UC Davis
UC Davis Previously Published Works

Title
OpenMeasure: Adaptive Flow Measurement and Inference with Online Learning in SDN

Permalink
https://escholarship.org/uc/item/2r59f8vt

Authors

Liu, Chang
Malboubi, Mehdi
Chuah, Chen-Nee

Publication Date
2016-04-01

Peer reviewed

eScholarship.org Powered by the California Diqital Library

University of California

https://escholarship.org/uc/item/2r59f8vt
https://escholarship.org
http://www.cdlib.org/

OpenMeasure: Adaptive Flow Measurement &
Inference with Online Learning in SDN

Chang Liu, Mehdi Malboubi, Chen-Nee Chuah
Dept. of Electrical & Computer Engineering
University of California, Davis, USA.
{cchliu, mmalboubi, chuah} @ucdavis.edu

Abstract—Accurate and efficient network-wide traffic mea-
surement is crucial for network management. Recently, Software-
defined networking (SDN) has opened up new opportunities in
network measurement and inference. In this work, we demon-
strate an efficient flow measurement and inference framework
which performs adaptive measurement with online learning.
Using the reprogrammability of SDN, we assist network inference
with online learning predictions and dynamically update the
measurement rules network-wide to track and measure the most
informative flows. To best utilize the available measurement
resources, we leverage the SDN controller (with its global view)
to optimally place flow monitoring rules across network switches.
Using real-world data, we show that our measurement framework
achieves high performance in both estimating the traffic matrix
and identifying hierarchical heavy hitters.

I. INTRODUCTION

Fine-grained traffic size information provides an essential
input for many network design and operation tasks, such as
capacity planning, network provisioning, load balancing, and
anomaly detection [1]-[3]. Flow size can be measured directly
or inferred (indirectly) from sampled statistics. In large-scale
networks, direct flow measurement can be challenging due to
the exploding traffic volume, limited monitoring resources and
the prohibitively large overhead imposed on the network com-
ponents. An alternate approach is estimating the traffic matrix
(TM) from a set of aggregated/end-to-end measurements using
network inference techniques.

The emerging software defined networking (SDN) paradigm
decouples network control (control plane) from forwarding
functions (data plane), enabling the network control to become
directly programmable and the underlying infrastructure to
be abstracted for applications and network services [4]. The
control logic is moved to an external entity, the SDN controller.
The logically centralized controller has a global view of
network and can dynamically configure the forwarding rules
in managed flow tables. In addition, it can also obtain flow
statistics from reading the counters of the switch TCAM rules.

SDN opens up many new opportunities for addressing
network measurement and inference problems. On one hand,
it can augment network inference with multi-resolution mon-
itoring and online learning. On the other hand, with the
global view of the network, the controller can optimize the
network-wide allocation of measurement resources. We could
dynamically determine what/when/where to measure.

While there have been many studies on leveraging SDN in
network measurement and inference, the most relevant work
is iISTAMP [5]. However, iSTAMP does not take routing
and flow aggregation feasibility into account when designing
optimal flow aggregates and only focuses on single-switch
scenario. While [6] extended iSTAMP framework to multi-
switch scenario, the discussion about how to continuously
identify large flows and update measurements over time is
missing. Different from [5] and [6], in our work, we propose
a framework we refer to as OpenMeasure which leverages
continuous online learning techniques to perform network-
wide adaptive flow measurement and inference.

Similar to iISTAMP, OpenMeasure consists of an intelligent
flow sampling and network inference engine residing on the
SDN controller. However, instead of optimizing the aggrega-
tion matrix, OpenMeasure assumes that the aggregation matrix
is given based on the underlying routing and flow aggregation
rules. As mentioned earlier, our framework employs an online
learning algorithm to determine the most informative flows for
sampling. By leveraging the global view of SDN controller, it
identifies the available monitoring resources and intelligently
places flow sampling rules in selected SDN switches. Further-
more, this framework is light-weight, compatible with hybrid
SDN networks, relies on current capabilities of OpenFlow
(OF) switches, and does not impact network routing functions.

