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Abstract Elastically driven filaments subjected to an-

imating compressive follower forces provide a synthetic

way to mimic oscillatory beating of active biological fil-

aments such as eukaryotic cilia. The dynamics of such

active filaments can, under favorable conditions, ex-

hibit stable time-periodic responses that result due to

the interplay of elastic buckling instabilities, geomet-

ric constraints, boundary conditions, and dissipation

due to fluid drag. In this paper, we use a continuum

elastic rod model to estimate the critical follower force

required for onset of the stable time-periodic flapping

oscillations in pre-stressed rods subjected to fluid drag.

The pre-stress is generated by imposing either clamped-

clamped or clamped-pinned boundary constraints and

the results are compared with those of clamped-free

case, which is without pre-stress . We find that the crit-
ical value increases with the initial slack–that quantifies

the pre-stress, and strongly depends on the type of the

constraints at the boundaries. The frequency of oscilla-

tions far from onset, however depends primarily on the
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magnitude of the follower force, not on the boundary

constraints. Interestingly, oscillations for the clamped-

pinned case are observed only when the follower forces

are directed towards the clamped end. This finding can

be exploited to design a mechanical switch to initiate

or quench the oscillations by reversing the direction of

the follower force or altering the boundary conditions.

Keywords Active Filaments · Follower forces · Elastic

Instability · Buckling

1 Introduction

Cilia and flagella are micron-sized filamentous organelles

found in eukaryotic cells that play a crucial role in

biologically important processes such as locomotion,
mucus clearance, embryogenesis and cell motility [1,

2]. While the biophysical and biochemical mechanisms

governing and regulating the activity of these oscilla-

tions are still not well understood, there is a growing

interest in biomimetic applications of these structures

in the field of microfluidics and soft robotics. For ex-

ample, elastically connected beads actuated by time-

periodic magnetic fields [3,4] or external chemical gra-

dient [5,6,7] enable directed transport of cargo.

An alternate mechanism motivated by biological mo-

tor filament assays that can also yield controllable os-

cillations in this case driven by mechanical instabilities

involves slender filaments subjected to follower forces.

In passive contexts, nonconservative follower loads act-

ing as either a point force or a distributed load play a

crucial role in several contexts such as pipes conveying

fluid [8,9], self-propelled structures [10] and flutter in

rockets [11]. Practical engineering applications of sys-

tems subjected to follower forces, as well as the theoret-

ical developments on stability analysis of such systems
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are presented in a number of review studies [12,13,14,

15]. In biological contexts, follower forces are realized in

motor-filament aggregates inside cells and in-vitro as-

says wherein polar molecular motors attach to filaments

and exert forces along their backbone [16].

Mechanical responses such as buckling are a com-

mon motif in biology [17,18,19] where filaments are

typically constrained in some way by their surround-

ings. Similar constraints to unfettered motion is seen

in animated filaments. Building on these ideas, several

researchers have effectively used continuum models for

analyzing the post-buckling behavior of slender inexten-

sible active or inactive filaments subjected to follower

forces [20,21,22]. These studies have focused on the dy-

namics of free-free, fixed-free, and pinned-free filaments

with the base state being a straight non-stressed fila-

ment. However, the role of pre-stress in emergent oscil-

lations driven by distributed follower forces has received

attention only recently despite the richness of its poten-

tial for bio-inspired applications [24,25].

In this paper, we study the effect of boundary con-

straints on the flapping oscillations of pre-stressed rods

animated by follower forces. In particular, we focus on

two statically indeterminate scenarios of boundary con-

straints: fixed-fixed (FF) and pinned-fixed (PF). By

’fixed-fixed’, we refer to a rod clamped at both ends,

and by ’pinned-fixed’ we refer to a rod clamped at one

end and attached to a pin joint at the other end al-

lowing free rotation. In both scenarios, the rod is pre-

stressed by decreasing the end-to-end distance, thereby

generating a buckled shape, and then it is subjected to a
uniformly distributed follower force along the centerline

tangent. The lack of constraint at the free-end of a can-

tilever (fixed-free scenario) allows for either lateral os-

cillations or steady rotations to develop [7]. In contrast,

in statically indeterminate fixed-fixed (FF) and pinned-

fixed (PF) scenarios, the slack generated by initial com-

pression offers the necessary degree of freedom to al-

low for in-plane oscillations (flapping). The rod model

presented here is three-dimensional, but due to planar

perturbations and loads, the resulting oscillations re-

main planar. That said, we have observed that out-

of-plane oscillations can emerge from two-dimensional

base states. In this paper, however, we focus our atten-

tion exclusively on planar dynamics and will report our

findings on three-dimensional oscillations in a follow-up

publication. A broader impact of the results presented

in this paper lies in recognizing how the interplay of

geometry, elasticity, dissipation and activity unique to

the pre-stressed scenarios can be harvested to move or

manipulate fluid at various length scales.

