, 2011, Lessler and Cummings, 2016].

Compartmental models can be represented deterministically or stochastically. In the stochas-

tic treatment, the model is formulated as a continuous-time Markov chain (CTMC). A CTMC

is a stochastic process {Xt} , t ≥ 0, on a state space Ω such that

Pr (Xt+s = j | Xs = i,Xsn = in, . . . , Xs0 = i0) = Pr (Xt+s = j | Xs = i) , (2.7)

for any 0 < s0 < · · · < sn < s and i0, . . . , in, i, j ∈ Ω. For the SIR model with closed

population size N , the state space is
{
(S, I, R) ∈ [0, N ]3 ∩ N3 | S + I +R = N

}
, where S,

I, and R indicate the number of people from the population in the susceptible, infectious,

and recovered compartments, respectively. Because N is fixed, the state space can be fully

defined using any two of S, I, and R, with the third implicitly defined as N minus the sum

of the other two. We use the triplet representation for clarity.
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In this model, individuals may only transition from susceptible to infectious (S → I) or from

infectious to recovered (I → R) (see Figure 2.1). Infection events are assumed to happen

at the rate β
N
SI, where β is the contact rate. Recovery events occur at a rate γI, where γ

is the recovery rate. The diagram in Figure 2.2 represents the system’s evolution from one

state to the next.

S I R

Figure 2.1: The basic SIR compartmental model. Only transitions from susceptible to
infectious (S → I) and from infectious to recovered (I → R) are allowed.

(S − 1, I + 1, R)

(S, I, R)

(S, I − 1, R + 1)

β
N
SI

γI

Infection

Recovery

Figure 2.2: State transition graph for SIR model with current state (S, I, R). The population
experiences an infection and transitions to the state (S − 1, I + 1, R) at the rate β

N
SI. The

population experiences a recovery and transitions to the state (S, I − 1, R + 1) at the rate
γI.

The deterministic treatment of a stochastic compartmental model is a system of ordinary

differential equations (ODEs). For the SIR model, we have

dS

dt
= −βSI

N
,

dI

dt
= β

SI

N
− γI, and

dR

dt
= γI. (2.8)

Letting s(t) = S(t)/N , i(t) = I(t)/N , r(t) = R(t)/N , where A(t) is the value of compartment

A at time t, the system of ODEs can be viewed as the diffusion limit of the stochastic model

as N → ∞, while s(0), i(0), r(0) are held constant [Greenwood and Gordillo, 2009, Fuchs,

2013].
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Compared to the deterministic models, the stochastic models are more computationally

difficult to work with, but they are particularly useful when there are few infections, as

at the beginning or end of an outbreak and in small populations. In these scenarios, the

randomness involved at the subject level can have a major impact on the course of the

outbreak. In an extreme case, one infectious individual could be introduced to a population,

but, by chance, not infect anyone else in the population. Then, no outbreak occurs. In the

deterministic treatment, the outbreak is guaranteed to begin and will last indefinitely because

S(t), I(t), and R(t) will always be greater than 0, due to the behavior of the differential

equations in (2.8). The benefit to using the less realistic deterministic models is that they

are more computationally feasible and tend to work well when all compartments are suitably

large [King et al., 2015]. This work focuses on the deterministic models, as we typically work

in large population settings, where an outbreak is ongoing.

The basic SIR model can be augmented with more compartments, as well as time-varying

parameters, to more realistically represent an outbreak. Additional compartments can ac-

count for different disease states (e.g., vaccinated or deceased), competing disease variants,

or stratification of the population (e.g., by age or location). It is also possible to model

an endemic disease by allowing reinfection after recovery (e.g., R → S transitions). Time-

varying parameters can also model changes in behavior or policy (e.g., stay at home orders

and restaurant closures) that cannot be captured by the constant parameters.

R

S E I

D

Figure 2.3: Augmented SIR model. The states in this model are susceptible (S), exposed
(E), infectious (I), Recovered (R) and Deceased D.
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Figure 2.3 presents a model demonstrating some of these features, including additional com-

partments for individuals who are infected, but not infections (E) and those who are deceased

(D), as well as loss of immunity and possibility of reinfections after recovery.

2.3.2 Data Integration

We are interested in estimating parameters of SIR-like models using surveillance data.

Broadly, we can categorize data used for this modeling as either actively or passively col-

lected surveillance data. Common examples of passively collected incidence data include

daily counts of new diagnostic tests, confirmed cases, and deaths, as well as genetic se-

quences of viruses or bacteria that cause diseases. We refer to this as incidence data because

each count is assumed to correspond to a new event during that time. In contrast, we can

work with prevalence data, which is reflective of the frequency of a condition at a given

time. Examples of prevalence data include counts of current hospital or intensive care unit

(ICU) occupants with a certain disease or the number of seropositive tests from a carefully

constructed population sample. We also loosely differentiate between data that is passively

or actively collected. Passively collected data like case counts and hospital occupancy is

routinely reported to health care agencies and is generally more affordable to collect because

it does not require a formal study to be conducted. Actively collected data is often the result

of a survey that has been deliberately designed and conducted to measure some aspect of a

population, like the number of people previously infected with a disease or the contact rates

between different subpopulations. This data is more expensive to collect, but can provide

information that is difficult to gather through passive surveillance.

As alluded to in Section 2.3.1, modelers can construct compartmental models which encode

arbitrarily complex dynamics. While simulating from these models can be straightforward,

connecting them to real-world data to perform statistical inference is a non-trivial task.
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Broadly, a model uses a compartmental model and basic parameters, like the reproductive

number, duration of infectiousness, and infection-fatality ratio, to model the size of a com-

partment at a series of time points. These compartment sizes can be mapped to prevalence

data with some emission distribution or loss function. To integrate incidence data, we can

keep track of the cumulative incidence (e.g., by counting the cumulative number of S → I

transitions) at each time point and compute the difference between successive times. Then

these differences can be mapped to incidence data with an emission distribution or loss

function. For example, let NSI(tl) be the cumulative number of S → I transitions by time

t = l, as tracked by the compartmental model. Then ∆NSI(tl) = NSI(tl)−NSI(tl−1) is the

number new S → I transitions between time t = l and time t = l − 1. We can link this to

Cl, the number of observed cases between time t = l and time t = l − 1 by the following

distributional assumption:

Cl ∼ Negative binomial
(
µl = ρ×∆NSI(tl), σ

2
l = µl(1 + µl/ϕ)

)
, (2.9)

where µl and σ
2
l are the mean and variance of this negative binomial distribution, ρ is a case

reporting probability, reflecting that not all people who become infected with a disease are

tested, and ϕ is an over-dispersion parameter.

The specifics of the data and compartmental model used can make the mapping from the

latent compartments to the observed data challenging. In some cases, the distinction between

incidence and prevalence data is not clear. For example, when someone receives a positive

test result for an infectious disease with a relatively short period of infectiousness, they may

receive several tests in the following weeks to assess whether they are still infectious. In that

case, each positive test is not necessarily reflective of a new disease case. The link between

positive test results and the underlying cases may also be complicated by imperfect specificity

and sensitivity of the tests. Similarly, there is ambiguity about the disease’s relevance to an

event reported in the data. Someone admitted to the hospital with a broken leg may also
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have an infectious disease and be reported as part of the hospital’s passive surveillance data.

Thus, the hospitalization data may not be truly reflective of the number of people with severe

disease cases. Often, there is a significant delay between when data is captured and when it

is reported. When performing inference or predictions in real time, it may appear that there

are fewer cases in one week than in the previous week, simply due to the most recent week’s

tests not yet being fully reported. Furthermore, reporting practices for passive surveillance

data may be inconsistent. The inconsistency could be due to any number of reasons. For

example, many testing locations may not be open on the weekends or holidays, making it

appear that new cases are less common on those days. Inconsistencies may also be due to

policy changes, changes in funding, shifting demographics among the infected population, or

even accidental non-reporting.

While overcoming each of the above individual complications is itself difficult and requires

modelers to make many subtle choices, there is additional complexity involved in integrating

each of the data streams in a unified model. This additional complexity can be worth

pursuing, as integrating more data sources may make more model parameters identifiable.

De Angelis et al. [2015] present four important challenges in data integration when modeling

infectious diseases. The first is the weighting of evidence. When combining data streams

of varying quality, it is desirable to rely more on the high-quality data than the low-quality

data. This can be done simply by excluding the low-quality data altogether, or by formally

modeling data quality issues. Under the umbrella of model criticism, the authors present

identifiability, conflict, and influence as areas of concern. In Section 1.2, we provided an

example of different data sources presenting conflicting evidence about underlying disease

dynamics. Understanding how each data stream informs modeling results and how their

apparent differences are reconciled is a key challenge. In addition, the authors cite issues

related to computational complexity when combining many data sources, as well as potential

problems of dependencies between the datasets included in the model.
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2.4 Forecasting Infectious Disease Outbreaks

While compartmental models are a common framework for forecasting infectious disease

outbreaks, other methods are available for the task. A sample of these methods are gathered

in the COVID-19 Forecast Hub, which collected and synthesized forecasts from a variety

of modelers with diverse approaches throughout the COVID-19 pandemic [Cramer et al.,

2022]. Among the methods presented are those using compartmental models, along with

approaches common to other areas of statistics, such as time series and machine learning

methods. In addition, Cramer et al. [2022] evaluate an ensemble forecast, which combines the

models into a single forecast, which is generally shown to have superior performance to any

of the individual models. These methods typically use the data described in Section 2.3.2,

but some incorporate additional data sources, such as mobility data collected from mobile

phones.

2.4.1 Forecast Assessment

Methods used for forecast assessment differ based on the format of the forecasts. We begin

with detailed exploration of forecasts in the form of full probability distributions, which

we use throughout this work. We end this section with a brief overview of other forecast

evaluation methods.

Probabilistic forecasts are probability distributions over future events. In this section, let

F (x) denote the cumulative distribution function of a forecast. We assume that new data are

realized samples from some underlying probability distribution G, which is only known to

nature. Thus, an ideal forecast is F = G. Because G is unknown, assessing whether F = G

is impossible. The sharpness principle conjectures that issuing a forecast that maximizes

sharpness, subject to calibration, is equivalent to making an ideal forecast [Gneiting et al.,
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2007].

In plain terms, a forecast is well-calibrated if events that are forecasted to have a y% chance

of happening, are actually observed y% of the time. Being well-calibrated is insufficient for

a forecast to be “good.” For example, consider the “climatological” forecaster, who issues

forecasts based on the marginal distribution of the predictand. In the context of infectious

disease modeling, a climatological forecaster could issue a forecast for daily influenza cases

by issuing the same forecast every day, where their forecast is simply a smoothed estimate

of daily influenza cases from the last decade. Assuming that influenza case counts in the

future are, on average, distributed as they were in the last decade, this forecaster will be

well-calibrated. However, competing forecasters should be able to make narrower forecasts

while maintaining calibration, perhaps by using data from the preceding week to predict case

counts the next week. These forecasts are clearly more useful and are said to be “sharper.”

In practice, calibration and sharpness can be assessed by both numerical and graphical sum-

maries. Calibration is often assessed by computing the probability integral transform (PIT),

pt = Ft(xt) for each forecast, Ft, and its corresponding observed value, xt, for all forecast

times t. If the forecasts are well-calibrated, pt ∼ Uniform(0, 1) and the pt’s will exhibit no

autocorrelation. Visual inspection of a histogram of PIT values for uniformity can, there-

fore, diagnose issues of miscalibration. Calibration can also be assessed by computing the

empirical coverage of prediction intervals. Sharpness can be assessed by visually inspecting

the predictive distributions or by computing summaries like interval widths or variance of

the distribution.

To numerically assess both sharpness and calibration, a strictly proper scoring rule can also

be used. We denote a score for a probabilistic forecast F and observed outcome x by s(F, x).

Generally, the forecaster wishes to minimize the score, which can be considered a penalty

or cost function. A scoring rule is said to be proper when the expected value of the score

is minimized when F = G, where x ∼ G. The scoring rule is strictly proper when this
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minimum is unique.

For continuous variables, the continuous ranked probability score is a popular scoring rule

with attractive properties:

CRPS(F, x) =

∫ ∞

−∞
(F (y)− 1 (y ≥ x))2 dy. (2.10)

In contrast to other scoring rules, it is based on the cumulative distribution function of

the predictive distribution, rather than the density function, which may not exist in some

contexts. Additionally, the CRPS is sensitive to distance, meaning that it gives credit to

forecasts which assign high probability to values near x, even if they do not assign high

probability to x itself. For a discussion of scoring rules, see [Gneiting and Raftery, 2007].

Predictive distributions arise naturally from the posterior predictive distribution in the

Bayesian setting. The posterior predictive distribution is the distribution of possible un-

observed values, X∗, conditional on the observed values, X. Following the notation from

Section 2.1, the posterior predictive distribution is π (X∗ | X) =
∫
π (X∗ | θ) π (θ | X) dθ.

When working in the context of MCMC (Section 2.1), the posterior predictive distribution,

F , is not available in closed form. Rather, we only have some finite number of samples from

the posterior distribution, (θi, . . .θn). Krüger et al. [2021] present three options for using

these samples from MCMC procedures to produce approximated probabilistic forests.

The first is to use the mixture-of-parameters method. Often, the predictive distribution,

conditional on θ, is available in closed form. Call this Fc (x | θ). We can approximate F by

F̂MP(x) =
1

n

n∑
i=1

Fc (x | θi) . (2.11)

Alternatively, we can work directly with samples from the posterior predictive, (x∗1, . . . , x
∗
n).
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We could estimate F by the empirical cumulative distribution function of these samples:

F̂ECDF(x) =
1

n

n∑
i=1

1 [x∗i ≤ x] . (2.12)

We could also estimate the predictive density, f by a kernel density estimate of the posterior

predictive samples.

The authors recommend using the mixture-of-parameters method when possible, as it tends

to produce scores closer to those obtained using the true posterior predictive distribution.

When the mixture-of-parameters method cannot be used, the authors advocate for the use

of the ECDF method over the kernel density method.

Forecasts may be represented with less detail than a full probabilistic forecast distribution

(or samples from such a distribution). If, instead, only quantiles of the forecast distribution

are provided, it is common to use the pinball loss function to assess forecast quality:

Pinball-Loss(fα, x) = (1 {x ≤ fα} − α) (fα − x) =


(1− α) (fα − x) x ≤ fα,

α (x− fα) x ≥ fα,

, (2.13)

where x is the observed value and fα is the α quantile of the predictive distribution. When

α = 0.5, this is the same as 1/2 of the absolute error. When α ̸= 0.5, the penalty is weighted

based on the probability of fα − x being positive or negative.

When forecasts are presented in an interval format (or intervals are constructed from quan-

tiles), the Winkler score is commonly used:

Winklerα (lα, uα, x) = (uα − lα)+
2

α
(lα − x)1 {x < lα}+

2

α
(x− uα)1 {x > uα} , (2.14)

where [lα, uα] is a 100(1 − α)% prediction interval. In [Bracher et al., 2021], a weighted

interval score is developed for combining Winkler scores at several levels of α. A recent
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overview of methods for evaluating forecast quantiles is available in [Gneiting et al., 2023].

Further discussion of all of the above scoring methods is presented by Gneiting and Raftery

[2007].

When only point forecasts are available, many standard loss functions are applicable to

measure the error between an observed value, x, and a forecasted value, x̂. The most common

of these are the absolute error, |x− x̂|, and the squared error, (x− x̂)2. These measures

are scale-dependent, making them inappropriate for comparing forecasts on quantities of

different units. To overcome this limitation, the absolute percentage error |100 (x− x̂) /x|

can be used. A detailed discussion of error measurements available for point forecasts is

presented in [Hyndman and Koehler, 2006].

When assessing any of the measures of forecast quality mentioned in this section, it is useful

to aggregate them at a fixed forecast horizon. For example, for a j-week forecast horizon, we

create a forecast for week i using all data up to week i− j. After repeating this for all weeks

of interest, we can compute the relevant score or loss for each forecast. We can then compare

multiple forecasting procedures by comparing the average score or loss for each model at the

given forecast horizon.
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Chapter 3

Confidence intervals for prevalence

estimates from complex surveys with

imperfect assays

3.1 Introduction

Estimating and quantifying uncertainty for disease prevalence is a standard task in epidemi-

ology. For rare events, these estimates are highly sensitive to misclassification [Hemenway,

1997], making adjustments for sensitivity and specificity critically important. While estimat-

ing prevalence (or any event proportion in a population) in complex surveys and adjusting

estimates for misclassification have been well studied separately, performing both of these

tasks simultaneously remains relatively unexplored. This paper fills that gap by studying es-

timates and confidence intervals for prevalence from complex surveys with misclassification.

We develop a new tractable confidence interval procedure designed to guarantee coverage.

Our confidence interval combines three statistical methods: (1) the gamma confidence in-
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terval for directly standardized rates is applied to the apparent prevalence [Fay and Feuer,

1997] and (2) standard misclassification adjustments to that apparent prevalence for sensitiv-

ity and specificity [Rogan and Gladen, 1978] are used together with (3) the melding method,

which allows combination of confidence intervals for different parameters [Fay et al., 2015].

We show by simulation only (there are no proofs of guaranteed coverage) that, with a com-

plex survey with low prevalence and misclassification, our method appears to have at least

nominal coverage. Even in special cases (e.g., simple random samples with imperfect assays,

or weighted samples with perfect assays) where there are existing methods, our new method

has at least nominal simulated coverage. while some of the tractable existing methods may

under-cover. The cost for apparently achieving nominal coverage is that our intervals may

be quite wide in some situations.

Recent overviews of confidence interval procedures for prevalence in surveys without mis-

classification are provided by Dean and Pagano [2015] and Franco et al. [2019]. For simple

random sample surveys with imperfect sensitivity and specificity, Lang and Reiczigel [2014]

proposed an approximate confidence interval that performed well in simulations. Recent

works by DiCiccio et al. [2022] and Cai et al. [2022] study both valid (i.e., exact) and ap-

proximate intervals. Their valid intervals use test inversion and the adjustment of [Berger

and Boos, 1994], while their approximation intervals use the bootstrap with the test inver-

sion approach. Fewer methods are available for constructing frequentist confidence intervals

for prevalence estimates from complex surveys while adjusting for sensitivity and specificity.

Kalish et al. [2021] developed one such method that is closely related to one of the methods

presented here, but that method’s properties were not studied. Cai et al. [2022] (see also

discussion in [DiCiccio et al., 2022]) modify their approximation approach to allow sample

weights for strata or individual specific weights. Another recent advancement is the method

developed by Rosin et al. [2023] that makes use of asymptotic normal approximations, which

reduce to the Wald interval when sensitivity and specificity are perfect. This problem has

also previously been addressed in Bayesian literature, recently by Gelman and Carpenter
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[2020].

We work up to our ultimate goal in stages. First, in Section 3.2.2, we propose confidence

intervals for simple random samples where prevalence is assessed with an assay with imperfect

sensitivity and/or specificity. Next, in Section 3.2.3, we present confidence intervals for

weighted samples where prevalence is assessed with an assay without misclassification. In

Section 3.2.4, we combine these methods to create confidence intervals for weighted samples

where prevalence is assessed with an assay with imperfect sensitivity and specificity. Because

the combined method reduces to one of the first two methods as a special case, we can think

of the first two stages as testing the combined method in those cases. Finally, in Section 3.2.5

we show how certain complex surveys may fit into the format for our new method.

In simulations, we compare our method to established frequentist competitors and show

through simulations that it beats the best of those in each of the three stages with respect

to guaranteeing coverage. However, in some simulated settings, our proposed methods are

overly conservative, meaning that they demonstrate higher than nominal coverage, while

competitor methods maintain closer to nominal coverage. We did not include in our simula-

tions some recent methods that have been developed in response to the COVID-19 pandemic

[Cai et al., 2022, DiCiccio et al., 2022, Rosin et al., 2023]. The exact method of [DiCiccio

et al., 2022] would guarantee coverage, although applying it to a survey with a large num-

ber of strata would be “computationally expensive,” and it has not been applied to surveys

using post-stratification weighting. In contrast, our new method can very tractable in those

situations.
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3.2 Confidence Interval Methods

3.2.1 Notation and Problem Set-up

To introduce notation, consider first the stratified simple random sample. Suppose we have

a population partitioned into K strata, with N1, N2, . . . , NK individuals in the K strata

of the population. We sample n1, n2, . . . , nK individuals via a simple random sample from

each of the K strata to have an assay performed on each individual to determine who has

the disease. Let Xi be the number of positive results from an assay performed on the ni

individuals from stratum i and assume Xi ∼ Binomial(ni, θi), where θi is the population

frequency of positive results for assays performed on individuals from stratum i. Similarly,

let X∗
i be the unobserved true number of people with the disease among the ni individuals

from stratum i and assume X∗
i ∼ Binomial(ni, θ

∗
i ), where θ

∗
i is the population frequency of

cases in stratum i. In the case of a perfect assay, θi = θ∗i .

Therefore, the population prevalence is

β∗ =

∑K
i=1Niθ

∗
i∑K

j=1Nj

=
K∑
i=1

wiθ
∗
i , (3.1)

and the apparent prevalence is

β =

∑K
i=1Niθi∑K
j=1Nj

=
K∑
i=1

wiθi, (3.2)

where wi = Ni/
∑K

j=1Nj and, therefore,
∑K

i=1wi = 1. This set-up will approximately work

29



for other complex survey samples, where we can estimate survey weights such that the com-

plex survey sample may be treated as a multinomial sample with probabilities proportional

to those weights (see Section 3.2.5).

We can relate θi and θ
∗
i using the sensitivity (ϕp) and specificity (1-ϕn) of the assay, where

ϕp and ϕn are the proportion of positive assays from a population of positive controls (i.e.,

individuals known to have the disease) and negative controls (i.e., individuals known to be

without the disease), respectively. Then θi = ϕpθ
∗
i + ϕn(1− θ∗i ), or equivalently [Rogan and

Gladen, 1978],

θ∗i =
θi − ϕn

ϕp − ϕn

,

and we have

β∗ =
K∑
i=1

wiθ
∗
i =

K∑
i=1

wi

(
θi − ϕn

ϕp − ϕn

)
=

∑K
i=1wiθi
ϕp − ϕn

− ϕn

∑K
i=1wi

ϕp − ϕn

=

∑K
i=1wiθi
ϕp − ϕn

− ϕn

ϕp − ϕn

(3.3)

Suppose the assay is measured on mn individuals known not to have the disease and on

mp individuals known to have the disease. Let Cn and Cp be the number who test positive

from the respective samples. Assume that the negative and positive controls act like simple

random samples from their respective populations. Thus, Cn ∼ Binomial(mn, ϕn) where

1− ϕn is the specificity of the assay, and Cp ∼ Binomial(mp, ϕp), where ϕp is the sensitivity

of the assay. Let θ̂i =
Xi

ni
, ϕ̂n = Cn

mn
, and ϕ̂p =

Cp

mp
. Then a plug-in estimator for β∗ is

β̂∗ =

∑K
i=1wiθ̂i

ϕ̂p − ϕ̂n

− ϕ̂n

ϕ̂p − ϕ̂n

. (3.4)

30



This estimator serves as an important basis for developing confidence intervals in this work.

Section 3.2.2 is concerned with confidence intervals for β∗ in the case where K = 1, ϕn > 0,

ϕp < 1, i.e., estimating prevalence from a simple random sample with an imperfect assay.

Section 3.2.3 is concerned with confidence intervals for β∗ in the case where K > 1, ϕn = 0,

ϕp = 1, i.e., estimating prevalence from a weighted sample with a perfect assay. Section 3.2.4

is concerned with confidence intervals for β∗ in the case where K > 1, ϕn > 0, ϕp < 1, i.e.,

estimating prevalence from a weighted sample with an imperfect assay.

3.2.2 Estimating Prevalence from a Simple Random Sample with

an Imperfect Assay

First we consider the scenario where K = 1, ϕn > 0, and ϕp < 1. We develop a confidence

interval for the population prevalence, β∗. When K = 1, the estimand in Equation 3.3

becomes β∗ = (θ1 − ϕn)/(ϕp − ϕn). We have ϕp > ϕn for any useful assay, and since the

sample is a mixture of individuals with and without the disease of interest, ϕp ≥ θ1 ≥ ϕn.

The estimator of β∗ is

β̂∗ ≡ g(θ̂1, ϕ̂n, ϕ̂p) ≡


1 if ϕ̂n < ϕ̂p ≤ θ̂1

θ̂1−ϕ̂n

ϕ̂p−ϕ̂n
if ϕ̂p > θ̂1 ≥ ϕ̂n

0 otherwise.