To summarize, the contributions of our work are three-fold:

o We propose OpenMeasure, a network-wide adaptive flow
measurement and inference framework with continuous
learning capability. We propose two online learning algo-
rithms for designing the adaptive flow measurement rules:
one algorithm is based on weighted linear prediction and
the other adopts the strategy used in multi-armed bandit
(MAB) problems [7].

« Leveraging SDN controller’s global view of network, we
optimize the allocation of flow monitoring rules among
multiple OF switches to increase measurement accuracy.
We formulate the problem mathematically and proposes
two light-weight heuristic rule allocation algorithms.

« We evaluate the performance of OpenMeasure in traffic
matrix (TM) estimation as well as hierarchical heavy
hitter (HHH) identification. We demonstrate the benefit
of continuous learning and update of measurement rules,
which is absent in [6]. We also implemented OpenMea-
sure on GENI [8] testbed to demonstrate the practical

effectiveness and feasibility of our framework [9].

The rest of the paper is organized as follows. Section II
presents an overview of OpenMeasure followed by details of
key components in the framework. Section III discusses appli-
cations of our measurement framework. Section IV evaluates
OpenMeasure on a number of performance metrics. Section V
summarizes the related work and we conclude in section VI.

II. METHODOLOGY

Without assuming complex functions on OF switches, our
framework relies on the simple match-and-count rules installed
at the switch dataplane and managed by the controller. The
design of the match-and-count rules is critical in measurement.

A. Overview

Since the transition to SDN requires simultaneous sup-
port of SDN and legacy equipment, OpenMeasure assumes
a hybrid SDN network, where SDN-enabled and non-SDN
routers/switches coexist in the network. All the SDN-enabled
routers/switches are managed by a logically-centralized con-
troller and are pre-populated with local routing rules. Aside
from these routing entries, a handful of TCAM entries are
available for implementing measurement/monitoring rules.

OpenMeasure contains three components. The first compo-
nent identifies the most informative flows from online learning
and prepares a set of “candidate” rules to be installed. The sec-
ond component dynamically determines where/what rules are
to be installed network-wide using the controller’s global view.
Finally, the third component periodically pulls traffic statistics
from switches (both TCAM counters from OF switches and
SNMP link loads) and deploys existing inference techniques
to estimate the traffic matrix or to support other monitoring
applications (e.g., hierarchical heavy hitter identification).

B. Rule design

1) Initial set of rules: Due to the limited number of TCAM
entries, it is infeasible to maintain a counter per fine-grained
flow. The routing rules are aggregated based on the destination
prefixes. However, coarse aggregation may introduce large
flow estimation error. Aside from the routing entries, new
measurement rules can be installed in the available TCAM
entries by offloading subsets of flows from the original routing
rules. However these subsets of flows can not be arbitrarily
selected because 1) the current implementation of TCAMs
limits that only flows with the same source/destination ip
prefixes can be aggregated in one TCAM rule; and 2) global
routing can not be disrupted.

OpenMeasure starts with collecting coarse-grained statistics.
It adopts the Maximum Load Rule First (MLRF) method [6]
to populate the initial measurement rules. The load of a rule
here is defined as the number of flows matching the rule in
a SDN switch. MLRF starts from the rule with the maximum
load and generates a new rule with a longer source IP prefix
and a higher priority to offload half of the flows from the
selected rule. Initial estimate of per-flow sizes are obtained
from measurements generated by MLRF method.

