
UC Berkeley
UC Berkeley Previously Published Works

Title
Chemical Bath Deposition of p‑Type Transparent, Highly Conducting (CuS) x :(ZnS)1–x 
Nanocomposite Thin Films and Fabrication of Si Heterojunction Solar Cells

Permalink
https://escholarship.org/uc/item/2r56165s

Journal
Nano Letters, 16(3)

ISSN
1530-6984

Authors
Xu, Xiaojie
Bullock, James
Schelhas, Laura T
et al.

Publication Date
2016-03-09

DOI
10.1021/acs.nanolett.5b05124
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/2r56165s
https://escholarship.org/uc/item/2r56165s#author
https://escholarship.org
http://www.cdlib.org/


 1 

Chemical bath deposition of p-type transparent, 

highly conducting (CuS)x:(ZnS)1-x nanocomposite 

thin films and fabrication of Si heterojunction solar 

cells    

Xiaojie Xu,†,‡ James Bullock,Δ,‡ Laura T. Schelhas,§ Elias Z. Stutz,ǂ,‡ Jose J. Fonseca, ¶,‡  

Mark Hettick,Δ,‡ Vanessa L. Pool,§ Kong Fai Tai,ǁ Michael F. Toney,§ Xiaosheng Fang,†  

Ali Javey,‡,Δ Lydia Helena Wong,ǁ and Joel W. Ager*,‡,¶ 

†Department of Materials Science, Fudan University, Shanghai, P. R. China 

‡Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA 

ΔElectrical Engineering and Computer Sciences and ¶Materials Science and Engineering, 

University of California at Berkeley, Berkeley, CA, USA 

§Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo 

Park, CA, USA   

ǂSwiss Federal Institute of Technology (EPFL), Lausanne, Switzerland 
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were synthesized by facile and low-cost chemical bath deposition.  Wide angle x-ray scattering 

(WAXS) and high resolution transmission electron microscopy (HRTEM) were used to 

evaluate the nanocomposite structure, which consists of sub-5-nm crystallites of sphalerite ZnS 

and covellite CuS.  Film transparency can be controlled by tuning the size of the 

nanocrystallites which is achieved by adjusting the concentration of the complexing agent 

during growth; optimal films have optical transmission above 70% in the visible range of the 

spectrum.  The hole conductivity increases with the fraction of the covellite phase and can be 

as high as 1000 S cm-1, which is higher than most reported p-type transparent materials and 

approaches that of n-type transparent materials such as indium tin oxide (ITO) and aluminum 

doped zinc oxide (AZO).  Heterojunction p-(CuS)x:(ZnS)1-x/n-Si solar cells were fabricated 

with the nanocomposite film serving as a hole selective contact.  Under 1 sun illumination, an 

open circuit voltage of 535 mV was observed. This value compares favorably to other 

emerging heterojunction Si solar cells which use a low temperature process to fabricate the 

contact, such as single-walled carbon nanotube/Si (370-530 mV) and graphene/Si (360-552 

mV).  

KEYWORDS. Transparent conducting materials, p-type, chemical bath deposition, 

heterojunctions, photovoltaics.  
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Transparent conducting materials (TCMs) are widely used in electronic devices such as solar 

cells,1,2 light emitting diodes (LED),3 flat-panel displays,4 and other optoelectronic devices.5,6,7 

Materials that possess both high transparency and conductivity are generally n-type (electron 

conducting).  Examples include all of the currently commercialized TCMs such as Sn-doped 

In2O3 (ITO),8,9 F-doped SnO2 (FTO),10,11 and Al-doped ZnO (AZO).12,13 In contrast, it has been 

substantially more difficult to realize the combination of high hole conductivity and optical 

transparency required for a practical p-TCM.14 As a result, no commericialized devices use 

p-TCMs; for example, efficient photovoltaic devices using p-type TCMs have yet to be 

demonstrated.15 

The first p-type TCM to be reported was delafossite CuAlO2 in 1997; it had a hole 

conductivity up to 1 S cm-1 and an average optical transparency of 70%.16  Since then, 

considerable efforts have been made to improve the performance of p-type TCMs.17,18  For 

example, replacing the Al in the delafossite structure with other elements such as Ga,19 Cr,20 or 