(3.5)

To create a confidence interval for β̂∗, we use a generalization of the melding method [Fay

et al., 2015], which makes use of lower and upper confidence distributions on functions of

independent estimators to account for variability in θ̂1, ϕ̂n, and ϕ̂p. Before describing the

melding method, we briefly review confidence distributions.
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Confidence distributions are frequentist estimators of a parameter, which can be used simi-

larly to the bootstrap or posterior distributions. For continuous responses (and asymptoti-

cally for discrete responses), one can formally define confidence distributions without relying

on previously derived confidence interval procedures [Xie and Singh, 2013], but for intuition

with discrete responses, it is easier to derive confidence distributions the classical way, i.e.,

directly from confidence interval procedures. Here, we reproduce the definition of confidence

distributions from Section 2.2. For discrete responses, there are two confidence distributions

(the lower and upper ones), used to ensure validity of the resulting inferences. Under the

classical derivation, we can create random variables associated with the lower and upper

confidence distributions from two one-sided, nested, confidence interval procedures, where

for a nested confidence interval procedure, the (1 − α1) interval is a subset of the (1 − α2)

interval whenever (1− α1) ≤ (1− α2). Denote those one-sided intervals by [L(x, 1− α),∞)

and (−∞, U(x, 1− α)], which are defined for any observed data x, and (1− α) ∈ (0, 1). For

fixed x, define the lower and upper confidence distribution random variables as L(x, A) and

U(x, B), where A and B are independent uniform random variables. Then a 100(1 − α)%

central confidence interval has the (α/2)th quantile of L(x, A) as the lower limit, and the

(1− α/2)th quantile of U(x, B) as the upper limit.

Because each estimated component in Equation 3.5 is a binomial probability parameter,

we now focus on the confidence distributions associated with the exact binomial confidence

interval. For a binomial experiment with x successes out of n trials, the lower confidence

distribution is Beta(x, n − x + 1) with associated random variable BL, and the upper con-

fidence distribution is Beta(x + 1, n − x) with random variable BU , where for a > 0 we let

Beta(0, a) and Beta(a, 0) be point masses at 0 and 1, respectively. This result comes from the

relationship between the binomial and beta distributions, namely Pr[X ≤ x] = Pr[B > θ],

where B ∼ Beta(x + 1, n − x) for x ∈ {−1, 0, 1, . . . , n} (see e.g., [Blyth, 1986, Section 2],

[Fay et al., 2022, Section S2]). Additionally, in the binomial case, the lower and upper

confidence distributions are equivalent to the posterior distributions that result from using
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well-calibrated null preference priors [Fay et al., 2022]. Let q(a,W ) be the ath quantile of

a random variable W . Then the exact 1 − α% central confidence interval of [Clopper and

Pearson, 1934] for the binomial parameter is

{
q
(α
2
, BL

)
, q
(
1− α

2
, BU ,

)}
. (3.6)

Fay et al. [2015] proposed the melding method for obtaining confidence intervals for functions

of two parameters that are monotonic within the allowable range for each parameter, given

the other is fixed. The melding method uses quantiles of those functions except replacing

lower or upper confidence distribution random variables for their associated parameter in the

function. Here, we generalize that method to β∗, which is a function of three parameters.

When 1 ≥ ϕp > θ1 > ϕn ≥ 0 then β∗ is monotonically increasing in θ1, monotonically

decreasing in ϕp, and monotonically decreasing in ϕn. For an assessment of monotonicity in

other scenarios, see Appendix A.1. Then the 1− α% confidence interval for β∗ is

{
q
(α
2
, g
{
BL

θ1
, BU

ϕn
, BU

ϕp

})
, q
(
1− α

2
, g
{
BU

θ1
, BL

ϕn
, BL

ϕp

})}
. (3.7)

where g(·) is defined in equation 3.5. In equation 3.7, the choice of confidence distribution

random variable (lower or upper) is determined by the associated the direction of the mono-

tonicity to attempt to ensure coverage. As the sample sizes (e.g., ni, mp, and mn) increase,

there is little difference between the lower and upper confidence distributions.

The quantiles of these melded distributions are calculated by Monte Carlo sampling from

each of the component distributions. We compare this method to one described in [Lang

and Reiczigel, 2014] as implemented in prevSeSp function in the asht R package [Fay, 2020],

which provides approximate confidence intervals for true prevalence when sensitivity and
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specificity are estimated from independent samples, as they are in this section. The Lang-

Reiczigel interval is given by

β∗′
1 + dβ ± q

(
1− α

2
, Z
)
· Var(β∗′

1 )
1/2, (3.8)

where qZ ≡ q
(
1− α

2
, Z
)
, Z ∼ N(0, 1),

dβ =2 · q2Z ·
{
β∗′
1 ·

ϕ′
p(1− ϕ′

p)

m′
p

− (1− β∗′
1 ) ·

(1− ϕ′
n)ϕ

′
n

m′
n

}
,

Var(β∗′
1 ) =

β∗′
1 (1−β∗′

1 )

n1
+ (β∗′

1 )
2 ϕ′

p(1−ϕ′
p)

mp
+ (1 + β∗′

1 )
2 (1−ϕ′

n)ϕ
′
n

mn

(ϕ′
p − ϕ′

n)
2

,

m′
p =mp + 2, m′

n =mn + 2,

ϕ′
p =

mp · ϕ̂p + 1

mp + 2
, 1− ϕ′

n =
mn · (1− ϕ̂n) + 1

mn + 2
,

β∗′
1 =

β′
1 − ϕ′

n

ϕ′
p − ϕ′

n

, β′
1 =

n1 · θ̂1 + q2Z/2

n1 + q2Z
.

3.2.3 Estimating Prevalence from a Weighted Sample with a Per-

fect Assay

Next, we present a confidence interval for the population prevalence, β∗, in the scenario

K > 1, ϕn = 0, ϕp = 1. Our method is a straightforward adaptation of the gamma confidence

interval presented in [Fay and Feuer, 1997], which was developed to create confidence intervals

for a standardized population rate which is assumed to be a weighted sum of Poisson rate
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parameters. We note that for sufficiently large sample size n and small rate λ, a Poisson(nλ)

distribution is approximately equal in distribution to a Binomial(n, λ) distribution. Under

this Poisson assumption, we suggest the 100(1− α)% gamma confidence interval for β∗:

(
q
(α
2
, GL

β∗

)
, q
(
1− α

2
, GU

β∗

))
, (3.9)

where

GL
β∗ ∼Gamma

(
y2

v
,
v

y

)
, GU

β∗ ∼Gamma

(
y∗2

v∗
,
v∗

y∗

)
,

y =
K∑
i=1

wi

ni

xi, v =
K∑
i=1

(
wi

ni

)2

xi,

y∗ =y +max

(
w1

n1

, . . . ,
wK

nK

)
, v∗ =v +

{
max

(
w1

n1

, . . . ,
wK

nK

)}2

.

We call this the wsPoisson method, since it assumes a weighted sum of Poissons. We compare

the wsPoisson confidence interval to two methods presented in [Dean and Pagano, 2015],

which were recommended for scenarios with low prevalence. Dean and Pagano showed in

simulations that the standard Wald interval had poor coverage with low prevalence (e.g.,

Fig. 1 of that paper showed 95% confidence intervals with coverage of less than 85% for

prevalence values less than 2%). Since the confidence interval of [Rosin et al., 2023] reduces

to the Wald interval with perfect assays, we will not include that method in the simulation

comparisons.

The first recommended method of [Dean and Pagano, 2015] is an adaptation of the method

of [Agresti and Coull, 1998] for the survey setting. The interval for β∗ is given by:
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p̃± qZ
√
p̃(1− p̃)/ñ, (3.10)

where

x̃ =

(
k∑

i=1

wiθ̂i

)
neff + c, ñ =neff + 2c,

p̃ =x̃/ñ, c =q2Z/2,

neff =

(∑k
i=1wiθ̂i

)(
1−

∑k
i=1wiθ̂i

)
∑k

i=1
w2

i

ni
θ̂i

. (3.11)

In the case where
∑k

i=1
w2

i

ni
θ̂i = 0, we instead let neff =

∑k
i=1 ni.

We also compare our suggested method to Dean and Pagano’s modification of the method

of [Korn and Graubard, 1998, Dean and Pagano, 2015]. This interval is given by

(
q
(α
2
, BL

KG

)
, q
(
1− α

2
, BU

KG

))
, (3.12)

where, analogously to the Clopper-Pearson interval (see Equation 3.6),

BL
KG ∼Beta (xeff, neff − xeff + 1) , BU

KG ∼Beta (xeff + 1, neff − xeff) ,
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with xeff = neff

∑k
i=1wiθ̂i, and neff defined in Equation 3.11. Although Dean and Pagano

[2015] expressed this in terms of F -distributions, the beta distribution representation is

equivalent.

3.2.4 Estimating Prevalence from a Weighted Sample with an Im-

perfect Assay

Lastly, we develop a confidence interval for the population prevalence, β∗, in the case where

K > 1, ϕn > 0, ϕp < 1.

The two methods we discuss are closely related to each other and the methods discussed in

Sections 3.2.2 and 3.2.3. As in Section 3.2.2, we use the melding method [Fay et al., 2015] to

create 1−α% confidence interval very similar to Equation 3.7. The confidence distributions

for ϕp and ϕn are the same Beta distributions as in Section 3.2.2. The two methods differ in

their confidence distributions for the apparent prevalence β.

In the first case, we use the adaptation of the gamma confidence interval [Fay and Feuer,

1997] presented in Section 3.2.3 to derive the 1− α% confidence interval for β∗:

{
q
(α
2
, g
[
GL

β∗ , BU
ϕn
, BU

ϕp

])
, q
(
1− α

2
, g
[
GU

β∗ , BL
ϕn
, BL

ϕp

])}
, (3.13)

where GL
β∗ and GU

β∗ are defined in Section 3.2.3. We refer to this method as the WprevSeSp

Poisson - weighted prevalence with sensitivity and specificity, where the prevalence confidence

distribution is based on the weighted sum of Poissons.

The alternative method is very similar to that used in [Kalish et al., 2021]. We use the

37



modification of the method from [Korn and Graubard, 1998] presented by Dean and Pagano

[2015] as in Section 3.2.3, to derive the 100(1− α)% confidence interval for β∗:

{
q
(α
2
, g
[
BL

KG, B
U
ϕn
, BU

ϕp

])
, q
(
1− α

2
, g
[
BU

KG, B
L
ϕn
, BL

ϕp

])}
, (3.14)

where BL
KG and BU

KG are as defined in Section 3.2.3. Although equivalent, this expression

looks different than the one used in [Kalish et al., 2021] because they used a parameter

for specificity, rather than ϕn, which is 1 minus specificity. We refer to this as WprevSeSp

Binomial - weighted prevalence with sensitivity and specificity, where the prevalence con-

fidence distributions are based on a binomial assumption. The WprevSeSp Binomial and

WprevSeSp Poisson methods are implemented in the asht R package [Fay, 2020].

3.2.5 Applications to More Complex Surveys

When We Can Use These Methods

In Section 3.2.1, we assumed that the apparent prevalence was a weighted sum of binomial

random variables, β =
∑K

i=1wi
Xi

ni
, where Xi ∼ Binomial(ni, θi). Then in Section 3.2.3, we

used the fact that for small θi and large ni the binomial can be approximated by the Poisson,

giving Xi
·∼ Poisson(niθi). Thus, whenever we can model a complex survey estimator of

apparent prevalence as a weighted sum of Poisson variates, then we can apply the methods

of this paper.

In the upcoming Section 3.2.5, we give a detailed review relating the multinomial sampling

model to a weighted sum of Poisson variates model. The multinomial sampling model treats

the survey sample as if it is a sampling with replacement from the entire population of N
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individuals, where each of the N individuals has a probability of Pj of being sampled for

each of the n samples from the survey, with
∑N

j=1 Pj = 1. Under this model the number of

times each of the N individuals is included in the sample is a multinomial with parameters

n and [P1, . . . , PN ]. The multinomial model describes sampling with replacement, but it

is nevertheless used to approximate a sampling design where the jth individual is sampled

without replacement with probability Pj, even though under that design (unlike the multino-

mial model) no individual is included in the sample more than once. The multinomial model

is a common approximation for other complex survey designs.[see e.g., Korn and Graubard,

1999, p. 14]. For example, in the Kalish et al. [2021] analysis of Section 3.4, each individual

in the sample is assigned a pseudo-weight approximating one over their sampling probability

from a multinomial model. The actual sample was not a probability sample. In fact, it was a

quota sample from a very large pool of self-selected volunteers, and the pseudo-weights were

calculated using a different large survey that was a probability weighted survey. The pseudo-

weights were calculated such that if they were analyzed under the multinomial model, they

would adjust for selection bias due to self-selection of the volunteers and the imperfection of

the quota sampling.

Multinomial Sampling Model

Let Y1, . . . , YN be the binary indicators of event in the N individuals in the population of

interest, so the prevalence is β = N−1
∑N

j=1 Yj. There are many ways to design a complex

survey sample, and it is often useful to analyze them as if individuals were sampled with

replacement with the sampling probability of the jth individual equal to Pj, with
∑N

j=1 Pj =

1. In other words, we treat the sample as if it were n independent multinomial samples each

with one trial and selection probability vector [P1, . . . , PN ]. Let Iij = 1 if the ith draw for

the sample is individual j in the population, and 0 otherwise. Then let yi = Yj and pi = Pj

when Iij = 1. Here, following the tradition in the survey literature, we use capital letters
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for the population of interest (e.g., N, Y, P), and lower case letters for the sample (e.g., n,

y, p). In this notation, both yi and Yj are fixed, and only the variables representing the

sampling (i.e., the Iij variables) are random. Under this independent multinomial model,

since E(Iij) = Pj, an unbiased estimator of β is

β̂ =
1

n

n∑
i=1

yi
Npi

=
1

n

n∑
i=1

N∑
j=1

IijYj
NPj

, (3.15)

and an unbiased estimator of var(β̂) under the multinomial model is

v̂arM(β̂) =
1

n(n− 1)

n∑
i=1

(
yi
Npi

− β̂

)2

(3.16)

(see [Korn and Graubard, 1999] Problem 2.2-10). We can write β̂ as a weighted sum.

Traditional survey weighting defines the weights so that the weight for the ith sampled

individual can be interpreted as the number of individuals in the population that the ith

sampled individual represents. Following that tradition, let w
(trad)
i = 1/(npi) and W

trad)
j =

1/(nPj), then the expected sum of the sampled weights is N ,

E

(
n∑

i=1

w
(trad)
i

)
= E

(
n∑

i=1

N∑
j=1

IijW
(trad)
j

)
=

n∑
i=1

N∑
j=1

E(Iij)

nPj

=
n∑

i=1

N∑
j=1

1

n
= N.

Sometimes the weights are scaled after selection so that the scaled weights are w
(strad)
i =

Nw
(trad)
i∑n

i=1 w
(trad)
i

and are forced to sum to N . For example, in [Kalish et al., 2021] rescaling

(sometimes called post-stratification) was done in a more complicated manner to ensure

that the weights summed to the US census population within age group, sex, race, ethnicity
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and region.

For this paper, we define the weights differently because we want to model our estimator

as a weighted sum of Poisson random variables. Thus, we use wi = 1/(nNpi) and Wj =

1/(nNPj) so that the sums have expectation 1. In the complex survey case, we start with the

independent multinomial model as in equation 3.15, then we use the relationship between

the multinomial and Poisson distributions. Using the “multinomial-Poisson transformation”,

the maximum likelihood estimates (MLE) for a multinomial random variable are equivalent

to the MLEs for independent Poisson random variables, and the variances are asymptotically

equivalent (see [Baker, 1994]). Even though we model β̂ using multinomial random variables,

where there are many missing values (which occurs in our situation whenever Iij = 0), the

multinomial-Poisson relationship holds even when there are missing variables (see [Baker,

1994, Section 3]). For both the Poisson and multinomial models, E(Iij) = Pj, and β̂ is

unbiased under either model. For the Poisson model, all the Iij are independent, and each

mean equals its variance, so that the variance of β̂ under this model is

varP

(
β̂
)

= varP

(
1

n

n∑
i=1

N∑
j=1

IijYj
NPj

)
=

n∑
i=1

N∑
j=1

varP (Iij)Y
2
j

n2N2P 2
j

=
n∑

i=1

N∑
j=1

varP (Iij)Yj
n2N2P 2

j

=
n∑

i=1

N∑
j=1

Yj
n2N2Pj

.

We estimate varP

(
β̂
)
by multiplying each term in the sum by Iij/Pj, which has an expec-

tation of 1 and eliminates terms of non-selected individuals, giving

v̂arP

(
β̂
)

=
n∑

i=1

N∑
j=1

IijYj
n2N2P 2

j

=
n∑

i=1

yi
n2N2p2i

(3.17)
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Under the Poisson model v̂arP

(
β̂
)
is an unbiased estimator of varP

(
β̂
)
.

3.3 Simulations

We explore simulations in a variety of scenarios; however, despite this variety, we limit the

scenarios to cases similar to the application of Section 3.4, which has low prevalence (when

the Poisson assumption is adequate), and high sensitivity and specificity (i.e., good assays).

3.3.1 Estimating Prevalence from a Simple Random Sample with

an Imperfect Assay

We assess and compare our new method (Melding, i.e., equation 3.7) to that of Lang and

Reiczigel (LR) in a variety of simulated settings. In each simulation, 100 subjects are tested

to estimate prevalence, 60 are tested to estimate sensitivity, and 300 are tested to estimate

specificity. Several combinations of prevalences (0.5%–2%), sensitivities (75%–100%) and

specificities (75%–100%) are assessed. Each simulated scenario is replicated 10,000 times.

Figure 3.1 compares the two methods based on coverage, while Figures 3.2 and 3.3 present

the lower and upper error frequencies for these scenarios, respectively.
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Figure 3.1: Coverage properties of 95% confidence intervals for our new method (Melding)
and the Lang-Reiczigel method in a variety of settings, each simulated 10,000 times.
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Figure 3.2: Lower error properties of 95% confidence intervals for our new method (Melding)
and the Lang-Reiczigel method in a variety of settings, each simulated 10,000 times.
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Figure 3.3: Upper error properties of 95% confidence intervals for our new method (Melding)
and the Lang-Reiczigel method in a variety of settings, each simulated 10,000 times.

Figure 3.1 shows that, when specificity is less than perfect, the Lang-Reiczigel method

achieves approximately nominal coverage, while the melding method is slightly more con-

servative, generally demonstrating 96%-97% coverage with 95% confidence intervals. When

specificity is 100%, both methods are very conservative, achieving nearly 100% coverage. For

a more nuanced depiction of each method’s properties, we separate the overall coverage into

lower and upper errors. Figure 3.3 shows that both methods make upper errors with roughly

the same frequency. Figure 3.2 demonstrates that while the melding procedure bounds the

lower error frequency below 2.5%, the Lang-Reiczigel method generally has lower error fre-

quency above 2.5%. Each of these behaviors may be undesirable, depending on the context

in which the methods are applied. For applications in which there is a need to bound the

lower errors, the melding method appears to be superior.
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3.3.2 Estimating Prevalence from a Weighted Sample with a Per-

fect Assay

We compare the wsPoisson method to the more traditional Dean-Pagano modification of

the Agresti-Coull (DPAC) method and the Korn-Graubard (KG) method for survey propor-

tions in a variety of settings. Our simulations examine varying levels of disease prevalence

(0.5% or 5%), different types of survey designs (50 sampling strata with 200 subjects each

or 8000 individuals, each with their own weight), distributions of weights among the sam-

pling strata or individuals (coefficient of variation from approximately 0% to nearly 600%),

and the number and weights of sampling strata with non-zero prevalence. For each com-

bination of prevalence p, and group type, up to 500 sets of weights are simulated. These

500 sets of weights are designed to span a range of coefficients of variation. For a tar-

get coefficient of variation, v, n weights (wi) are simulated by generating n samples from

a Beta
(

1
v2

− 1
nv2

− 1
n
, n−1

v2
− n−1

nv2
− n−1

n

)
distribution and normalizing so that

∑n
i=1wi = 1.

This assures that the coefficient of variation among these weights is approximately v. Then,

certain weights are chosen to have non-zero prevalence (5%, 25%, or 75% distributed either

among the highest weights, lowest weights, or distributed uniformly). These weights with

non-zero prevalence are given a prevalence such that
∑n

i=1wiθi = p. For each simulated set

of parameters and weights, 10,000 data sets are simulated and assessed.

The coverage properties for these simulations are presented in Figures 3.4–3.7. Additional

properties for these simulations are presented in Figures A.1–A.12.

From Figures 3.4–3.7, we note that the two competitor methods generally exhibit lower

coverage as the coefficient of variation among the weights increases. In Figure 3.4, this

coverage falls below 60% when the prevalence is very low and is concentrated among the

highest weights, and the coefficient of variation among the weights exceeds 4. Uniform

distribution of prevalence among the weights, increased overall prevalence, and larger sample
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sizes among fewer groups all appear to lessen the severity of this problem. In contrast, the

wsPoisson method appears to guarantee coverage in all scenarios. The wsPoisson method

tends to become more conservative when the coefficient of variation among the weights

increases, when the other methods can have problems guaranteeing coverage. In all cases,

the wsPoisson method is more conservative than the competitor methods. In scenarios with

higher overall prevalence, the Agresti-Coul and Korn-Graubard methods achieve close to

nominal coverage, while the wsPoisson method strongly over-covers. This is similar to the

behavior observed in [Fay and Feuer, 1997] where, in simulations, the overall error rate

for the gamma intervals decreased as the variance of the weights increased. Because our

methods appear to be very conservative, with coverage near 100% in some cases, we present

the widths of the confidence intervals in Figures A.9–A.12. In scenarios where coefficient of

variation among the survey weights is high, the wsPoisson intervals are often two or three

times wider than intervals produced by competing methods.
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Figure 3.4: Coverage properties for the wsPoisson model and two standard methods, the
Dean-Pagano modification of the Agresti-Coull method and of the Korn-Graubard method.
Each point represents 10,000 simulations of datasets from a population with 0.5% prevalence,
where 50 groups of 200 people are sampled. The horizontal dashed line indicates the nominal
coverage, 95%. Colored dashed lines are estimates from a logistic regression model using
quadratic splines.

47



Weights with Non−0 Prev.
5%

Weights with Non−0 Prev.
25%

Weights with Non−0 Prev.
75%

W
eights w

ith P
rev.

H
igh W

eights
W

eights w
ith P

rev.
U

niform
 W

eights
W

eights w
ith P

rev.
Low

 W
eights

0% 200% 400% 0% 200% 400% 0% 200% 400%

80.0%

85.0%

90.0%

95.0%

100.0%

80.0%

85.0%

90.0%

95.0%

100.0%

96.0%

98.0%

100.0%

Weight Coefficient of Variation

C
ov

er
ag

e

Method Agresti−Coull Korn−Graubard wsPoisson

Each Point = 10,000 Replications

Coverage Properties for Simulations with 0.5% Prevalence Among 8,000 Groups of 1

Figure 3.5: Coverage properties for the wsPoisson model and two standard methods, the
Dean-Pagano modification of the Agresti-Coull method and of the Korn-Graubard method.
Each point represents 10,000 simulations of datasets from a population with 0.5% preva-
lence where 8000 individuals are sampled. The horizontal dashed line indicates the nominal
coverage, 95%. Colored dashed lines are estimates from a logistic regression model using
quadratic splines.
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Figure 3.6: Coverage properties for the wsPoisson model and two standard methods, the
Dean-Pagano modification of the Agresti-Coull method and of the Korn-Graubard method.
Each point represents 10,000 simulations of datasets from a population with 5% prevalence,
where 50 groups of 200 people are sampled. The horizontal dashed line indicates the nominal
coverage, 95%. Colored dashed lines are estimates from a logistic regression model using
quadratic splines.
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Figure 3.7: Coverage properties for the wsPoisson model and two standard methods, the
Dean-Pagano modification of Agresti-Coull and Korn-Graubard. Each point represents
10,000 simulations of datasets from a population with 5% prevalence where 8000 individu-
als are sampled. The horizontal dashed line indicates the nominal coverage, 95%. Colored
dashed lines are estimates from a logistic regression model using quadratic splines.