2) Adaptive mechanism with online learning: Identify-
ing/Measuring the most informative/rewarding flows is impor-
tant for improving TM estimation accuracy [5]. We propose
that without altering pre-populated routing entries, OpenMea-
sure utilizes the available TCAM entries to sample (i.e.,
directly measure) a set of large flows. In the beginning, these
large flows are identified based on the initial estimates of traffic
matrix using only aggregate counts. Subsequently, OpenMea-
sure pulls statistics from both aggregate counters and sampled
flows. Upon receiving the new statistics, OpenMeasure runs
online learning algorithms to determine an updated set of large
flows, and updates flow tables accordingly.

In general, it is challenging to identify large flows for future
time intervals, since per-flow sizes are unknown a priori. We
propose two online learning algorithms below.

a) Weighted Linear Prediction (WLP): The Weighted
Linear Prediction method uses previous samples to estimate
or predict a future value. It attempts to predict the per-flow
size of the next measurement. Specifically, we maintain a list
of n records for each flow. The predicted size of flow fl at
time t,, is in (1):

n—1
vt = Awfl4+) et toy]h (1)
i=1

Weighted Linear Prediction assumes a exponential decaying
impact over time.) is a scaling factor. Based on the predicted
per-flow sizes obtained, WLP ranks all the flows in descending
order of flow sizes and based this result, OpenMeasure selects
a set of large flows to track and measure.

b) Modified Upper Confidence Bound (MUCB) Predic-
tion (MUCBP): In MUCBP, we take the flow size of a
directly sampled flow as the reward for sampling this flow,
then our goal is to maximize the total reward obtained from
all the available TCAMs over time. The key point is to
balance between acquiring new information (exploration) and
capitalizing on the information available so far (exploitation)
[7]. Specifically, the predicted reward of directly measuring
flow fl computed at time ¢ is in (2):

21n(n)
nfi

I =axp + (2)
where « is a scaling factor, T;; is the average flow size
for flow fl, ny is the number of times flow fI has been
directly measured so far and n is the overall number of direct
measurements done so far. The first term, sample mean, favors
exploitation while the second term, confidence bound, favors
exploration [7].

Different from [5], we obtain the initial system dynamics
from measurements generated by MLRF method instead of
observing each flow [5], which is not feasible. MUCBP ranks
all flows in descending order of reward and based on this
result, OpenMeasure selects a set of large flows to track and
measure.

Al >BI >C
| |

F E D
Flow A-CC—)Flow A -E = Flow E - C =

Fig. 1: Illustration of spatial mismatch in rule allocation

C. Rule placement

Once the set of large flows to be monitored is identified,
we need to determine where (which switch) to measure what
(which flows). Since the SDN controller has the complete
network topology and routing path for each flow, we have the
opportunity to optimize monitoring rules placement network-
wide.

Ideally we would like to use the K available TCAM
entries to directly measure the K most informative flows.
However, it is not always as straight-forward in a hybrid multi-
switch scenario. A simple example in Fig. 1 shows the spatial
mismatch between the available TCAM entries and the route
of large flows. There are three flows in Fig. 1: A-C, A-E, E-C.
Flow size order: A — C > F — C > A — E. Assume both
SDN switches Sp and Sy have one available TCAM entry.
Apparently, although there are two TCAMs available in the
network, it is not feasible to sample the two largest flows due
to spatial mismatch.

The rule placement problem can be described as follows.
Given a network G with V' set of OF switches and a set of
flows to be measured ', we need to find the best mapping from
F to V under the following constraints: 1) Flows assigned to
OF switch s € V should pass switch s in their routes. 2)
The number of assigned rules in s € V should not exceed
the number of TCAM entries available for monitoring tasks.
3) In order to save TCAM entries, the same flow should not
be sampled more than once. The objective is to maximize the
sum of the reward/per-flow size obtained from all the available
TCAMs in the network. The problem could be formulated into
an integer linear program (ILP) as shown in (3):

