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GLOBAL IDENTIFICATION IN NONLINEAR SEMIPARAMETRIC
MODELS

IVANA KOMUNJER

Abstract. This paper derives primitive conditions for global identification in non-

linear simultaneous equations systems. Identification is semiparametric in the sense

that it is based on a set of unconditional moment restrictions. Our contribution

to the literature is twofold. First, we derive a set of unconditional moment restric-

tions on the observables that are the starting point for identification in nonlinear

structural systems even in the presence of multiple equilibria. Second, we provide

primitive conditions under which a parameter value that solves those restrictions

is unique. We apply our results a nonlinear IV model with multiple equilibria and

give sufficient conditions for identifiability of its parameters.

Keywords: identification, structural systems, multiple equilibria, correspon-

dences, semiparametric models, proper mappings, global homeomorphisms

1. Introduction

The problem of identification of economic relations has a long standing history,

with systematic discussions given in a collective work of the Cowles foundation edited

by Koopmans (1950).1 In a nutshell, the identification problem is concerned with

the unambiguous definition of the parameters to be estimated. Thus, it precedes

the problem of statistical estimation. When identification fails, the properties of

conventional statistical procedures are likely to change (see, e.g., Phillips, 1989; Choi

and Phillips, 1992). The objective of this paper is to provide primitive conditions

under which identification is guaranteed to hold.

Affiliation and Contact information: Department of Economics, University of California at San
Diego, komunjer@ucsd.edu.

1A review of historical and recent developments on identification in economics can be found in
Dufour and Hsiao (2008).
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2 KOMUNJER

Based on the work of Koopmans and Reiersøl (1950), a complete treatment of

identification in a parametric context was given in Rothenberg (1971) and Bowden

(1973). Using an approach based on information criteria, they provided conditions

under which parametric models are locally and globally identified. Unfortunately,

such results may only be applied in models in which it is possible to specify the

likelihood function of the dependent variables.

Situations in which the distribution of the dependent variables is left unspeci-

fied require conditions for identification in a nonparametric context. Those have

been derived in the work of Brown (1983), Roehrig (1988), Matzkin (1994, 2005),

and Benkard and Berry (2007), among others. Common to all the studies is an as-

sumption of independence between the (observed) explanatory variables and latent

disturbances to the structural system.

Semiparametric models, which are the focus of this paper, fall in between the

fully parametric and nonparametric models. They arise when the distribution of

the disturbances is only known to satisfy certain moment restrictions. These are

typically expressed as conditions for orthogonality between the disturbances and

instruments—functions of explanatory variables—and are hence weaker than an as-

sumption of independence.

The present paper examines identification in semiparametric models defined by

unconditional moment restrictions. Thus, its contributions are complementary to

the existing literature that considers models with conditional moment restrictions,

such as Chesher (2003), Newey and Powell (2003), Chernozhukov and Hansen (2005),

Severini and Tripathi (2006), Chernozhukov, Imbens, and Newey (2007), for example.

It is worthwhile distinguishing these two cases, as identification in some unconditional

moment models implied by the conditional ones may fail even when the conditional

model is identified. Examples of such failures can be found in Dominguez and Lobato

(2004).

The basic semiparametric results for linear simultaneous equation systems under

linear parameter constraints were given in Koopmans (1950). These criteria are the
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well-known rank conditions that were extended by Fisher (1961, 1965) to nonlinear

systems that are still linear in parameters. An important step towards a full treat-

ment of identification in general nonlinear models was made by Fisher (1966) and

Rothenberg (1971). Their insight was to treat the identification problem simply as

a question of uniqueness of solutions to nonlinear systems of equations.

Both Fisher’s (1966) and Rothenberg’s (1971) results exploit the uniqueness condi-

tions given in Gale and Nikaidô (1965).2 In particular, they require that the derivative

matrix of the system of (nonlinear) equations be weakly positive quasi-definite, i.e.

that its symmetric part be positive semi-definite and that its Jacobian be positive

everywhere. In many instances, however, this approach produces sufficient condi-

tions for global identification that are—in the words of Rothenberg (1971)—“overly

strong”.3

This paper makes two contributions to the literature on identification in a semi-

parametric context. First, we derive a set of unconditional moment restrictions that

are the starting point for identification in nonlinear structural systems even in the

presence of multiple equilibria. Second, we provide primitive conditions under which

a parameter value that solves those restrictions is globally unique. Our uniqueness

results exploit the sufficient conditions for proper mappings to be homeomorphic, pi-

oneered by Palais (1959). Hence, we are able to relax the weak positive quasi-definite

condition of Gale-Nikaidô-Fisher-Rothenberg.

The paper is organized as follows. Throughout, we consider nonlinear systems of

simultaneous equations in which the distribution of the disturbances and instruments

is known to satisfy a set of unconditional moment conditions. In Section 2 we show

2Specifically, they rely on the results of Theorem 6w (p.89) in Gale and Nikaidô (1965).
3Take for example a mapping a : R

2 → R
2 which to each (x1, x2) ∈ R

2 assigns a(x1, x2) =
(x1 + x2 + x3

2,−x1 − x3
1 − x2), and let A(x1, x2) be the derivative 2 × 2-matrix. It is easy to check

that its symmetric part (A(x1, x2)+A(x1, x2)′)/2 is neither positive semi-definite nor negative semi-
definite; moreover the Jacobian detA(x1, x2) of the system remains positive everywhere except at
the origin where it vanishes. Hence, the weak positive quasi-definite condition of Gale-Nikaidô-
Fisher-Rothenberg fails to hold; still, the system of equations a(x1, x2) = (0, 0) has a unique
solution x1 = x2 = 0 in R

2 (see p.618-619 in Chua and Lam, 1972).
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how these conditions give rise to the moment restrictions on the distribution of the

explanatory and dependent variables that are the starting point for identification.

This result is non-trivial to derive as we allow the structural system to possess mul-

tiple equilibria. Because of equilibrium multiplicity, we model the relation between

the disturbances and dependent variables as a correspondence rather than a single-

valued mapping. The use of correspondences is relatively novel in the econometric

literature (see, e.g., Galichon and Henry, 2006; Beresteanu and Molinari, 2007).

In Section 3, we consider a simple example which gives the key idea behind the

main result of the paper. By the same token, we illustrate and discuss the difficulties

of finding primitive conditions for identification in general nonlinear models.