Fe,21 leads to films with high optical transmittance (>80% in the visible) but low conductivity 

(<100 S/cm ), particularly when compared to typical n-type TCMs (>1000 S/cm ).  Many other 

materials systems have been investigated such as layered oxychalcogenides (LaO)CuCh 

(Ch=chalcogenides e.g. S, Se),22 spinel oxides (AB2O4 e.g. NiCo2O4),
23 mixed oxides (e.g. 

In2O3-Ag2O).24  Still, the combination of high transparency and hole-conductivity required for 

a technologically useful p-TCM has not been achieved.14  It is also notable that many of the 

better performing p-TCMs are made with physical vapor deposition methods such as pulsed 

laser deposition (PLD),25 sputtering,26 and electron-beam evaporation27 and also typically 

involve either a high growth or annealing temperature.  
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In this context, development of a low temperature, tunable, and scalable method for 

producing high performance p-TCMs is clearly desirable.  In this study we employed chemical 

bath deposition (CBD). This technique is facile, low-cost, and scalable, and it can deposit films 

on almost any substrate.  It is commercially used in CdTe PV technology to deposit the 

electron collecting contact28,29 and has many applications in coating technology in general.30,31 

Also, CBD usually takes place in aqueous solution at a low temperature (30-80°C), which 

greatly increases the process compatibility.32  

Kudo and co-workers reported that Cu-doped ZnS had p-type conductivity in 1999.33  Since 

then, several efforts have been made to explore the Cu-Zn-S system as a p-type transparent 

conductor.  For example, Diamond et al.34 obtained p-type transparent copper-alloyed ZnS 

films by PLD at elevated temperature, with the optimal films exhibiting conductivities of 54 S 

cm-1 and optical transmission of 65% at 550 nm.  Solution based approaches have been 

investigated recently, as well.  For example, Yang et al.35 fabricated hole conductive Cu:ZnS 

films by electrochemical deposition; the optimized Cu:ZnS film showed an average 

transparency of 70% in visible range but low hole conductivity.  Very recently, Ortíz-Ramos et 

al.36 reported chemical bath deposition of Cu doped ZnS films.  At a reported composition of 

Cu0.1Zn0.9S the optical transparency was ca. 70% but the sheet resistance was relatively high, 

1.73x105 Ω/□.  While optical transparency has been achieved for p-type CuZnS films, their low 

conductivity currently limits application in electronic devices.  

In this work, we synthesized the full composition range (x = 1 to x = 0) of the 

(CuS)x:(ZnS)1-x nanocomposite system via chemical bath deposition with the aim of 

maximizing both transparency and hole conductivity.  By selection of the proper complexing 

agent, co-deposition of ZnS and CuS was achieved.  By adjusting the concentration of the 
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complexing agent, the crystallite size of the films can be tuned in order to optimize the 

transparency.  We also show that the hole conductivity is linked to the proportion of the CuS 

phase.  In this way, p-type transparent, highly conductive (maximum >1000 S/cm, sheet 

resistance ~ 200 Ω/□) films of nanocrystalline CuS-ZnS composites were achieved.  Notably, 

the hole conductivity is much higher than that of the state-of-the-art p-type TCMs.  

