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Asymptotic Efficiencies of Spacings Tests for Goodness of Fit

By S. R. Jammalamadaka®, X. Zhou' and R. C. Tiwari?

Abstract: Tests based on higher-order or m-step spacings have been considered in the literature for
the goodness of fit problem. This paper studies the asymptotic distribution theory for such tests
based on non-overlapping m-step spacings when m, the length of the step, also increases with the
sample size n, to inifinity. By utilizing the asymptotic distributions under a sequence of close
alternatives and studying their relative efficiencies, we try to answer a central question about the
choice of m in relation to n. Efficiency comparisons are made with tests based on overlapping
m-step spacings, as well as corresponding chi-square tests.

Key words: m-step spacings, limit distributions, asymptotic efficiencies, goodness of fit, chi-square.

1 Introduction

Let X,,...,X,_; be independently and identically distributed (i.i.d) real-valued ran-
dom variables (r.v.’s) with a common continuous distribution function (d.f.) F, and let
X(1) <... <X(n_1) be the corresponding order statistics. For the goodness of fit
problem of testing whether F is equal to some specified d.f. Fy (say), without loss of
any generality, we can use the transformation x - F(x) on the X;’s and, therefore,
assume that F has support on [0, 1] and F}, is the uniform d .f. on [0, 1].

Let {m,} and {n,} be the two nondecreasing sequences of positive integers with
my, n, = as v > . The non-overlapping (or disjoint) m-step spacings (or m-spacings)
are defined as

Di(r;tn):X(im+m)—X(im) i=0,1,..,0~1 (1.1

1 S, Rao Jammalamadaka and Xian Zhou, Statistics and Applied Probability Program, University
of California at Santa Barbara, Santa Barbara, CA 93106, USA.
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356 S. R. Jammalamadaka et al.

where X\ =X\, =n,/m, is assumed without loss of generality to be an integer and
X(o) = O,X(n) =1.

Under the null hypothesis of uniform distribution on [0, 1], we use the special
notation U,y (replacing X(;)) for uniform order statistics and T,-(,:,") (replacing D,-(,',,"))
for uniform spacings. For testing the null hypothesis

Hy : Fox)=x 0<x<l1 (1.2)
against a sequence of alternatives
Hy, :F,(x)=x+r(v)L,(x) 0<x<1 (1.3)

with L,(0) = L,(1) =0, and r(v) = 0 as v - oo, we consider the class of statistics
A—1 (m)
V,= ‘Zo hy(\Dim ) (14)
i=

where h,(-) are real valued functions defined on (0, <c). The asymptotic distribution
theory of V, for fixed m is given by del Pino (1977). In this paper, we derive the
asymptotic distributions of V¥, under the null hypothesis Hy as well as under the
alternatives H,, when both m and n tend to infinity. Then, we compare the Pitman
Asymptotic Relative Efficiencies (ARE’s) for the pair

Ay (m) S )
@ V=X HDODi?),  Vyp = z HP\Dim")
= =

where {#{"} and (WD} are two different sequences of functions. Also for two dif-
ferent sequences of integers {m, } and {m,,}, we compare the Pitman efficiencies of

A—1 A =1 .
(i) V,= = hADSY), Vi= I k0D
i=0 i=0

where m=cnP(1+0(1)), ¢>0, 0<p <1, m =c'nP (1+0(1)), ¢'>0,0<p' <1,
and \' = n/m’. Here o(1) stands for a quantity going to zero as v - o. We show in sec-
tion 4 that the ARE in case (i) is ARE(V,, V) = | and in case (ii),
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oo if p'<p
ARE(V,, V) =1 (/e 1*P)if p'=p

0 if p'>p.