Our main result is in Section 4. It derives a set of conditions which guarantee

that a solution to a nonlinear system of equations is unique. Two of those conditions

are key to the identification: one concerns the Jacobian of the system, while the

other excludes “flats”. In particular, we assume that the Jacobian of the system

is either everywhere non-negative or everywhere non-positive. When the system is

continuously differentiable with respect to the structural parameter, this requirement

is weaker than the full rank conditions given in Theorem 5.10.2 in Fisher (1966) and

Theorem 7 in Rothenberg (1971).4 In other words, we allow the rank of the derivative

matrix to be less than full, provided this only happens over sufficiently small regions

in the parameter space. The latter is our second main requirement: that the system

does not have any “flats”, i.e. does not remain constant over regions in the parameter

space that have nonzero dimension. Our results exploit well established results of

nonlinear functional analysis.

We conclude in Section 5 with an application of our results to a nonlinear IV model

with multiple equilibria. The model is nonlinear in both variables and parameters,

and no transformation reduces it to linearity. In addition the model fails to satisfy

Gale-Nikaidô-Fisher-Rothenberg assumptions. We show however that it satisfies the

4It is worth pointing out that we place conditions only on the sign of the Jacobian. Unlike Gale-
Nikaidô-Fisher-Rothenberg, we do not make any positive definiteness assumptions on the derivative
matrix of the system.
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conditions of our Corollary 2, thereby establishing the identifiability of the model

parameters. All of our proofs are found in an Appendix.

2. Semiparametric Identification in Nonlinear Structural Models

Let an economic theory specify a system of nonlinear simultaneous equations:

(1) ρ(Y,X, θ) = U

in which ρ : DY ×DX×R
k → DU is a known mapping, and DY ⊆ R

G, DX ⊆ R
K , DU ⊆

R
G, with G < ∞ and K < ∞. The variables entering into these equations consist

of: a set of observed dependent variables Y ∈ DY , a set of observed explanatory

variables X ∈ DX , a finite dimensional parameter θ ∈ R
k (k < ∞), and a set

of latent variables U ∈ DU . For example, U can be thought of as disturbance or

unaccounted heterogeneity in the model. The object of interest is the true value θ0

of the structural parameter θ in Equation (1).

We begin our discussion of semiparametric identification with a description of a

structure relevant in the context of nonlinear simultaneous equations systems such

as the one in Equation (1).

2.1. Structure. Say that the random variables X and U take values x ∈ DX and

u ∈ DU , respectively. Fix x ∈ DX , θ0 ∈ R
k and u ∈ DU , and consider the structural

equations ρ(y, x, θ0) = u. Under what conditions can those equations be solved for

y ∈ DY in terms of x, u and θ0? In other words, when is it the case that the structural

system in Equation (1) admits at least one equilibrium for the dependent variable?

An equilibrium for Y is guaranteed to exist whenever for a given (x′, θ′0)
′ ∈ DX×R

k

the mapping y �→ ρ(y, x, θ0) is surjective from DY onto DU . Hereafter, we shall

consider the case in which DU = R
G and DY = R

G. We start by assuming the

following:

Assumption A. The mapping (y, x) → ρ(y, x, θ0) is in C1(RG × DX).

In order to guarantee surjectivity, we impose the following additional requirement:
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Assumption B. For every x ∈ DX , lim|y|→∞[ρ(y, x, θ0)
′y]/|y| = ∞.

Assumptions A and B ensure that given (x′, θ′0)
′ ∈ DX × R

k the mapping

y �→ ρ(y, x, θ0) is surjective on R
G, i.e. that the inverse image by ρ(·, x, θ0) of any

point in R
G is nonempty.5 Surjectivity guarantees that there is always at least one

equilibrium for Y . It does not guarantee, however, that this equilibrium is unique.

Yet, equilibrium uniqueness plays an important role in computing the distribution

of the dependent variable induced by that of the explanatory variable and the dis-

turbance.

Let V ≡ (X ′, U ′)′ be the random variable that takes values v ≡ (x′, u′)′ in DX×R
G

and call FXU the associated measure. When for a given (x′, u′, θ′0)
′ ∈ DX ×R

G ×R
k,

the structural equations ρ(y, x, θ0) = u can be globally uniquely solved for y ∈ R
G

in terms of x, u and θ0, then one can define (explicitly or implicitly) a single-valued

map y = m(x, u, θ0) that is continuous in x and u. The transformation T which

to each v associates w ≡ (x′, y′)′ is then a single-valued mapping (or function) T :

DX × R
G → DX × R

G that is continuous. This leads to the usual definition of the

image measure FXY on DX × R
G of the random variable W ≡ (X ′, Y ′)′; we have

W = T (V ) so FXY = FXU ◦ T−1. Hence, the distribution of the observables Y and

X is generated by the structure S = (θ0, T, FXU).

When given (x′, u′, θ′0)
′ ∈ DX ×R

G×R
k, multiple solutions for y ∈ R

G are possible

that satisfy ρ(y, x, θ0) = u, we no longer deal with a single-valued map from V to W

but a correspondence T : DX×R
G ⇒ DX×R

G. Multiple equilibria for the dependent

variable are likely to arise in structural systems that are nonlinear in variables. A

complete determination of the distribution of the observables X and Y must then

include a rule according to which a particular y is chosen from the set of solution

points.

More formally, for any v = (x′, u′)′ ∈ DX × R
G we shall let Γv ≡ {w ∈ DX × R

G :

w = (x′, y′)′ and ρ(y, x, θ0) = u}. Then, the correspondence T associates to every v ∈

5See Step 1 in the proof of Proposition 1.
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DX×R
G a set Γv ⊆ DX×R

G. The random variable W is obtained by transforming V

with a single-valued map t that belongs to the class of measurable selections SelT of

T , whereby Sel T = {t : DX×R
G → DX×R

G Borel-measurable and such that t(v) ∈
T (v) for almost every v ∈ DX × R

G} (see, e.g., Aliprantis and Border, 2007). To-

gether, Assumptions A and B suffice to show that the set SelT is nonempty; hence

W = (X ′, Y ′)′ is well defined. We then have the following result:

Proposition 1. Let Assumptions A and B hold. Then Sel T 	= ∅, and the struc-

ture S = (θ0, t, FXU) with θ0 ∈ R
k and t ∈ Sel T generates the distribution of the

observables X and Y .