As a potential application of a highly conducting p-TCM, we investigated their use in solar 

cells.  In recent years, considerable effort has been devoted to developing hole selective 

contacts to Si as an alternative to traditional homojunctions formed by doping, as exemplified 

by the amorphous Si/Si heterojunction in the “heterojunction with intrinsic layer thin-layer” 

(HIT) approach originally developed by Sanyo.37,38  Simpler approaches have been investigated 

as well.  Hybrid c-Si/organic structures, such as PEDOT:PSS, haver been demonstrated to 

achieve open circuit voltages (Voc) of up to570 mV.39  However, they often suffer from 

environmental instability.  Transition oxides, such as MOx
40 and WO3,

41 were recently reported 

to function as hole selective contacts to n-Si with an impressive Voc of ~ 580 mV.  However, 

their fabrication process typically requires vaccum processing.  Carbon nanotubes and 

graphene have also been employed and open circuit voltages up to 550 mV have been 

observed.42–51  Here, we investigated chemical bath deposited- (CuS)x:(ZnS)1-x as a hole 

selective contact to n-Si.  Several proof-of-concept photovoltaic (PV) devices based on 

p-(CuS)x:(ZnS)1-x /n-Si were fabricated, and observed optimal 1-sun Voc value of 535 mV and 

Jsc value 21 mA/cm2, which suggests the potential for this material in photovoltaic devices and 

other optoelectronic devices. 

Synthesis strategy.  Several competitive processes, which are related to synthesis conditions 

(e.g. precursor concentration, complexing agent, and stirring rate), occur at the same time in 
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chemical bath deposition, as shown schematically in Figure 1.32,52  In particular, both 

homogeneous nucleation, which leads to particle formation in solution, and heterogeneous 

nucleation, which results in film formation on the substrate, can occur simultaneously.  

Moreover, film growth can occur via an ion-by-ion process or by deposition of clusters formed 

as a result of homogeneous nucleation.  To obtain smooth and continuous films, it is desirable 

to have heterogeneous nucleation followed by ion-by-ion growth. Thus, the suppression of 

cluster-by-cluster growth is essential for the formation of good-quality films in CBD.53  In 

principle, ion-by-ion growth becomes dominant when the activity of the reacting cations and 

anions is higher than that of the particles in solution.54  

 

Figure 1 Schematic illustration of the growth mechanism of (CuS)x:(ZnS)1-x films via chemical 

bath deposition. Homogeneous nucleation of CuS and ZnS nanoparticles is represented by red 

and green dots, respectively.  This process leads to cluster by cluster film growth (cyan arrow). 

The ion by ion growth process is represented by the dashed red and green arrows.   
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The CBD growth mechanism of metal sulfide (MS) thin films is well known as the product 

of the reaction between M-[complexing agent]x+  ions and S2− ions in solution or on the 

substrate surface.55,56 Since the Ksp (solubility product at room temperature) of CuS (5x10-48) is 

much lower than that of ZnS (3x10-24),57 CuS would be expected to have a much larger 

deposition rate.  Thus the complexing agent plays a critical role not only in the growth rate of 

the films, but also in influencing the stoichiometry and crystal size since it controls the release 

rate of metal ion in the reaction process.58  Here, we used Na2EDTA, a non-toxic and 

inexpensive complexing agent.  It has been used to make high-quality nanocrystalline metal 

sulfide films.59,60  Compared with other complexing agents, such as Na3-citrate, which has a 

relatively stronger binding to Zn2+,55 ETDA forms a stronger complex with Cu2+ (stability 

constant  = 18.8) compared to the complex with Zn2+ (16.5), so it will function to slow down 

the precipitation of CuS, allowing codeposition of CuS and ZnS despite their difference in Ksp 

values.   

Structural and Morphology Analysis.  (CuS)x:(ZnS)1-x films were synthesized by chemical 

bath deposition at a low temperature (80°C) for 1 h (See SI for detailed description of growth 

conditions and measurement of the growth rate).  A series of films of the similar thickness (~50 

nm) with various Cu concentrations, from x=0 to x=1 (x is the molar ratio of Cu to (Cu+Zn)), 

were obtained by changing the starting ratio of Cu precursor to Zn precursor. Particle induced 

X-ray emission (PIXE) was used to determine the stoichiometry of films while Rutherford 

backscattering spectrometry (RBS) was utilized to measure the thickness of the films.  