VI |F]
max%mize W (D) :ZZ Py, d;j

i=1j=1
dij €{0,1}, Vi=1--- |V [, j=1--- [F|
dij < hij, Yi=1---|V [j=1---| F|

subject to

|F|

Zdij SK“ VSZ' eV

j=1

VI

o diy<1,Vj=1---|F|
i=1

3)
where Py, is the predicted flow size in (1) with WLP learning
algorithm and the predicted reward in (2) with MUCBP
learning algorithm, for a sampling flow f; € F'. Binary matrix

D = {d;;} denotes a feasible rule placement solution. The
element d;; indicates whether flow f; is directly measured
at OF switch s;. K; is the number of available TCAMs at
switch s;. Binary matrix H = {h;;} denotes the global routing
matrix which is known at the logically centralized controller.
The element h;; indicates whether flow f; passes OF switch
s; in its routing path.

We could get the optimal rule placement solution by solving
this ILP with the Gurobi [10] solver. However, as the size of
the network increases, the computational complexity increases
exponentially. As the optimal solution may be time consuming,
we propose two heuristic algorithms with linear computational
complexity, which can efficiently find a feasible and near-
optimal allocation solution in practical cases.

Algorithm 1 LastHop placement algorithm

1: procedure LASTHOP_RULE_PLACEMENT(G, V, SF, K)
2 for each fl € SF do

3 gather all switches in V' that cover fI as Sf!

4 sort ST in order from dst to src as SS/!

5: for each OF switch s € SS/! do

6 if K, > 0 then

7 assign fl to switch s

8 K,=K,—1

9 break

Algorithm 2 Greedy placement algorithm

1: procedure GREEDY_RULE_PLACEMENT(G,V, SF, K)

2: for each switch s € V' do

3: compute large flow coverage count Cy

4: for each fl € SF do

5: gather all switches in V' that cover fl as S/!

6: sort S/! in descending order of K, as SS7!

7: select switch s with maximum K

8: if there is a tie then

9: select switch s with minimum C from the tie
switch list

10: if K, > 0 then

11: assign fI to switch s

12: K, =K;—1

Algorithm 1 and Algorithm 2 show the details of the two
heuristic algorithms. We sort the set of flows selected to be
monitored, in descending order of per-flow size/reward based
on the outcome of online learning algorithms, denoted as SF,
and take it as an input for the rule placement algorithms. We
map each flow in SF to a set of candidate switches that can
monitor it, denoted as S¥. For each OF switch s € V, we keep
a counter for the number of available TCAM entries it has,
K. For both heuristics, we start with flows ranking highest
(largest flows) and iteratively assign flows to switches.

In LastHop rule placement algorithm (LRP), we sort the
candidate switches s € S/! in the order of positions in route
path from destination to source. We first check if the last

Fig. 2: HHHs in an example prefix tree of source IP addresses.
The number at each node represent the traffic volume sent by
the IP prefix during a certain time interval. Threshold is set to
10 here. All the HHHs are shaded in green color. Node 001**
is not an HHH because more than half of its large volume
comes from its HHH descendant 0010%*.

OF switch in the flow path has available TCAMs to count
flow. If not, it moves to a prior OF switch. The process is
repeated until it finds a spot to monitor or it fails to find
any available TCAMs among all the candidate switches. In
Greedy Rule Placement algorithm (GRP), we keep an extra
counter for each OF switch s € V for the number of large
flows it can monitor, Cs. For each flow, we greedily assign
the flow to the switch s € S/! with the current maximum
available capacity. If there is a tie, we choose the one with
the smallest C,. It means that we save switches which can
cover more large flows for later assignment. Assume n is the
the number of flows, the computational complexity for both
heuristic algorithms is O(n).

III. EXAMPLE APPLICATION

OpenMeasure periodically reads traffic counters from
switches and estimates the traffic matrix. Our measurement
framework is useful for many applications that use these
flow size estimates, such as, monitoring normal traffic pattern,
detecting large traffic changes, and identifying hierarchical
heavy hitters (HHHs).