In particular, the image measure of the observables X and Y is then again obtained

as FXY = FXU ◦ t−1. Note that our construction of FXY does not allow for any

extrinsic randomness in the choice of equilibria for Y . This, however, is not a serious

restriction on the attainable distributions of Y when FXU is atomless, as shown by

Jovanovic (1989).

2.2. Identification Condition. The true value θ0 of the structural parameter θ is

said to be identifiable if every structure S∗ = (θ∗0, t
∗, F ∗

XU) whose characteristics are

known to apply to S = (θ0, t, FXU) and which generates the same distribution of the

observables FXY as S (i.e. is observationally equivalent to S), satisfies θ∗0 = θ0 (see,

e.g., Koopmans and Reiersøl, 1950; Roehrig, 1988). Here, we shall assume that S is

known to satisfy:

(2) E[G(U,X, θ0)] = 0

where G : R
G × DX × R

k is a known moment function of U , X and θ.

The nature of the restrictions in Equation (2) is semiparametric: while the func-

tional form of the distribution FXU is left unspecified, a number of unconditional

moment conditions relating X, U and θ0 are known to hold. When the moment

function is of the form G(U,X, θ) = A(X, θ)U then the moment restrictions in (2)

reduce to the familiar orthogonality conditions between the disturbance U and a
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k × G matrix of instruments A(X, θ). Weaker than independence, such orthogo-

nality conditions are typically found in models in which θ0 is to be estimated via

Instrumental Variables (IV) methods.

Using the results of Proposition 1, the expectation of G(U,X, θ0) (computed under

FXU) can be related to that of G
(
ρ(Y,X, θ0), X, θ0

)
(computed under FXY ). Since t

is Borel-measurable, we have FXY = FXU ◦ t−1. Then,

E
[
G

(
ρ(Y,X, θ0), X, θ0

)]
=

∫
DX×RG

G
(
ρ(y, x, θ0), x, θ0

)
dFXY (x, y)

=

∫
DX×RG

G(u, x, θ0) dFXU(x, u)

= E[G(U,X, θ0)]

by a simple change of variable w = t(v) with v = (x′, u′)′ and w =

(x′, y′)′. Under two observationally equivalent structures S and S∗ we then have

E
[
G

(
ρ(Y,X, θ0), X, θ0

)]
= 0 and E

[
G

(
ρ(Y,X, θ∗0), X, θ∗0

)]
= 0, where both expec-

tations are taken with respect to FXY . This leads to the following necessary and

sufficient condition for identification of θ0, that is valid in simultaneous equations

systems in (1) known to satisfy the unconditional moment restrictions in (2):

Definition 1. Let Assumptions A and B hold. Assume that the observables X and

Y are generated by a structure S = (θ0, t, FXU) in which θ0 ∈ R
k, t ∈ Sel T , and

E[G(U,X, θ0)] = 0. Then θ0 is identifiable if and only if E
[
G

(
ρ(Y,X, θ), X, θ

)]
= 0

has a unique solution θ = θ0 on R
k.

To simplify the notation, we shall hereafter let:

r(Y,X, θ) ≡ G
(
ρ(Y,X, θ), X, θ

)

for every θ ∈ R
k. The expectation E[r(Y,X, θ)] in Definition 1 is taken with respect

to FXY obtained under the true parameter value θ0. In order to guarantee that the

expectation is well defined, we impose the following:

Assumption C. For every θ ∈ R
k, E[r(Y,X, θ)] exists and is finite.
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We now derive a useful property that is equivalent to that of identifiability of θ0

given in Definition 1. For this, we introduce two new objects. Let R be any non-

stochastic k × k matrix with full rank. We allow R to depend on the parameter θ

and its true value θ0, as well as on the distribution of the observables FXY , so long

as this dependence remains deterministic and such that det R never vanishes. In

addition, let h : R
k → R

k be any mapping that is a homeomorphism.6 Similar to

previously, we allow the functional form of h to depend on θ, θ0 and FXY so long as

its homeomorphic property is preserved.

Define a mapping g : R
k → R

k which to each θ ∈ R
k assigns g(θ) ≡

h
(
R E[r(Y,X, θ)]

)
. As previously, the expectation is taken with respect to FXY .

We then have the following property:

(3) E[r(Y,X, θ)] = 0 if and only if g(θ) = h(0).

The property in Equation (3) states that E[r(Y,X, θ)] = 0 has a unique solution

θ = θ0 if and only if θ = θ0 is the unique solution to g(θ) = h(0). Note that the

matrix R effectively rotates the moment conditions without affecting the solution;

indeed, E[r(Y,X, θ)] = 0 is equivalent to R E[r(Y,X, θ)] = 0 so long as R is of full

rank. The mapping h on the other hand changes the image by R E[r(Y,X, θ)] of the

true value θ0 without affecting uniqueness; indeed h
(
R E[r(Y,X, θ)]

)
= h(0) if and

only if R E[r(Y,X, θ)] = 0 so long as h is a homeomorphism.

The identifiability condition in Definition 1 is thus equivalent to the condition that

g(θ) = h(0) be uniquely solved at θ = θ0, which is the well-known GMM identification

condition. As pointed out by Newey and McFadden (1994) (Section 2.2.3, p.2127)

“here conditions for identification are like conditions for unique solutions of nonlinear

equations [...], which are known to be difficult.” Before proceeding, we consider a

simple example which illustrates the difficulties associated with a general treatment

of the identification problem, and gives the insights of our approach.

6A mapping is said to be a homeomorphism if it is continuous, one-to-one, onto, and has a
continuous inverse.
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3. Example and Intuition

Say that the structural parameter θ in Equation (1) is a scalar (k = 1) whose true

value θ0 ∈ R is known to satisfy E[r(Y,X, θ0)] = 0. As previously, the expectation

is taken with respect to FXY obtained under θ0, and the map r : R
3 → R is known.

Using the property in (3), the true parameter value θ0 is identifiable if and only if

the equation g(θ) ≡ h
(
R E[r(Y,X, θ)]

)
= h(0) has a unique solution θ = θ0 on R.

Here, R ∈ R is positive (negative) and h is a homeomorphism from R onto R.

A simple way to guarantee uniqueness is to require that the mapping g be a

homeomorphism from R onto R. That g is a homeomorphism ensures that for every

p ∈ R the equation g(θ) = p has a unique solution in θ. Identifiability of θ0 then

follows by considering p = h(0). When θ is a scalar, requiring that g be continuous

and strictly monotone on R is sufficient to guarantee that it is a homeomorphism

from R onto R. If we restrict our attention to those mappings that are continuously

differentiable with respect to θ on the parameter space R, then a sufficient condition

for identification is simply that g′ be positive (negative) on R.