Figure 2 shows plan view transmission electron micrographs (TEM) of the (CuS)x:(ZnS)1-x 

films with x varying from 0 to 1.  It can be seen clearly that the Cu concentration plays an 

important role in the microstructure of the films.  Pure ZnS films (x=0) of compact large 
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nanoparticles are formed with sizes ranging from 100-150 nm.  As the Cu content is increased 

to 30%, Figures 2b and 2c, the films are mainly assemblies of tightly bound tiny grains with 

several protruding larger aggregates scattered within the films. It is also seen, with increased 

Cu concentration, that the shape of the small grains forming the matrix becomes elongated 

whilst the size of the dispersed aggregates becomes smaller.  With further increases in the Cu 

content, as can be seen from Figures 2d, e and f, the films composed of smaller granules (<10 

nm) are more uniform and smooth, with no observation of larger aggregates as that of Zn rich 

samples.  The (CuS)0.65:(ZnS)0.35  film shown in Figure 2d shows the best uniformity with the 

smallest grain sizes, which can also be seen from the corresponding AFM images in Figure S2 

and SEM images in Figure S3.    

 

Figure 2. TEM images of nanocomposite (CuS)x:(ZnS)1-x film with different Cu concentrations: 

a) x=0; b) x=0.17; c) x=0.3; d) x=0.65; e) x=0.85; f) x=1. 
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Wide Angle X-ray Scattering (WAXS) was used to identify the crystalline phases present in 

the films. Shown in Figure 3, sphalerite ZnS is detected in ZnS reference sample. In the Cu 

concentration range 0<x<0.45, the signature peaks of sphalerite ZnS are gradually weakened, 

while the mixed phases of sphalerite ZnS and covellite CuS can be seen for sample 

(CuS)0.45:(ZnS)0.55. When further increasing x, covellite CuS becomes dominant and no 

obvious ZnS phase can be seen. This phase evolution  is also consistent with the result obtained 

from Selected Area Electron Diffractions (SAED), as shown in Figure S5. It is also interesting 

to notice the broadening trend of the peaks before x reaches 0.65, indicating diminishing 

crystallite size.  The average coorelation length of these samples is less than 10 nm.  

Afterwards, the peaks become slightly narrowed due to the larger nanocrystals, which agrees 

well with the results of the TEM images.  The calculated average nanocrystal size for each film 

can be seen in Fig. S6.  Some degree ofoxidation is seen in these films from observing the 

sulfur K-edge in XANES as shown in Fig. S11.  It may result from dissolved oxygen in the 

growth solution.   
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Figure 3. WAXS patterns of (CuS)x:(ZnS)1-x film at different Cu concentrations, from x=0 to 

x=1. The expected peak positions of covellite CuS and sphalerite ZnS are indicated by lines at 

the top of bottom of the plot, respectively.   

Optical Properties.  Figure 4 shows the optical transmittance and estimated band gap of 

(CuS)x:(ZnS)1-x nanocomposite films. Pure ZnS film has a band gap of 3.6 eV, close to 

literature reports.61,62 Also, as expected, CuS films have an optical gap of ~2.1 eV and <40% 

transmission in the visible region.  The direct band gap of CuS (2.1 eV) matches well with 

previously reported values.63  All of the nanocomposite films have higher transparency than 
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that of CuS.  For example, the (CuS)0.65:(ZnS)0.35 has a peak transparency near 600 nm of 75% 

and is nearly as transparent as the ZnS control film.  In Zn rich samples, from 0<x<0.3, the 

transmittance decreases with increasing Cu content.  For (CuS)x:(ZnS)1-x films (0.3<x<1), the 

transparency becomes dependant on the crystal domain size of the films. Smaller crystallites 

were found for x >0.5, with larger crystallites at lower CuS content.   