Tests based on overlapping spacings have also been studied in the literature. The over-
lapping spacings are defined by

D,(m)=X(1+m)_X(l) l‘=0,1,...,n'—1.

where X(xy =1+ X(,_g) for k=n circularly, for convenience. The corresponding
statistic is

n—1
VE= T h,(\D{™).
i=0

Kuo and Rao (1979, 1981) studied the general asymptotic theory and the ARE of this
class of statistics V' for fixed m; see also Cressie (1976) for a special case. Beirlant and
van Zuijlen (1985) consider the weak convergence of the empirical spacings process
under the null hypothesis when m — o=. Hall (1986) obtained the limiting distributions
of V¥ under a sequence of alternatives. In Section 4.3, we show that for the same m,,,
V¥ is more efficient than V,,, which should be expected because ¥} uses more infor-
mation from the data than ¥/, does. However, by choosing the size of the step m,, cor-
responding to ¥, to be larger than that corresponding to ¥}, V,, can be made as ef-
ficient as or even more efficient than V;;. On the other hand, V,, involves considerably
less calculations than V; does and may be preferable from a computational and
practical point of view.

In Section 4.4, the efficiencies of V, are also compared with yet another test
A—1

namely the chi-square test © 02, considered by Quine and Robinson (1985), where
i=0

I itl
{0\ } are the frequencies in the cells[i, T],i=0, 1,..,A—1.

The organization of the paper is as follows: In Section 2, the asymptotic distribu-
tion of V, under Hy is derived while its distribution under H,, is given in Section 3.
Section 4 contains a discussion of the ARE’s. Finally in Section 5, the “‘asymptotic
sufficiency” of m-spacings in this particular testing context and the comments on the
choice of m in relation to n are discussed. Proofs are postponed to the last section,
namely Section 6.
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A few words about the notations: “X ~ Y will mean that the r.v. X has the same
df. as the r.v. Y, while “X ~ F” means that X has d.f. F. We write “% and “5” to
denote convergence in distribution and in probability, respectively. N(u, 0%) stands for
a normal distribution with mean u and variance o?. Throughout Z,,Z,, ... are i.i.d.
exponential r.v.’s with mean equal to 1, and

n
z Zfa Z—t(r:ln) =

1 1 m
- - 2 m+,’. (1.5)
ni=1 m i=1

S;, is a gamma r.v. with shape parameter m and scale parameter 1. We assume that all
the r.v.’s are defmed on a common probability space. The notation X, = 0p(r,) will
mean that |X,/r,| £0 and X, = Op(r,) means that for any e >0 there exist M >0
and vy >0 such that P(|X,/r, | >M) < e for all v > g, while O(r,) is a sequence of
numbers such that O(r,)/r, is bounded. The first three derivatives of a function f are
denoted by f', f'" and f'"' respectively. The subscript » will be omitted for notational
convenience, when there is no possible confusion.

2 Asymptotic Null Distribution of V,, when A, - o
The asymptotic distribution of V,, under Hy as A, = o is given by

Theorem 2.1: Suppose the following assumptions hold:

(A.1) there exist M and § >0 such that |, '(x)| <M forx €[1—8&, 1+ 8] and for
all v,

(A2) hy(1)~> b where |b| <oo, asv oo and

(A.3) n/m* >0 for some positive integer k. Then,

m d 1 2
W(Vu—xﬂv)_’}voagb )
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The proof of Theorem 2.1 will be given in Section 6 and requires several lemmas.

The case where k, =h is of special interest. In such a case, since (1) =h"(1),
Assumption (A.2) of Theorem 2.1 can be removed. Note also that if 4" is bounded on
(0, =), then (A.3) is not required. Thus we get

Corollary 2.1: If either
(a) h""isboundedin[1—§,1 + 8] for some § > 0 and n/m* - 0 for some &, or

(b) A" is bounded in (0, %), then

m d 1 "
\—/'X—(V,, —\y) _)N(O’E[h M

Example 1: Let h(x) =x?, then the condition (b) of corollary 2.1 is trivially satisfied,
hence we have

m A=l 1
(m)y2 _,__-14 2
\/X 120 [(7\2 )y -1 }»N(O, ).