3.3.3 Estimating Prevalence from a Weighted Sample with an Im-

perfect Assay

We compare properties of our melded confidence interval, WprevSeSp Poisson, to another

melded confidence interval method, WprevSeSp Binomial, for cases with weighted samples

and imperfect assays. The methods are assessed in several simulated scenarios with varying
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levels of disease prevalence (0.5% or 5%), types of groups surveyed (50 groups of 200 subjects

each or 8000 groups of 1 subject), distributions of weights among the groups (coefficient of

variation from approximately 0% to nearly 600%), the number of groups with non-zero

prevalence, and the specificity of the assay (80% - 100%). In each scenario, the assay has

95% sensitivity. Each scenario creates up to 500 new sets of weights and θi parameters (as in

Section 3.3.2), and each of those is simulated 10,000 times, with new prevalence, sensitivity,

and specificity surveys generated and 95% confidence intervals are created. Modeled after

the study of Kalish et al. [2021], the simulated sensitivity is assessed based on 60 tests, while

specificity is based on 300 tests.

The coverage properties for these simulations are presented in Figures 3.8–3.11. Additional

properties for these simulations are presented in Figures A.13–A.24.
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Figure 3.8: Coverage properties for the confidence interval procedures, WprevSeSp Binomial
and WprevSeSp Poisson. Each point represents 10,000 simulations of datasets from a popu-
lation with 0.5% prevalence, where 50 groups of 200 people are sampled. Each also includes
simulated results of tests to evaluate the sensitivity and specificity of the assay performed
on 60 and 300 individuals, respectively. The horizontal dashed line indicates the nominal
coverage, 95%. Colored dashed lines are estimates from a logistic regression model using
quadratic splines.
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Figure 3.9: Coverage properties for the confidence interval procedures, WprevSeSp Binomial
and WprevSeSp Poisson. Each point represents 10,000 simulations of datasets from a popu-
lation with 0.5% prevalence where 8000 individuals are sampled. Each dataset also includes
simulated results of tests to evaluate the sensitivity and specificity of the assay performed
on 60 and 300 individuals, respectively. The horizontal dashed line indicates the nominal
coverage, 95%. Colored dashed lines are estimates from a logistic regression model using
quadratic splines.
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Figure 3.10: Coverage properties for the confidence interval procedures, WprevSeSp Bino-
mial and WprevSeSp Poisson. Each point represents 10,000 simulations of datasets from a
population with 5% prevalence, where 50 groups of 200 people are sampled. Each dataset
also includes simulated results of tests to evaluate the sensitivity and specificity of the assay
performed on 60 and 300 individuals, respectively. The horizontal dashed line indicates the
nominal coverage, 95%. Colored dashed lines are estimates from a logistic regression model
using quadratic splines.
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Figure 3.11: Coverage properties for the confidence interval procedures, WprevSeSp Bino-
mial and WprevSeSp Poisson. Each point represents 10,000 simulations of datasets from
a population with 5% prevalence where 8000 individuals are sampled. Each dataset also
includes simulated results of tests to evaluate the sensitivity and specificity of the assay
performed on 60 and 300 individuals, respectively. The horizontal dashed line indicates the
nominal coverage, 95%. Colored dashed lines are estimates from a logistic regression model
using quadratic splines.

Based on Figures A.13–A.20, we note that, in most settings, the two melding procedures

result in conservative confidence intervals, often nearing 100% coverage. With perfect speci-

ficity, the WprevSeSp Binomial method fails to maintain nominal coverage when the coeffi-

cient of variation among the weights is high and specificity is perfect. In the other scenarios

tested, the WprevSeSp Binomial generally achieves closer to nominal coverage than the
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WprevSeSp Poisson, which strongly over-covers. Our proposed WprevSeSp Poisson method

maintains or exceeds the desired coverage in all scenarios. In these scenarios, we also assess

properties of the wsPoisson procedure, which does not account for the imperfect assay. This

method results in approximately 0% coverage in any scenarios where specificity is less than

perfect. For this reason, results from that method are omitted in the figures. Because both

WprevSeSp methods appear to be very conservative, with coverage near 100% in some cases,

we present the widths of the confidence intervals in Figures A.21–A.24. The WprevSeSp Bi-

nomial and WprevSeSp Poisson methods typically produce wide intervals of approximately

the same size - sometimes as wide as 12%, even when the true prevalence is 0.05%. One

notable exception to this is presented in Figure A.23, which shows that for tests with perfect

specificity, the WprevSeSP Binomial method produces much narrower confidence intervals

than the other method.

3.4 Application

We apply these two methods to a real data set from [Kalish et al., 2021]. This data set was

collected to estimate seroprevalence of SARS-CoV-2 in undiagnosed adults in the United

States between May and July 2020. The assay used in this data is estimated to have perfect

sensitivity, based on 56 tests on individuals with confirmed SARS-CoV-2 and perfect speci-

ficity based on 300 tests on individuals confirmed not to have SARS-CoV-2. First, we apply

the methods to the full data set (n = 8058,weight coefficient of variation = 252%). The

seroprevalence in Kalish, et al was 4.6% with (95% CI: 2.6% to 6.5%), using a confidence

interval method that was nearly the same as the WprevSeSp Binomial method (the method

Kalish et al included a calculation of the variability of the weights due to the estimation of

the weights, whereas in this paper we treat the weights as fixed constants). The Korn and

Graubard type melded confidence interval with imperfect assay adjustments (WprevSeSp Bi-
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nomial) studied in this paper produced a 95% confidence interval for population prevalence

of (2.53%, 6.68%), very similar to that of Kalish, et al, while the wsPoisson type melded con-

fidence interval with imperfect assay adjustments (WprevSeSp Poisson) produced the 95%

confidence interval (2.56%, 7.54%). We also apply the wsPoisson method from Section 3.2.3,

which does not account for imperfections in the assay, resulting in a 95% confidence interval

of (3.04%, 7.39%). While all three intervals overlap to a large degree, the WprevSeSp Poisson

interval is the widest. Our simulations show that in this situation, the WprevSeSp Binomial

interval may be the best because, with coefficient of variance about 250% (see Figures B15

and B20, top right panel) the error on both sides of the confidence interval is bounded at

2.5% and the width of the intervals are better (Figure B23).

We also apply the methods to the subset of only Hispanic participants (n = 1281, weight

coefficient of variation = 306%), where Kalish et al estimated the undiagnosed adult sero-

prevalence estimate as 6.1% (95% CI: 2.4% to 11.5%). The WprevSeSp Binomial method

produces a 95% confidence interval for population prevalence (2.35%, 11.75%), while the

WprevSeSp Poisson method produces a 95% confidence interval (2.40%, 20.02%). The

wsPoisson method produces a 95% confidence interval of (2.80%, 19.63%). In this case,

the two Poisson-based confidence intervals are much wider than the WprevSeSp Binomial

interval, which is as expected since the melding method is designed to guarantee coverage,

although the simulations show that the WprevSeSp Binomial interval may be reasonable

(see e.g., Figure B20). The smaller WprevSeSp Binomial interval is also unsurprising and is

similar to the results observed in our simulation study.
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3.5 Discussion

We presented several methods for creating confidence intervals to assess disease prevalence

in a variety of settings, including simple random samples with imperfect tests, weighted

sampling with perfect tests, and weighted sampling with imperfect tests. A main point of

this paper was to develop and study methods for the last setting, where there has been

little previous work. Two methods were studied for that setting, WprevSeSp Poisson and

WprevSeSp Binomial, the latter of which was very similar to the method used by Kalish

et al. [2021]. In simulations based on the Kalish et al application, the WprevSeSp Poisson

method had greater than nominal coverage in all cases but could be very conservative, while

the WprevSeSp Binomial was slightly less conservative but had less than nominal coverage

in a few scenarios.

In less complicated scenarios, we could compare the new methods to established methods.

These new confidence intervals appear to guarantee coverage in most simulated settings, in-

cluding some scenarios where competitor methods dramatically under-cover. In general, our

methods demonstrate higher coverage than competitor methods in most scenarios, sometimes

being very conservative while competitor methods demonstrate closer to nominal coverage.

In the case of the simple random sample with an imperfect test, our new methods can bound

the lower error rate for a 95% confidence interval at 2.5%, while the Lang and Reiczigel [2014]

method maintains 95% coverage by allowing a higher lower error rate.

A big advantage of the new methods is that they may be applied with complex survey meth-

ods, where each individual has their own weight, such as in [Kalish et al., 2021]. However,

in this paper we have only studied fixed weights and not when the weights are estimated as

in Kalish et al. Further, we have not included estimates of the variability of the weights as

was done in Kalish, et al; however, recalculating the confidence intervals on the same data

shows that ignoring variability of the weights made little difference in that case. Further
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work is needed to address this issue. In addition, further work is needed to consider other

complex sample designs such as multistage cluster designs that are used in household and

institutional surveys such as hospital and medical practice surveys.

While the new methods have coverage that is at least nominal in nearly all simulated sit-

uations, the cost is that they can be overly conservative. Future work could create less

conservative methods by, for example, modifying the new methods by replacing the lower or

upper confidence distributions with a mixture of the two (as in [Veronese and Melilli, 2015]),

or using a mid-p version of the gamma intervals (as in [Fay and Kim, 2017]).

Although this paper has done extensive simulations, the focus of the simulations was on

low prevalence and high sensitivity and specificity. For other situations, especially high

prevalence situations, more work is needed to more fully explore the properties of these

methods.

Our methods’ conservative properties are especially advantageous in settings where the com-

petitor methods exhibit much lower than nominal coverage. For example, when there is

high variance among the sample weights and prevalence is concentrated among the highest-

weighted samples, competitor coverage of 95% confidence intervals can fall to 60%, while our

method exhibits > 95% coverage. Thus, we suggest that our melding methods be employed

when working with survey settings which involve high variance among the weights or lower

errors are particularly undesirable.
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Chapter 4

Semi-parametric modeling of

SARS-CoV-2 transmission using tests,

cases, deaths, and seroprevalence data

4.1 Introduction

SARS-CoV-2 is a human coronavirus associated with high morbidity and mortality that

caused a pandemic in 2020 [Wu and McGoogan, 2020, Song et al., 2020]. Like other human

coronaviruses, SARS-CoV-2 is transmitted person to person through close contact and has

high transmission potential in crowded indoor settings and around activities that generate

aerosols [WHO, 2021]. In the early stages of the COVID-19 pandemic, transmission dynamics

modeling played an important role in alerting the public about the potential dangers of

unmitigated virus spread [Prem and et. al, 2020, Ferguson and et. al, 2020, Davies et al.,

2020]. At later pandemic stages, this modeling helped evaluate intervention effectiveness

[Knock et al., 2021] and to quantify transmission advantages of genetic variants [Davies
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et al., 2021]. We develop models that integrate diagnostics test and mortality time series

data with cross-sectional seroprevalence data to estimate underlying transmission dynamics

and forecast future case and death counts. These models are flexible in the data sources they

incorporate. By comparing the forecasting capabilities of these models, we aim to investigate

which data streams should be used in future modeling efforts.

Differences in mitigation strategies, surveillance efforts, and population characteristics across

countries and even across different regions within one country prompted development of re-

gional modeling of SARS-CoV-2 transmission [Anderson et al., 2020, Jewell et al., 2021,

Morozova et al., 2021, Irons and Raftery, 2021]. However, neither national nor subna-

tional/regional modelers fully integrate all surveillance data available to them, because

inclusion of each additional data source leads to an increase in model complexity, which

complicates statistical inference and reduces computational efficiency of this inference. In

addition, including more data sources necessitates additional modeling assumptions and risks

specification in one part of the model influencing inference in other aspects of the model.

Modelers were faced with many questions about which data to use, which data to ignore,

and how to best integrate them into their models. Incorporating case incidence data into

inference proved particularly problematic because a data generating model for cases needs

to account for preferential sampling of symptomatic individuals and dependence of case

counts on the number of diagnostic tests performed, which significantly varies temporally

and spatially. However, even with delayed reporting, positive diagnostic tests (cases) are

among the earliest indicators of changing disease dynamics, so we hypothesize that taking

advantage of this source of information could be important for producing timely forecasts

and for policy decision-making. Similarly, properly incorporating seroprevalence data into

models may improve the accuracy of a model’s estimations of the underlying cumulative

number of infections, which, in part, drives the effective reproduction number and is crucial

for forecasting. We investigate these ideas by fitting and comparing the forecasting abilities

of multiple models, some of which use these data, while others do not.
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We show how to fit a mechanistic model of SARS-CoV-2 spread to incidence and mortality

time series, while accounting for the time-varying number of diagnostic tests performed. The

mechanistic model is a standard ordinary differential equation (ODE) model that describes

changes in the proportions of the population residing in model compartments. Death counts

are modeled with a negative binomial distribution that allows for over-dispersion often ob-

served in surveillance data. Our first innovation is the model for cases, where we use a

flexible beta-binomial distribution, whose mean is a product of the total number of tests

performed and a non-linear function of unobserved infections modeled by the ODE model.

This ensures that our estimates are not unduly influenced by large fluctuations of COVID-19

diagnostic test positivity fractions. Our second innovation is nonparametric estimation of

time-varying parameters that control both the transmission model and surveillance model.

By allowing our model to adapt to temporal changes in transmission and surveillance, we

can identify how changes in policy affected the near-term progression of the outbreak. Our

third contribution is a careful assessment of the usefulness of various data streams in the

context of a case study in Orange County, California, USA.

To benchmark the ability of our model to capture temporal trends in transmission dynamics,

we use simulated data to compare our estimation of changes in the effective reproductive

number to analogous estimates produced by epidemia, a simpler semi-parametric method

[Scott et al., 2020]. This comparison shows that failing to account for fluctuations in the

number of diagnostic tests performed can result in misleading inferences about effective

reproduction numbers, a critical quantity in infectious disease epidemiology. Our data in-

tegration approach allows our model to provide a much more detailed picture of the spread

of an infectious disease beyond the effective reproduction number, including estimating the

time-varying infection fatality ratio, the total number of infected individuals, and changes

in testing patterns. Data integration further allows us to produce reasonable short-term

forecasts of deaths and testing positivity. We demonstrate these enhanced capabilities by

fitting our compartmental model to COVID-19 surveillance data collected in Orange County,
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California — the sixth most populous county in the United States of America (U.S.A.), with

an estimated 3.2 million inhabitants as of 2019 [United States Census Bureau, 2020]. We

analyze Orange County surveillance data collected between March 30, 2020 and February

14, 2021, prior to the start of widespread vaccine availability. We find both basic and ef-

fective reproductive numbers varied widely during the first year of the pandemic, which is

expected in light of implementation and subsequent relaxation of mitigation measures. We

compare several modifications to our primary model which omit negative diagnostic tests or

seroprevalence data. We demonstrate that our models produce reasonable short term (up to

4 weeks ahead) probabilistic forecasts of mortality, but that different data streams may be

more or less useful during different periods of a pandemic.

4.2 Methods

4.2.1 Data

We start with time series of daily numbers of SARS-CoV-2 diagnostic tests (positive and

negative), case counts (positive tests), and deaths observed over some time period of interest.

We aggregate the three types of counts in weekly intervals. Figure 4.1 shows such a collection

of aggregated time series for Orange County, CA, corresponding to the observation period

spanning days between March 30, 2020 and February 14, 2021. We end our modeling period

in February because vaccines became more widely available around this time, and our model

does not account for vaccine-induced immunity. The data was compiled from anonymized

individual test results provided by the Orange County Health Care Agency (OCHCA). We

define cases as either confirmed or presumed COVID-19 diagnoses that have been officially

reported to the OCHCA. We used specimen collection dates and dates of deaths to tabulate

test, case, and death counts. We denote the vector of binned tests by T = (T1, . . . , TL), the
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vector of case counts by Y = (Y1, . . . , YL), and the vector of deaths by M = (M1, . . . ,ML),

where the weeks are indexed by l and L = 48 is the total number of weeks. Additionally, we

use data from Bruckner et al. [2021], a study conducted to estimate the seroprevalence in

Orange County from a population-representative sample, which consists of 343 seropositive

cases (Zl∗) among 2979 (Ul∗) tests conducted between July 10 and August 16, 2020. For

simplicity, we lump all seroprevalence test dates to a single time point — August 16, 2020

— corresponding to week l∗ = 20. To formulate the surveillance model for cases Y, deaths

M, and seropositive cases Zl∗ , we first need a model for latent trajectories of incidence and

prevalence of SARS-CoV-2 infections.
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Figure 4.1: COVID-19 surveillance data from Orange County, CA. The figure shows weekly
counts of tests, cases (positive tests), reported deaths due to COVID-19, as well as testing
positivity.
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4.2.2 Transmission model

To model latent incidence and prevalence trajectories, we divide all individuals in the pop-

ulation of Orange County, CA into five compartments: S = susceptible individuals, E =

infected, but not yet infectious individuals, I = infectious individuals, R = recovered indi-

viduals, D = individuals who died due to COVID-19. Possible progressions of an individual

through the above compartments are depicted in Figure 4.2. We model the time-evolution

of the proportions of individuals occupying the above compartments with a set of deter-

ministic ordinary differential equations (ODEs). For simplicity, we assume a homogeneously

mixing population of fixed size N , although it is possible to relax these assumptions, and we

also assume that recovery confers immunity to subsequent infection over the duration of the

modeling period. Let X(t) = (S(t), E(t), I(t), R(t), D(t))T denote the population proportion

in each compartment at time t, and let X(t0) = x0 denote the population proportions at

time t0, the start of the modeling period. By convention, we model the population at risk,

i.e., those individuals who may still move throughout the model compartments. Hence, we

take R(t0) = D(t0) = 0 and normalize X(t0) so that X(t0)
T1 = 1, where 1 = (1, 1, 1, 1, 1)T .

Since we want to fit this model to incidence data, it is convenient to also keep track of

the cumulative proportion of the population that experiences transitions between compart-

ments from t0 to t: N(t) = (NSE(t), NEI(t), NIR(t), NID(t))
T . To describe mathematically

how vectors X(t) and N(t) change through time, we first define rates of transitions between

compartments, with possible transitions corresponding to the arrows in Figure 4.2:

λSE(S, I, t) =
β(t)

N
SI,

λIR(I, t) = (1− η(t)) νI,

λEI(E) = γE,

λID(I, t) = η(t)νI,

(4.1)
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where β(t) is the transmission rate, which varies over time, N is the constant population size,

1/γ is the mean latent period duration, 1/ν is the mean infectious period duration, and η(t)

is the infection-to-fatality ratio (IFR), which varies over time. The time-varying transmission

rate allows our model to capture the effects of interventions and changes in human behavior,

while the time-varying IFR should capture changes in age profiles of infected individuals and

stress on healthcare providers during surges. We demonstrate this property in Supplementary

Section B.3.

Equipped with the population-level transition rates, we define ODEs for our model:

dS

dt
= −λSE(S, I, t),

dE

dt
= λSE(S, I, t)− λEI(E),

dI

dt
= λEI(E)− λIR(I, t)− λID(I, t),

dR

dt
= λIR(I, t),

dD

dt
= λID(I, t),

dNSE

dt
= λSE(S, I, t),

dNEI

dt
= λEI(E),

dNIR

dt
= λIR(I, t),

dNID

dt
= λID(I, t),

(4.2)

subject to initial conditions X(t0) = x0 and N(t0) = 0, where x0 = (S0, E0, I0, R0, D0) are

initial compartment proportions. We set R0 = 0 and D0 = 0, because these proportions

do not play a role in future dynamics of the epidemic, leaving S0, E0, and I0 as free model

parameters.

The above equations are redundant, and typically only the prevalence ODEs in the left

column are used in mathematical modeling. However, the cumulative incidence/transition

representation of the model, shown by the ODEs in the right column, is useful for statistical

modeling of infectious disease dynamics [Bretó and Ionides, 2011]. In practice, we solve the

subset of the above ODEs that are needed to track X(t) and the parts of N(t) that “connect”

our transmission model to data. We proceed to make this connection in the next subsection.
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Figure 4.2: Model diagram depicting possible progressions between infection states. The
model compartments are as follows: susceptible (S), infected, but not yet infectious (E),
infectious (I), recovered (R), and deceased (D).

4.2.3 Surveillance model

We fit our transmission model to seroprevalence data and two time series: numbers of new

cases and deaths reported during some pre-specified time periods (e.g., weeks). We do

not model changes in the numbers of diagnostic tests performed. Rather, we condition on

test counts in the specification of the sampling model for the vector of case counts, which

describes the probability of the observed case count given the observed number of tests

and unobserved/latent incidence of cases over each time interval. First, we assume that,

conditional on N(t), case and death counts are independent of each other and across time

intervals, because they are just noisy realizations of information encoded byN(t). This leaves

us with formulating models for cases and deaths in each individual observation interval.

Consider the number of deaths Ml observed in time interval (tl−1, tl], where l = 1, . . . , L.

Since our ODEs track the latent cumulative fraction of deaths NID(tl), we can compute

∆NID(tl) = NID(tl) − NID(tl−1) — the latent fraction of the population that died in the

interval (tl−1, tl]. We model the observed death count Ml as a realization from the following

negative binomial distribution:

Ml ∼ Negative binomial
(
µD
l = ρD ×N ×∆NID(tl), σ

2
l
D
= µD

l (1 + µD
l /ϕD)

)
, (4.3)

67



where N is the population size, µD
l and σ2

l
D

are the mean and variance of the negative

binomial distribution, ρD ∈ [0, 1] is the mean overall death detection probability, and ϕD > 0

is an over-dispersion parameter. Informally, our mortality model says that, on average, the

observed number of deaths, Ml, is a fraction of the true death count estimated by the model,

N × ∆NID(tl), with some noise due to underreporting, delayed reporting, and sampling

variability.

Next, we develop a model for the number of positive tests (cases), Yl, observed in the time

interval (tl−1, tl]. We start with a simple binomial model with per-test positivity probability

ψl:

Yl | ψl ∼ Binomial(Tl, ψl),

where Tl is the number of COVID-19 diagnostic tests administered during the time interval

(tl−1, tl]. We use another layer of randomness to account for unobserved factors affecting

positivity probabilities (e.g., variable testing guidelines and test shortages) and assume that

the positivity probability in interval (tl−1, tl] follows the beta distribution:

ψl ∼ Beta
(
ϕCµ

C
l , ϕC

(
1− µC

l

))
, (4.4)

where ϕC is an over-dispersion parameter and µC
l is the mean test positivity probability. We

assume that mean test positivity odds is proportional to the unobserved odds of transitioning

from exposed to infectious, ∆NEI(tl) = NEI(tl)−NEI(tl−1) in interval (tl−1, tl]:

µC
l

1− µC
l

= eαl ·
(

∆NEI(tl)

1−∆NEI(tl)

)
, (4.5)

where αl > 0. This functional form ensures that, on average, the probability of detecting a
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SARS-CoV-2 infection grows with the population incidence. Parameter αl can be thought

of as an effect of testing guidelines and practices. A model with αl ≈ 0 (i.e., µC
l ≈ ∆NEI(tl))

says that in interval (tl−1, tl] testing is done approximately by sampling individuals uniformly

at random, so that the positivity probability over a time interval l is equal to the fraction of

the population that transitions from the latent to infectious state. As we increase αl above

0, the model mimics preferential testing of individuals who are more likely to have severe

infection (e.g., testing only individuals with certain symptoms).

We can streamline our surveillance model for case counts by integrating over positivity

probabilities and arriving at the following beta-binomial distribution:

Yl | µC
l , ϕC ∼ Beta-binomial

(
Tl, ϕCµ

C
l , ϕC

(
1− µC

l

))
. (4.6)

Properties of the beta-binomial distribution imply that E(Yl) = Tl × µC
l . This means that

our model predicts that, on average, cases grow linearly with the number of diagnostic tests

administered. Keeping in mind our assumed relationship between µC
l and ∆NEI(tl), the

average number of cases also grows with the accumulation of new infections. Furthermore,

the variance of the fraction of tests that are positive under the beta-binomial distribution is

Var(Yl/Tl | Tl, µC
l , ϕC) =

µC
l (1− µC

l )

Tl

(
1 +

Tl − 1

ϕC + 1

)
,

where the variance under an analogous pure binomial model would be µC
l (1−µC

l )/Tl. Hence,

the over-dispersion parameter, ϕC , can be interpreted in terms of the excess variance of the

beta-binomial model relative to a pure binomial distribution. In summary, our beta-binomial

distribution for observed case counts ensures that we do not confuse increase in testing for

increase in SARS-CoV-2 incidence and implicitly allows for heterogeneity in the mean test

positivity probability.

Finally, we model the number of observed seropositive cases Zl∗ among Ul∗ tests with a
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binomial distribution:

Zl∗ ∼ Binomial

(
Ul∗ ,

Rl∗

Sl∗ + El∗ + Il∗ +Rl∗

)
. (4.7)

This simple model assumes the seroprevalence data comes from a high-quality study based

on random sampling, which does not exhibit the problems observed in the testing data.