Example. Consider a simple nonlinear moment restriction E[Y −
θ2
0X + θ0X

2] = 0 (with θ0 ∈ R) taken from Example 2 in Dominguez

and Lobato (2004). Let R = 1 and h be the identity map on

R, so g(θ) = E[r(Y,X, θ)]. Here, g′(θ) ≡ ∂E[r(Y,X, θ)]/∂θ =

E[−X(X + 2θ)], provided we can exchange the orders of integration

and derivation. Assume that E(X2) > 0. If E(X) = 0, then any

θ0 in R is identifiable. If on the other hand E(X) 	= 0, then both

θ0 and E(X2)/E(X) − θ0 solve the moment restriction. So unless

θ0 = E(X2)/[2E(X)], there are two distinct solutions on R to the

moment restriction, and identification of θ0 fails.

While the discussion is simple in the case of a single parameter, complications

arise when k > 1. In that case, θ and r(Y,X, θ) are both vectors in R
k, the map g

is from R
k to R

k and we are brought to consider its Jacobian instead of the above
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derivative. Unfortunately, requiring that the Jacobian of g be positive (negative)

on R
k no longer suffices to show that g is a homeomorphism from R

k onto R
k. A

standard counterexample is the mapping c : R
2 → R

2 which to each (θ1, θ2)
′ ∈ R

2

assigns c(θ1, θ2) = (exp θ1 cos θ2, exp θ1 sin θ2). It is easy to check that its Jacobian is

everywhere positive, yet the inverse image by c of any point in R
2\{0} has an infinite

number of distinct elements. Our solution is to first eliminate the mappings such as

c by requiring that g be proper, i.e. that the inverse image of any compact set be

compact. This condition is clearly violated by c since for any (p1, p2)
′ ∈ R

2\{0} the

inverse image c−1({(p1, p2)
′}) is unbounded (hence not compact) in R

2.

Properness by itself does not guarantee that g is a homeomorphism from R
k onto

R
k. The latter is true if one is willing to assume that in addition its Jacobian det Dg

never vanishes (see, e.g., Corollary 4.3 in Palais, 1959). Still, in structural models

that are nonlinear in θ, everywhere non-vanishing Jacobian might be too strong of

an assumption. Many simple mappings on R
k fail to satisfy this requirement. Even

in the scalar case (k = 1), requiring that the derivative g′ be positive (negative)

everywhere on R would rule out such simple nonlinear mappings as g(θ) = θ3. It turns

out, however, that when k 	= 2, restricting the Jacobian to be either non-negative

on R
k or non-positive on R

k suffices to make a proper mapping g homeomorphic,

provided its inverse images of individual points are of dimension zero, i.e. contain

countably many points of R
k. In particular, the latter requirement excludes the cases

in which g remains “flat” on subsets of R
k that have nonzero dimension.7

Working with systems whose Jacobian possibly vanishes requires additional re-

strictions on the dimension of the branch set, i.e. the set of points where g fails

to be a local homeomorphism. We separately consider two cases: one where the

branch set is known to be bounded, and a second one where the branch set is possi-

bly unbounded but its dimension does not exceed k − 3. The two cases are covered,

respectively, in our main Theorem and Corollary, to which we now turn.

7Unfortunately, the result does not hold in dimension k = 2. A simple counterexample is the
mapping b : R

2 → R
2 which to each (θ1, θ2)′ ∈ R

2 assigns b(θ1, θ2) = (θ2
1−θ2

2, θ1θ2) (for a discussion
see, e.g., Church and Hemmingsen, 1960; Chua and Lam, 1972).



12 KOMUNJER

4. Main Result

Consider again the simultaneous equations system in (1) for which the true pa-

rameter value θ0 satisfies the moment restrictions in (2). As previously, r(Y,X, θ) =

G
(
ρ(Y,X, θ), X, θ

)
and g(θ) = h

(
R E[r(Y,X, θ)]

)
for any θ ∈ R

k. The k × k matrix

R is of full rank, and h is homeomorphic from R
k onto R

k. We now derive primitive

conditions under which:

(4) g is a homeomorphism from R
k onto R

k

According to Equation (3), the property in (4) is sufficient for θ0 to be identifiable.

Notice, however, that the homeomorphic property on R
k is not strictly necessary

since identification only restricts the behavior of g around g(θ) = h(0).

Hereafter, we shall work with mappings g that are twice continuously differentiable

on R
k.

Assumption D. The map g is in C2(Rk).

In what follows, we shall let Dg ∈ L(Rk, Rk) denote the derivative of g. The

following assumption restricts the behavior of the Jacobian J ≡ det Dg of g on R
k.

Assumption E. For every θ ∈ R
k, J(θ) is non-negative (non-positive).

The condition on the non-negativity (non-positivity) of the Jacobian J is a weak-

ening of the Gale-Nikaidô-Fisher-Rothenberg condition that the latter be positive.

Note that unlike Gale-Nikaidô-Fisher-Rothenberg, Assumption E does not require

the matrix of derivatives Dg to be quasi-positive definite.

It is worth pointing out that the sign condition in Assumption E is also a weakening

of the condition that the Jacobian be non-vanishing on R
k. Indeed, if g is twice

continuously differentiable then its Jacobian J is continuous, so requiring that for

every θ ∈ R
k, J(θ) 	= 0 is equivalent to requiring that J be either positive or negative

on R
k.

Next, we require that the mapping g be proper, i.e. that the inverse image by g

of each compact subset of R
k be a compact in R

k. A sufficient condition is:
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Assumption F. |g(θ)| → ∞ whenever |θ| → ∞.

Finally, we impose the following:

Assumption G. For every p ∈ R
k the equation g(θ) = p has countably many

(possibly zero) solutions in R
k.

The requirement that g(θ) = p have at most countably many solutions is only

binding for values of p that are not regular (such values are called critical values).

Indeed, if p is a regular value (meaning that the inverse image of {p} contains only

the parameter values θr ∈ R
k for which the Jacobian J(θr) is different from zero) then

the set of solutions to g(θ) = p is finite.8 This requirement excludes the situations

in which the map g remains “flat” over regions in the parameter space that are of

dimension greater or equal than 1.