Example 2: Let h(x)=xlogx. Then u,=my(m+1)—logm where Yy(m+1)=

m+1 ]
2 — —vand v is the Euler’s constant. Clearly the first part of condition (a) of Corol-
i=1 ]

lary 2.1 holds. Thus if n/m* - 0 for some k, then

1
ms! [ATS™ log ATS™) + log m — y(m + 1)] ‘—’»N(o, 5).

i=0

Example 2.3: Let h(x) = log x. Similar to Example 2.2, we conclude that if n/m* -0
for some k, then

1

% _i [log AT + log m — Y(m)] 3N(0,5),
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3 Asymptotic Distribution of ¥, Under Alternatives when A,, = o
.,A — 1, be non-overlapping m-step spacings under alternatives

Let DY i=0, ..

Hy, :F,(x)=x+r()L,(x). 0<x<l1
with L,(0) =L,(1) = 0. We shall make the following assumption:
L, =1,, L, =1, exist and I, converges uniformly to a function / on [0, 1].
Note that (A.4) implies that L, are uniformly bounded and / is continuous on

(A4)
[0, 1], hence [ is Riemann-integrable on [0, 1]

Also define
3.1

Tim = FoX (i +m)) = Fo(Ximy) = D + 1)1, Xy )DET
where X(im) <Xim <X(im+m)‘
Theorem 3.1: If r(v) =a,(nm)~'/%, a4, >a as v > oo, and Assumptions (A.1), (A.2),
(A.3) and (A .4) hold, then

A1 1
p
& 2 [ADED) = kAT > 2 b,

VA i=o
The proof is given in Section 6.
Combining Theorem 2.1 with Theorem 3.1, we get

Theorem 3.2: Under the same conditions as in Theorem 3.1,

S (m) d ol oo Loy
Z [ODim") = w1 SN\ S a*bllIG, 5 b
i=

SF
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Corollary 3.1: If h"" is bounded in [1-8,1+ 8] for some & >0, and n/m* - 0 for
some k, then under alternatives H,, with assumption (A.4) and r(v) =a,(nm)" /4

aV —>at

5

m A-1 m 1 1 " 1 "
&2 [h(w,-‘m))—Eh(,;smH 3N(502h ORI (1)12).

=0

In particular, we have

! (m) d ol 50051
'20 [log \Diy ") + logm = y(m)] = N\ a"lllll3, 5
i

53

and

A-1 1
> [ DM -1 - —J 4 N@* 11113, 2).
i=0 m

s

A—1
Remark 3.1: The asymptotic normality of ¥, = Z hU(RD,'(,:,")) no longer holds when
i=0

m increases in proportion to n. If X = n/m denote this constant proportion, then in this
case, we have the results: (proofs of which are omitted for brevity)

(i) Under the hull hypothesis, if Assumption (A.1) and (A.2) hold, then
A—1 1
d
m T [OTim”) = h(D] > 5034
i=

where x2 _, is a chi-square distribution with degrees of freedom (A — 1).

(ii) Under alternatives Hy, (see (1.3)) with r(v) =a,n~Y? and ¢, >a>0. If (A.1)
and (A.2) hold, and L,(x) converges uniformly to a continuous function L(x) on
[0, 1], then

A (m) al , 25 A2
m _20 [hy(ADjpy ) — By(1)] “’EbXA_l(a A7)
iz



362 S. R. Jammalamadaka et al.

i=0 A

Al (i+] i\ |?
where A2 = T [L( ——) _L(X\) } and x3_; (@®AA?) is a non-central chi-square
distribution with degree of freedom X\ — 1 and non-centrality parameter (a?AA?).

4 Efficiencies of Spacings Tests

4.1 Pitman Relative Efficiency

The Pitman asymptotic relative efficiency (ARE) of one test relative to another is
defined as the limit of the inverse ratio of sample sizes required to obtain the same
limiting power at a sequence of alternatives converging to the null hypothesis. Let
T, be a test statistic for testing the hypothesis H, against the alternatives

Hip:Fy(x)=x+r,L(x), 0<x<1 4.1

with r, =a,n~% (2, =0, § >0), a,, >a <. Suppose T}, i1>N(a?‘u, 0?) under H, ,,.
Then we define the “efficacy” of T}, by Eff(T}) = (u?/02)}/*% . It can be shown that
the ARE of a test T, relative to another test T, is

ARE(T1p, Tan) = Eff(T1)/Eff(T2p) (4.2)

provided Eff(7T,,) and Eff(T,,) are not both zeros.