2 Model

The continuum rod model that we use follows the clas-

sical approach of Kirchhoff [23], which assumes each

cross-section of the rod to be rigid. The model is de-

scribed in detail in [24]. To briefly summarize, equi-

librium equations (1) and (2), and the compatibility

conditions (3) and (4) are given below:

m(
∂v

∂t
+ ω × v)− (

∂f

∂s
+ κ× f)− F = 0 (1)

Im
∂ω

∂t
+ ω × Imω − (

∂q

∂s
+ κ× q) + f × r−Q = 0(2)

∂r

∂t
+ ω × r− (

∂v

∂s
+ κ× v) = 0 (3)

∂κ

∂t
− (

∂ω

∂s
+ κ× ω) = 0 (4)

Here s is the cross-section location along the rod, t

is time, m(s) is the mass of the rod per unit length and

tensor Im(s) is the moment of inertia per unit length

in the body-fixed frame of reference. Variation of vector

r(s, t) encodes shear and extension of the rod. In this

paper, it is assumed constant to ensure in-extensibility

and un-shearability. The vectors F and Q are the ex-

ternal distributed force and moment, respectively. They

include the distributed follower force as well as inter-

actions of the rod with the environment such as fluid

drag. Note that the spatial and temporal derivatives in

equations (1) - (4) are relative to the body-fixed frame,

which obviates the need of transforming body-fixed fol-

lower forces and drag to inertial frame.

The unknown variables that we need to solve for

are: the vector κ(s, t) that captures two-axes bending

and torsion, the vectors v(s, t) and ω(s, t) that repre-

sent the translational and the angular velocities of each

cross-section, respectively, and the vector f(s, t) that

represent internal shear force and tension. The internal

moment vector q(s, t) in the angular momentum equa-

tion (2) is related to κ(s, t) by the linear constitutive

law

q(s, t) = Bκ, (5)

where the tensor B(s) represents the bending and tor-

sional stiffness of the rod. In the body-fixed frame that

coincides with principal torsion-flexure axes, the stiff-

ness tensor B is expressed as

[B] =

EI1 0 0

0 EI2 0

0 0 GI3

 , (6)

where E is the Young’s modulus, G is the shear modu-

lus, and I1, I2, and I3 are the second moments of cross-

section area about the principal torsion-flexure axes.
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Fig. 1 The graphics on the top show the schematic representations of a rod of unstressed length L in fixed-fixed (FF) scenario
(a) and in pinned-fixed (PF) scenario (b). The end-to-end distance in the buckled state is Lee < L. The corresponding shapes of
the rod centerline in the buckled states are shown in the middle row for different values of Lee/L. The dashed line corresponds
to the unbuckled case Lee/L = 1.0. Pre-stress contributes to the tension along the filament, f3 (bottom row). For the shapes
we study in this paper, there is a one-to-one correspondence between the tension, f3, and pre-stress.

The Generalized-α method is adopted to compute

the numerical solution of this system, subjected to nec-

essary and sufficient initial and boundary conditions. A

detailed description of this numerical scheme applied to

the rod formulation is given in [26]. We have validated

this scheme by comparing our results with the known

results of Beck’s column [24].

To model fluid dissipation, we have used either Stokes

-like linear drag [S] or the quadratic Morrison drag [M]

in our simulations. These drags are given by equations

(7) and (8) below, respectively [27]:

FS = −1

2
ρfd
(
Cnt× (v × t) + πCt(v · t) t

)
(7)

FM = −1

2
ρfd
(
Cn|v×t|t×(v×t)+πCt(v ·t)|v ·t|t

)
(8)

Here, ρf is the fluid density, d is diameter of the rod, t

is the unit tangent vector along the rod’s centerline and

Cn and Ct are drag coefficients in the normal and tan-

gential directions, respectively. In this paper we primar-

ily focus on results obtained for quadratic drag. How-

ever, we also comment on results obtained using the

linear drag.

3 Results

In this section, we present and compare the simulation

results for the post-buckling analysis of pre-stressed

rods with fixed-fixed (FF) and pinned-fixed (PF) bound-

ary conditions. The aim is to quantify the effect of pre-

stress on the stability margin for both of these bound-

ary conditions. We also compare the results with the

cantilever (fixed-free) scenario to shed more light on

how pre-stress can be used to manipulate the onset of

oscillations (i.e., the critical point).