As shown in Fig. 4a, the film transmittance does not increase  monotonically with ZnS 

content, which suggests that more than one factor plays a role in transparency.  In CuS films, it 

has been reported that smaller crystallites lead to higher transparency by minimizing scattering 

losses.64  Here, as the crystal sizes of some films are just a few nanometers, such as 

(CuS)0.65:(ZnS)0.35 which has an average nanocomposite size of <5 nm (See HRTEM Image in 

SI Fig. S5 and Scherrer calculation in Fig. S6), the quantum confinement effect should be also 

considered as it can further improve the transparency as a result of lower absorption. Control 

experiments were conducted to investigate this hypothesis. At nearly the same x (0.85±0.02) 

in (CuS)x:(ZnS)1-x, we controlled the crystallite size through the adjustment of the complexing 

agent concentration and observed that the transmission varied between 45% for the largest 

crystallites and and 65% for the smallest (Figs. S7 and S8).  This experimental  result correlates 

well with first principles calculations of the exciton energies as a function of quantum dot size, 

which predict increases in the band gap and optical transmission for diameters less than 5 nm.65 
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Figure 4. (a) Transmission spectra of (CuS)x:(ZnS)1-x film (thickness~50 nm) and (b) Tauc plot 

of (CuS)x:(ZnS)1-x at different Cu concentrations, from x=0 to x=1. 

To estimate the direct optical gap, Tauc plots generated from the absorption coefficients are 

utilized, as shown in Figure 4b.  Starting from CuS, the band gap is opened by introduction of 

ZnS into the system, with the range of 2.1 eV to 3.6 eV achievable by controlling the Cu 

concentration.  It is noteworthy that the optical band gap of many of the (CuS)x:(ZnS)1-x films 

is larger than previously reported for Cu0.6Zn0.4S (2.14 eV)66 films due to the quantum size 

effect caused by the much smaller grains produced here.  

Electrical Properties.  As indicated by Hall and Seebeck coefficient measurements (See Fig 

S9), all the (CuS)x:(ZnS)1-x films, expect for x=0, display p-type conductivity.  For each 

composition, more than 3 samples were prepared and tested to ensure the reproducibility of the 

conductivity.  Overall, the hole conductivity is found to be positively correlated to Cu 

concentration as can be seen in Figure 5b. A maximum conductivity of more than 1000 S/cm in 

films with x=0.85 was measured, which is much higher than most of the reported p-TCMs.17,27  

It is interesting that the conductivity of the film with x = 0.95 is lower than that of both the 

x=0.85 film and a pure CuSx film; we do not know the origin of this effect.  Hole concentration 
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p and mobility μ were measured with a recently-developed rotating parallel dipole line (PDL) 

Hall system.67 It operates based on lock-in detection of the Hall signal under an oscillating 

magnetic field. The sensitivity of this system is key to extracting the small Hall signals of low 

mobility films like our (CuS)x:(ZnS)1-x layers. As shown in Figure 5c, μ appears to increase 

gradually with Cu concentration, within the range of 0.17< x <0.65, and then decrease. 

Compared with other samples, the high conductivity of the most transparent film 

(CuS)0.65:(ZnS)0.35 comes from the relatively higher mobility. In Figure 5d, p varies from (1 – 

10) × 1020 cm3, which is in the range of a degenerately doped semiconductor.  As shown 

Figure 5a, the conductivity is independent of temperature which confirms the degenerate hole 

conductivity.  This type of band conduction is similar to some other p-type metallic conductors, 

such as CuAlS2.
19 Furthermore, the valence band maximum (VBM) which aligns with the 

Fermi level, as deduced from the XPS measurements shown in Fig S10, again suggests the 

degenerate conductivity of (CuS)x:(ZnS)1-x films.  