42 Efficiencies of Non-Overlapping Spacings Tests

Now we consider the ARE of the following pairs of test statistics:

A—1 A—1
(i) V= Z KPQDGY) and V,,= T KPADGY)
i=0 i=0
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A-1 ( A-—1 .
(i) V,= 2 hODYY) and V= T h,0\DI))
i=0 i=0
=n/m'’ (4.3)

where m = cnP(1 + 0(1)),m’ =c'nP (1 + o(1)), and A

withe, ¢’ >0,p, p' €(0, 1).
From Theorem 3.2, it is easy to see that

1/(1+p)

1
7132
cliflizb )l/(l+p)

Eff(V,) = =(5cn1n‘2‘

Zp2
2b

Thus we get

Theorem 4.1: For m and m’ given by (4.3)
(i) ARE(V,,, V,,) =1 for any h{D, h{? satisfying the conditions of Theorem 3.2

if p'<p
(ii) ARE(V,,Vy)=< (c/c)/*P)  if p'=p

0 if p'>p.

4.3 Efficiency Comparison Between V), and V}

Now consider the ARE between the non-overlapping spacings test V,, and the over
lapping spacings test V; . First we state a theorem for the limiting distribution of V}

Theorem 4.2: With the same conditions as in Theorem 3.1

\/X

= 1
_2 (wi‘"")—uu]3N(§a2bnluz,§b2)
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Because this theorem does not differ significantly from that proved by P. Hall (1986)
and the proof is, in any case, similar to that of our Theorem 3.2 (except for the part
corresponding to Lemma 2.4), we omit the proof.

It follows that under the same conditions as in Theorem 3.1, for m and H,,

considered above,

3 1/(1+p)
Eff(Vy) = ( " culn‘z‘)

Thus we conclude:

(@)

(i)

If ¥, and V} are based on the same sequence m =cn?(1+0(1)), 0<p<1,
¢ >0, then

ARE(VE, V,) = (3/2)/(1+P) > 1

i.e. V¥ is more efficient than V,,.

However, if we increase m to m' =¢'nP(1 + 0(1)), and call the resulting spacings
test V,, then

<1 if ¢'=(3/2)ec.

3¢ \ 1/(1+P)

ARE(V}, V;) = (

This shows that a non-overlapping spacings test with step size of (3/2)m or larger
is more efficient than a corresponding overlapping spacings test with step size of
m. The fact that the non-overlapping spacings tests are less complicated and easier
to compute is a decided advantage.

(iii) If we consider the comparison based on the same number of spacings, the non-

overlapping spacings will yield more powerful tests. This is not surprising because
non-overlapping spacings need a larger sample size than the same number of over-
lapping spacings. In fact, if we let ¥, and V™ respectively denote the non-over-
lapping spacings test and the corresponding overlapping spacings test with the
same number A of spacings, then V, will be able to detect alternatives at a rate of
(Am)m)~ "% = (A\m?)~1/* while V}* can only detect a rate of (\m)~"/#. Thus
ARE(V,, Vi*)=oo, ie., the non-overlapping spacings tests are substantially
superior but this comes at the expense of a larger sample size.
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4.4 Efficiencies of Spacings Tests Relative to Chi-Square Test

Jammalamadaka and Tiwari (1986) discuss the efficiencies of the well-known Green-

wood statistic based on m-spacings relative to a chi-square test for fixed m. Quine and
A—1

Robinson (1985) considered the ARE of the chi-square test = O3 relative to the
A-1 =0

likelihood-ratio test £ Oy log O;, where O;, is the frequency of the observations in
i=0

i i+l
the interval X’T ,1=0,...,A—1. We now consider the ARE of m-spacings tests
relative to the chi-square test with m — oo,
From Quine and Robinson (1985), after a slight generalization, we can get
1 [AAL 1
$l~ S 04-\-n ] L N@ MR, 2) if A =§nq(1 +o(1))(0<g<1)andr, =
n

ap\Y4 Y2 g >4>0. Thus, if m=cnP(1+0(1)) (0<p<1) so that \=—=
m

ni=0

1
—nl—p(l +0(1)),and r, =ann~(l+p)/4, then
(4

S | >

A—1 d
T 0Ah-N—-n{ >N@*?3,2),
i=0

7|

-1
b

A
i=0

1/(1+p) A-1
) , hence ARE|V,,, Z 04| =1.