In addition, we also consider a more typical approach to modeling observed cases, which is

not conditional on tests and is similar to (4.3).

Yl ∼ Negative binomial
(
µY
l = ρYl ×N ×∆NEI(tl), σ

2
l
Y
= µY

l (1 + µY
l /ϕY )

)
, (4.8)

where N is the population size, µY
l and σ2

l
Y

are the mean and variance of the negative

binomial distribution, ρYl ∈ [0, 1] is the mean case detection probability, which varies over

time, and ϕY > 0 is an over-dispersion parameter.

4.2.4 Putting all the pieces into a Bayesian model

We now describe our inferential Bayesian procedure. First, we re-parameterize our model by

replacing β(t) with a basic reproductive number R0(t) = β(t)/ν. We parameterize each of

our time-varying parameters, R0(t), η(t), α(t), ρ
Y
l (t) as piecewise constant functions, where

each vector defining the constants a priori follows a Gaussian Markov random field (GMRF).
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More precisely, we define the auxiliary vectors:

R̃0 = (R̃0,1, R̃0,2, . . . , R̃0,L), η̃ = (η̃1, η̃2, . . . , η̃L),

α̃ = (α̃1, α̃2, . . . , α̃L), and ρ̃Y = (ρ̃Y
1, ρ̃

Y
2, . . . , ρ̃

Y
L),

which follow the Gaussian Markov random field priors:

R̃0,l ∼N
(
R̃0,l−1, σ

2
R0

)
, where l = 2, . . . , L and R̃0,1 ∼ N

(
µR01 , σ

2
R01

)
,

η̃l ∼N
(
η̃l−1, σ

2
η

)
, where l = 2, . . . , L and η̃1 ∼ N

(
µη1 , σ

2
η1

)
,

α̃l ∼N
(
α̃l−1, σ

2
α

)
, where l = 2, . . . , L and α̃1 ∼ N

(
µα1 , σ

2
α1

)
,

ρ̃Yl ∼N
(
ρ̃Yl−1, σ

2
ρY

)
, where l = 2, . . . , L and ρ̃Y1 ∼ N

(
µρY1

, σ2
ρY1

)
,

(4.9)

and define the piecewise constant functions:

R0(t) =
L∑
l=1

exp
{(
R̃0,l

)
1 [t ∈ (tl−1, tl]]

}
, (4.10)

η(t) =
L∑
l=1

exp{(η̃l)1 [t ∈ (tl−1, tl]]}
exp{(η̃l)1 [t ∈ (tl−1, tl]]}+ 1

, (4.11)

α(t) =
L∑
l=1

exp{(α̃l) 1 [t ∈ (tl−1, tl]]}, (4.12)

ρY (t) =
L∑
l=1

exp
{(
ρ̃Yl
)
1 [t ∈ (tl−1, tl]]

}
exp{(ρ̃Yl )1 [t ∈ (tl−1, tl]]}+ 1

. (4.13)

In addition, we parameterize initial compartment fractions as S0, I0 = Ĩ0(1 − S0), E0 =

(1 − Ĩ0)(1 − S0), R0 = 0, D0 = 0, where Ĩ0 = I0/(E0 + I0). This construction allows us

to specify independent prior distributions for S0 and Ĩ0 while preserving the sum-to-one

constraint on the original initial compartmental fractions. Next, we collect all our model
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parameters into a vector θ = (S0, Ĩ0, R̃0, γ, ν, η̃, ρ
D, ϕD, α̃, ϕC , σR0 , ση, σα). When using the

traditional case-emission model (4.8), ρ̃Y , σρY , and ϕY are substituted for α̃, ϕC , and σα. Our

probabilistic construction described above implies that the likelihood function — probability

of observing incidence, mortality, and seroprevalence data — can be written in the following

way:

Pr(M,Y, Zl∗ | θ) = Pr(M | θ)Pr(Y | θ)Pr(Zl∗ | θ) =
L∏
l=1

Pr(Ml | θ) Pr(Yl | θ) Pr(Zl∗ | θ),

where Pr(Ml | θ), Pr(Yl | θ), and Pr(Zl∗ | θ) are the probability mass functions given by

(4.3), (4.6) or (4.8), and (4.7) respectively.

We encode available information about our model parameters in a prior distribution with

density π(θ). We assume that all univariate non-GMRF distributed parameters are a priori

independent and list our prior assumptions in Table B.1. Since our model is highly paramet-

ric, we rely on informative prior distributions that we parameterize using existing scientific

studies. We base all our inferences and predictions on the posterior distribution of all model

parameters:

π(θ | M,Y,Z) ∝ Pr(M,Y,Z | θ)π(θ). (4.14)

We sample from this posterior using the No-U-Turn Sampler [Hoffman and Gelman, 2014] as

implemented in the Turing Julia package [Ge et al., 2018]. Model code and data are available

at the following GitHub repository: https://github.com/damonbayer/semi_parametric_

COVID_19_OC_model.
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4.3 Results

4.3.1 Simulation Study

To validate our model, we simulated 200 datasets with parameters given in Supplementary

Table B.2. An example of one of these datasets is presented in Figure B.1. The number of

tests at each time point is the same as in the Orange County data set, and the parameters

were deliberately chosen to produce data similar to the Orange County data. Priors used

for these model fits are the same as those used in the Orange County model (see Table B.1).

The prior and posterior distribution of the model fit to the single simulated dataset from

Figure B.1 are presented in Supplementary Figures B.2–B.3. For each simulated dataset, we

used four Markov chains run in parallel to draw a total of 1000 posterior samples. In this

single dataset example, most of the scalar parameter posteriors shift slightly toward the true

parameters compared to the priors, without much posterior variance contraction relative to

the prior. We define posterior variance contraction as one minus the ratio of standard devi-

ation of the posterior and the prior, where negative contraction indicates that the posterior

is wider than the prior, and 100% contraction indicates that the posterior is a degenerate

distribution. For the time-varying parameters and compartments, the variance contraction

and shift are much more apparent. We further explore our simulation study results with

summary measurements, presented in Supplementary Figures B.5–B.9. Figure B.5 shows

the coverage of the posterior 80% credible intervals constructed for the scalar parameters

in the 200 simulated datasets. Most parameters demonstrate nearly 100% coverage, except

for ϕC , which shows approximately 90% coverage, which is still above the nominal 80%.

Similarly, Figure B.7 displays coverage of the posterior 80% credible intervals constructed

for the time-varying parameters, with only one time point for α demonstrating less than

nominal coverage. We observe slightly less conservative coverage when examining the latent

compartments in Figure B.9, with the D compartment falling to around 60% coverage at

73



some points. In addition to coverage, we also consider posterior contraction. Figure B.6

shows contraction of the scalar parameters, with most parameters demonstrating nearly no

contraction. Notable exceptions to this are σR0 , and σα, which exhibit positive contraction.

Figure B.8 shows contraction of the time-varying parameters, with all parameters exhibiting

a high amount of positive contraction. Similarly, the latent compartments also demonstrate

a large degree of positive contraction in Figure B.10.

We used the epidemia R package [Scott et al., 2020] to fit a state-of-the-art method for

effective reproduction number estimation (Rt), to the same 200 simulated datasets. This

semi-mechanistic method does not attempt to estimate the unobserved number of suscep-

tible and recovered individuals and does not account for changes in testing volume. See

Supplementary Section B.2 for a brief description of the epidemia statistical model. Metrics

based on estimates of Rt from the true model and epidemia for the simulation study are

presented in Figure B.11. We assess the envelope, which is the proportion of time points

which the 80% posterior credible interval contains the true Rt value specified in the simu-

lation. Mean credible interval width (MCIW) is calculated as the mean of credible interval

widths across time points within a simulation replication. Absolute deviation is a measure of

bias, and is calculated as the mean of the absolute difference between the posterior median

and the true Rt value at each time point. The mean absolute sequential variation (MASV)

is calculated as the mean of the absolute difference between the posterior median at a time

point and the posterior median at the previous time point. In all metrics, the true model fit

achieves the superior result. The envelope for epidemia is typically around 50%, while it is

near 100% for the true model. The mean credible interval width for epidemia (around 0.50)

is larger than for the true model (around 0.35). The epidemia results also indicate more

bias compared to the true model, as measured by the absolute deviation (0.20 for epidemia

vs 0.05 for the true model). Additionally, the true model has a mean absolute sequential

variation close to that of the simulated parameters (around 0.085), while the MASV reported

by epidemia is larger (around 0.10).
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4.3.2 Application to Orange County, California Data

Next, we apply our Bayesian inferential procedure to COVID-19 surveillance data collected

in Orange County, California between March 30, 2020 and January 17, 2021. We again used

four Markov chains run in parallel to draw a total of 1000 posterior samples. By the end of

the modeling period, approximately 4% of Orange County residents were at least partially

vaccinated. Because our model does not incorporate vaccination directly, it doesn’t make

sense to use our model beyond January 2021. Throughout the modeling period, a variety

of non-pharmaceutical interventions were enacted and sometimes lifted at the state, county,

and city level. Notably, in-person school closures, indoor dining bans, and mask mandates

were in effect for most or all of this period. Fitting the model took approximately 7.5 hours

to generate 1,000 posterior samples from 4 chains, totaling around 29 CPU hours. These run

times show that our model can be fit frequently enough to be useful for a real-time policy

response. This number of chains and posterior samples resulted in a satisfactory effective

sample size for posterior inference. Convergence and mixing were assessed using potential

scale reduction factors, effective posterior sample sizes, and traceplots of model parameters,

which are presented in Appendix B.5. Our main interest is in understanding differences in

transmission dynamics and surveillance efforts throughout this period. Since our model is

highly parametric, we used existing knowledge of SARS-CoV-2 transmission dynamics to

formulate informative priors for all model parameters that we list in Table B.1. We briefly

highlight some of our assumptions. Our priors for the initial compartment sizes reflect our

belief that the number of infections was small, but potentially underreported by a factor of

10, at the beginning of the pandemic. Since our observation period starts close to the stay-

at-home order taking effect in California, we assume that the March 2020 basic reproduction

number should be around 1.0 to reflect reduced contacts during this period. Lengths of

latent and infectious periods a priori assumed to be 0.8 and 1.2 weeks respectively, with

substantial variance. Based on Orange County, CA seroprevalence study, we assume initial
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infection-to-fatality ratio to be around 0.4% [Bruckner et al., 2021]. We compare reported

deaths in Orange County, CA with estimates of U.S. county-specific excess mortality to set

the prior for death reporting probability to be around 0.9 [Stokes et al., 2021]. Prior and

posterior distributional summaries of all model parameters are available in Supplementary

Figures B.17 and B.18. These figures also contain the results of our sensitivity analysis, where

we examined the effects of our prior assumptions on our inference. Our main conclusion is

our results are not sensitive to reasonable prior perturbations.

The upper-left plot of Figure 4.3 presents the posterior distribution of the basic reproductive

number (R0) for Orange County. Throughout the late spring and summer, the basic repro-

ductive number is estimated to be slightly above 1.0, with some probability of being below

1.0 in the early fall. Beginning in October, the basic reproductive number begins to rise and

surpasses 2.0 at the peak of the winter wave. This rise in the fall may be associated with

the school re-openings that occurred around this time. Despite the high basic reproductive

number throughout the modeling period, the upper-right plot of Figure 4.3 shows that the

effective reproductive fell below 1.0 for much of the summer and again in January, following

the winter surge, allowing us to separate the effects of reducing the average community con-

tact rate and accumulated infection-induced immunity. We also apply the epidemia method

to the Orange County data and plot the results in Figure 4.4. From this, we observe that

the two methods lead to similar conclusions about the posterior distribution of Rt. At all

but one of the time points, the 80% credible intervals of the posteriors from both methods

overlap with one another, but the full model appears to generally produce smaller credible

intervals, especially near the beginning of the fitting period. Additionally, the full model

produces a smoother posterior than the epidemia model.

We proceed with describing inference results for the other two time-varying parameters in

our model: infection-to-fatality ratio η and the parameter α that governs the relationship

between testing positivity and the true proportion of newly infected individuals in the popu-
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Figure 4.3: Posterior distributions of the time-varying basic reproductive number R0, effec-
tive reproductive number Re, infection-to-fatality ratio (IFR), proportion in the proportional
log-odds model of the beta-binomial observational model for cases α, weekly latent:case ra-
tio, and cumulative latent:case ratio. Solid blue lines show point-wise posterior medians,
while shaded areas denote 50%, 80%, and 95% Bayesian credible intervals.
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Figure 4.4: Posterior inference for the effective reproduction number from the full model and
epidemia fit to the Orange County data.
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lation. The posterior distribution of the infection-to-fatality ratio is presented in the middle-

left plot of Figure 4.3. The IFR is estimated to be consistent over time, hovering around

0.3%, but our estimates are less certain near the end of the modeling period. This potential

rise in IFR could have been caused by a combination of the overwhelmed healthcare system

and the increasing prevalence of the Alpha variant at this time, which has been tied to more

severe outcomes [Grint et al., 2021]. The middle-right plot and bottom plots of Figure 4.3

present three perspectives on testing policy and case detection: the posterior α, the weekly

latent:case ratio, and the cumulative latent:case ratio. Generally, α, drifts lower over time,

indicating that testing policy became less preferential toward selecting infected individuals

as testing became more accessible. This trend is reversed slightly during the summer and

winter waves, which is reflected in the decreasing weekly latent:case ratio during these times.

The cumulative latent:case ratio also drifts lower over time, eventually arriving at a final

cumulative latent:case ratio of 4:1 – 9:1.
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Figure 4.5: Latent and observed cumulative death (left) and incidence (center) trajectories
and latent prevalence trajectories (right) in Orange County, CA (population 3.2 million).
Solid blue lines show point-wise posterior medians, while shaded areas denote 50%, 80%,
and 95% Bayesian credible intervals. Black circles denote observed data. Note that the
posterior predictive distributions are of latent deaths and cases are not forecasts of their
observed counterparts. Forecasts are plotted in Figure 4.6.

We plot posterior medians and Bayesian credible intervals of the latent cumulative death

counts (NID(t)) between March 2020 and January 2021, using three credibility levels shown

in the left plot of Figure 4.5. Reported death counts are shown as black circles in the same

plot. The plot reflects an overall death reporting rate of 87% - 94%. The center plot of

79



Figure 4.5 shows the posterior distributions of the cumulative number of infections (NSE(t))

occurred in Orange County, with the cumulative observed cases displayed as black circles.

We estimate that 32–72% of Orange County residents experienced SARS-CoV-2 infection

by mid-January 2021. As in Figure 4.3, this shows a cumulative latent:case ratio of 4:1

– 9:1, with 1/3 – 2/3 of all Orange County residents having been infected by the end of

January 2021. From this plot, we also note that our posterior estimate of seroprevalence in

mid-August of 2020 (11.2%-13.7%) closely matches the 11.5% estimate from [Bruckner et al.,

2021]. We explicitly used this seroprevalence data in our inference, so this is unsurprising.

The right plot of Figure 4.5 shows the prevalence of SARS-CoV-2 infected individuals at

a particular time, (E(t) + I(t)). At the peak of the winter wave, we estimate that 7.8% –

14.9% of Orange County residents had an active infection at the same time.
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Figure 4.6: Forecast distributions for observed deaths (left column) and testing positivity
(right column). Solid blue lines show point-wise posterior medians, while shaded areas
denote 50%, 80%, and 95% Bayesian credible intervals. Observed values are presented as
black circles.
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Finally, we turn to model-based forecasting of observable quantities. In Figure 4.6, we

present one week and four week ahead forecasts of observed deaths and test positivity. The

credible intervals shown for a given date are generated from a model that is fit to data

from March 30, 2020 up to 1 week or 4 weeks prior to the given date. The forecasts are

produced by augmenting the posterior time-varying parameters by carrying forward the

previous mean values in (4.9) and solving the ODEs from (4.2) into the future. Since this

model makes use of the seroprevalence data, we only produce forecasts for times after this

data is available, beginning in late August 2020. Because forecasting cases with this model

is impossible without knowing how many tests will be conducted in the future, we focus on

the positivity fraction (cases divided by the total number of tests) instead. As in the other

figures, we use three credibility levels in Figure 4.6, and observed values are displayed as

black circles. Our one-week ahead probabilistic forecasts for both observed deaths in the

upper half of Figure 4.6 generally capture the observed values, indicating our method to be

precise and well calibrated. The four-week ahead forecasts predict the data well in times of

relative stability, but exhibit poor performance when time-varying parameters are changing

rapidly, such as during the winter wave. In this case, when forecasting four weeks out, we

tend to underestimate the rise at the beginning of the wave and overestimate the fall at the

end of the wave. This is not of major concern because the four-week time horizon is long

enough that interventions and behavioral changes may take effect that are not foreseen by

the model. Scenario-based modeling, where some values are specified for the future time-

varying parameters, rather than simulating from the prior, may be more appropriate for this

task.

We now compare our forecasting results to three variants of our model, which make use of

different data streams. Each model can either be conditioned on tests or not conditioned on

tests. When conditioning on tests, we use the case emission model given by (4.6). When

not conditioning on tests, we use the case emission model given by (4.8). Each model

can also make use of the seroprevalence data or not. When using the seroprevalence data,
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we use the emission distribution given by (4.7). When not using the seroprevalence data,

no emission distribution is used. The model results discussed above are for the model

which is conditioned on tests and uses the seroprevalence data. We compare these models

by calculating the Continuous Ranked Probability Score (CRPS) [Matheson and Winkler,

1976], as implemented in the scoringRules package [Jordan et al., 2019], facilitated by

the scoringutils package [Bosse et al., 2022]. We present comparisons of these scores in

Figure 4.7. We only show scores based on deaths because comparisons based on cases would

require developing a method to forecast future test counts, which we have not considered in

this work.
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Figure 4.7: Comparison of Continuous Rank Probability Score for models fit to the Orange
County data. Lower is better.

From Figure 4.7, we observe that all models appear to perform similarly throughout much
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of the assessed time period. However, in both one week and four week ahead forecasts, the

models which are conditioned on tests tend to score slightly better in the late summer period,

when testing policy was rapidly changing. During the winter surge, the differences in the

model forecasting abilities are more pronounced, with the models not conditioned on tests

appearing to be consistently superior to those which are conditioned on tests. There is no

clear pattern differentiating the models which use the seroprevalence data from those that

do not.

4.4 Discussion

We developed a Bayesian SARS-CoV-2 transmission model that integrates information from

incidence, mortality, and seroprevalence data. Our approach combines an ODE-based SEIR

compartmental model of SARS-CoV-2 transmission dynamics and a carefully constructed

surveillance model for cases, deaths, and seroprevalence. Importantly, our method accounts

for variability in the number of SARS-CoV-2 diagnostics tests across time, thus ensuring that

we do not confuse increases in testing with increases in incidence. Another distinguishing

feature of our approach is nonparametric modeling of changes in key transmission and surveil-

lance model parameters. Since we are integrating multiple sources of information, we can

afford to be fairly ambitious and to include three such parameters into our model. Changes

in one of these parameters accounts for changing the strength of preferentially testing SARS-

CoV-2 infected individuals, which helps us avoid an important source of potential bias when

inferring transmission model parameters. We reconstruct latent dynamics of the two pre-

delta COVID-19 waves in Orange County, CA and estimate that 32–72% of Orange County

residents experienced SARS-CoV-2 infection by mid-January 2021. Retrospective analysis

shows that our model produces accurate and well calibrated one week ahead and reasonable

four week ahead forecasts, but the latter lack accuracy during periods when SARS-CoV-2
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transmission dynamics and mitigation policies change rapidly. Additionally, we evaluated

our forecasting performance when including or excluding certain data streams (test counts

and seroprevalence study data) and found that incorporating negative test counts into our

model was useful near the beginning of the modeling period, when testing policy was chang-

ing rapidly, but less useful when the policy became consistent. We also found that excluding

seroprevalence data did not negatively affect our forecasting ability.

Our primary focus in this work was on developing a framework for integrating multiple data

streams into a transmission model. However, there are a number of extensions we could

pursue to improve the realism of the assumed transmission dynamics and strengthen the

model’s forecasting skill. Our model assumes that the population of interest is well mixed

and that all individuals in the population infect others and get infected at the same per capita

rate. In fact, the actual SARS-CoV-2 transmission process is much more complex because

individuals come into contact with each other based on their geographical and social network

proximity. Furthermore, it is well established that COVID-19 disease progression process

depends on the individual’s age and other characteristics [Kim et al., 2021, Bhargava et al.,

2020, Petrilli et al., 2020]. Similarly, all transmission model parameters may depend on the

vaccination status of an individual. Fortunately, compartmental models can be extended to

account for these complexities. For example, we can stratify each model compartment by

age, vaccination status, and geographical location, as is commonly done in epidemiological

modeling [Li and Brauer, 2008, Van den Driessche, 2008].

We have addressed changes in control/mitigation measures and in human behavior by non-

parametrically modeling variability of some of the SARS-CoV-2 transmission model pa-

rameters across time. Anderson et al. [2020] and Jewell et al. [2021] use parametric ap-

proaches to model the effects of mitigation measures on R0. It would be interesting to try a

semi-parametric approach that combines parametric and non-parametric components, which

would allow us to include indicators of human behavior (e.g., mobility data as in Jewell et al.
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[2021]) into our inference and forecasting.

In this paper, we have sidestepped the thorny issue of reporting delays by restricting our

analyses to time periods in which the data have stabilized. Hence, our analyses should be

robust to reporting delays so long as we have either “run out the clock” on the extent of the

delays or reporting delays do not differ between positive and negative COVID-19 diagnostic

tests. A useful set of extensions that would make our model more useful for real-time

surveillance involve estimating the reporting delay distribution [Höhle and an der Heiden,

2014, Stoner and Economou, 2020] and using this distribution in our surveillance model.

Finally, we would like to point out that our deterministic representation of the latent epi-

demic process could be substituted for a fully stochastic model where the latent epidemic

is represented as a Markov jump process, albeit with some loss of computational efficiency.

In our large population setting, this could be achieved via simulation-based methods [Bretó

et al., 2009, Andrieu et al., 2010, Dukic et al., 2012], data augmentation [Pooley et al.,

2015, Nguyen-Van-Yen et al., 2021], or a variety of approximations of the latent stochas-

tic epidemic process [Lekone and Finkenstädt, 2006, Cauchemez and Ferguson, 2008, Fintzi

et al., 2022]. Scaling our model to the state or national level could be done by analyzing

multiple counties independently, or by building a Bayesian hierarchical model that would

allow borrowing information among counties. An even more ambitious undertaking would

be allowing importation/exportation events across county lines, as was done by Pei et al.

[2021]. We hope that our methodology and other works in this spirit, along with better

quality of surveillance data, will provide us with better predictive analytics tools when the

next pandemic strikes.
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Chapter 5

Forecasting during epidemic surges of

pathogen variants capable of immune

escape

5.1 Introduction

Accurate forecasting of epidemic surges is an important tool for public health agencies to

make informed decisions about interventions and resource allocation. Forecasting is partic-

ularly challenging when conditions in the environment change. These changes could be due

to a variety of factors, including non-pharmaceutical interventions, vaccination campaigns,

treatment developments, or phenotypic changes in the pathogen due to evolution. These phe-

notypic changes may result in increased transmissibility, disease severity, or immune evasion,

leading to surges in cases, hospitalizations, or deaths. This has been particularly relevant

throughout the COVID-19 pandemic, where the emergence of novel virus strains such as

the Alpha, Delta, and Omicron variants was repeatedly accompanied by these surges. In
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this work, we focus on developing forecasting methodology for times when a new variant be-

comes dominant due to its ability to escape immunity induced by infections from previously

circulating variants.

Forecasting epidemic surges in changing environments has previously been addressed by in-

cluding time-varying parameters in infectious disease dynamics models. These time-varying

parameters can be treated as fixed inputs or estimated via parametric or non-parametric

methods. Many models focus on a time-varying transmission rate. For example, Zhou and

Ji [2020] and Xu et al. [2018] modeled the time-varying transmission rate via a Gaussian

process. Iyaniwura et al. [2022] use survey data to derive separate time-varying contact

rates for different subpopulations and incorporate these derived rates into their transmission

rate model. Other models include additional time-varying parameters. In Chapter 4, we

developed a model which included time-varying transmission rate, testing policy, and case

detection rate. In [O’Dea and Drake, 2022], time-varying transmission rate, reporting prob-

ability, and observation variance are modeled with random walks. Similarly, Gibson et al.

[2020] also model time-varying transmission rate and case detection rate with random walks.