We are now ready to state our main result:

Theorem 1. Assume k 	= 2 and let Assumptions A through G hold. If the set of

points θs ∈ R
k for which rank Dg(θs) < k − 1 is bounded, then θ0 is identified on R

k.

We first comment on the strength of the conditions imposed in Theorem 1. Our

identification result does not hold if the dimension of the parameter set is k = 2. The

reason behind is that our Assumptions C-G, when combined with the boundedness

condition in Theorem 1, do not guarantee that the mapping g is a homeomorphism

from R
2 onto R

2.9 Now consider the second requirement of Theorem 1 and let Rq

(0 � q � k) denote the set of parameter values θs at which rank Dg(θs) � q. A

simple sufficient condition for Rk−2 to be bounded, is that the Jacobian does not

vanish at infinity. Indeed, if for large enough values of |θ| the Jacobian remains

8By properness, the inverse image of {p} is a compact set in R
k; the inverse function theorem

guarantees that this set is discrete, hence it is finite (see, e.g., step 5 in the proof of Theorem by
Debreu, 1970).

9Church and Hemmingsen (1960) and Chua and Lam (1972) contain simple examples of mappings
that are not homeomorphisms yet satisfy all the requirements of Theorem 1 except k 	= 2. See also
our footnote 7.
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positive (negative), then the set Rk−1 remains bounded. A fortiori, its subset Rk−2

is then bounded as well.

The intuition behind Theorem 1 is simple: Assumptions A and B are used to

translate the problem of identification into that of uniqueness of solutions to the

system of equations g(θ) = h(0). Assumptions C through G on the other hand

ensure that the the map g is a homeomorphism from R
k onto R

k, provided k 	= 2

and the boundedness condition of Theorem 1 holds. Of course, there exist alternative

sets of assumptions guaranteeing that g is a homeomorphism. One example is Chua

and Lam (1972), who replace Assumption E and our boundedness condition with

the requirement that the set Rk−1 be of dimension less or equal than 0 (see Theorem

2.2 in Chua and Lam, 1972).10 The following result relaxes Chua and Lam’s (1972)

dimension requirement on Rk−1 by replacing it with a weaker requirement on Rk−2 ⊆
Rk−1:

Corollary 2. Assume k > 2 and let Assumptions A through G hold. If the set of

points θs ∈ R
k for which rank Dg(θs) < k−1 is of dimension less or equal than k−3,

then θ0 is identified on R
k.

Theorem 1 and its Corollary 2 give sufficient conditions for global identification of

θ0 under alternative assumptions on the set Rk−2. If the latter is bounded, then the

result of Theorem 1 applies. If boundedness cannot be established, then Corollary 2

still holds provided the dimension of Rk−2 remains sufficiently small relative to the

dimension k of the parameter space.

5. Application and Conclusion

We conclude by first giving an application of our main result to a nonlinear IV

model with multiple equilibria. Consider a nonlinear structural model relating a

scalar dependent variable Y ∈ R to a scalar explanatory variable X ∈ DX ⊆ R and

10The empty set is the only set that has dimension −1.
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a disturbance U ∈ R:

(5) Y 3 − Y = α + (β + 1
3
β3 + γ)X + (β + γ + 1

3
γ3)X2 + U, (α, β, γ)′ ∈ R

3.

Note that when βγ 	= 0 the above model is nonlinear in the parameter θ ≡ (α, β, γ)′ ∈
R

3, and no transformation reduces it to a linear-in-parameters model. In addition,

the model is nonlinear in the variables and exhibits multiple equilibria for Y . We

denote by θ0 ≡ (α0, β0, γ0)
′ the true value of interest of the structural parameter θ.

Hereafter, we assume that the structure S = (θ0, t, FXU) in (5) satisfies the following:

Condition H. (i) E(|X|4) < ∞; (ii) X is such that for every real constant c we

have X2 − E(X2) 	= c[X − E(X)]; (iii) E(|Y |6) < ∞.

Condition H(i,iii) shall be used to establish several moment finiteness results. The

property in (ii) excludes the situations in which X and X2 are linearly related. For

example, X is not allowed to be a binary random variable. Note that the property

in (iii) effectively restricts the equilibrium selection procedure t.11

We now show that under Condition H any θ0 on R
3 is identifiable by the orthog-

onality conditions E(A(X, θ)U) = 0 in which the instruments are defined as:

(6) A(X, θ) ≡ (1, X,X2)′

For this, we let ρ(Y,X, θ) ≡ Y 3 − Y − α − (β + 1
3
β3 + γ)X − (β + γ + 1

3
γ3)X2, let

G(U,X, θ) ≡ A(X, θ)U , and define the rotation matrix R as:

R ≡

⎛
⎜⎜⎜⎝

1 0 0

−E(X) 1 0

−E(X2) 0 1

⎞
⎟⎟⎟⎠

Under Condition H(i,iii) the expected value of r(Y,X, θ) = G
(
ρ(Y,X, θ), X, θ

)
exists

and is finite for every θ ∈ R
3, which satisfies our Assumption C. Then, letting h

be the identity map from R
3 to R

3, we can calculate the mapping g which to every

11Echenique and Komunjer (2007) provide examples that show how—in models with multiple
equilibria—the equilibrium selection t affects the moments of the dependent variable Y .



16 KOMUNJER

θ ∈ R
3 maps g(θ) = h

(
R E[r(Y,X, θ)]

) ∈ R
3. Letting g(θ) ≡ (g1(θ), g2(θ), g3(θ))

′ we

have:

g1(θ) = E(Y 3) − E(Y ) − α − (β + 1
3
β3 + γ)E(X) − (β + γ + 1

3
γ3)E(X2)

g2(θ) = Cov(Y 3, X) − Cov(Y,X) − (β + 1
3
β3 + γ)Var(X) − (β + γ + 1

3
γ3)Cov(X,X2)

g3(θ) = Cov(Y 3, X2) − Cov(Y,X2) − (β + 1
3
β3 + γ)Cov(X,X2) − (β + γ + 1

3
γ3)Var(X2)

The map g is twice continuously differentiable on R
3, which satisfies our Assump-

tion D, and its Jacobian equals:

J(θ) = −[Var(X)Var(X2) − (Cov(X,X2))2](β2 + γ2 + β2γ2)

By Cauchy-Schwarz inequality, we have (Cov(X,X2))2 � Var(X)Var(X2). Equality

is attained here only if for some constant c we have X2 − E(X2) = c(X − E(X)),

situation which we excluded under Condition H(ii). So J is non-positive everywhere

on R
3, which satisfies the requirement in Assumption E. It is worth pointing out

that this property of the Jacobian violates the assumptions of Gale-Nikaidô-Fisher-

Rothenberg identification result.