1
giving Eff( 0,&) = (Eculn%

5 The Asymptotic Sufficiency of Spacings

In this section, we consider the asymptotic sufficiency of non-overlapping m-step
spacings {D{m)}. Since clearly the sufficiency of spacings {D,-(,T,) :i=0,..,A—1}is
equivalent to that of {X(jmy:7=1,..,A—1}, we will show that {X(my:i=1,..,,
A — 1} are asymptotically sufficient when the observations arise from the alternative
H,, in (1.3) with r(v) = (nm)~ /%, This asymptotic sufficiency implies that there is no
big loss of information in using {D,-(,;,")} to test Hy vs Hy, when n is large. More precise-
ly we show the following:

Let X;~F,(x)=x+ (nm) YL, (x), m=cnP(1 +0(1)) with ¢>0, 0<p<1,
and let f, be the joint density of {X(yy,...,X(n_1)}. If L, =1, are “sufficiently
smooth” (which will be made precise later), then, with Yip, = X(jmy, i=1,..,A - 1,
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we can generate Y; for j¢ {m,2m,...,(A — 1)m}, from the observed {Y,,,...,
Y(A—1)m } only, such that the joint density g, of {Y;, ..., Y,,_; } satisfies

&Y, Yn 1) p

log >0 as n-—oo,
fV(Y15 caey Yn—l)

The construction of g, follows from Weiss (1974):

Given {Y,,,..., Y(x_1)m }, the joint conditional distributions of {¥;p;:j =1,
...,m— 1} are the same as the distributions of ordered values of m — 1 i.i.d. uniform
rv.’son (Yim, Yim+m),i=0, .., A—1,with Yy =0,Y, = 1.

For such a joint density g,, F,, and m given above, we can prove the following
theorem:

4r—-3

4r—1
up to the r-th continuous and uniformly bounded derivatives on [0, 1]. Then

Theorem 5.1: Suppose there exist an integer r 2 3 such that p < and [,,(x) have

&Y, ... Yn 1) P
-

og 0 asn—>o
fV(Yla sy Yn-l)

1

and the convergence rate of log (g,/f,) to zero is determined by n=3(1 =P)/2 jf p > 3/5,
orby n7? if p <3/5.

Proof: The arguments are similar to that of Weiss (1974). The details are omitted here.

Corollary 5.1: The rate at which log (g,/f,) converges to zero is maximized when
p =3/5.

Proof: From Theorem 5.1 we see that maximizing the convergence rate of log (g,/f,)
is equivalent to maximizing

3(1 —p)/2 if p>3/5

def
o(p) = , .
D if p<3/5

Clearly ¢(p) reaches its maximum value when p = 3/5.
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Conclusion About the Choice of m

1. We know that for fixed m, spacings tests, V, have no power against the alterna-
tives which are at a distance of the hypothesis by n=% when & > 1/4 (see e.g.,
Kuo and Rao 1981). Our results indicate that this can be improved by allowing m
to increase with », to infinity. Section 3 shows that V,, in (1.4) can always distin-
guish the alternatives which are apart from the hypothesis by (nm)~/4. Thus, if

11
the alternatives are F,(x) =x +n~%L,(x) for § € (Z, ) the choice m = 0(n*® 1)

for the length of the step will keep the power away from the significance level and
1.

2. In section 4, we say that the larger m gives higher efficiency (in the Pitman sense)
even when m depends on n. Therefore, for high efficiency, one should choose
m = 0(nP) with p close to 1. As we demonstrate in a companion paper, non-zero
power is achieved by tests symmetric in spacings (cf. equation (1.4)) against
alternatives at a distance of n~1/2 only when m = 0(n) i.e., only for tests based
on a finite number of spacings. See Remark 3.1. See also Del Pino (1979) for
similar comments. Section 5 shows that such a choice still retains the “asymptotic
sufficiency” of the spacings tests under an appropriate sequence of alternatives as
longasp <1.