Additionally, Morozova et al. [2021] incorporate time-varying contact rate, transmission rate,

recovery rate, severe fraction, hospital discharge rate, and hospital case fatality ratio into a

Bayesian model. While none of these works allow the average immunity duration to vary

in time, a topic of interest in this chapter, their methods could be adapted to model this

dynamic behavior.

Despite the apparent relevance of the novel variants, a recent comprehensive review of 136

infectious disease dynamics models noted that not one of the papers analyzed used variant

prevalence data [Nixon et al., 2022]. Since that review’s publication, we are aware of two

papers which have attempted to use this type of data [Du et al., 2023, Rashed et al., 2022].

These two works used a deep learning framework and developed long short-term memory

(LSTM) models which incorporate many data sources, including pre-processed estimates of
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variant proportions.

In contrast to these methods, we propose a way to integrate raw counts of variant sequences

into a Bayesian compartmental model. Rather than adapting one of the traditional models

for multiple strains (see Kucharski et al. [2016] for an overview), which would necessitate

many additional compartments and parameters, we propose a modification to a single strain

model. We take inspiration from Figgins and Bedford [2022], who model variant propor-

tions over time using a Dirichlet-multinomial likelihood to estimate variant-specific effective

reproduction numbers. Analogously, we assume that the observed count of sequences of a

novel variant has a beta-binomial distribution whose mean is a product of the total number

of observed genetic sequences and the proportion of the infectious population infected with

the novel variant. We then model the average duration of immunity as a flexible function

of this proportion. The form of our function ensures that the immunity duration decreases

when the new variant is introduced to the population, before increasing again once the new

variant becomes dominant.

We evaluate our method in a simulation study wherein novel variants become dominant at

varying rates and compare our forecasts to those from more conventional Bayesian com-

partmental models with time-varying parameters. We demonstrate competitive or superior

ability to forecast cases, hospital occupancy, ICU occupancy, and deaths, as judged by the

continuous ranked probability score — a popular proper scoring rule for probabilistic fore-

casts [Gneiting and Raftery, 2007]. We also apply our model to real data from the Omicron

wave in Orange County, California, and the state of California as a whole. In particular, our

proposed model is much better than others at forecasting the timing and size of the peak

hospital occupancy, a metric crucial for public health officers making resource allocation

recommendations to medical providers.
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5.2 Methods

5.2.1 Data

We seek to integrate the following data sources into our modeling: time series of daily

numbers of cases, infected hospital occupants, infected ICU occupants, deaths due to the

infection, genetic sequences from a novel pathogen variant, and genetic sequences from all

variants. These time series need not be observed at the same temporal resolution, but, for

clear exposition in this section, we assume they are each reported at times t1, . . . , tL. We de-

note the vector of cases, W = (W1, . . . ,WL); infected hospital occupants, X = (X1, . . . , XL);

infected ICU occupants, Y = (Y1, . . . , YL); deaths due to the infection, Z = (Z1, . . . , ZL);

number of genetic sequences from the novel variant, VN =
(
V N
1 , . . . , V N

L

)
; total number

of genetic sequences from all variants, VA =
(
V A
1 , . . . , V

A
L

)
. In each vector, the subscript

indicates that the observation is made at the corresponding time, t1, l = 1, . . . , L. We work

our way up to a surveillance model for these time series by first describing a transmission

model for the underlying population dynamics.

5.2.2 Transmission model

We model latent incidence and prevalence trajectories by dividing the population of inter-

est into seven compartments: susceptible individuals (S), infected, but not yet infectious,

individuals (E), infectious individuals (I), individuals hospitalized with infection (H), in-

dividuals in the ICU with infection (U), recovered individuals (R), and individuals who

died due to infection (D). The potential progression of an individual through these states

is presented in Figure 5.1. Note that we assume all deaths are transitions from the ICU

compartment, not from the hospitalized or infectious compartments.
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Figure 5.1: Model diagram for potential progression between infection states. Model com-
partments are susceptible individuals (S), infected, but not yet infectious, individuals (E),
infectious individuals (I), individuals hospitalized with infection (H), individuals in the ICU
with infection (U), recovered individuals (R), and individuals who died due to infection (D).

We model the time-evolution of the proportions of individuals occupying these compart-

ments with a set of ordinary differential equations (ODEs). For simplicity, we assume a

homogeneously mixing population of fixed size N . Let A(t) = (S(t) , E(t), I(t), H(t), U(t),

R(t), D(t))T denote the population proportions of all compartments at time t. We normalize

A(t0) so that A(t0)
T1 = 1, where 1 = (1, 1, 1, 1, 1, 1, 1)T . Because we fit this model to inci-

dence data, it is convenient to also keep track of the cumulative proportion of the population

that experiences transitions between compartments from t0 to t: N(t) = (NSE(t) , NEI(t),

NIH(t), NHU(t), NUD(t), NIR(t), NHR(t), NUR(t), NRS(t))
T . To describe mathematically

how vectors A(t) and N(t) change through time, we first define rates of transitions between

compartments, with possible transitions corresponding to the arrows in Figure 5.1:

λSE(S, I) =
β

N
SI,

λEI(E) =γE,

λIH(I) =ντI,

λHU(H) =ηυH,

λUD(U) =ωχU,

λIR(I) =ν (1− τ) I,

λHR(H) =η (1− υ)H,

λUR(U) =ω (1− χ)U,

λRS(R) =κR,

(5.1)
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where β is the transmission rate, N is the population size, 1/γ is the mean latent period du-

ration, 1/ν is the mean infectious period duration, 1/η is the mean hospitalization duration,

1/ω is the mean ICU stay duration, 1/κ is the mean immunity duration, τ is the infection-

hospitalization ratio, υ is the hospitalization-ICU admission ratio, and χ is the ICU-fatality

ratio. In some cases, we allow certain parameters to vary in time to capture changing dynam-

ics without the need for additional compartments in the model. These changing dynamics

could be due to policy or behavioral changes, or the presence of a new variant with increased

transmissibility or immune escape. In particular, in the models we consider in our simulation

study and application, we replace β and κ with time-varying versions, β(t), and κ(t). We

discuss the details of this implementation in Section 5.2.4.

Using the transition rates in (5.1), we define the ODEs in the model:

dS

dt
=λRS(R)− λSE(S, I),

dE

dt
=λSE(S, I)− λEI(E),

dI

dt
=λEI(E)− (λIH(I) + λIR(I)) ,

dH

dt
=λIH(I)− (λHU(H) + λHR(H)) ,

dU

dt
=λHU(H)− (λUD(U) + λUR(U)) ,

dD

dt
=λUD(U)

dR

dt
=λIR(I) + λHR(H) + λUR(U)− λRS(R),

dNSE

dt
=λSE(S, I),

dNEI

dt
=λEI(E),

dNIH

dt
=λIH(I),

dNHU

dt
=λHU(H),

dNUD

dt
=λUD(U),

dNIR

dt
=λIR(I),

dNHR

dt
=λHR(H),

dNUR

dt
=λUR(U),

dNRS

dt
=λRS(R),

(5.2)

subject to initial conditionsA(t0) = (S0, E0, I0, H0, U0, D0, R0). Because the total population

size is fixed at size N , and we take H0 , U0, and D0 to match the reported values of the
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hospitalizations, ICU occupancy, and deaths in the data at t0, we are left with E0, I0, and

R0 as free parameters (because S0 = N − (E0 + I0 +H0 + U0 +D0 +R0)). The equations

in (5.2) are redundant, but tracking both the prevalence (left column) and the cumulative

incidence (right column) is useful for linking the transmission model to data via a surveillance

model.

5.2.3 Surveillance model

We fit the transmission model to six time series: number of new cases (W), number of

infected hospital occupants (X), number of infected ICU occupants (Y), number of new

deaths due to the infection (Z), number of genetic sequences from the novel variant
(
VN
)
,

and number of genetic sequences from all variants
(
VA
)
observed at time points t1, . . . tl.

The count for each non-genetic data stream at each time (l) is modelled by a negative

binomial distribution, which we parameterize in terms of its mean (µ) and variance (σ2).

The degree of over-dispersion in each of these negative binomial distributions is controlled

by a ϕ parameter. The number of sequences from the novel variant, is modeled with a

beta-binomial distribution which is conditional on the total number of observed sequences.

We parameterize this distribution in terms of δ, its mean success probability and ϕ, an

over-dispersion parameter.

We model the observed cases, Wl, in the interval (tl−1, tl], for l = 1 . . . L, by

Wl ∼ NegativeBinomial
(
µW
l = ρW ·N ·∆NEI (tl) ,

(
σW
l

)2
= µW

l

(
1 + µW

l /ϕW

))
, (5.3)

where ρW ∈ [0, 1] is the overall case detection rate and ∆NEI(tl) = NEI(tl) − NEI(tl−1),

meaning that the number of observed cases is assumed to be some noisy realization of the

fraction of the true new cases in the population, as estimated by the ODE model. In some

models, we allow the case detection rate to vary over time, in which case we replace ρW with
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ρW (tl) in (5.3). We discuss modeling choices for this and δ (tl) in the next section.

The observed number of hospital occupants with an infection at time tl is modeled by

Xl ∼ NegativeBinomial
(
µX
l = N ·H (tl) ,

(
σX
l

)2
= µX

l

(
1 + µX

l /ϕX

))
, (5.4)

which means that the observed number of hospital occupants is a noisy realization of the

hospitalized population, as estimated by the ODE model.

We assume that the number of ICU occupants with an infection has the distribution

Yl ∼ NegativeBinomial
(
µY
l = N · U (tl) ,

(
σY
l

)2
= µY

l

(
1 + µY

l /ϕY

))
, (5.5)

indicating that the observed number of ICU occupants is a noisy realization of the ICU

population, as estimated by the ODE model.

The observed deaths due to the infection are modeled by

Zl ∼ NegativeBinomial
(
µZ
l = ρZ ·N ·∆NUD (tl) ,

(
σZ
l

)2
= µZ

l

(
1 + µZ

l /ϕZ

))
, (5.6)

where ρZ ∈ [0, 1] is the overall death detection rate and ∆NUD(tl) = NUD(tl) − NUD(tl−1),

meaning that the number of observed deaths is assumed to be some noisy realization of the

fraction of the true new deaths in the population, as estimated by the ODE model.

We model the observed counts of genetic sequences of the novel variant, conditional on the

observed number of all genetic sequences by

V N
l ∼ Beta-Binomial

(
V A
l , α = ϕV δ (tl) , β = ϕV (1− δ (tl))

)
, (5.7)

where δ (tl) is the proportion of currently infectious individuals who are infected with the
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novel variant. Thus, the observed proportion of genetic sequences of the novel variant is a

noisy realization of the true proportion in the population.

5.2.4 Bayesian inference

In Sections 5.2.2 and 5.2.3, we noted that, for some models considered in this work, β, κ,

and ρW could be substituted for time-varying counterparts, β(t), κ(t), and ρW (t). We now

present some options for modeling how these parameters may change over time. We proceed

by reparameterizing β(t) as basic reproduction number, R0(t) = β(t)/ν, and κ(t) as the

average immunity duration, 1/κ(t).

In some models, we parameterize R0(t), 1/κ(t), or ρ(t) as piecewise constant functions, where

each vector defining the constants a prior follows a Gaussian Markov random field (GMRF).

More precisely, we define the auxiliary vectors:

R̃0 = (R̃0,1, R̃0,2, . . . , R̃0,L), κ̃ = (κ̃1, κ̃2, . . . , κ̃L), and ρ̃W = (ρ̃W1 , ρ̃
W
2 , . . . , ρ̃

W
L ),

which follow the Gaussian Markov random field priors

R̃0,l ∼N
(
R̃0,l−1, σ

2
R0

)
, where l = 2, . . . , L and R̃0,1 ∼ N

(
µR01 , σ

2
R01

)
,

1

κ̃l
∼N

(
1

κ̃l−1

, σ2
κ

)
, where l = 2, . . . , L and

1

κ̃1
∼ N

(
µκ1 , σ

2
κ1

)
,

ρ̃Wl ∼N
(
ρ̃Wl−1, σ

2
ρY

)
, where l = 2, . . . , L and ρ̃W1 ∼ N

(
µρW1

, σ2
ρW1

)
,

(5.8)
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and define the piecewise constant functions:

R0(t) =
L∑
l=1

exp
{(
R̃0,l

)
1 [t ∈ (tl−1, tl]]

}
, (5.9)

1/κ(t) =
L∑
l=1

exp{(1/κ̃l) 1 [t ∈ (tl−1, tl]]}, (5.10)

ρW (t) =
L∑
l=1

exp
{(
ρ̃Wl
)
1 [t ∈ (tl−1, tl]]

}
exp{(ρ̃Wl )1 [t ∈ (tl−1, tl]]}+ 1

. (5.11)

In our simulation study and application, we assume that these time-varying dynamics are

due to the emergence of a novel variant to which the population has reduced immunity. Thus,

we hypothesize that defining time-varying parameters as a function of δ(t), the proportion

of currently infectious individuals who are infected with the novel variant, may lead to im-

provements in forecasting capabilities. In principle, we can do this for any of the parameters

in the model that might differ by variant, but we only consider this parameterization for the

average immunity duration, 1/κ, in our simulation study and application. We model 1/κ(t)

as dependent on δ(t) by

1/κ(t) = 1/κ̂ (δ(t− ζ)) = exp {α0 + α1 [δ(t− ζ) (1− δ(t+ ζ))]α2} , (5.12)

where α2 > 0. This functional form ensures that the average immunity duration is maxi-

mized when the entire infectious population is infected with the same variant (i.e., δ = 0

or δ = 1) and minimized when δ = 0.5. Thus, when a new variant is introduced, but only

constitutes a small proportion of the infectious population, the average immunity duration

begins to decrease, moving more of the population to the susceptible compartments. The

immunity duration continues to decrease until the new variant is half of the infectious pop-

ulation, at which point there is a large infectious population carrying the new variant and a

large proportion of the population with reduced immunity to the new variant. As the new

variant reaches dominance, the immunity duration returns to its original level. We allow
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this relationship to be flexible by including an offset in time, ζ.

We note that the maximum immunity duration is exp (α0), and the minimum immunity

duration is exp {α0 + α1 (1/4)
α2}. To use a more interpretable prior, we reparameterize α1

in terms of α∗
1:

α1 = 4α2 ln (α∗
1) . (5.13)

Then the minimum immunity duration is exp {α0 + 4α2 ln (α∗
1) (1/4)

α2} = α∗
1 exp {α0}. Re-

calling that exp {α0} is the maximum immunity duration, we see that α∗
1 ∈ [0, 1] is simply

a scaling factor, which determines the minimum duration, based on the maximum duration.

We show several example curves for (5.12) in Figure 5.2.

exp
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Example Immune Duration Curves

Figure 5.2: Example immunity duration curves for several values of α2, with α0 =
ln (100) , α∗

1 = 0.5. The full formula for these curves is given by (5.12) and (5.13).

Now, we discuss our model for δ(t), the proportion of currently infectious individuals who
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are infected with the novel variant. We assume that, after the novel variant is introduced,

its proportion in the population evolves according to logistic growth:

δ(t) =
exp {ι0 + ι1 (t)}

exp {ι0 + ι1 (t)}+ 1
. (5.14)

This parametric approach is borrowed from population genetics literature devoted to study-

ing the dynamics of the novel variant proportion in the population of interest [Lacerda and

Seoighe, 2014, Zhao et al., 2023]. To set interpretable priors on ι0 and ι1, we parameterize

the logistic growth as

δ(t) =
exp {ι0 + ι1 (t− t∗)}

exp {ι0 + ι1 (t− t∗)}+ 1
, (5.15)

where t∗ is the time point for which δ(t∗) = exp{ι0}
exp{ι0}+1

. Then ι1 =
ln( 0.99

1−0.99)−ln( 0.01
1−0.01)

ι∗1
, where ι∗1

is the amount of time the novel variant takes to grow from 1% of the infectious population

to 99% of the infectious population.

With these parameters all defined, we describe our Bayesian procedure. We collect all our

model parameters into a vector θ and write the likelihood function as

Pr
(
W,X,Y,Z,VN | θ

)
=Pr (W | θ) Pr (X | θ) Pr (Y | θ) Pr (Z | θ) Pr

(
VN | θ

)
=

L∏
l=1

Pr (Wl | θ) Pr (Xl | θ) Pr (Yl | θ) Pr (Zl | θ) Pr
(
V N
l | θ

)
,

where Pr (Wl | θ), Pr (Xl | θ), Pr (Yl | θ), Pr (Zl | θ), and Pr
(
V N
l | θ

)
, are the probability

mass functions given by (5.3), (5.4), (5.5), (5.6), and (5.7), respectively. We encode available

information about our model parameters in a prior distribution with density π(θ). We

assume that all univariate non-GMRF distributed parameters are a priori independent and

list our prior assumptions for our simulation study in Table C.2 and for our application in
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Table C.4. We base all our inferences and predictions on the posterior distribution of all

model parameters:

Pr
(
θ | W,X,Y,Z,VN

)
∝ Pr

(
W,X,Y,Z,VN | θ

)
π (θ) . (5.16)

We sample from this posterior using the No-U-Turn Sampler, [Hoffman and Gelman, 2014]

as implemented in the Turing Julia package [Ge et al., 2018]. Model code and data are

available at the following GitHub repository: https://github.com/damonbayer/immunity_

semi_parametric_model.

In total, the form of the model without any GMRF components has 24 parameters. Adding

a GMRF component requires one additional parameter for the variance and one more pa-

rameter per observation time. In our simulation study and real data analyses, the number

of model parameters ranges between 24 and 91.

5.3 Results

5.3.1 Simulation study

We simulate three data sets for this study, each where the novel variant becomes dominant

at a different speed: slow (24 weeks to go from 1% to 99% of sequences), medium (13 weeks),

and fast (7 weeks). The data sets are simulated from a two strain model, which is depicted

in Figure 5.3 and explained in full detail in Appendix C.1. Briefly, the model is similar to

the one depicted in Figure 5.1 but is modified to account for two distinct disease variants.

The variants associated with each compartment are indicated by the subscripts: “N” for

the novel variant, “O” for other variants, and “A” for all types for variants. When all

compartments associated with one variant type are empty, the model is equivalent to the
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one from Figure 5.1.

These otherwise independent models are linked by allowing transitions from SA and RO to

EN . That is, people who are susceptible to all variant types (SA) and those who are only

recovered from other variants (RO) can become infected with the novel variant (EN). The

rates for these transitions are given by

λSAEN
(SA, IN) =

β0
N
SAIN and λROEN

(RO, IN) = ϵ
βN
N
ROIN , (5.17)

where β and N are defined as in (5.1), and ϵ ∈ [0, 1] is a factor that represents the effect of

partial immunity to the novel variant conferred by a recent infection from another variant.

After some time, all the individuals in the O subscript compartments will have transitioned

to the N subscript compartments, and the model again behaves like the one in Figure 5.1.

Table 5.1: Simulation parameters that differ by scenario.

Scenario βN ϵ

Slow 2.1 0.75

Medium 2.1 1.0

Fast 3.5 1.0
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Figure 5.3: Compartmental diagram for simulation model. Model compartments are suscep-
tible individuals (S), infected, but not yet infectious, individuals (E), infectious individuals
(I), individuals hospitalized with infection (H), individuals in the ICU with infection (U),
recovered individuals (R), and individuals who died due to infection (D). The variants as-
sociated with each compartment are indicated by the subscripts: “N” for the novel variant,
“O” for other variants, and “A” for all types for variants.

For our simulations, the compartments are initiated with the entire population (3 million)

in S0, except a small number who are in EO. Because all the N subscript compartments are

empty, this behaves like the model in Figure 5.1. We simulate the compartment trajectories

until the initial surge begins to subside. While the overall prevalence is beginning to de-

crease, we simulate an importation of 1000 people who are infectious with the novel variant

into the IN compartment. Then, the individuals begin to transition into the N subscript

compartments, resulting in a second wave. Forecasting this second wave is the objective of

our modeling efforts.

We manipulate the size of this wave and the speed with which the novel variant takes over

by altering β and ϵ in the different simulation settings. Table 5.1 presents the exact β

and ϵ values used. The other simulation parameters are given in Table C.1. Changes of

the resulting proportion of individuals infected with the novel variant over time for each

simulated scenario is presented in Figure 5.4. The simulated data for the medium takeover

speed scenario is plotted in Figure 5.5, with the gray shaded areas indicating the time points

for which we produce forecasts. Similar figures for the other data sets are presented in
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Figures C.1 and C.2. In each scenario, non-genetic data is reported at a weekly resolution,

starting 20 weeks into the simulation, which we call t = 0. Genetic data is reported at

a daily resolution, which is crucial to capturing the early exponential-like growth of the

novel variant, relative to the other variants. Additionally, the genetic data is only reported

beginning one week before the novel variant importation event, which is necessary to meet

the assumption of logistic growth in (5.14).
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Figure 5.4: Proportion of infectious individuals infected with the novel variant over time for
three simulated scenarios. The dashed line indicates the time that the initial importation
event of the novel variant occurs.
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Figure 5.5: Simulated data set for the medium takeover speed scenario. The gray shaded
areas indicate the time points for which we produce forecasts

We fit three models to these simulated data sets: (1) a model where R0(t) is a priori modeled

as a GMRF and 1/κ(t) is constant, (2) a model where R0(t) is constant and 1/κ(t) is a priori

modeled as a GMRF, and (3) a model where R0(t) is constant and 1/κ(t) is a function of the

proportion of infectious individuals infected with the novel variant shown in (5.12). The first

model is reflective of typical practice in infectious disease modeling (see, e.g., [Gibson et al.,

2020, O’Dea and Drake, 2022]). The second is a slight variation on the first, where we make

the immunity duration, rather than the basic reproductive number, vary over time. The

third model is our main innovation, which models the mean immunity duration based on

genetic data. The priors used in these models are presented in Table C.2. For each simulated

data set, we used four Markov chains run in parallel to draw a total of 1000 posterior samples.

While these models forecast several data streams, we present only forecasts related to hospi-

102



talization in the main text, as they are the most relevant for public health policymakers. We

present additional results for cases, ICU occupancy, and deaths in Section C.2. In general,

these results exhibit the same patterns as observed in the hospitalization results. Addition-

ally, we conducted a sensitivity analysis wherein we modified the prior for the anticipated

speed of the novel variant takeover and found our model to be robust to these changes. These

priors are presented in Table C.3. The results of this analysis are presented in Section C.3.

We first show 1, 2, and 4-week ahead forecasts for the simulated medium takeover speed

data in Figure 5.6. Analogous plots for the slow and fast takeover data are presented in

Figures C.3 and C.4, respectively.

From these figures, we note that, for all models and all data sets, one-week ahead forecasts

match the data quite closely. As may be expected, performance degrades as the forecast

horizon increases. For the slow takeover data, the forecasts where 1/κ(t) is informed by the

genetic data closely match the data up to the four-week ahead forecasts. The forecasts where

1/κ(t) is a priori modeled as a GMRF also match the data quite well, while the model where

R0(t) is a priori modeled as a GMRF is much less sharp than the other models. For the

medium data, the forecasts with 1/κ(t) informed by the genetic data again predict the data

well up to the four-week forecast horizon. The 1/κ(t) GMRF model misjudges the height

and the timing of the peak, and the forecasts from the R0(t) GMRF model are again much

wider than the other models. When forecasting the fast variant takeover data, the R0(t)

GMRF model is competitive with the 1/κ(t) genetic model, while the 1/κ(t) GMRF model

again misjudges the peak.
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Figure 5.6: Hospital occupancy forecasts from three models at 1, 2, and 4-week forecast
horizons for the simulated medium takeover speed data.

To numerically assess the quality of these forecasts, we compute the continuous ranked prob-

ability score (CRPS) for each forecast at 1, 2, and 4-week horizons. Plots summarizing the

average scores of the hospitalization forecasts are displayed in Figure 5.7. Analogous plots for

forecasts of cases, ICU occupancy, and deaths are presented in Figures C.5–C.7. Addition-

ally, we show the scores for each individual forecast for each data stream in Figures C.8–C.11.

We observe that for the slow and medium takeover speed scenarios, the model where 1/κ(t) is

informed by the genetic data achieves the lowest (best) average scores. For the slow takeover

data, the model where 1/κ(t) is modeled by a GMRF performs better than the model where

R0(t) is a priori modeled as a GMRF. For the medium takeover data, the two GMRF models

are more competitive with each other. With respect to the fast takeover scenario, the model

where R0(t) is modeled as a GMRF achieves slightly lower scores than the model that uses
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genetic data, and both of these models outperform the model where 1/κ(t) is modeled as a

GMRF.
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Figure 5.7: CRPS summaries for hospital occupancy forecasts at 1, 2, and 4-week horizons
for three simulated data sets. Lower CRPS is better.