In this work, we take the HHH identification problem as
a case study to show the effectiveness of our framework and
understand the benefit of adaptive measurement with SDN-
enabled online learning. Detecting HHHs is important for a
number of security applications, including pinpointing denial-
of-service (DoS) attacks and DDoS attacks [11], discovering
worms [12] and other anomalies. We focus on detecting
HHHs in the hierarchical domain of source IP prefixes. To
find HHHs, we build a prefix tree of source IP addresses
for each destination IP prefix. HHHs are the longest IP
prefixes whose aggregated traffic volume is larger than a user-
specified threshold, after excluding the contribution of any
HHH descendant [13]. Fig. 2 shows an example in detail.

IV. PERFORMANCE EVALUATION

In order to evaluate the performance of the adaptive mea-
surement with SDN-enabled online learning, we compare it
with 1) Random Scheme (RS), where we randomly assign a

subset of flows to each switch to monitor; 2) Static Aggrega-
tion (SA), where we use the initial set of rules (fixed grouping
of flows) during the entire period; 3) LFF proposed in [6]. LFF
identifies the set of large flows from the statistics obtained
from MLRF method in the first phase, and measures a static
set of large flows during the entire counting period. We build
a simulator to evaluate different measurement strategies using
the topology and traffic traces from a publicly available dataset
from the Geant network [14]. We evaluate OpenMeasure
from two aspects: the accuracy for TM estimation and the
performance for HHH identification.

A. Trace-driven simulation

We perform our simulations using topology and traffic traces
from the Geant network (23 nodes and 37 links) [14]. This
publicly available dataset contains traffic collected for each 15
minutes interval over a time range of 4 months. We randomly
select a week’s data as the ground truth in our experiment.
The data provides traffic sizes between any two nodes in
the topology. In order to get fine-grained traffic matrices, we
randomly assign a number of IP prefixes to each node. Each
IP prefix is associated with a weight. The fine-grained flow
size between any pair of IP prefixes is calculated using (4):

Wsrc_prefix Wdst_prefix

*
Z Wprefix Z

prefiz€src_node prefiz€dst_node

Sfi = Sea *

Wprefix

“)

Since we consider a hybrid SDN network, we assume only

a subset of nodes are OF switches. The nodes with larger flow

coverage sets are more likely to be SDN-enabled. In our case,

we choose 6/23 nodes to be OF switches and we assume the

number of TCAM entries is the same for all OF switches. The
routing entries are generated based on shortest-path routing.

B. Accuracy for TM estimation

Normalized Mean Square Error (NMSE): We use the
metric NMSE to examine the accuracy of traffic matrix esti-
mation. NMSE is defined in (5).

1o || X=X o

NMSE = —
L2 X

&)
where X! is the true traffic matrix at time slot ¢ and X* is
the estimated traffic matrix. 7, is the total number of time
intervals measured. We compute the NMSE under different
measurement strategies and compare OpenMeasure with Ran-
dom Scheme (RS), Static Aggregation (SA), and LFF [6].
First, we evaluate the performance of different rule place-
ment algorithms with the same online learning algorithms.
Fig. 3 plots the average NMSE obtained using LRP, GRP
and optimal rule placement solution (by directly solving the
ILP). The scheme that uses Weighted Linear Prediction (WLP)
online learning algorithm in rule design and Greedy rule
placement (GRP) algorithm in rule placement is denoted as
OpenMeasure(WLP+GRP). The aggregation ratio r is defined

LFF
0.28! L a—A OpenMeasure(WLP+LRP)
e—e OpenMeasure(WLP+GRP) 0.4
4+—4 OpenMeasure(WLP+ILP)

average NMSE

N\"'\'\N“

100

hit-rate (%)

70| H

%X RS
A4 SA

e
=

¥—v OpenMeasure(MUCBP+GRP)
e—e OpenMeasure(WLP+GRP)

60

— OpenMeasure(WLP+GRP)
- OpenMeasure(MUCBP+GRP)