3. However, Corollary 5.1 indicates that under suitable alternaitves, the rate of
convergence of log (g,/f,,) to zero is maximized by taking p = 3/5, that is, taking
m = 0(n3/%). Since the rapid convergence of log (g,/f,)) to zero may be interpreted
to mean that the loss of information is minimized, this suggests the optimal choice
of m to be m =0(n3/%) in this sense. For finite sample sizes, one can do simula-
tion studies, as in Dudewicz and van der Meulen (1981), to find an appropriate
step size m.

6 Proofs of Theorems 2.1 and 3.1

Before proving Theorem 2.1, we need Lemmas 2.1-2.4. First observe the distributional
equivalence of the normalized uniform spacings

AT =0, A=1}~{Z8)Z, :i=0,..,A—1}. 6.1)
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A Taylor expansion of h,(Z$™/Z,,) around Z{™ yields

%(VV—MV) N 2 (0 (ZS)Z,) = 1] = W, + Ry + R,

where

m A=
2 (m) —n' (m) _
\/_— ot ,,(Z )=ty — (1) (Zim 1]

(Zn - 1)2 m Al "
Ry = 22—3' N =Z (Zi(r:zn))zhu(aiu)
with ay, between Z\™/Z, and Z{™  and

=\n(Z, - Dvm [hu(l)——l > H, Zomyzimy,

nt-

Lemma 2.1: Let {r,} be a sequence of r.v.’s and {6;,,
P

gular array of r.v. such that max

0<i<A-1

exists § > 0 and M such that

P(lr,l=e, max |g,(0;)I<M)—->0 asv-ooo
0<i<A-1

and |g,(x)| <M forx€[1-6,1+8]andall v, thent, >0

Proof:
P(lr, | Ze)<P(lty| =€, max |g,(0;)I<M)
0<i<A—1

+P( max |g,(0;) >M)~0.
0<i<A-1

The proof follows from the assumption and the fact that

16, — 11> 6).

P( max lgv(gw)l>M)<P( max
0<i<A-— 0<i<A-1

i, 1=0,1,..,\
[0;, — 1] >0 as v > oo, If for every € > 0, there

(6.2)

(6.3)

O (64)

— 1} be a trian-
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Lemma 2.2: 1f n/m* - 0 for some k > 2, then

1zim - 11 50,

(a) max
0<i<A-1
Z(m)
(b) max ‘ Z(m)
o<i<i-1| Zp
Proof:
P{ max (ZEP—1>el< T PUZI 1>}
0<i<A—1 i=0 -

A
7 ElSn —m)P 2] = 0(1) >0

=AP{(S,, —m)? >m?*e*} <——1—
(em

(note that E(S,,, —m)**~2 = 0(m*~1)). This proves (a). (b) follows from

7(m) A—1 Z{m
P{ max |—= _~i(r:')‘>€ <z P ‘ tm —Z,-(ri.”’l>e
0<i<A-1 n i=0 n
_ A—1 ( 1 ) n
NP {Z,—11>=+ Z P |Z'")—1|>5 $AP 12, — 11> 71 =~ 0(1)

"

Lemma 2.3: If h,, is umformly bounded in a neighborhood of 1, and if n/m - 0 for
some k = 2, then R, —>O and R, Zo.

| (i )| <M, then from (6.3)

Proof: If max
0<i<A-1

A—1
T o@imes
=0

\/_(Zn - 1)]2

R <M
f 1|\2

1
VA
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since [\/n(Z,—1)]* >x3, a chisquare r.v. with 1 degree of freedom, Z,, £1 and
A\ = oo, Thus for every € >0,