We also specifically assess each model’s ability to estimate the timing and size of the peak

hospital occupancy. Posterior predictive intervals for the peak timing and peak value are

presented in Figures 5.8 and 5.9. In general, the model where 1/κ(t) is informed by the

genetic data tends to have the smallest predictive interval widths and is overconfident about
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peak timing and value early on, but can accurately forecast these quantities when subsequent

data is included in the model. The model where R0(t) follows a GMRF has the widest

intervals and is, in general, under-confident about the peak timing and value, even when the

peak has already passed. The model where 1/κ(t) follows a GMRF falls somewhere in the

middle.
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Figure 5.8: Posterior predictive intervals for the time at which hospital occupancy reaches
its maximum in three simulated data sets. Dots indicate the median of the predictive distri-
bution, while the thick and thin lines represent central 80% and 95% intervals, respectively.
Horizontal and vertical dashed lines indicate the true peak hospitalization time.
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Figure 5.9: Posterior predictive intervals for the maximum hospital occupancy in three
simulated data sets. Dots indicate the median of the predictive distribution, while the thick
and thin lines represent central 80% and 95% intervals, respectively. Horizontal dashed lines
indicate the true peak hospital occupancy, while the vertical dashed lines indicate the true
peak hospital occupancy time.

Summaries of the average scores for these forecasts are depicted in Figure 5.10. The score

at each forecast time is shown in Figure C.12. For the slow takeover data, the model where

1/κ(t) is informed by the genetic data achieves the best scores for both peak timing and

value. When the models are fit to the medium and fast takeover data, the model where

R0(t) is a priori modeled as a GMRF performs the best.
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Figure 5.10: CRPS summaries for peak hospital occupancy timing and size for three simu-
lated data sets. Lower CRPS is better.

Beyond the forecasting advantages, the model that uses genetic data is more computationally

efficient and uses the same number of parameters, regardless of the number of observation

times. In contrast, the number of parameters in the models with GMRFs scales with the

number of observation times. A summary of the computation time required to fit models in

the simulation study is presented in Table 5.2.

Table 5.2: Computation time summary for all models in our simulation study. Each fit
consists of four Markov chains run in parallel to draw a total of 1000 posterior samples.

Model Avg. CPU Hrs Min. CPU Hrs Max. CPU Hrs

R0(t): Constant, 1/κ(t): Genetic 2.54 1.53 3.61

R0(t): Constant, 1/κ(t): GMRF 5.47 2.93 8.63

R0(t): GMRF, 1/κ(t): Constant 11.05 4.15 21.70

5.3.2 Application to California data

In our real data application, we focus on modeling the wave of cases, hospitalizations, ICU

admissions, and deaths associated with the first Omicron variant of SARS-CoV-2 in Cal-
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ifornia. This wave lasted from roughly December 2021 to March 2022, but we use data

beginning in May 2021 to forecast the wave, as this time period includes the previous wave

of cases. We fit models to both Orange County data and statewide California data. The

time series of daily counts of cases, hospital occupancy, ICU occupancy, and deaths due to

COVID-19 are provided by the California Department of Public of Health, and published

on the California Open Data Portal (https://data.ca.gov). Additionally, the daily counts

of sequenced viruses, aggregated by pango lineage [Rambaut et al., 2020], are provided by

the Global Initiative on Sharing All Influenza Data (GISAID) [Shu and McCauley, 2017]

and made available via Outbreak.info [Gangavarapu et al., 2023]. To match the format de-

scribed in Section 5.2, the lineages are further aggregated into those that begin with “BA.1”

(e.g., BA.1, BA.1.1, BA.1.17.2) and those that do not. The BA.1 sequences are the “novel”

variant, and the BA.1 and non-BA.1 sequences are summed together as “all” variants. The

non-genetic time series are aggregated at a weekly level, while the genetic data is used at a

daily resolution, beginning about one week before the first novel variant is observed. Because

the BA.1 variant becomes dominant so quickly, the daily observation of the genetic data is

crucial to capture this change, while the weekly observation of other data streams prevents

us from needing to account for data inconsistencies, like the “weekend effect” where fewer

cases are reported on weekends.

Figure 5.11 shows the binned data at the statewide level, while Figure 5.12 displays the

binned data from Orange County. The gray highlighted regions indicate the times for which

we produce forecasts. We note that, while the peak weekly case count in the BA.1 wave is

about six times higher than the first wave depicted in the figure, the peak hospitalizations

are only twice as high in the second wave, and the peak ICU occupancy is only about

20% higher in the second wave. This is a clear departure from the models we fit in our

simulation study, where the second peak’s height compared to the first peak is the same

for all data streams. Because of this, we chose to fit the same models as in the simulation

study, but modified them to also include modeling the case detection rate, ρW (t), with a
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GMRF. In reality, the reasoning for the changing relationship between the peaks is complex

and difficult to untangle, even in retrospect. It is likely that some combination of partial

protection from previous infections or vaccinations and possible less inherent propensity for

severe outcomes in the Omicron variant are at play. Anticipating and modeling this scenario

in a real forecasting scenario with a novel variant would be extremely difficult, so we chose

to incorporate some additional flexibility into the model in a place that could be realistic

and useful.
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Figure 5.11: COVID-19 surveillance data from California. The plots show weekly counts
of cases, hospital and ICU occupancy of patients with COVID-19, reported deaths due to
COVID-19, as well as counts of virus sequences for Omicron BA.1 and all lineages, and the
proportion of BA.1 lineages. The gray highlighted regions indicate the times for which we
produce forecasts.
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Figure 5.12: COVID-19 surveillance data from Orange County, CA. The plots show weekly
counts of cases, hospital and ICU occupancy of patients with COVID-19, reported deaths
due to COVID-19, as well as counts of virus sequences for Omicron BA.1 and all lineages,
and the proportion of BA.1 lineages. The gray highlighted regions indicate the times for
which we produce forecasts.

The priors used for our models are presented in Table C.4. For each data set, we used four

Markov chains run in parallel to draw a total of 1000 posterior samples. As in the simulation

study, in the main text, we focus on results related to hospital occupancy, but present results

112



for cases, ICU occupancy, and deaths in Section C.4. In general, these results exhibit the

similar patterns as observed in the hospitalization results.

Figures 5.13 and 5.14 show the 1, 2, and 4-week ahead forecasts for hospital occupancy

in Orange County and California, respectively. For both data sets, we note that one-week

ahead forecasts match the data quite closely for the models that do not use the genetic data,

but the model where 1/κ(t) is informed by the genetic data exhibits comparatively wider

credible intervals. As the forecast horizon increases, the two models where 1/κ(t) varies in

time can correctly identify the peak of the hospital occupancy, while the model where 1/κ(t)

is constant greatly overestimates the peak. These observations are reflected in Figure 5.15,

where we observe that the model where 1/κ(t) is informed by genetic data achieves the lowest

average CRPS values at forecast horizons greater than one week, and the model where 1/κ(t)

is constant achieves the highest CRPS values. Analogous figures for the other data streams

are presented in Figures C.17–C.19. We show the individual scores for each forecast in

Figures C.20–C.23. In Figures 5.16 and 5.17, we present posterior predictive intervals for

the peak timing and peak value for hospital occupancy. One again, the models where 1/κ(t)

varies in time are shown to be superior, with narrower credible intervals near the observed

value in the data. In particular, the model where 1/κ(t) is informed by genetic data appears

to be best at forecasting the time of the hospital occupancy peak. This is demonstrated

in Figure 5.18, which shows a summary of the average CRPS values for forecasts of peak

hospital occupancy time and amount. Individual CRPS values for each forecast of a peak

hospital occupancy time and amount are presented in Figure C.24.
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Figure 5.13: Hospital occupancy forecasts from three models at 1, 2, and 4-week forecast
horizons for the California data.
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Figure 5.14: Hospital occupancy forecasts from three models at 1, 2, and 4-week forecast
horizons for the Orange County data.
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predictive distribution, while the thick and thin lines represent central 80% and 95% intervals,
respectively. Horizontal and vertical dashed lines indicate the true peak hospitalization time.
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Figure 5.17: Posterior predictive intervals for the maximum hospital occupancy in Orange
County and California data sets. Dots indicate the median of the predictive distribution,
while the thick and thin lines represent central 80% and 95% intervals, respectively. Hori-
zontal dashed lines indicate the true peak hospital occupancy, while the vertical dashed lines
indicate the true peak hospital occupancy time.
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Figure 5.18: CRPS summaries for peak hospital occupancy timing and size in California and
Orange County data sets. Lower CRPS is better.

As in the simulation study, the model that uses genetic data is more computationally efficient

than the models that use more GMRFs. A summary of the computation time required to

fit models in the simulation study is presented in Table 5.3

Table 5.3: Computation time summary for all models in our real data application. Each fit
consists of four Markov chains run in parallel to draw a total of 1000 posterior samples.

Model Avg. CPU Hrs Min. CPU Hrs Max. CPU Hrs

R0(t): Constant, 1/κ(t): Genetic 4.47 2.00 9.12

R0(t): Constant, 1/κ(t): GMRF 16.17 9.10 28.01

R0(t): GMRF, 1/κ(t): Constant 30.98 22.44 41.15

118



5.4 Discussion

We developed a Bayesian model that integrates time series of cases, hospitalizations, ICU

admissions, and deaths, as well as genetic data to produce forecasts during time periods

where a novel virus variant becomes dominant. Our approach is based on the idea that the

introduction of a novel variant leads to increased infections, primarily due to immune escape.

As such, we allow the parameter in our model reflecting the average immunity duration to

change over time and consider modeling this time-varying parameter both parametrically

using genetic data, and non-parametrically. We applied our model to simulated data sets

as well as real data from the Omicron wave in Orange County and the state of California,

with a particular focus on forecasting hospital occupancy. We compare our models with

time-varying immunity duration to a standard model where the basic reproduction number

varies in time and is modeled non-parametrically. In simulated data sets, the model where

the time-varying immunity duration is informed by genetic data produces superior forecasts

when the new variant becomes dominant at a “slow” or “medium” pace (24 or 13 weeks to

go from 1% to 99% of sequences, respectively). When the new variant becomes dominant

quickly (6 weeks), this model is competitive with the model where the basic reproduction

number is modeled non-parametrically, which performs the best. In the real data scenarios,

the model where the time-varying immunity duration is informed by genetic data is shown to

be especially useful for forecasting the timing and size of peak hospital occupancy, a metric

that is of great interest to public health agencies.

Despite these advancements, some potential issues remain unaddressed by our model. First,

our model asserts that a novel variant must lead to reduced immunity in the population,

and therefore cause a second wave. In reality, a variant may become dominant simply due

to genetic drift and not be accompanied by an increase in cases, hospitalizations or deaths.

Importantly, we assess our model only on retrospective data and do not account for reporting

delays. In a real-time forecasting, it should be possible to obtain up-to-date counts of hospital
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and ICU occupancy, but case, death, and sequence counts may be reported with significant

delays. Since our likelihood for the new variant sequences is conditional on the total number

of sequences, this data does not directly impact our estimates of latent incidence, and it

may not be necessary to model these delays for the genetic data. In contrast, the case and

death counts do directly influence estimates of latent incidence, so reporting delays of these

data streams would likely need to be modeled in a real-world use case. Our model also

assumes that genetic sequences from each variant are reported at the same rate. In practice,

genetic sequences reporting is likely to be biased. For example, samples for sequencing

may come disproportionately from an outbreak in a certain location or for patients who

have severe symptoms. Certain lineages may also be able to be identified more easily than

others (e.g., the Alpha variant of SARS-CoV-2 [McMillen et al., 2022]). Some effort could

be made to correct for this in either the model or the data collection. Finally, it should be

possible to use the estimated proportion of the infectious population infected with the novel

variant to inform model parameters which might differ between variants (e.g., the infection

hospitalization ratio or duration of infectiousness). However, ascertaining which of these

parameters may differ between variants may be difficult to do in real-time.
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Chapter 6

Discussion and Future Directions

In this thesis, we developed novel statistical methods to combine varied data sources to

improve both inference and forecasting using infectious disease surveillance data.

In Chapter 3, we focused on issues of sampling schemes and diagnostic test accuracy when

estimating disease prevalence. While there are established methods for estimating disease

prevalence with associated confidence intervals for complex surveys with perfect assays and

simple random sample surveys with imperfect assays, the case of complex surveys with imper-

fect assays was relatively unexplored before the development of our methods. Opportunities

for future scholarship related to this work could focus on assessment of our methods in set-

tings beyond those considered here. In particular, we would be interested to understand

how our methods perform in situations with high prevalence. In addition, our work relied

on having fixed weights for our survey response. Extending our methodology to scenarios

where weights are estimated and accounting for this uncertainty could be useful. Finally, our

methods are shown to be overly conservative in some scenarios. Future work could attempt

to address this by replacing our lower or upper confidence distributions with a mixture of

the two (as in [Veronese and Melilli, 2015]), or using a mid-p version of the gamma intervals
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(as in [Fay and Kim, 2017]).

In Chapter 4, we turned our attention to the temporal dynamics of infectious diseases in the

presence of changing policy and behavior. We devised a modeling framework for integrating

SARS-CoV-2 diagnostics test and mortality time series data, as well as seroprevalence data

from cross-sectional studies, and tested the importance of individual data streams for both

inference and forecasting. Importantly, our model for incidence data accounts for changes

in the total number of tests performed. This chapter largely functions as an extensive case

study, with some efforts to produce generalizable results via various sensitivity analyses and

model comparisons. Extensions to this work could focus on establishing further evidence for

some of the observations made in our work. For example, we noted that conditioning our

case observation model on the number of performed diagnostic tests appeared to be more

useful at some points in the outbreak than others. This observation could be more formally

assessed in an extensive simulation study or by applying our methodology to similar data

from other locations.

In Chapter 5, we worked in a similar setting as Chapter 4, but where the changing disease

dynamics were due to novel disease variants, rather than changing policy and behavior. To

improve forecasting in these scenarios, we proposed a way to integrate raw counts of variant

sequences into a Bayesian compartmental model. We then modeled the average duration

of immunity as a flexible function of the proportion of the infectious population infected

with the novel variant. A major drawback of our approach is that our model asserts that

the dominance of a novel variant must lead to reduced immunity in the population, and

therefore cause a new wave of infections. In reality, a variant may become dominant simply

due to genetic drift and not be accompanied by an increase in cases, hospitalizations or

deaths. Future work could develop a model which allows for this flexibility. Our model also

assumes that genetic sequences from each variant are reported at the same rate. In practice,

genetic sequences reporting is likely to be biased. Extensions to our work could correct
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for this in the model. Finally, it should be possible to use the estimated proportion of the

infectious population infected with the novel variant to inform model parameters that might

differ between variants (e.g., the infection hospitalization ratio or duration of infectiousness).

However, ascertaining which of these parameters may differ between variants may be difficult

to do in real-time.

Considering Chapters 4 and 5 together, there are common opportunities for extensions.

First, the forecasting assessment for these models was performed using retrospective data,

not real-time data. This enabled us to sidestep the issue of modeling reporting delays, which

could negatively affect the models’ forecasting capabilities. The models proposed in these

chapters both included a term in their likelihood which was conditioned on some observed

data (diagnostic test counts in Chapter 4 and total counts of genetic sequences in Chapter 5).

Future work could consider modeling these data streams as well, rather than conditioning

on them. Beyond considering alternative ways to model data already used in our work,

additional data sources, such as wastewater, mobility, or survey data, could be integrated

in these models. The model dynamics could also be expanded to stratify compartments

by age or geographical location. Chapter 4 developed a model suitable for forecasting the

COVID-19 pandemic from its onset until vaccination and reinfection became common, and

Chapter 5 proposed a model for forecasting in the period of novel variants capable of immune

escape. The timespan in between, where the majority of vaccines were administered, remains

unaddressed and presents opportunities to future infectious disease modelers.
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Appendix A

Additional Material for Chapter 3

A.1 Monotonicity of g

It is clear that g is monotonic within each of its piecewise-defined functions. In the following

sections, we consider if monotonicity holds at the change points between piecewise functions.

A.1.1 Monotonicity in ϕ̂p

• Case 1: ϕ̂n < θ̂1. Not monotonic.

g(θ̂1, ϕ̂n, ϕ̂p) =



0 ϕ̂p < ϕ̂n < θ̂1

0 ϕ̂n = ϕ̂p < θ̂1

1 ϕ̂n < ϕ̂p < θ̂1

θ̂1−ϕ̂n

ϕ̂p−ϕ̂n
= 1 ϕ̂n < ϕ̂p = θ̂1

θ̂1−ϕ̂n

ϕ̂p−ϕ̂n
ϕ̂n < θ̂1 < ϕ̂p

(A.1)
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• Case 2: θ̂1 < ϕ̂n. Monotonic.

g(θ̂1, ϕ̂n, ϕ̂p) =



0 ϕ̂p < θ̂1 < ϕ̂n

0 θ̂1 = ϕ̂p < ϕ̂n

0 θ̂1 < ϕ̂p < ϕ̂n

0 θ̂1 < ϕ̂p = ϕ̂n

0 θ̂1 < ϕ̂n < ϕ̂p

(A.2)

• Case 3: θ̂1 = ϕ̂n. Monotonic.

g(θ̂1, ϕ̂n, ϕ̂p) =


0 ϕ̂p < θ̂1 = ϕ̂n

θ̂1−ϕ̂n

ϕ̂p−ϕ̂n
= 0

0
≡ 0 ϕ̂p = θ̂1 = ϕ̂n

θ̂1−ϕ̂n

ϕ̂p−ϕ̂n
= 0

ϕ̂p−ϕ̂n
= 0 θ̂1 = ϕ̂n < ϕ̂p

(A.3)

A.1.2 Monotonicity in θ̂1

• Case 1: ϕ̂n < ϕ̂p. Monotonic.

g(θ̂1, ϕ̂n, ϕ̂p) =



0 θ̂1 < ϕ̂n < ϕ̂p

θ̂1−ϕ̂n

ϕ̂p−ϕ̂n
= 0 ϕ̂n = θ̂1 < ϕ̂p

θ̂1−ϕ̂n

ϕ̂p−ϕ̂n
ϕ̂n < θ̂1 < ϕ̂p

θ̂1−ϕ̂n

ϕ̂p−ϕ̂n
= 1 ϕ̂n < θ̂1 = ϕ̂p

1 ϕ̂n < ϕ̂p < θ̂1

(A.4)

• Case 2: ϕ̂p < ϕ̂n. Monotonic.
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g(θ̂1, ϕ̂n, ϕ̂p) =



0 θ̂1 < ϕ̂p < ϕ̂n

0 ϕ̂p = θ̂1 < ϕ̂n

0 ϕ̂p < θ̂1 < ϕ̂n

0 ϕ̂p < θ̂1 = ϕ̂n

0 ϕ̂p < ϕ̂n < θ̂1

(A.5)

• Case 3: ϕ̂p = ϕ̂n. Monotonic.

g(θ̂1, ϕ̂n, ϕ̂p) =


0 θ̂1 < ϕ̂p = ϕ̂n

θ̂1−ϕ̂n

ϕ̂p−ϕ̂n
= 0

0
≡ 0 θ̂1 = ϕ̂p = ϕ̂n

0 ϕ̂p = ϕ̂n < θ̂1

(A.6)

A.1.3 Monotonicity in ϕ̂n

• Case 1: ϕ̂p < θ̂1. Monotonic.

g(θ̂1, ϕ̂n, ϕ̂p) =



1 ϕ̂n < ϕ̂p < θ̂1

0 ϕ̂p = ϕ̂n < θ̂1

0 ϕ̂p < ϕ̂n < θ̂1

0 ϕ̂p < ϕ̂n = θ̂1

0 ϕ̂p < θ̂1 < ϕ̂n

(A.7)
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• Case 2: θ̂1 < ϕ̂p. Monotonic.

g(θ̂1, ϕ̂n, ϕ̂p) =



θ̂1−ϕ̂n

ϕ̂p−ϕ̂n
ϕ̂n < θ̂1 < ϕ̂p

θ̂1−ϕ̂n

ϕ̂p−ϕ̂n
= 0

ϕ̂p−ϕ̂n
= 0 θ̂1 = ϕ̂n < ϕ̂p

0 θ̂1 < ϕ̂n < ϕ̂p

0 θ̂1 < ϕ̂n = ϕ̂p

0 θ̂1 < ϕ̂p < ϕ̂n

(A.8)

• Case 3: θ̂1 = ϕ̂p. Monotonic.

g(θ̂1, ϕ̂n, ϕ̂p) =


θ̂1−ϕ̂n

ϕ̂p−ϕ̂n
= 1 ϕ̂n < θ̂1 = ϕ̂p

θ̂1−ϕ̂n

ϕ̂p−ϕ̂n
= 0

0
≡ 0 ϕ̂n = θ̂1 = ϕ̂p

0 θ̂1 = ϕ̂p < ϕ̂n

(A.9)
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A.2 Additional Figures
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Lower Error Frequency Properties for Simulations with 0.5% Prevalence Among 50 Groups of 200

Figure A.1: Lower error properties for the wsPoisson model and two standard methods, the
Dean-Pagano modification of the Agresti-Coull method and of the Korn-Graubard method.
Each point represents 10,000 simulations of datasets from a population with 0.5% prevalence,
where 50 groups of 200 people are sampled. The horizontal dashed line indicates the nominal
lower error rate, 2.5%. Colored dashed lines are estimates from a logistic regression model
using quadratic splines.
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Figure A.2: Lower error properties for the wsPoisson model and two standard methods, the
Dean-Pagano modification of the Agresti-Coull method and of the Korn-Graubard method.
Each point represents 10,000 simulations of datasets from a population with 0.5% prevalence,
where 8000 individuals are sampled. The horizontal dashed line indicates the nominal lower
error rate, 2.5%. Colored dashed lines are estimates from a logistic regression model using
quadratic splines.
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Figure A.3: Lower error properties for the wsPoisson model and two standard methods, the
Dean-Pagano modification of the Agresti-Coull method and of the Korn-Graubard method.
Each point represents 10,000 simulations of datasets from a population with 5% prevalence,
where 50 groups of 200 people are sampled. The horizontal dashed line indicates the nominal
lower error rate, 2.5%. Colored dashed lines are estimates from a logistic regression model
using quadratic splines.
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Figure A.4: Lower error properties for the wsPoisson model and two standard methods, the
Dean-Pagano modification of the Agresti-Coull method and of the Korn-Graubard method.
Each point represents 10,000 simulations of datasets from a population with 5% prevalence,
where 8000 individuals are sampled. The horizontal dashed line indicates the nominal lower
error rate, 2.5%. Colored dashed lines are estimates from a logistic regression model using
quadratic splines.
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Figure A.5: Upper error properties for the wsPoisson model and two standard methods, the
Dean-Pagano modification of the Agresti-Coull method and of the Korn-Graubard method.
Each point represents 10,000 simulations of datasets from a population with 0.5% prevalence,
where 50 groups of 200 people are sampled. The horizontal dashed line indicates the nominal
upper error rate, 2.5%. Colored dashed lines are estimates from a logistic regression model
using quadratic splines.
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Figure A.6: Upper error properties for the wsPoisson model and two standard methods, the
Dean-Pagano modification of the Agresti-Coull method and of the Korn-Graubard method.
Each point represents 10,000 simulations of datasets from a population with 0.5% prevalence,
where 8000 individuals are sampled. The horizontal dashed line indicates the nominal upper
error rate, 2.5%. Colored dashed lines are estimates from a logistic regression model using
quadratic splines.
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Figure A.7: Upper error properties for the wsPoisson model and two standard methods, the
Dean-Pagano modification of the Agresti-Coull method and of the Korn-Graubard method.
Each point represents 10,000 simulations of datasets from a population with 5% prevalence,
where 50 groups of 200 people are sampled. The horizontal dashed line indicates the nominal
upper error rate, 2.5%. Colored dashed lines are estimates from a logistic regression model
using quadratic splines.
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Figure A.8: Upper error properties for the wsPoisson model and two standard methods, the
Dean-Pagano modification of the Agresti-Coull method and of the Korn-Graubard method.
Each point represents 10,000 simulations of datasets from a population with 5% prevalence,
where 8000 individuals are sampled. The horizontal dashed line indicates the nominal upper
error rate, 2.5%. Colored dashed lines are estimates from a logistic regression model using
quadratic splines.
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Figure A.9: Confidence interval width properties for the wsPoisson model and two stan-
dard methods, the Dean-Pagano modification of the Agresti-Coull method and of the Korn-
Graubard method. Each point represents 10,000 simulations of datasets from a population
with 0.5% prevalence, where 50 groups of 200 people are sampled. Colored dashed lines are
estimates from a logistic regression model using quadratic splines.
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Figure A.10: Confidence interval width properties for the wsPoisson model and two stan-
dard methods, the Dean-Pagano modification of the Agresti-Coull method and of the Korn-
Graubard method. Each point represents 10,000 simulations of datasets from a population
with 5% prevalence, where 50 groups of 200 people are sampled. Colored dashed lines are
estimates from a logistic regression model using quadratic splines.
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Figure A.11: Confidence interval width properties for the wsPoisson model and two stan-
dard methods, the Dean-Pagano modification of the Agresti-Coull method and of the Korn-
Graubard method. Each point represents 10,000 simulations of datasets from a population
with 0.5% prevalence, where 8000 individuals are sampled. Colored dashed lines are esti-
mates from a logistic regression model using quadratic splines.
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Figure A.12: Confidence interval width properties for the wsPoisson model and two stan-
dard methods, the Dean-Pagano modification of the Agresti-Coull method and of the Korn-
Graubard method. Each point represents 10,000 simulations of datasets from a population
with 5% prevalence, where 8000 individuals are sampled. Colored dashed lines are estimates
from a logistic regression model using quadratic splines.
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Figure A.13: Lower error properties for the confidence interval procedures, WprevSeSp Bi-
nomial and WprevSeSp Poisson. Each point represents 10,000 simulations of datasets from a
population with 0.5% prevalence, where 50 groups of 200 people are sampled. Each dataset
also includes simulated results of tests to evaluate the sensitivity and specificity of the assay
performed on 60 and 300 individuals, respectively. The horizontal dashed line indicates the
nominal lower error rate, 2.5%. Colored dashed lines are estimates from a logistic regression
model using quadratic splines. If the WprevSeSp Binomial line is not visible, then it is
covered by the WprevSeSp Poisson line.
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Figure A.14: Lower error properties for the confidence interval procedures, WprevSeSp Bi-
nomial and WprevSeSp Poisson. Each point represents 10,000 simulations of datasets from
a population with 0.5% prevalence, where 8000 individuals are sampled. Each dataset also
includes simulated results of tests to evaluate the sensitivity and specificity of the assay
performed on 60 and 300 individuals, respectively. The horizontal dashed line indicates the
nominal lower error rate, 2.5%. Colored dashed lines are estimates from a logistic regression
model using quadratic splines.
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Figure A.15: Lower error properties for the confidence interval procedures, WprevSeSp Bi-
nomial and WprevSeSp Poisson. Each point represents 10,000 simulations of datasets from
a population with 5% prevalence, where 50 groups of 200 people are sampled. Each dataset
also includes simulated results of tests to evaluate the sensitivity and specificity of the assay
performed on 60 and 300 individuals, respectively. The horizontal dashed line indicates the
nominal lower error rate, 2.5%. Colored dashed lines are estimates from a logistic regression
model using quadratic splines.
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Lower Error Frequency Properties for Simulations with 0.5% Prevalence Among 8,000 Groups of 1

Figure A.16: Lower error properties for the confidence interval procedures, WprevSeSp Bi-
nomial and WprevSeSp Poisson. Each point represents 10,000 simulations of datasets from
a population with 5% prevalence, where 8000 individuals are sampled. Each dataset also
includes simulated results of tests to evaluate the sensitivity and specificity of the assay
performed on 60 and 300 individuals, respectively. The horizontal dashed line indicates the
nominal lower error rate, 2.5%. Colored dashed lines are estimates from a logistic regression
model using quadratic splines.