 

Figure 5. (a) Hole conductivity of the (CuS)x:(ZnS)1-x films at different Cu concentrations as a 

function of temperature; (b) Hole conductivity, (c) Carrier mobility and (d) Carrier 

concentrations of the (CuS)x:(ZnS)1-x nanocomposite films at room temperature as a function of  

Cu concentrations from AC Hall measurements. 
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Figure 5 reveals that while the mobility of 0.5-2.0 cm2 V-1 s-1 is comparable to previously 

studied p-type transparent materials such as CuAlO2,
68 Li:Cr2MnO4,

69 and Mg:Cr2O3,
27 the 

hole concentration is substantially higher (1-9x1021 cm-3) and is responsible for the overall 

higher hole conductivity. Covellite CuS is well known as a p-type conductor.70,71 Despite the 

simplicity of its chemical formula, CuS has a complex structure consisting of alternating planar 

CuS layers and Cu2S2 double layers.71 In this copper-deficient compound, it is the copper 

vacancies that leads to the high hole concentration.72,73 Thus, we attribute the hole conduction 

in (CuS)x:(ZnS)1-x nanocomposite films to the CuS phase.  The conducting network formed by 

CuS (even in Zn rich samples) produces the degenerate p-type conductivity in the films.   

As discussed above, transparency is dependent on both Cu content and crystal sizes, while 

Cu content plays an important role in the hole conductivity as well.  The tradeoff between 

conductivity and transparency is illustrated in Fig. S12.  Of the films with <1000 / sheet 

resistance, the highest transmission is found at x = 0.65 (smallest crystallite size,  Fig. S6) and 

the lowest sheet resistance is found at x = 0.85.  To maximize the properties of p-type TCM, it 

is seen to be beneficial to increase the Cu concentration to achieve high p-type conductivity 

whilst maintaining the transparency by decreasing the grain sizes within the films. This is the 

key to high hole conductivity with relatively good transparency in p-type TCMs.  

Photovoltaic devices.  To demonstrate the application of p-(CuS)x:(ZnS)1-x films in PV 

devices, several proof-of concept (CuS)x:(ZnS)1-x/Si heterojunction solar cells were fabricated. 

The schematic structure of a typical heterojunction is shown in Figure 6a.  Further fabrication 

details and a description of the optimization process are contained in the SI.  Notably, we found 

that a ~100nm (CuS)x:(ZnS)1-x film made with two consecutive CBD steps provided superior 

performance.  Ohmic grid contacts on p-(CuS)x:(ZnS)1-x were achieved by electron-beam 
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evaporating Cu/Au (4 nm/60 nm) as front contacts, while Mg/Ag composite (100 nm) was 

thermally evaporated as the back contact to n-Si.  The J-V behavior, which was measured under 

standard test conditions (1000 W/m2, air mass 1.5 global (AM1.5g) spectrum and 25 °C) for the 

1x1 cm2 device, is shown in Figure 6a. For the p-(CuS)0.65:(ZnS)0.35/n-Si device, a JSC and VOC 

of 21 mA/cm2 and 535 mV were observed. The obvious effects of both series and shunt 

resistances are seen resulting in a modest fill factor (FF). The shunt path is likely to arise from 

pinholes in the solution-prepared thin film, which can potentially be improved by optimization.  

The series resistance from both the front and back contacts, is the main factor that inhibits the 

performance of the device.  

 

Figure 6. (a) Schematic illustration of the structure of  (CuS)0.65:(ZnS)0.35  thin film solar cell. (b) 

The J –V characteristics of (CuS)0.65:(ZnS)0.35  thin film solar cell device fabricated via chemical 
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bath deposition. (c) EQE, IQE and Reflection of the (CuS)0.65:(ZnS)0.35  thin film solar cell. (d) 

Schematic energy band diagrams of the heterojunction of (CuS)0.65:(ZnS)0.35 and n-type silicon.  