We now briefly check that all the remaining conditions of our Corollary 2 hold. The

model in Equation (5) is continuous in both Y and X which satisfies our Assumption

A. Moreover, as y → ∞ the dominant term in ρ(y, x, θ0)
′y is y4 so [ρ(y, x, θ0)

′y]/|y| →
∞, which satisfies our Assumption B.

To check the properness condition in Assumption F, we consider all possible cases

under which |θ| → ∞. Say that |γ| → ∞; then, if β is such that |β + γ + 1
3
γ3| → ∞

we have |g3(θ)| → ∞; if on the other hand β is such that |β +γ + 1
3
γ3| → C with C a

real constant, then |β + 1
3
β3 +γ| → ∞ and |g2(θ)| → ∞. Now assume that γ remains

constant; then, if |β| → ∞ we have |g2(θ)| → ∞; if on the other hand β remains

constant and |α| → ∞ we have |g1(θ)| → ∞. So |θ| → ∞ implies |g(θ)| → ∞.
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We now show that Assumption G holds as well. For this, note that J(θ) = 0

only if β = γ = 0. The critical values of g are then of the form: p = (E(Y 3) −
E(Y ) − α, Cov(Y,X), Cov(Y,X2))′. In order to compute g−1({p}) we need to solve

the following system of equations:

(β + 1
3
β3 + γ)Var(X) + (β + γ + 1

3
γ3)Cov(X,X2) = 0

(β + 1
3
β3 + γ)Cov(X,X2) + (β + γ + 1

3
γ3)Var(X2) = 0

For this, let P be a matrix defined as:

P ≡
⎛
⎝ Var(X) Cov(X,X2)

Cov(X,X2) Var(X2)

⎞
⎠

Note that under Condition H(ii) we have detP > 0 so P is of full rank. Pre-

multiplying the above system of equations by the matrix P−1 we get an equivalent

system of equations:

β + 1
3
β3 + γ = 0

β + γ + 1
3
γ3 = 0

whose unique solution is (β, γ) = (0, 0). Hence, if p ≡ (p1, p2, p3)
′ is a critical value

of g then its inverse image equals g−1({p}) = {(E(Y 3) − E(Y ) − p1, 0, 0)′}, which is

of dimension 0.

Finally, we check that the dimension requirement of Corollary 2 holds. For this,

note that the points θs for which rank Dg(θs) < 3 are necessarily of the form

θs = (α′, 0, 0)′. We now show that under Condition H for any such θs we have

rank Dg(θs) = 2. We reason by contradiction: assume that rank Dg(θs) = 1; then

necessarily Var(X)+Cov(X,X2) = 0 and Cov(X,X2)+Var(X2) = 0, which in turn

implies (Cov(X,X2))2 = Var(X)Var(X2); the last property is in contradiction with

Condition H(ii). It follows that the set of points θs for which rank Dg(θs) < 2 is

empty, hence of dimension −1. Thus, under Condition H, the result of Corollary 2

applies, which shows that any value θ0 of the structural parameter θ in the nonlinear

model (5) is identifiable via the instruments given in (6).
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The structural model in (5) is an example of nonlinear models with multiple equi-

libria that satisfy the primitive conditions for global identification derived in Corol-

lary 2. The main goal of this paper was to investigate the issue of global identification

of finite dimensional parameters that appear in nonlinear systems of structural equa-

tions. We focused on semiparametric identification based on a set of unconditional

moment restrictions known to be satisfied by the true value of interest of the struc-

tural parameter. Our main results—given in Theorem 1 and its Corollary 2—provide

sufficient primitive conditions for identification to hold globally.

Appendix A. Proofs

Proof of Proposition 1. The proof is done in three steps.

STEP 1: We first show that, given θ0 ∈ R
k, the correspondence T is closed-valued,

i.e. for any v ≡ (x′, u′)′ ∈ DX × R
G, T (v) = Γv is a closed subset of DX × R

G. We

have Γv = {x} × Λv where Λv ≡ {y ∈ R
G : ρ(y, x, θ0) = u}, so it suffices to show

that Λv is a closed subset of R
G.

Fix (x, θ0) ∈ DX × R
k and let h̃ : R

G → R
G be a mapping which to each y ∈ R

G

assigns h̃(y) = ρ(y, x, θ0). Since by Assumption A, h̃ ∈ C(RG) and by Assumption

B, lim|y|→∞[h̃(y)′y]/| y| = ∞, we then have by Theorem 3.3 in Deimling (1985) that

h̃ is surjective, i.e. h̃(RG) = R
G.

We now show that h̃ is also proper, i.e. that the inverse image by h̃ of each compact

subset of R
G is compact in R

G. For this, note that

|h̃(y)′y|/| y| � |h̃(y)|

so Assumption B also implies lim|y|→∞ |h̃(y)| = ∞. Let then K ⊂ R
G be compact,

i.e. closed and bounded. By Assumption A we know that h̃ is continuous, hence

h̃−1(K) is closed in R
G. To show that h̃−1(K) is bounded, consider a sequence

{h̃(yn)} (n ∈ N) in K. Since K is compact, h̃(yn) −→
n→∞

h̃(y0) ∈ K, which by

lim|y|→∞ |h̃(y)| = ∞ implies that the sequence {yn} (n ∈ N) is bounded. Hence,

h̃−1(K) is bounded, therefore compact in R
G.
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We can now show that the correspondence T is closed-valued. Take any v =

(x′, u′)′ ∈ DX × R
G. Since R

G = h̃(RG), we have Λv = h̃−1(u) which by properness

of h̃ is compact, hence closed in R
G.

STEP 2: We next show that, given θ0 ∈ R
k, the correspondence T is Borel-

measurable.