50,

5)
01872 0.16 0.20 024 0.28 Ofiz 0.16

Aggregation ratio (r)

Fig. 3: NMSE under different rule
placement algorithms

as the total number of TCAM entries used over the number
of flows in the network. From Fig. 3, we can observe that the
two heuristic algorithms achieve estimation accuracy that is
very close to that of the optimal solution, showing the effec-
tiveness of our proposed heuristics with continuous learning.
Among the two heuristic algorithms, Greedy rule placement
(GRP) algorithm performs slightly better than LastHop rule
placement (LRP) algorithm. For simplicity, we use the results
from GRP to represent the performance of OpenMeasure in
the rest of the discussion.

Now we compare OpenMeasure with LFF [6] in Fig. 3.
Both OpenMeasure(WLP+ILP) and LFF optimally solves the
rule placement problem. However LFF identifies/measures the
set of large flows based on “one-time” learning, while Open-
Measure performs continuous learning to adaptively update
measurements to track large flows online. The gap between
the curve of OpenMeasure (WLP+ILP) and that of LFF shows
the advantage of continuous learning.

Fig. 4 shows the average NMSE obtained using RS, SA,
and OpenMeasure, with different aggregation ratio r. We
can see that as expected, the average NMSE decreases as r
increases, since more measurements are available. Moreover,
we can clearly observe that OpenMeasure reduces estimation
error drastically, showing that adaptive measurement with
SDN-enabled learning could greatly improve TM estimation
accuracy compared with measurement without learning. The
conclusion holds true as aggregation ratio r varies. Now
let us focus on the two OpenMeasure curves with different
online learning algorithms. WLP performs slightly better than
MUCBP. The result could be further explained in Fig. 5. The
idea of OpenMeasure is to utilize the available TCAMs to
directly measure large flows. The key challenge of online
learning algorithms is to accurately identify large flows. We
define hit-rate as the true large flows out of the K largest flows
reported by online learning algorithms over K, where K is the
total number of TCAM entries available for new measurements
in the network. Fig. 5 shows the hit-rate of the two learning
algorithms over counting periods. From Fig. 5, we can observe
that WLP is more accurate in terms of identifying large flows
compared with MUCBP. This arises from the fact that the
Geant traffic data is relatively steady over time in a resolution
of 15 minutes.

0.20 0.24 0.28 100 200 300 400 500 600 700
Aggregation ratio (r)

Fig. 4: NMSE with varying

Time intervals

=

Fig. 5: Hit-rate of different online
learning algorithms, K = 120

100

%X RS
a4 SA
90 v—¥ OpenMeasure(MUCBP+GRP)
©—e OpenMeasure(WLP+GRP)
80 /:/)/'

70

average Recall (%)

00f g

V.12 0.16 0.20 0.24 0.28
Aggregation ratio (r)

Fig. 6: Recall with varying r

C. HHH identification

Recall & Precision: To quantify the performance of HHH
detection, we use two metrics—recall and precision [15].
Recall is the total number of true HHHs detected over the
real number of HHHs in the ground truth in each time interval.
The higher the recall, the higher the probability of detection.
Precision is the total number of true HHHs detected over the
total number of HHHs reported in each time interval. The
higher the precision, the lower the false positives [13].

Fig. 6 and Fig. 7 show the results for HHH identification.
In both figures, we can see that OpenMeasure consistently
outperforms the random scheme and static aggregation with
more than 10% performance gain. And as r increases (more
available TCAMs), the performance gain increases. WLP per-
forms slightly better than MUCBP due to the reason discussed
above. Our results demonstrate that a higher accuracy could
be achieved in detecting HHHs using adaptive measurement
with SDN-enabled online learning.