The external quantum efficiency (EQE) and internal quantum efficiency (IQE) are shown in 

Figure 6c. The IQE is 80% or higher throughout most of the visible range, indicating efficient 

collection of holes via the heterointerface, particularly for those generated near the surface 

(short wavelength).  The EQE is similar to that reported for graphene/n-Si junctions.50  The 

rectifying behavior in the dark and photocurrent under one sun of the p-(CuS)0.65:(ZnS)0.35 /n-Si 

device can be understood via the schematic energy band structure of this heterostructure 

depicted in Figure 6d. An asymmetrical energy barrier, which is formed at the interface of the 

heterojunction due to the differences in the band gap structures, electron affinity and work 

function of Cu0.65Zn0.35S and Si, allows the low resistance collection of holes and simultaneous 

blocking of electrons.74  

While our simple heterojuncton Si PV device with a non-passivated interface cannot be 

expected to rival the performance of the state-of-art commercial heterojunction silicon solar 

cells, which typically employ a sophisticated silicon passivation structure,38 it clearly shows the 

potential of the transparent, conductive (CuS)x:(ZnS)1-x film as a hole contact to n-type silicion.  

With a demonstrated VOC  of 535 mV, the VOC  of our p-(CuS)x:(ZnS)1-x / n-Si device is 

comparable to that of the best-in-class single-walled carbon nanotube / Si (530mV)75 (where 

the reported VOC  of SWCN/Si devices is within the range of 370-530mV)42–44,46 and graphene / 

Si (540mV)50 PV devices (where the reported VOC  of graphene /Si device is within the range of 

359-540mV).47–49  

Given that anti-reflection or light trapping was not considered in this cell, as can be seen 

from the reflectance spectrum in Figure 6c, various promising improvements can be 
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envisioned. For example, as the performance of the cells is mainly limited by fill factor, which 

results from the non-optimized film thickness, front and back contact and band alignment of 

(CuS)x:(ZnS)1-x and silicon. The thickness and composition of (CuS)x:(ZnS)1-x film can be 

tuned to improve the performance. A passivation layer with (CuS)x:(ZnS)1-x contact openings 

or patterned back grid in combination with a passivating dielectric can be implemented in the 

cell structure to improve the VOC. A higher Jsc can be acquired by taking light trapping 

structures and/or anti-reflection layer into consideration.  

In summary, we have fabricated p-type transparent, highly conductive p-(CuS)x:(ZnS)1-x 

nanocomposite films via the simple, low-cost chemical bath deposition. We achieved a very 

high hole conductivity >1000 S/cm with x=0.85, similar to PVD-deposited FTO76 and AZO77,78 

at a similar process temperature.  An optical transparency of around 67% is obtained for film 

thickness of 50 nm.  We find the key to hole conductivity in this system is the covellite CuS 

phase, which forms the network of hole carriers. At the same composition, the key to 

transparency is to minimize the crystal sizes of the films, as smaller crystal domains will not 

only reduce light scattering, but also widen the band gap of the films due to the quantum effect.  

These films were also demonstrated on simple PV devices.  An optimal VOC value of 535mV 

and Jsc values of 21 mA/cm2  were achieved with a p-(CuS)x:(ZnS)1-x /n-Si device.  

The development of p-type transparent conducting (CuS)x:(ZnS)1-x film and demonstration of 

simple silion heterojunction PV devices meet the desire of the industry for a low-cost, low-

temperature, fully solution-processed cell architecture. The combination of high p-type 

conductivity, high transparency, and a low-cost, low-temperature synthesis method for 

(CuS)x:(ZnS)1-x may also widely open the design space for new device applications, such as 
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flexible electronics, hole transport layers in halide perovskite solar cells, recombination layers 

in tandem solar cells, and self-powered UV-detectors.   

ASSOCIATED CONTENT 

Supporting Information.  Synthesis procedure; characterization details; growth rate; atomic 

force microscopy; SEM plan view and cross-section image; TEM, HRTEM, and SAED; 
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transparency; Seebeck coefficient measurements; XPS measurement; S edge XANES spectra; 

transparency and conductivity of nanocomposite films as a function of composition; additional 

PV devices.   
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Synopsis.   

A nanocomposite p-type transparent conductor with low sheet resistance was synthesized by 

a low-cost, scalable process and used as a charge selective contact in a silicon solar cell.   

 