P{IR =€, max |hh(ay)l <M} 0.
0<i

ISA—
Note that o, is between Z5™/Z, and Z™  hence by Lemma 2.2

- - s - P
max lop— 1< max {128z, -Z8 1+ 128M - 111 5 0.
0<i<A-1 0<i<A-1

Now it follows from Lemma 2.1 that R, £0. To show R, 5 0, use the expansion
’ ~ ’ n o 4 1 n >
mZim?) = h (1) + BDEE = 1)+ 5 1 Gu) i ~ 12,
where f3;,, is between ",-(,',:') and 1, and a similar argument as above. O

Lemma 2.4:

1 A-1 _
7 2 [mZ -1 - 11580, 2).
i=0

Proof: Note that {Z{™ :i=0,...,\ — 1} are independent,
ElmZ5) -1 -1]=0,

A-1 ) b

T var[mZ{M -1)?]= )\(2 + ——), and
i=0 m

A-1 )

T EmZ{™M -1)-11* =0Q).

i=0

Hence the lemma follows from the Lindberg Central Limit Theorem. O
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Proof of Theorem 2.1: By (6.2) and Lemmas 2.3 and 2.4
(6.5)

5T B 20 1= W 0y 1)

where
w=_’”_El[ @i -h (DM~
v \/X t=0 V m ) MV V( ) )]
1 1 m A1
——h”(l)\/i o > m(zim - -1+ % 2z [y (ra )25 = 1)°]
m A-1 "
vy i:Eo [hv(l)_ﬂu—z—r;;h (1]
(6.6)

= Wl(ll) + WI(J2) + CV: SaYv

with vy;, between Z(m) and 1. It is easy to see that E(W,) = E(WSV) = 0 hence E(W(
|1 (v, )| <M for all v, then Var (W?)) -0, implying

+C,)=0, and if max
0<i<A-1
WE? + €, 5 0 and so from (6.6),
(6.7)

Wy = WD +0,(1)
Finally, since Wi —>N(0 bz) by Lemma 2.4, the theorem follows from (6.5) and
O

(6.7).
For Theorem 3.1, we again prove Lemma 3.1-3.3 before proving the theorem

Lemma 3.1: Under the assumptions of Theorem 3.1

A—1 ~ "
S RE i) ODEPYRyTS™) S b1

i=
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Proof: From (3.1),
DY = TSP + 1), (X )]~ (6.8)
and so
ADSDRIATI) = b = {(INTSP Ry TS = b] + o(1). (6.9)
Now
ATy (WT i) =b 1< NPT S - By(1
max ] im u( Ttm |\ max l Tlm [hu()\sz ) u( )]l
0<i<A-—-1 0<i<A-1
+ max  [Rp(D)QATED = 1)1+ iky(1) = b|
0<i<A-1
< max A @ \TSPATE - 1))
0<i<A-1

+1AM)] max AT -11+0(1) 50
0<i<A-1

and 1) by Lemma 2.2 and (6.1). Thus by (6.9),

(m)

(where 0, is between AT},
(6.10)

ADIRIOTS™) 5 b,

It follows that

1 A1 2/ (m)\2,n (m) 2
© 2 P@m) QDG HOTSY) - bl
i=

A—l
S P(Rim )Dﬁ?’[
i=0

< max  ADSMRIOTI) - b)
0<i<A-1

£o

1 A=-1 - (m)
#1b1| 2 1K) Di” = 113
=
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Thus,

1 Az1 ~ "
5 2 Bm)ODG Y mOTE)

A—1

\ i=0

P X im)OADShUTI) + 0,(1) 5 1113 O

Let Uy = F,(X(3), i=0,1,...,n, so that Uy <... < U(,_y) are the order statistics
from a uniform [0, 1] distribution.