154



Specificity
80%

Specificity
90%

Specificity
100%

G
roups w

ith P
rev.

H
igh W

eights
G

roups w
ith P

rev.
U

niform
 W

eights
G

roups w
ith P

rev.
Low

 W
eights

0% 200% 400% 600% 0% 200% 400% 600% 0% 200% 400% 600%

0.0%

10.0%

20.0%

30.0%

40.0%

0.0%

5.0%

10.0%

15.0%

0.00%

0.50%

1.00%

1.50%

2.00%

2.50%

Weight Coefficient of Variation

U
pp

er
 E

rr
or

 F
re

qu
en

cy

Method WprevSeSp Binomial WprevSeSp Poisson

Each Facet = 95% Sensitivity, Each Point = 10,000 Replications

Upper Error Frequency Properties for Simulations with 0.5% Prevalence Among 50 Groups of 200

Figure A.17: Upper error properties for the confidence interval procedures, WprevSeSp
Binomial and WprevSeSp Poisson. Each point represents 10,000 simulations of datasets
from a population with 0.5% prevalence, where 50 groups of 200 people are sampled. Each
dataset also includes simulated results of tests to evaluate the sensitivity and specificity of
the assay performed on 60 and 300 individuals, respectively. The horizontal dashed line
indicates the nominal upper error rate, 2.5%. Colored dashed lines are estimates from a
logistic regression model using quadratic splines.
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Figure A.18: Upper error properties for the confidence interval procedures, WprevSeSp
Binomial and WprevSeSp Poisson. Each point represents 10,000 simulations of datasets
from a population with 0.5% prevalence, where 8000 individuals are sampled. Each dataset
also includes simulated results of tests to evaluate the sensitivity and specificity of the assay
performed on 60 and 300 individuals, respectively. The horizontal dashed line indicates the
nominal upper error rate, 2.5%. Colored dashed lines are estimates from a logistic regression
model using quadratic splines.
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Upper Error Frequency Properties for Simulations with 5.0% Prevalence Among 50 Groups of 200

Figure A.19: Upper error properties for the confidence interval procedures, WprevSeSp
Binomial and WprevSeSp Poisson. Each point represents 10,000 simulations of datasets
from a population with 5% prevalence, where 50 groups of 200 people are sampled. Each
dataset also includes simulated results of tests to evaluate the sensitivity and specificity of
the assay performed on 60 and 300 individuals, respectively. The horizontal dashed line
indicates the nominal upper error rate, 2.5%. Colored dashed lines are estimates from a
logistic regression model using quadratic splines.
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Figure A.20: Upper error properties for the confidence interval procedures, WprevSeSp
Binomial and WprevSeSp Poisson. Each point represents 10,000 simulations of datasets
from a population with 5% prevalence, where 8000 individuals are sampled. Each dataset
also includes simulated results of tests to evaluate the sensitivity and specificity of the assay
performed on 60 and 300 individuals, respectively. The horizontal dashed line indicates the
nominal upper error rate, 2.5%. Colored dashed lines are estimates from a logistic regression
model using quadratic splines.
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Confidence Interval Width Properties for Simulations with 0.5% Prevalence Among 50 Groups of 200

Figure A.21: Confidence interval width properties for the confidence interval procedures,
WprevSeSp Binomial and WprevSeSp Poisson. Each point represents 10,000 simulations
of datasets from a population with 0.5% prevalence, where 50 groups of 200 people are
sampled. Each dataset also includes simulated results of tests to evaluate the sensitivity and
specificity of the assay performed on 60 and 300 individuals, respectively. Colored dashed
lines are estimates from a logistic regression model using quadratic splines.
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Confidence Interval Width Properties for Simulations with 5.0% Prevalence Among 50 Groups of 200

Figure A.22: Confidence interval width properties for the confidence interval procedures,
WprevSeSp Binomial and WprevSeSp Poisson. Each point represents 10,000 simulations of
datasets from a population with 5% prevalence, where 50 groups of 200 people are sampled.
Each dataset also includes simulated results of tests to evaluate the sensitivity and specificity
of the assay performed on 60 and 300 individuals, respectively. Colored dashed lines are
estimates from a logistic regression model using quadratic splines.
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Confidence Interval Width Properties for Simulations with 0.5% Prevalence Among 8,000 Groups of 1

Figure A.23: Confidence interval width properties for the confidence interval procedures,
WprevSeSp Binomial and WprevSeSp Poisson. Each point represents 10,000 simulations of
datasets from a population with 0.5% prevalence, where 8000 individuals are sampled. Each
dataset also includes simulated results of tests to evaluate the sensitivity and specificity
of the assay performed on 60 and 300 individuals, respectively. Colored dashed lines are
estimates from a logistic regression model using quadratic splines.
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Figure A.24: Confidence interval width properties for the confidence interval procedures,
WprevSeSp Binomial and WprevSeSp Poisson. Each point represents 10,000 simulations of
datasets from a population with 5% prevalence, where 8000 individuals are sampled. Each
dataset also includes simulated results of tests to evaluate the sensitivity and specificity
of the assay performed on 60 and 300 individuals, respectively. Colored dashed lines are
estimates from a logistic regression model using quadratic splines.
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Appendix B

Additional Material for Chapter 4

B.1 Simulation study

We performed a simulation study on 200 datasets to validate our models. We use the same

prior distributions for the parameters as in the main text. These distributions are presented

in Table B.2. We purposely chose parameter values that resulted in data similar to the

Orange Country data used in the main text. Exact values for these parameters are presented

in Table B.2. One of the 200 simulated datasets is presented in Figure B.1. Figures B.2–B.4

present the prior and posterior distribution for this single dataset. Figures B.5–B.8 show

coverage and contraction properties for the whole simulation study. Contraction is calculated

as one minus the ratio of standard deviation of the posterior and the prior. Commentary on

these results is presented in Section 4.3 of the main text.
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Table B.1: Model parameters and their prior distributions.

Parameter Interpretation Prior
Prior Median

(95% Interval)
Source

S0 Initial susceptible proportion Logit-Normal(6, 0.25)
0.998

(0.993, 0.999)

Ĩ0 Initial proportion of non-

susceptibles who are infectious

Logit-Normal(0.6, 0.0009)
0.646

(0.632, 0.659)

exp
(
R̃0,1

)
Initial basic reproduction num-

ber

Log-Normal(0, 0.0625)
1.000

(0.613, 1.630)

1/γ Mean latent period (weeks) Log-Normal(-0.25, 0.01)
0.779

(0.640, 0.947)
Xin et al. [2021]

1/ν Mean infectious period (weeks) Log-Normal(0.15, 0.01)
1.160

(0.955, 1.410)
Byrne et al. [2020]

expit (η̃1) Initial infection fatality ratio Logit-Normal(-5.3, 0.04)
0.00497

(0.00336, 0.00733)
Bruckner et al. [2021]

ρD Mean death detection rate Logit-Normal(2.3, 0.04)
0.909

(0.871, 0.937)
Bruckner et al. [2021]

ϕD over-dispersion in observed

deaths negative-binomial model

Log-Normal(4.16, 0.293)
63.9

(22.1, 185.0)

exp (α̃1) Initial proportion in prop. odds

test positivity model

Log-Normal(1.35, 0.0121)
3.86

(3.11, 4.79)

ϕC over-dispersion in observed

cases beta-binomial model

Log-Normal(6.5, 0.0673)
665

(400, 1110)

σR0
Standard deviation of log-

GMRF for time-varying R0

Log-Normal(-1.9, 0.09)
0.1500

(0.0831, 0.2690)

ση Standard deviation of logit-

GMRF for time-varying η

Log-Normal(-2.4, 0.0144)
0.0907

(0.0717, 0.1150)

σα Standard deviation of log-

GMRF for time-varying α

Log-Normal(-2.7, 0.0225)
0.0672

(0.0501, 0.0902)

ρ̃Y1 Initial case detection rate Logit-Normal(-2.5, 0.01)
0.0759

(0.0632, 0.0908)
Bruckner et al. [2021]

ϕY over-dispersion in observed

cases negative-binomial model

Log-Normal(3.93, 0.0684)
51.1

(30.6, 85.3)

σρY Standard deviation of logit-

GMRF for time-varying ρY

Log-Normal(-2.2, 0.04)
0.1110

(0.0749, 0.1640)
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Table B.2: Simulation parameters.

Parameter Interpretation Value

S0 Initial susceptible proportion 0.9979

Ĩ0 Initial proportion of non-susceptibles who are infectious 0.6455

exp
(
R̃0,1

)
Initial basic reproduction number 1.2602

1/γ Mean latent period (weeks) 0.7697

1/ν Mean infectious period (weeks) 1.1997

expit (η̃1) Initial infection fatality ratio 0.0005

ρD Mean death detection rate 0.9061

ϕD over-dispersion in observed deaths negative-binomial model 87.2776

exp (α̃1) Initial proportion in proportional odds test positivity model 4.3958

ϕC over-dispersion in observed cases Beta-Binomial model 1,026.6765

σR0 Standard deviation of log-Guassian Markov random field for time-varying R0 0.1481

ση Standard deviation of logit-Guassian Markov random field for time-varying η 0.0944

σα Standard deviation of log-Guassian Markov random field for time-varying α 0.0696
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Figure B.1: Simulated data. The figure shows weekly counts of tests, cases (positive tests),
reported deaths due to COVID-19, as well testing positivity.
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Figure B.2: Prior and posterior credible intervals for scalar parameters for a model fit to the
dataset presented in Figure B.1. True values for the simulated parameters are indicated by
solid black lines.
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model fit to the dataset presented in Figure B.1. True values for the simulated parameters
are indicated by solid black lines.
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Figure B.4: Prior and posterior 80% credible intervals for latent compartments for a model
fit to the dataset presented in Figure B.1. True values for the simulated compartment sizes
are indicated by solid black lines.
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Figure B.5: Coverage properties of 80% posterior credible intervals for scalar parameters
from models fit to 200 simulated datasets. Nominal coverage is indicated by the dashed line.
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Figure B.6: Contraction properties of scalar parameters from models fit to 200 simulated
datasets. Contraction is calculated as one minus the ratio of standard deviation of the
posterior and the prior.
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Figure B.7: Coverage properties of 80% posterior credible intervals for time-varying parame-
ters from models fit to 200 simulated datasets. Nominal coverage is indicated by the dashed
line.
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Figure B.8: Contraction properties of time-varying parameters from models fit to 200 simu-
lated datasets. Contraction is calculated as one minus the ratio of standard deviation of the
posterior and the prior.
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Figure B.9: Coverage properties of 80% posterior credible intervals for latent compartments
from models fit to 200 simulated datasets. Nominal coverage is indicated by the dashed line.
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Figure B.10: Contraction properties of latent compartments from models fit to 200 simulated
datasets. Contraction is calculated as one minus the ratio of standard deviation of the
posterior and the prior.

B.2 Comparison with epidemia

We used the epidemia R package to infer Rt in the same 200 simulated datasets, as well as the

Orange County data. Statistical details of these methods are presented below. Commentary

on these results is presented in Section 4.3 of the main text.

The epidemia package can be used to create different branching process inspired models to

estimate the effective reproduction number. In contrast to the compartmental model used

in this paper, branching process inspired models have related the mean of current incidence

to a weighted sum of previous incidence and the effective reproduction number Rt. Let

It be the incidence at time t, Rt be the effective reproduction number at time t, and g(t)

be the probability density function of the generation time distribution (the time between

an individual becoming infected and infecting another individual; under the compartmental

model framework this is usually taken to be equivalent to the sum of the latent period and
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the infectious period). Then the mean relationship used is:

E[It|I1, . . . , It−1] = Rt

t−1∑
s=1

Isg(t− s).

For the model we used in this study, we then added an observation model for new cases,

modeled the effective reproduction number as a random walk, and modeled unobserved

incidence as an autoregressive normal random variable with variance equal to the mean

multiplied by an over-dispersion parameter.

τ ∼ exp(λ) Hyperprior for unobserved incidence

Iν ∼ exp(τ) Prior on unobserved incidence ν days before observation

Iν+1, . . . , I0 = Iν Unobserved incidence

σ ∼ Truncated-Normal(0, 0.12)

logR0 ∼ Normal(log 2, 0.22) Prior on R0

logRt| logRt−1 ∼ Normal(logRt−1, σ) Random Walk prior on Rt

ψ ∼ Normal(10, 2) Prior on variance parameter for incidence

It|Iν , . . . , It−1 ∼ Normal(Rt

∑
s<t

Isgt−s, ψ) Model for incidence

α ∼ Normal(0.13, 0.72) Prior on case detection rate

yt = αt

∑
s<t

Isπt−s Mean of observed data model

ϕ ∼ P (ϕ) Prior on dispersion parameter for observed data

Yt ∼ Neg-Binom(yt, ϕ) Observed data model

Here πt are the values of the probability density function for the delay distribution, the time

between an individual being infected and being observed. This distribution is assumed to
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be a gamma distribution with shape parameter one and mean equal to the true mean latent

period. To sample from the posterior distribution, epidemia uses Hamiltonian Monte Carlo

via the Stan simulation software [Stan Development Team, 2020]. We draw 2000 posterior

samples and discard the first 1000 for this analysis.
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Figure B.11: Properties of Rt estimation from 200 simulated data sets. The envelope is the
proportion of time points which the 80% posterior credible interval contains the true Rt value
specified in the simulation. Mean credible interval width (MCIW) is the mean of credible
interval widths across time points within a simulation replication. Absolute deviation is
calculated as the mean of the absolute difference between the posterior median and the true
Rt value at each time point. The mean absolute sequential variation (MASV) is the mean
of the absolute difference between the posterior median at a time point and the posterior
median at the previous time point.

B.3 Comparison with structured populations model

Here, we demonstrate that semi-parametric modeling of key parameters can obviate the need

for modeling heterogeneous populations with separate compartments. We construct a model
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wherein a disease spreads among two subpopulations: the “general” population and the

“vulnerable” population, which interact with each other. Progression through compartments

is governed by the following system of differential equations, with “g” subscripts denoting

the general subpopulation and “v” subscripts denoting the vulnerable subpopulation and

parameters having the same interpretations as in the main text. The differential equations

used for this model presented in (B.1).

dSv

dt
= − (βvvIv + βvgIg)

Sv

N
dEv

dt
= (βvvIv + βvgIg)

Sv

N
− γEv

dIv
dt

= γEv − νIv

dRv

dt
= ν(1− ηv)Iv

dDv

dt
= νηvIv

dSg

dt
= − (βggIg + βgvIv)

Sg

N
dEg

dt
= (βggIg + βgvIv)

Sg

N
− γEg

dIg
dt

= γEg − νIg

dRg

dt
= ν(1− ηg)Ig

dDg

dt
= νηgIg

(B.1)

subject to initial conditions X(t0) = x0 and N(t0) = 0, where x0 = (Sv0, Ev0, Iv0, Rv0,

Dv0, Sg0, Eg0, Ig0, Rg0, Dg0) are initial compartment counts.

We only observed the unstratified case and death counts. Observed cases and deaths are

Poisson distributed with the rate parameter equal to the number of latent cases and deaths,

respectively.

Yl ∼ Poisson(∆NEvIv(tl) + ∆NEgIg(tl))

Ml ∼ Poisson(∆NIvDv(tl) + ∆NIgDg(tl))

We construct a scenario where a disease outbreak occurs in a small vulnerable population
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with a true infection-fatality ratio of 10% before spreading to a larger general population

with a true infection-fatality ratio of 1%. Because the outbreak spreads through the different

populations at different times, the true population infection-fatality ratio varies in time.

Figure B.12 shows the latent new cases and new deaths for each subpopulation, as well as

the combined latent new cases and new deaths, and the observed new cases and new deaths

for this constructed scenario.

Deaths

Cases

5 10 15 20

0

250

500

750

1,000

0

5

10

15

20

Time

C
ou

nt

Population Group General Vulnerable Combined

Latent and Observed Cases and Deaths

Figure B.12: Latent new cases and deaths for vulnerable and general subpopulations, along
with combined latent new cases and new deaths and observed (combined) new cases and
new deaths for a simulated scenario.
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Now, we fit a semi-parametric model, similar to the one in the main text, to this data. We

model η(t) with a logit-Guassian Markov random field, as in the main text. The differential

equations used for this model presented in (B.2).

dS

dt
= −βI S

N
dE

dt
= βI

S

N
− γE

dI

dt
= γE − νI

dR

dt
= ν(1− η(t))I

dD

dt
= νη(t)I

(B.2)

subject to initial conditions X(t0) = x0 and N(t0) = 0, where x0 = (S0, E0, I0, R0, D0) are

initial compartment counts.

Figures B.13–B.16, demonstrate, that when we fit our semi-parametric model, we can gen-

erally fit the data well and recover the true values of the parameters without modeling the

two heterogeneous populations.

B.4 Sensitivity analysis

We conducted four sensitivity analyses to see how our results change depending on the

specified priors. In each additional analysis, we change only one aspect of the model priors.

We perform one analysis where, a priori, twice the number of people are initially infected

(denoted Half S0), one with a lower initial basic reproduction number prior (denoted Half

exp
(
R̃0,1

)
, one with a higher initial infection fatality ratio prior (denoted Double expit (η̃1),

and one with a lower initial α prior (denoted Half exp (α̃1). Precise descriptions of the

priors used in the sensitivity analyses are presented in Table B.3. Graphical results of the
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Figure B.13: Posterior predictive distributions for a model with non-parametric IFR fit to
a simulated dataset with a heterogeneous population. The case and death data used are
shown as black dots.
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Figure B.14: Prior and Posterior distributions for latent compartments for a model with
non-parametric IFR fit to a simulated dataset with a heterogeneous population. The true
time-varying parameters are indicated by the dashed line.
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Figure B.15: Prior and posterior distributions for scalar parameters for a model with non-
parametric IFR fit to a simulated dataset with a heterogeneous population. The true time-
varying parameters are indicated by the vertical line.
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Figure B.16: Prior and Posterior distributions for time-varying parameters for a model with
non-parametric IFR fit to a simulated dataset with a heterogeneous population. The true
time-varying parameters are indicated by the dashed line.
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sensitivity analyses are presented in Figures B.17–B.19. We find that our model is typically

robust to these alternative priors, and no alternative model leads to substantively different

conclusions.

Table B.3: Model parameters and their prior distributions.

Analysis Parameter

Original Prior

Median

(95% Interval)

Sensitivity Prior

Median

(95% Interval)

Half S0 S0

0.998

(0.993, 0.999)

0.995

(0.987, 0.998)

Half exp
(
R̃0,1

)
exp

(
R̃0,1

) 1.000

(0.613, 1.630)

0.500

(0.306, 0.816)

Double expit (η̃1) expit (η̃1)
0.00497

(0.00336, 0.00733)

0.00988

(0.00670, 0.01460)

Half exp (α̃1) Half exp (α̃1)
3.86

(3.11, 4.79)

1.93

(1.55, 2.39)

Additionally, we perform analyses where we modify the main model to, one at a time,

fix each of the time-varying parameters, R0, α, and η. As demonstrated in Figure B.20,

fixing these parameters has no negative impact on the model’s ability to properly fit the

test positivity and death data, with each of the models exhibiting nearly identical posterior

predictive distributions. However, these modified models do lead to substantially different

inferences about the time-varying parameters themselves. This is shown in Figure B.21,

where it appears that when one parameter is fixed, the others can become more flexible to

still precisely match the observed data. The most dramatic effect is seen when fixing R0,

which leads to drastically different inferences about η and α. In contrast, there appears to

be little impact from fixing the infection-fatality ratio, η as constant through time.
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Figure B.17: Prior and posterior 80% credible intervals for scalar parameters from four
sensitivity analyses and the original analysis.
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Figure B.18: Prior and posterior 80% credible intervals for time-varying parameters from
four sensitivity analyses and the original analysis.
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Figure B.19: Prior and posterior 80% credible intervals for time-varying parameters from
four sensitivity analyses and the original analysis.
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Figure B.21: Posterior inference for time-varying parameters when one of the typically time-
varying parameters is made to be fixed through time.

B.5 MCMC Diagnostics

Convergence diagnostics are presented in Tables B.4 and B.5, where R̂ is the potential

scale reduction factor [Vehtari et al., 2021], and ESS is the effective sample size, both as

computed in the posterior R package [Bürkner et al., 2022]. All parameters show potential

scale reduction factors between 1 and 1.02, providing no evidence of lack of convergence.

Additionally, all model parameters have effective sample sizes of multiple hundreds, which

is sufficient for our inferences.

We also produce a trace plot of the log-posterior probability for each chain in Figure B.22,

which indicates that each chain explores a region of similar probability.
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Table B.4: Convergence diagnostics for scalar parameters for the main model fit to the
Orange County data set.

Parameter R̂ ESS

S0 1.00 992.14

Ĩ0 1.01 1128.48

1/γ 1.01 712.86

1/ν 1.02 907.22

ϕD 1.00 876.28

ρD 1.00 812.16

ϕC 1.00 841.67

σR0 1.00 544.21

ση 1.00 788.91

σα 1.01 567.30

Table B.5: Convergence diagnostics for scalar parameters for the main model fit to the
Orange County data set.