D. Practical Implementation on GENI testbed

GENI is a distributed virtual laboratory for at-scale ex-
periments in network science, services and security [8]. We
performed a practical implemention and evaluation of our
OpenMeasure framework on this testbed. Specifically, we (1)
created the Geant topology on GENI testbed, (2) installed and
configured Open vSwitch [16] on switch nodes to simulate the
function of OF switches, and (3) developed an OpenMeasure
prototype using the POX OpenFlow API [17]. A demo and a
poster [9] based on the preliminary result of this work were

100

%X RS

A4 SA

¥—v OpenMeasure(MUCBP+GRP)
©—e OpenMeasure(WLP+GRP)

e

©
=)

4

70

a—A
—X

average Precision (%)

60

E4D) 0.16 0.20 0.24 0.28
Aggregation ratio (r)

Fig. 7: Precision with varying r

shown in GEC23 and GENI NICE workshop(in 2015). This
implementation study demonstrates the practical effectiveness
and feasibility of our framework.

V. RELATED WORK

Our work builds on top of the existing proposals of SDN.
For TM measurement and inference, OpenTM [18] and Open-
NetMon [19] measure the traffic matrix by keeping track of
statistics for each flow. These per-flow based measurement
solutions do not scale well with the increase of traffic size and
impose heavy overhead on the network. The work most rele-
vant to us are iSTAMP [5] and [6]. iISTAMP faces aggregation
feasibility issues in practical implementation and only focuses
on a single OF switch. Gong et al. [6] extend the iISTAMP
framework to the multi-switch case, but do not explore the
benefits of continuous online learning in flow measurement
and inference like we do. A recent work [20] proposes using
TCAM entries to assist network tomography in data center
networks.

On the other hand, ProgME [21] proposes a programmable
traffic measurement architecture to measure any arbitrary
set of flows. OpenSketch [22] proposes using sketches for
different measurement tasks. However they rely on specialized
hardware support on switches. Jose et al. [13] focuses on
detecting hierarchical heavy hitters on a single OF switch. [23]
proposes OpenWatch for measuring flows under applications
of anomaly detection.

VI. CONCLUSION AND DISCUSSION

This paper presents OpenMeasure, an adaptive fine-grained
flow measurement and inference framework, which takes ad-
vantage of online learning and global optimization (in rule
placement) enabled in SDN. It employs a learning based
dynamic adjustment scheme to continuously track and measure
the most informative flows. Aside from the two learning
algorithms we presented in this work, more advanced machine
learning approaches could be applied in our framework to
improve prediction accuracy. With the SDN controller’s global
view, OpenMeasure optimizes the measurement resource allo-
cation across the network. We also propose two light-weight
heuristic rule placement algorithms, which achieve close-to-
optimal performance but exhibit much smaller computational
complexity. Lastly, using topology and traces from a real ISP

network, we demonstrate the benefit of continuous learning
and update of measurement rules in both TM estimation and
HHH identification applications.

REFERENCES

[1] M. Roughan, M. Thorup, and Y. Zhang, “Traffic engineering with
estimated traffic matrices,” in Proceedings of the 3rd ACM SIGCOMM
conference on Internet measurement. ACM, 2003, pp. 248-258.

[2] T. Benson, A. Anand, A. Akella, and M. Zhang, “Microte: Fine grained
traffic engineering for data centers,” in Proceedings of the Seventh
COnference on emerging Networking EXperiments and Technologies.
ACM, 2011, p. 8.

[3] A. Soule, K. Salamatian, and N. Taft, “Combining filtering and statistical
methods for anomaly detection,” in Proceedings of the 5th ACM SIG-
COMM conference on Internet Measurement. USENIX Association,
2005, pp. 31-31.

[4] D. Kreutz, F. M. Ramos, P. Esteves Verissimo, C. Esteve Rothenberg,
S. Azodolmolky, and S. Uhlig, “Software-defined networking: A com-
prehensive survey,” proceedings of the IEEE, vol. 103, no. 1, pp. 14-76,
2015.