A necessary and sufficient condition for T to be Borel-measurable and closed-

valued is: for any K compact in DX × R
G and any ε > 0, there exists H compact

H ⊂ K such that μ(K\H) < ε and T |H is closed-graph (see, e.g., Proposition

2 in Berliocchi and Lasry, 1973). Consider the graph of the correspondence T |K ,

Gr (T |K) = {(v′, w′)′ ∈ (DX × R
G)2 : v ∈ K,w ∈ Γv}. We need to show that

Gr (T |K) is a closed subset of R
2(K+G). We know that Gr (T |K) is closed if and only

if for any sequence {(v′
n, w

′
n)′} (n ∈ N) in Gr (T |K), vn −→

n→∞
a, wn −→

n→∞
b imply that

(a′, b′)′ ∈ Gr (T |K). Take then {(v′
n, w

′
n)′} in Gr (T |K). Let h̄ : DX ×R

G → DX ×R
G

be a mapping which to each w ≡ (x′, y′)′ ∈ DX ×R
G assigns h̄(w) = (x′, ρ(y, x, θ0)

′)′

so h̄(w) = v. From Assumption A, we know that h̄ ∈ C(DX × R
G). By continuity

of h̄, wn −→
n→∞

b implies vn = h̄(wn) −→
n→∞

h̄(b) = a. So, b ∈ Γa. Since K is compact,

a ∈ K, therefore (a′, b′)′ ∈ Gr (T |K).

STEP 3: Finally, we can show that Sel T 	= ∅. This is an immediate consequence

of a corollary to Kuratowski’s theorem: if a correspondence T : DX × R
G ⇒ DX ×

R
G, v → Γv is Borel-measurable, closed-valued and such that Γv 	= ∅ for almost every

v, then Sel T 	= ∅; see, e.g., Corollary 1 in Berliocchi and Lasry (1973) or Theorem

18.13 in Aliprantis and Border (2007). Note that Γv 	= ∅ for every v ∈ DX × R
G by

the surjectivity of the map h. Hence, Sel T 	= ∅ and W = (X ′, Y ′)′ exists. �

Proof of Theorem 1. We start by fixing the notation. We denote by g(D) the image

by g of any subset D ⊆ R
k of its domain, and by g−1(R) the inverse image by g of

any subset R ⊆ g(Rk) of its range. We let B denote the set of all points θ ∈ R
k

at which g fails to be local homeomorphism; the set of all such points is called the

branch set of g. We denote by Dg ∈ L(Rk, Rk) the derivative of g. The set of points

θs at which rank Dg(θs) � q with 0 � q � k is denoted Rq; it follows that B ⊆ Rk−1.
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Only the zero matrix has rank 0. Finally, we let J denote the Jacobian of g, i.e.

J = det Dg. The proof is done in five steps.

STEP 1: We start by showing that the mapping g : R
k → R

k is open, i.e. that

the image of every open subset of R
k is open in R

k, and that we have: B = ∅ when

k = 1 and B ⊆ Rk−2 when k > 1.

Openness of g is an immediate consequence of Theorem 2 in Titus and Young

(1952): every g : R
k → R

k of class C1 such that dim g−1(p) = 0 for every p ∈ g(Rk)

and whose Jacobian J is non-negative (non-positive) on R
k is open. Now we can use

an extension of the inverse function theorem for open maps given in Theorem 1.4 by

Church (1963): if g : R
k → R

k of class C1 is open, then g is locally a homeomorphism

at θ ∈ R
k whenever rank J(θ) � k − 1. Hence, for k = 1, openness of g implies that

B = ∅. For k > 1, we have B ⊆ Rk−2.

STEP 2: We now show that when k > 1, dim B = dim g(B) = dim g−1(g(B)) �
k − 2.

For this, we use two results. First, we use Theorem 2 in Sard (1965): g(Rq) is

of dimension � q, if g ∈ Cn(Rk) with n � k − q. When q = k − 1, this result

reduces to the well-known Sard’s lemma: dim g(Rk−1) < k as long as g ∈ C1(Rk).

When q = k − 2, then we get the following implication of Sard’s (1965) result:

dim g(Rk−2) < k − 1 as long as g ∈ C2(Rk). We are now ready to combine this

property with a second result, which is Corollary 2.3 in Church and Hemmingsen

(1960): If g is open and such that dim g−1(p) = 0 for every p ∈ g(Rk), and if

dim g(B) < k, then dim B = dim g(B) = dim g−1(g(B)). Now, from Step 1 we have

g(B) ⊆ g(Rk−2) so dim g(B) � dim g(Rk−2). Together with Sard’s (1965) theorem,

the latter shows that dim B = dim g(B) = dim g−1(g(B)) � k − 2.

STEP 3: We show that g(Rk) = R
k, that g is proper, i.e. that the inverse image

by g of any compact subset K ⊂ R
k is compact in R

k, and that R
k\g−1(g(B)) is

connected when k > 1.

Recall from Step 1 that g is open on R
k; this implies that g(Rk) is open in R

k. Now

using Assumption F we show that g(Rk) is closed in R
k: take a sequence {g(θn)}
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(n ∈ N) such that g(θn) −→
n→∞

p. By Assumption F we then have {θn} (n ∈ N)

bounded, so θn −→
n→∞

θ̄ and by continuity of g, p = g(θ̄) and g(Rk) is closed. Since

g(Rk) is both open and closed in R
k, we have g(Rk) = R

k.

We now show that the mapping g is proper, i.e. that the inverse image by g of

each compact subset of R
k is a compact subset of R

k. The proof is straightforward:

let K ⊂ R
k be compact, i.e. closed and bounded. Given that g is continuous,

g−1(K) is closed in R
k. It remains to be shown that g−1(K) is bounded. The proof

of boundedness is similar to before. Assumption F implies |g(θ)| → ∞ whenever

|θ| → ∞. Let {g(θn)} (n ∈ N) be a sequence in K. Since K is compact, g(θn) −→
n→∞

g(θ0) ∈ K, which by Assumption F implies that {θn} (n ∈ N) is bounded. Hence

g−1(K) is bounded in R
k. Before continuing, let us note that a continuous proper

map g is also closed, i.e. g(B) closed whenever B ⊂ R
k closed (see, e.g., Corollary

in Palais, 1970).

Finally, to show that R
k\g−1(g(B)) is connected for any k > 1, we use Theorem

IV.4 in Hurewicz and Wallman (1948): any connected k-dimensional set in R
k cannot

be disconnected by a subset of dimension < k−1. The desired result follows by using

the connectedness of R
k together with dim g−1(g(B)) < k − 1 obtained in Step 2.

STEP 4: We now show that the restriction of g to R
k\g−1(g(B)) is a covering

map.