Parameter Min. R̂ Avg. R̂ Max. R̂ Min. ESS Avg. ESS Max. ESS

exp (α̃t) 1 1 1.01 630.78 827.20 1088.73

exp
(
R̃t,t

)
1 1 1.02 693.98 977.45 1368.80

expit (η̃t) 1 1 1.02 563.38 793.53 1259.37

185



−675

−650

−625

−600

0 50 100 150 200 250
Iteration

Lo
g−

P
os

te
rio

r

Chain

1
2
3
4

Log−Posterior Traceplot

Figure B.22: Trace plot of log-posterior probability for the main model fit.
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Appendix C

Additional Material for Chapter 5

C.1 Simulation Model

Data for the simulation study in Section 5.3.1 are generated from a two strain model, which is

described in the main text. Here, we present the mathematical details of the model presented

in Figure 5.3. We first present the rates of transitions between compartments in the model

in (C.1), where the interpretation and values of the parameters used in the simulation are

given in Table C.1. Using the transition rates in (C.1), we define the ODEs in the model in

(C.2), subject to the initial conditions given in Table C.1.

We use the solutions to the system of differential equations to simulate the six time series

referenced in Section 5.2.3 according to (C.3)–(C.8). The time series of counts of new se-

quences from the old variant
(
VO
)
and the novel variant

(
VN
)
are summed to create the

time series of counts of all variants
(
VA
)
.

The simulated data for the medium takeover speed scenario is plotted in Figure 5.5, with

the gray shaded areas indicating the time points for which we produce forecasts. Similar
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figures for the other data sets are presented in Figures C.1 and C.2.

λSAEO
(SA, IO) =

βO
N
SAIO,

λSAEN
(SA, IN) =

βN
N
SAIN ,

λEOIO(E0) =γEO,

λIOHO
(IO) =ντIO,

λIORO
(IO) =ν (1− τ) IO,

λHOUO
(HO) =ηυHO,

λHORO
(HO) =η (1− υ)HO,

λUODA
(UO) =ωχUO,

λUORO
(UO) =ω (1− χ)UO,

λROSA
(RO) =κRO,

λROEN
(RO, IN) =ϵ

βN
N
ROIN ,

λSNEN
(SN , IN) =

β

N
SNIN ,

λEN IN (EN) =γEN ,

λINHN
(IN) =ντIN ,

λINRN
(IN) =ν (1− τ) IN ,

λHNUN
(HN) =ηυHN ,

λHNRN
(HN) =η (1− υ)HN ,

λUNDA
(UN) =ωχUN ,

λUNRN
(UN) =ω (1− χ)UN ,

λRNSN
(RN) =κRN ,

(C.1)

Table C.1: Parameters used to simulate data in Section 5.3.1.

Parameter Interpretation Value

βO Contact rate for old variant 1.5

βN Contact rate for novel variant see Table 5.1

ϵ Parital immunity to novel variant conferred by old variant see Table 5.1

1/ν Mean infectious period duration (weeks) 5 / 7

1/γ Mean latent period duration (weeks) 2 / 7

1/η Mean hospitalization duration (weeks) 3 / 7

1/ω Mean ICU stay duration (weeks) 5 / 7

1/κ Mean immunity duration (weeks) 20
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τ Infection-hospitalization ratio 0.02

υ Hospitalization-ICU admission ratio 0.15

χ ICU-fatality ratio 0.15

ρW Case detection rate 0.2

ρZ Death detection rate 0.9

ρV Sequence detection rate (relative to cases) 0.1

ϕW Over-dispersion for observed new cases 100

ϕX Over-dispersion for observed hospitalizations 100

ϕY Over-dispersion for observed ICU 100

ϕZ Over-dispersion for observed new deaths 100

ϕV Over-dispersion for observed new sequences 100

SA,0 Initial size of population susceptible to all variants 1,899,600

EO,0 Initial size of population infected, but not yet infectious with

the old variant

100

IO,0 Initial size of population infectious with the old variant 300

RO,0 Initial size of population recovered from the old variant 300

SN,0 Initial size of population susceptible to only the novel variant 0

EN,0 Initial size of population infected, but not yet infectious with

the novel variant

0

IN,0 Initial size of population infectious with the novel variant 0

RN,0 Initial size of population recovered from the novel variant 0

HO,0 Initial size of population hospitalized with the old variant 0

HN,0 Initial size of population hospitalized with the novel variant 0

UO,0 Initial size of population in the ICU with the old variant 0

UN,0 Initial size of population in the ICU with the novel variant 0

DA,0 Initial size of population deceased due to infection from all

variants

0
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dSA

dt
=λROSA

(RO)− (λSAEO
(SA, IO) + λSAEN

(SA, IN)) ,

dEO

dt
=λSAEO

(SA, IO)− λEOIO(E0),

dIO
dt

=λEOIO(E0)− (λIOHO
(IO) + λIORO

(IO)) ,

dHO

dt
=λIOHO

(IO)− (λHOUO
(HO) + λHORO

(HO)) ,

dUO

dt
=λHOUO

(HO)− (λUODA
(UO) + λUORO

(UO)) ,

dRO

dt
=λIORO

(IO) + λHORO
(HO) + λUORO

(UO)− (λROSA
(RO) + λROEN

(RO, IN)) ,

dSN

dt
=λRNSN

(RN)− λSNEN
(SN , IN),

dEN

dt
=λSNEN

(SN , IN) + λROEN
(RO, IN) + λSNEN

(SN , IN)− λEN IN (EN)

dIN
dt

=λEN IN (E0)− (λINHN
(IN) + λINRN

(IN)) ,

dHN

dt
=λINHN

(IN)− (λHNUN
(HN) + λHNRN

(HN)) ,

dUN

dt
=λHNUN

(HN)− (λUNDA
(UN) + λUNRN

(UN)) ,

dRN

dt
=λINRN

(IN) + λHNRN
(HN) + λUNRN

(UN)− λRNSN
(RN),

dDA

dt
=λUODA

(UO) + λUNDA
(UN)

(C.2)

Wl ∼ NegativeBinomial
(
µW
l = ρW ·N · (∆NEOIO (tl) + ∆NEN IN (tl)) ,(
σW
l

)2
= µW

l

(
1 + µW

l /ϕW

)) (C.3)

Xl ∼ NegativeBinomial
(
µX
l = N · (HO (tl) +HN (tl)) ,

(
σX
l

)2
= µX

l

(
1 + µX

l /ϕX

))
(C.4)
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Yl ∼ NegativeBinomial
(
µY
l = N · (UO (tl) + UN (tl)) ,

(
σY
l

)2
= µY

l

(
1 + µY

l /ϕY

))
(C.5)

Zl ∼ NegativeBinomial
(
µZ
l = ρZ ·N · (∆NUODO

(tl) + ∆NUNDN
(tl)) ,(

σZ
l

)2
= µZ

l

(
1 + µZ

l /ϕZ

)) (C.6)

V O
l ∼ NegativeBinomial

(
µV O

l = µW
l · (1− δ (tl)) · ρV ,

(
σZ
l

)2
= µV O

l

(
1 + µV O

l /ϕV

))
(C.7)

V N
l ∼ NegativeBinomial

(
µV N

l = µW
l · δ (tl) · ρV ,

(
σZ
l

)2
= µV O

l

(
1 + µV N

l /ϕV

))
(C.8)
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Figure C.1: Simulated data set for the slow takeover speed scenario. The gray shaded areas
indicate the time points for which we create forecasts

192



New Deaths All Sequences Novel Variant Sequences

Hospital Occupancy ICU Occupancy New Cases

0 10 20 30 0 10 20 30 0 10 20 30

0

50,000

100,000

0

500

1,000

1,500

2,000

0

500

1,000

1,500

0

500

1,000

1,500

2,000

0

1,000

2,000

3,000

4,000

5,000

0

100

200

Time

C
ou

nt

Fast Novel Variant Takeover Speed

Simulated Data

Figure C.2: Simulated data set for the fast takeover speed scenario. The gray shaded areas
indicate the time points for which we create forecasts
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C.2 Additional simulation study results

Table C.2: Priors used in simulation study in Section 5.3.1. In model 1, R0(t) is a priori
modeled as a GMRF and 1/κ(t) is constant. In model 2, R0(t) is constant and 1/κ(t) is a
priori modeled as a GMRF. In model 3, R0(t) is constant and 1/κ(t) is a function of the
proportion of infectious individuals infected with the novel variant shown in (5.12).

Parameter Interpretation Prior
Prior Median

(95% Interval)
Models

1/γ mean latent

period duration

(weeks)

Log-Normal(-1.25, 0.04)
0.286

(0.193, 0.423)
1,2,3

1/ν Mean infectious

period duration

(weeks)

Log-Normal(-0.336, 0.04)
0.714

(0.483, 1.060)
1,2,3

1/η mean hospital-

ization duration

(weeks)

Log-Normal(-0.847, 0.04)
0.429

(0.290, 0.634)
1,2,3

1/ω mean ICU

stay duration

(weeks)

Log-Normal(-0.336, 0.04)
0.714

(0.483, 1.060)
1,2,3

τ Infection-

hospitalization

ratio

Logit-Normal(-3.89, 0.04)
0.0200

(0.0136, 0.0293)
1,2,3
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υ Hospitalization-

ICU admission

ratio

Logit-Normal(-1.73, 0.04)
0.150

(0.107, 0.207)
1,2,3

χ ICU-fatality

ratio

Logit-Normal(-1.73, 0.04)
0.150

(0.107, 0.207)
1,2,3

1/
√
ϕW over-dispersion

parameter for

observed new

cases

Half-Normal(0,1)
0.6740

(0.0313, 2.2400)
1,2,3

1/
√
ϕX over-dispersion

parameter for

observed hospi-

tal occupancy

Half-Normal(0,1)
0.6740

(0.0313, 2.2400)
1,2,3

1/
√
ϕY over-dispersion

parameter for

observed ICU

occupancy

Half-Normal(0,1)
0.6740

(0.0313, 2.2400)
1,2,3

1/
√
ϕZ over-dispersion

parameter for

observed new

deaths

Half-Normal(0,1)
0.6740

(0.0313, 2.2400)
1,2,3

ρW case detection

rate

Logit-Normal(-1.39, 0.04)
0.200

(0.145, 0.270)
1,2,3
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ρZ death detection

rate

Logit-Normal(2.2, 0.04)
0.900

(0.859, 0.930)
1,2,3

E (0) Initial propor-

tion of infected,

but not yet in-

fectious popula-

tion

Logit-Normal(-8.52, 0.04)
0.000200

(0.000135, 0.000296)
1,2,3

I (0) Initial propor-

tion of infec-

tious popula-

tion

Logit-Normal(-7.82, 0.04)
0.000400

(0.000270, 0.000592)
1,2,3

R (0) Initial propor-

tion of immune

population

Logit-Normal(-1.39, 0.16)
0.200

(0.102, 0.354)
1,2,3

1/κ immunity dura-

tion

Log-Normal(3, 0.04)
20.0

(13.5, 29.6)
1

exp
(
R̃0,1

)
initial basic

reproduction

number

Log-Normal(0.405, 0.04)
1.50

(1.01, 2.22)
1

σR0 standard devi-

ation for basic

reproduction

number GMRF

Log-Normal(-2, 0.01)
0.135

(0.111, 0.165)
1
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exp (1/κ̃1) initial immu-

nity duration

Log-Normal(3, 0.04)
20.0

(13.5, 29.6)
2

σκ standard devia-

tion for immu-

nity duration

GMRF

Log-Normal(-2, 0.01)
0.135

(0.111, 0.165)
2

R0 basic reproduc-

tion number

Log-Normal(0.405, 0.04)
1.50

(1.01, 2.22)
2,3

exp (α0) maximum im-

munity dura-

tion

Log-Normal(3, 0.0025)
20.0

(18.1, 22.1)
3

α∗
1 proportion of

maximum im-

munity dura-

tion that is

minimum im-

munity dura-

tion

Logit-Normal(-1.1, 0.09)
0.250

(0.156, 0.375)
3
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α2 shape of transi-

tion from max-

imum immu-

nity duration

to minimum

immunity dura-

tion

Log-Normal(0, 0.25)
1.000

(0.375, 2.660)
3

ζ time offset

(weeks) for

relationship

between immu-

nity duration

1/κ(t) and pro-

portion of novel

variant δ(t)

Log-Normal(0, 0.64)
1.000

(0.208, 4.800)
3

ι∗1 time novel vari-

ant takes to

grow from 1%

to 99% of the

infectious popu-

lation (weeks)

Log-Normal(2.56, 0.16)
13.00

( 5.94, 28.50)
3

ι0 proportion of

novel variant at

t∗

Logit-Normal(-2.94, 0.25)
0.0500

(0.0194, 0.1230)
3
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1/
√
ϕV over-dispersion

parameter for

observed new

sequences of

new variant

Half-Normal(0,1)
0.6740

(0.0313, 2.2400)
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Figure C.3: Hospital occupancy forecasts from three models at 1, 2, and 4-week forecast
horizons for the simulated slow takeover speed data.
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Figure C.4: Hospital occupancy forecasts from three models at 1, 2, and 4-week forecast
horizons for the simulated fast takeover speed data.
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Figure C.5: CRPS summaries for new cases forecasts at 1, 2, and 4-week horizons for three
simulated data sets. Lower CRPS is better.
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Figure C.6: CRPS summaries for ICU occupancy forecasts at 1, 2, and 4-week horizons for
three simulated data sets. Lower CRPS is better.
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Figure C.7: CRPS summaries for new deaths forecasts at 1, 2, and 4-week horizons for three
simulated data sets. Lower CRPS is better.
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Figure C.8: Individual CRPS for new cases forecasts at 1, 2, and 4-week horizons for three
simulated data sets. Lower CRPS is better.

204



Slow Takeover Speed Data Medium Takeover Speed Data Fast Takeover Speed Data

1 W
eek H

orizon
2 W

eek H
orizon

4 W
eek H

orizon

15 20 25 30 35 40 25 30 26 28 30 32

0

500

1,000

1,500

2,000

0

1,000

2,000

3,000

0

2,000

4,000

6,000

0

200

400

600

0

250

500

750

1,000

1,250

0

500

1,000

1,500

2,000

100

200

100

200

300

400

0

200

400

600

800

Forecast Time

C
R

P
S

Model
R0(t) :  Constant

1 κ(t) :  Genetic

R0(t) :  Constant

1 κ(t) :  GMRF

R0(t) :  GMRF

1 κ(t) :  Constant

Continuous Ranked Probability Score for Hospital Occupancy

Figure C.9: Individual CRPS for hospital occupancy forecasts at 1, 2, and 4-week horizons
for three simulated data sets. Lower CRPS is better.
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Figure C.10: Individual CRPS for ICU occupancy forecasts at 1, 2, and 4-week horizons for
three simulated data sets. Lower CRPS is better.
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Figure C.11: Individual CRPS for new deaths forecasts at 1, 2, and 4-week horizons for three
simulated data sets. Lower CRPS is better.
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Figure C.12: Caption
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C.3 Simulation study sensitivity analysis

We conducted a sensitivity analysis wherein we modified the prior for the anticipated speed

of the novel variant takeover. We present the different priors used in Table C.3. All other

priors are those relevant to model 3 in Table C.2. Based on the figure in this section, we

found our model to be robust to these prior modifications.

Table C.3: Priors that differ from those in Table C.2 in simulation study sensitivity analysis.

Parameter Interpretation Prior
Prior Median

(95% Interval)
Prior

ι∗1 time novel variant takes

to grow from 1% to 99%

of the infectious popula-

tion (weeks)

Log-Normal(1.95, 0.04)
7.00

( 4.73, 10.40)
Fast

ι∗1 time novel variant takes

to grow from 1% to 99%

of the infectious popula-

tion (weeks)

Log-Normal(2.56, 0.04)
13.00

( 8.78, 19.20)
Medium

ι∗1 time novel variant takes

to grow from 1% to 99%

of the infectious popula-

tion (weeks)

Log-Normal(3.18, 0.04)
24.0

(16.2, 35.5)
Slow
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ι∗1 time novel variant takes

to grow from 1% to 99%

of the infectious popula-

tion (weeks)

Log-Normal(2.56, 0.16)
13.00

( 5.94, 28.50)
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Figure C.13: CRPS summaries for hospital occupancy forecasts at 1, 2, and 4-week horizons
for three simulated data sets. Lower CRPS is better.
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Figure C.14: Posterior predictive intervals for the time at which hospital occupancy reaches
its maximum in three simulated data sets. Dots indicate the median of the predictive distri-
bution, while the thick and thin lines represent central 80% and 95% intervals, respectively.
Horizontal and vertical dashed lines indicate the true peak hospitalization time.
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Figure C.15: Posterior predictive intervals for the maximum hospital occupancy in three
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and thin lines represent central 80% and 95% intervals, respectively. Horizontal dashed lines
indicate the true peak hospital occupancy, while the vertical dashed lines indicate the true
peak hospital occupancy time.
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Figure C.16: CRPS summaries for peak hospital occupancy timing and size for three simu-
lated data sets. Lower CRPS is better.

C.4 Additional California data results

Table C.4: Priors used in real data application in Section 5.3.2. In model 1, R0(t) is a priori
modeled as a GMRF and 1/κ(t) is constant. In model 2, R0(t) is constant and 1/κ(t) is a
priori modeled as a GMRF. In model 3, R0(t) is constant and 1/κ(t) is a function of the
proportion of infectious individuals infected with the novel variant shown in (5.12). “CA”
indicates the prior is only used when fitting the statewide California data. “OC” indicates
the prior is only used when fitting the Orange County data.

Parameter Interpretation Prior
Prior Median

(95% Interval)
Models

1/γ mean latent

period dura-

tion (weeks)

Log-Normal(-1.25, 0.04)
0.286

(0.193, 0.423)
1,2,3
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1/ν Mean in-

fectious pe-

riod duration

(weeks)

Log-Normal(-0.154, 0.04)
0.857

(0.579, 1.270)
1,2,3

1/η mean hos-

pitalization

duration

(weeks)

Log-Normal(-1.03, 0.04)
0.357

(0.241, 0.529)
1,2,3

1/ω mean ICU

stay duration

(weeks)

Log-Normal(-0.56, 0.04)
0.571

(0.386, 0.846)
1,2,3

τ Infection-

hospitalization

ratio

Logit-Normal(-4.6, 0.04)
0.01000

(0.00678, 0.01470)
1,2,3

υ Hospitalization-

ICU

admission

ratio

Logit-Normal(-1.59, 0.04)
0.170

(0.122, 0.233)
1,2,3

χ ICU-fatality

ratio

Logit-Normal(-1.73, 0.04)
0.150

(0.107, 0.207)
1,2,3
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1/
√
ϕW over-

dispersion

parameter for

observed new

cases

Half-Normal(0,1)
0.6740

(0.0313, 2.2400)
1,2,3

1/
√
ϕX over-

dispersion

parameter

for observed

hospital occu-

pancy

Half-Normal(0,1)
0.6740

(0.0313, 2.2400)
1,2,3

1/
√
ϕY over-

dispersion

parameter for

observed ICU

occupancy

Half-Normal(0,1)
0.6740

(0.0313, 2.2400)
1,2,3

1/
√
ϕZ over-

dispersion

parameter for

observed new

deaths

Half-Normal(0,1)
0.6740

(0.0313, 2.2400)
1,2,3

ρZ death detec-

tion rate

Logit-Normal(2.2, 0.04)
0.900

(0.859, 0.930)
1,2,3
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E (0) Initial pro-

portion of

infected, but

not yet infec-

tious popula-

tion

Logit-Normal(-7.91, 0.04)
0.000366

(0.000247, 0.000542)

1,2,3

CA

E (0) Initial pro-

portion of

infected, but

not yet infec-

tious popula-

tion

Logit-Normal(-8.64, 0.04)
0.000177

(0.000119, 0.000261)

1,2,3

OC

I (0) Initial pro-

portion of

infectious

population

Logit-Normal(-7.22, 0.04)
0.000732

(0.000495, 0.001080)

1,2,3

CA

I (0) Initial pro-

portion of

infectious

population

Logit-Normal(-7.95, 0.04)
0.000353

(0.000239, 0.000522)

1,2,3

OC

R (0) Initial pro-

portion of

immune pop-

ulation

Logit-Normal(1.1, 0.16)
0.750

(0.578, 0.868)
1,2,3
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logistic
(
ρ̃W1
)

initial case

detection rate

Logit-Normal(-1.39, 0.04)
0.200

(0.145, 0.270)
1,2,3

σρW standard de-

viation for

case detection

rate GMRF

Log-Normal(-2, 0.01)
0.135

(0.111, 0.165)
1,2,3

1/κ immunity

duration

Log-Normal(2.48, 0.04)
12.00

( 8.11, 17.80)
1

exp
(
R̃0,1

)
initial basic

reproduction

number

Log-Normal(1.61, 0.04)
5.00

(3.38, 7.40)
1

σR0 standard de-

viation for

basic repro-

duction num-

ber GMRF

Log-Normal(-2, 0.01)
0.135

(0.111, 0.165)
1

exp (1/κ̃1) initial immu-

nity duration

Log-Normal(2.48, 0.04)
12.00

( 8.11, 17.80)
2

σκ standard de-

viation for

immunity du-

ration GMRF

Log-Normal(-2, 0.01)
0.135

(0.111, 0.165)
2
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R0 basic repro-

duction num-

ber

Log-Normal(1.61, 0.04)
5.00

(3.38, 7.40)
2,3

exp (α0) maximum

immunity

duration

Log-Normal(2.48, 0.0025)
12.0

(10.9, 13.2)
3

α∗
1 proportion

of maximum

immunity

duration that

is minimum

immunity

duration

Logit-Normal(-1.1, 0.09)
0.250

(0.156, 0.375)
3

α2 shape of tran-

sition from

maximum

immunity

duration to

minimum im-

munity dura-

tion

Log-Normal(0, 0.25)
1.000

(0.375, 2.660)
3
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ζ time offset

(weeks) for

relationship

between im-

munity du-

ration 1/κ(t)

and propor-

tion of novel

variant δ(t)

Log-Normal(0, 0.64)
1.000

(0.208, 4.800)
3

ι∗1 time novel

variant takes

to grow from

1% to 99% of

the infectious

population

(weeks)

Log-Normal(1.95, 0.16)
7.0

( 3.2, 15.3)
3

ι0 proportion of

novel variant

at t∗

Logit-Normal(-2.94, 0.25)
0.0500

(0.0194, 0.1230)
3

1/
√
ϕV over-

dispersion

parameter for

observed new

sequences of

new variant

Half-Normal(0,1)
0.6740

(0.0313, 2.2400)
3
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Figure C.17: CRPS summaries for new cases forecasts at 1, 2, and 4-week horizons for
California and Orange County data sets. Lower CRPS is better.
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Figure C.18: CRPS summaries for ICU occupancy forecasts at 1, 2, and 4-week horizons for
California and Orange County data sets. Lower CRPS is better.
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Figure C.19: CRPS summaries for new deaths occupancy forecasts at 1, 2, and 4-week
horizons for California and Orange County data sets. Lower CRPS is better.
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Figure C.20: Individual CRPS for new cases forecasts at 1, 2, and 4-week horizons for
California and Orange County data sets. Lower CRPS is better.
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Figure C.21: Individual CRPS for hospital occupancy forecasts at 1, 2, and 4-week horizons
for California and Orange County data sets. Lower CRPS is better.

222



California Data Orange County Data

1 W
eek H

orizon
2 W

eek H
orizon

4 W
eek H

orizon

Dec 10 Dec 17 Dec 24 Dec 31 Jan 07 Jan 14 Jan 21 Dec 10 Dec 17 Dec 24 Dec 31 Jan 07 Jan 14 Jan 21

0

25

50

75

100

0

100

200

300

0

500

1,000

0

250

500

750

1,000

1,250

0

1,000

2,000

3,000

0

5,000

10,000

Forecast Date

C
R

P
S

Model
R0(t) :  Constant

1 κ(t) :  Genetic

R0(t) :  Constant

1 κ(t) :  GMRF

R0(t) :  GMRF

1 κ(t) :  Constant

Continuous Ranked Probability Score for ICU Occupancy

Figure C.22: Individual CRPS for ICU occupancy forecasts at 1, 2, and 4-week horizons for
California and Orange County data sets. Lower CRPS is better.
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Figure C.23: Individual CRPS for new deaths forecasts at 1, 2, and 4-week horizons for
California and Orange County data sets. Lower CRPS is better.
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Figure C.24: Individual CRPS for peak hospital occupancy timing and size in California and
Orange County data sets. Lower CRPS is better.
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