[5] M. Malboubi, L. Wang, C.-N. Chuah, and P. Sharma, “Intelligent sdn
based traffic (de) aggregation and measurement paradigm (istamp),” in
INFOCOM, 2014 Proceedings IEEE. 1EEE, 2014, pp. 934-942.

[6] Y. Gong, X. Wang, M. Malboubi, S. Wang, S. Xu, and C.-N. Chuah,
“Towards accurate online traffic matrix estimation in software-defined
networks,” in Proceedings of the 1st ACM SIGCOMM Symposium on
Software Defined Networking Research. ACM, 2015, p. 26.

[71 P. Auer, N. Cesa-Bianchi, and P. Fischer, “Finite-time analysis of the
multiarmed bandit problem,” Machine learning, vol. 47, no. 2-3, pp.
235-256, 2002.

[8] M. Berman, J. S. Chase, L. Landweber, A. Nakao, M. Ott, D. Raychaud-
huri, R. Ricci, and I. Seskar, “Geni: A federated testbed for innovative
network experiments,” Computer Networks, vol. 61, pp. 5-23, 2014.

[9] C. Liu, S.-M. Peng, M. Malboubi, C.-N. Chuah, M. Bishop, and B. Yoo,

“Distributed iceberg detection with sdn-enabled online learning,” demo

presented at 23rd GENI Engineering Conference, 2015.

“Gurobi optimizer: http://www.gurobi.com/.”

P. E. Ayres, H. Sun, H. J. Chao, and W. C. Lau, “Alpi: A ddos defense

system for high-speed networks,” Selected Areas in Communications,

IEEE Journal on, vol. 24, no. 10, pp. 1864-1876, 2006.

G. Huang, A. Lall, C.-N. Chuah, and J. Xu, “Uncovering global icebergs

in distributed streams: Results and implications,” Journal of Network and

Systems Management, vol. 19, no. 1, pp. 84-110, 2011.

L. Jose, M. Yu, and J. Rexford, “Online measurement of large traffic

aggregates on commodity switches,” in Conference on Hot Topics in

Management of Internet, Cloud, and Enterprise Networks and Services—

Hot-ICE. USENIX, 2011.

“GEANT traffic: https://totem.info.ucl.ac.be/dataset.html.”

G. Cormode and M. Hadjieleftheriou, “Methods for finding frequent

items in data streams,” The VLDB Journal, vol. 19, no. 1, pp. 3-20,

2010.

“Open vSwitch: http://openvswitch.org/.”

“POX: https://openflow.stanford.edu/display/onl/pox+wiki.”

A. Tootoonchian, M. Ghobadi, and Y. Ganjali, “Opentm: traffic matrix

estimator for openflow networks,” in Passive and active measurement.

Springer, 2010, pp. 201-210.

N. L. Van Adrichem, C. Doerr, F. Kuipers et al., “Opennetmon:

Network monitoring in openflow software-defined networks,” in Network

Operations and Management Symposium (NOMS), 2014 IEEE. 1EEE,

2014, pp. 1-8.

[20] Z. Hu and J. Luo, “Cracking network monitoring in dcns with sdn,” in

Proc. IEEE INFOCOM, 2015.

L. Yuan, C.-N. Chuah, and P. Mohapatra, “Progme: towards pro-

grammable network measurement,” IEEE/ACM Transactions on Net-

working (TON), vol. 19, no. 1, pp. 115-128, 2011.

M. Yu, L. Jose, and R. Miao, “Software defined traffic measurement

with opensketch.” in NSDI, vol. 13, 2013, pp. 29-42.

Y. Zhang, “An adaptive flow counting method for anomaly detection

in sdn,” in Proceedings of the ninth ACM conference on Emerging

networking experiments and technologies. ACM, 2013, pp. 25-30.

[10]
(11]

[12]

[13]

[14]
[15]

[16]
[17]
[18]

[19]

[21]

[22]

[23]