For this we use Covering Space Theorem 1 in Plastock (1978): Let A be a connected

open set in R
k. Then g̃ : A → g̃(A) is a covering space map if (i) g̃ is a local

homeomorphism, and (ii) g̃ is proper. When k = 1, Plastock’s (1978) result applies

to A ≡ R and g̃ = g, since from Step 1 we known that g is a local homeomorphism

on R, and from Step 3 we know that g is proper. Hence, when k = 1, g is a covering

map.

Now, consider the case k > 1. We need to check that all the conditions of Plastock’s

(1978) theorem are satisfied when A ≡ R
k\g−1(g(B)) and g̃ ≡ g|A. First, we shall

establish that g̃ is a local homeomorphism. We have g−1(g(B)) ⊇ B so A ∩ B = ∅
and g̃ : A → R

k\g(B) is a local homeomorphism. Next, we show that g̃ is proper: let
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C be a compact in R
k\g(B) and note that g̃−1(C) = g−1(C) since g̃−1 = g−1|Rk\g(B).

Then by properness of g we have that g−1(C) is compact in R
k. Since C ∩ g(B) = ∅

it follows that g−1(C) ∩ g−1(g(B)) = ∅ and so g−1(C) is compact in A.

Finally, we show that A is open. Consider θ ∈ R
k\B. Then g is a local homeo-

morphism at θ, i.e. there exists an open neighborhood U of θ such that g(U) is open

in R
k and g|U : U → g(U) is a homeomorphism. So U ∩ B = ∅ and U ⊂ R

k\B,

which shows that R
k\B is open; hence B is closed. Using our previous observation

(made in Step 3) that a continuous proper map is closed, we know that g is closed,

so g(B) is closed in R
k. Continuity of g then guarantees that g−1(g(B)) is closed in

R
k, thus A is open.

From Step 3 we know that when k > 1, the set R
k\g−1(g(B)) is connected. We can

then apply Plastock’s (1978) Covering Space Theorem to show that the restriction

of g to R
k\g−1(g(B)) is a covering map.

STEP 5: Finally, we show that when k 	= 2 g is a homeomorphism from R
k onto

R
k.

For this, we use Theorem 1.3 in Church and Hemmingsen (1960): Let g be an open

map of R
k onto R

k, k 	= 2, such that dim g(B) � k − 2. If the restriction of g to

R
k\g−1(g(B)) is a covering map, and if B is compact, then g is a homeomorphism.

We now check that all the conditions of Church and Hemmingsen’s (1960) result

hold. That g is open follows from Step 1; that g is onto R
k follows from Step 3. In

Step 1 we show that when k = 1 the set B is empty, so g(B) = ∅ and dim g(B) = −1.

When k > 2, Step 2 shows that dim g(B) � k − 2. That g|Rk\g−1(g(B)) is a covering

map follows from Step 4. It remains to show that B is compact. When k = 1, the

result is trivial. When k > 2, we know from Step 4 that B is closed; so if B is in

addition bounded then it is compact. From Step 1 we know that B ⊆ Rk−2; so the

condition that Rk−2 is bounded from Theorem 1 implies that B is bounded.

Under Assumptions C-G, the conditions given in Theorem 1 is sufficient to guar-

antee that g is a homeomorphism from R
k onto R

k. Together with Assumptions A-B
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this guarantees, by Definition 1, that θ0 is identified on R
k. This completes the proof

of Theorem 1. �

Proof of Corollary 2. The proof is identical to that of Theorem 1 except for the proof

of the result in Step 5 which should be modified as follows:

STEP 5: To show that when k > 2 g is a homeomorphism from R
k onto R

k, we

first show that the restriction of g to A = R
k\g−1(g(B)) is a homeomorphism.

For this, we use Lemma 1 in Plastock (1978): If g̃ : A → g̃(A) is a covering space

map, A and g̃(A) pathwise connected and g̃(A) simply connected, then g̃ is a global

homeomorphism. From Step 2 we know that dim g(B) = dim g−1(g(B)) � k− 2. By

using the same reasoning as in Step 3, we then have that A and g̃(A) = R
k\g(B) are

connected. Recall in addition from Step 4 that A is open and that g(B) is closed,

so that g̃(A) = R
k\g(B) is open in R

k. Hence, A and g̃(A) are two open subsets of

R
k that are connected; this implies that they are also pathwise connected. To show

that g̃(A) is simply connected, we use Theorem 25 in Basye (1935): If K is a closed

subset of R
k of dimension k − 3 or less, then R

k\K is simply connected. Letting

K ≡ g(B), we know that K is closed in R
k. Moreover, from Step 2 we know that

dim g(B) = dim B � dim Rk−2, which from the condition of Corollary 2 is less or

equal than k − 3; this implies that g̃(A) is simply connected. Hence, g|Rk\g−1(g(B)) is

a homeomorphism from R
k\g−1(g(B)) onto R

k\g(B).

It remains to show that g|g−1(g(B)) is a homeomorphism from g−1(g(B)) onto g(B).

Let then ḡ ≡ g|g−1(g(B)). By construction, ḡ : g−1(g(B)) → g(B) is onto. We now

show that it is also one-to-one: let p ∈ g(B) and assume that g−1(p) ⊃ {θ1, θ2} with

θ1 	= θ2. Since R
k is separated, there exist two disjoint open sets U1 and U2 containing

θ1 and θ2, respectively. Given that g is open, V1 = g(U1) and V2 = g(U2) are open,

and so V1 ∩ V2 ⊃ {p} 	= ∅ is open in R
k; by Theorem IV.3 in Hurewicz and Wallman

(1948) then dim V1 ∩ V2 = k. In particular, V1 ∩ V2 contains a point q ∈ R
k\g(B);

otherwise, V1 ∩ V2 ⊆ g(B) which would imply dim g(B) = k and is contradictory

with dim g(B) < k − 1 shown in Step 2. Now, g|Rk\g−1(g(B)) being a homeomorphism

from R
k\g−1(g(B)) onto R

k\g(B) is in contradiction with U1 ∩ U2 = ∅. Hence, ḡ
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is one-to-one, onto, continuous, and both open and closed; hence its inverse is also

continuous, and ḡ is a homeomorphism from g−1(g(B)) onto g(B).

Combining all of the above shows that g is a homeomorphism from R
k onto R

k.

The remainder of the proof is identical to that of Theorem 1 �
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