Lemma 3.2: Under the assumptions of Theorem 3.1,

ar M AL )y m, 7 &
Y, = 314 _20 [h\Ty, ') = hy(D)AT 13y 1, (Uppy ) > 0
i=

where U(,'m) < 01"7 < U(lm+m)-

Proof: In view of Lemmas 2.1 and 2.2, we can, without any loss of generality, assume

that |h0(6;,)| <M for all i and v, where 6, is either between Z4m and 1 or between

> ~ ’ " i i+ 1

Z,~(,',,")/Z,, and 1. Also let |I,|<M, |l,I<M. Let {;, € o —}\—} satisfy 1,($;) =
(i+1)/A A-1

N [ Il (u)du so that 2 L) =0. Let G, be the empirical d.f. of Utys - Uy -
i/A i=0

Then from the limiting distribution of Kolmogorov-Smirnov statistic (c.f. e.g. Billingsley
1968) we obtain

11(Gn(Uim)) — LG i)l M/, (6.11)
lv([fim) = lv(Gn(Uim N+t Op(n—l/2)~ (6.12)
Hence we can write

Yo=Y, + Y2v+0p(‘1), (6.13)
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where

mS14
Yio =573 MTim | &) AT = By (D],

m3/% A-1
Voo =25 Z AT l(Gn(lim ) =B Ga))UsO\Ti”) = (1))

Furthermore,
Yip~ -1_ 11w —\/;I(Z—’;_ D 120
Zy Zy
where
m3/4 A-1

Yiw=rm T bGu)Zi (Bn)ZiP - 1),

5/4 x-1
Y12v=(%\) E lu(g-w)hz(aw)(z(m))z,

with a;;, between Z,,:,")/Z,, and Z(m) and B,,, between Z(m) and 1. From our choice

of {;, and the independence of {Z("') =0,. —1} we have E(Y;;,)=0 and
5/2 1/2

Var (Y1,,) = )\—n—3—/7 O(r—n-) = ( ?T) O(1) =0, hence Y, £o. Also, it is easy to see

E|Y12,1 = 0. Thus Yy, 5 0. By (6.11) we have

m3/* M A-1

Yol <@ 3 N | IOT5E") = )

5/4 1 a-
m 1 1
<My EONTEPINTGY -1
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hence
5/4 7(m)  5(m) 5/4
m 1 A=t Zim' | Zim m
E|Y,,| <M? - = = -1/2
| 2u| 3/4 }\ o [ . | ) n3/4 O(m )—)0
Finally it follows from (6.13) that Y, £o. O

Lemma 3.3: Under the assumptions of Theorem 3.1,

) 2 = BTSN LK my) = o)) 5 0. (6.14)

A-1
Proof: Since Z [L,(X(im+m)) ~ Lu(X(im))] = L,(1) = L,(0) =0, the LHS of (6.14)

equals =0

m5/4 At ] (m) '
ay 034 120 [hu()‘Tim )_hu(l)]x[Lu(X(im+m))—LV(X(im))]

5/4 A—1 .
=ay s 2 IOTED) = h (D1 TN

where X(im) < Xim < X(im+m)- In view of (6.8) and Lemma 3.2, it suffices to show
that

5/4)\1

—m L Ik Iy OTS) = By Kim) = (Ui N 50 (6.15)

i=0

where ._Uim =FV~(/‘;im)€['U(1m)’ Uiim+m)). But since Uy = F (le) le
)Ly Xim ), 1K) = 1(Uim ) | <Ma, (nm)~'/*, thus (6.15) holds if

LASE o (m) (m) P
X Z [my\Tin”) = hy(1)AT 5y > 0. (6.16)
i=0
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Because of Lemmas 2.1 and 2.2, we need only to prove (6.16) when |h,(c;,)| <M for

a;, between )\T(,,',") and 1. But in that case it follows immediately that

v § (T i) = B (DT

1At
z AT - INTP |~ = £
My ZAOTm - NP~ 5 o 2

Proof of Theorem 3.1: From (3.1)
ADET = AT = =HONLy (X (im -+ m)) = Lo X (imy)] = =10 (K i ND .

Hence

e g |1y QD) = By T i)
m
R

L RIOTSE™YP )R R ) ADEDY: + 0, (P (¥))}

§ (O ML K +m)) ~ LK) ©)

m3/% A1 , (m)
=—av—n—§i— 'ZO hy(A\T i )k[LV(X(im+m))_LV(X(im))]
i=

Aml
2 BEim)ADEPYHOTI) * 0p(1) & 5 b I3

N | o—

by Lemma 3.2 and Lemma 3.3
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