In all the simulations an initially straight cylindrical

rod is used with the properties given in Table 1. The

pre-stress is generated by moving one end of the rod

relative to and towards the other as shown in Figure

1. The pre-stress values are determined and controlled

by the end-to-end distance, Lee. Then we apply uni-

formly distributed follower load, F to the pre-stressed

rod along the tangential direction of the rod’s center-

line. As the follower force exceeds a critical value Fcr,

the buckled equilibrium is destabilized and flapping os-

cillations emerge. The simulation snapshots in Figure 2

show some examples of how the shape of the rod evolves

during one complete oscillation for all three boundary

conditions (FF, PF and Cantilever) and F = 20 N/m
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Quantity Variable Value Units

Diameter d 0.0096 m
Length L 8 m
Mass per unit length m 0.2019 kg/m
Young’s modulus E 68.95 GPa
Shear modulus G 27.58 GPa
Second moment of area I1 = I2 = I 4.24 ×10−10 m4

Polar moment of area I3 8.48 ×10−10 m4

Normal drag coefficient Cn 0.1 s/m [S], none [M]
Tangential drag coefficient Ct 0.01 s/m [S], none [M]
Surrounding fluid density ρf 1000 kg/m3

Table 1 Numerical values for the geometric and elastic properties of the rod and drag coefficients used in the simulations.
The ratio Cn/πCt = 3.18 is comparable to the value 2 for the limit of purely viscous (Stokesian) drag ratio for a slender rod
using resistivity theory [7].

Fig. 2 Configurations of the oscillating rods are depicted
during one time-period when F = 20 N/m, and the drag
force is quadratic [M] in the rod velocity.

> Fcr. For the pinned-fixed scenario, flapping oscilla-

tions emerge only when the follower force points from

the pinned end towards the fixed end. Upon reversing

the direction of the follower force, flapping oscillations

disappear and stable equilibria evolve. The stable equi-

librium shapes that evolve in this scenario with increas-

ing follower force are shown in Figure 3. For the can-

tilever, the follower force causes flapping oscillations

when it points from free end towards fixed end, not

otherwise. This is expected as instabilities are due to

compressive stresses. Tensile stresses do not lead to in-

stabilities.

Fig. 3 In pinned-fixed scenario if the direction of the follower
force is from the fixed end towards the pinned end, flapping
oscillations do not occur. Instead the stable equilibrium shape
keeps evolving with increasing follower force.

In the next sub-section, we analyze the flapping os-

cillations by looking at the transfer of energy to and

from the rod, and the variation of total energy stored

in the form of strain and kinetic energies. This allows us

to rationalize how the instability-driven flapping oscilla-

tions are sustained in steady state. Then, we present re-

sults for the critical value of the follower force Fcr versus

pre-stress measured by end-to-end distance Lee/L for

both fixed-fixed and pinned-fixed scenarios. Next, we

examine how the planar beating frequency, ω(F,Lee/L)

both at the critical point and for values of the follower

force F > Fcr depends on the pre-stress. To highlight

the effect of pre-stress we also report Fcr of a cantilever

(fixed-free) rod, which has no pre-stress, and show its

frequency response as well. Finally, we discuss design

implications of some of the observations.

3.1 Energy Exchange During Flapping

Figure 4 shows how strain energy, kinetic energy, work

done by follower force, and energy dissipated by fluid

drag evolve as flapping oscillations emerge and reach a
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steady state in a pinned-fixed scenario for F = Fcr, and

slack (related to end-to-end distance) 1−Lee/L = 0.3.

Snapshots of the shape show the rod flapping from the

base state (A) to (C) via strain energy maxima (B)

and symmetrically flapping back to configuration (E)

via (D). In each cycle, the follower force does work to

(i) increase the elastic energy stored in the rod via the

strain field, (ii) increase the kinetic energy of the rod,

and (iii) overcome the fluid dissipation (from A to B or

C to D). Specially, we note the steep ramp-up in these

intervals corresponding to an increase in strain energy.

In contrast, between (B) and (C), or (D) and (E), the

total mechanical energy stored in the system (strain

energy and kinetic energy) continues to drive the oscil-

lations overcoming the negative work done by follower

force and again the fluid dissipation. Thus elastic and

kinetic energies of the deforming rod serve to mediate

the transfer of energy eventually from the active forces

to the ambient fluid in each cycle.

When the rod shapes from (A) through (E)–the

complete cycle–are superimposed (left top graphic in

Figure 4), it is obvious that while flapping back the

rod doesn’t retrace its configuration. The graphic also

shows trajectories of three points at s = 0.25L, s =

0.50L, and s = 0.75L on the rod. The points don’t re-

trace their paths, but instead follow a figure 8-like loop.

If the entire rod were to retrace back its configuration

while flapping back, i.e., if all points were to retrace

their paths, the follower force could not have done any

net work.

3.2 Critical Force for Onset of Flapping

The critical values of the distributed follower force (or

critical follower force densities) are computed by nu-

merically integrating the time dependent equations (1)-

(7) and seeking the point at which stable oscillations

emerge as the follower load increases. Note that this is

done using time-integration and not via continuation

methods. This procedure is repeated for several values

of pre-stress, 1 − Lee/L. Since our aim is the identi-

fication of the parameter range that can be explored

experimentally, we focus only on the pre-stress values

satisfying 0.95 < 1− Lee/L.

As soon as the magnitude of the follower load is

above the critical value, F > Fcr, base states become

unstable and oscillations emerge. Figure 5(a) shows the

magnitudes of the critical follower load Fcr against the

slack, 1− Lee/L for both fixed-fixed (FF) and pinned-

fixed (PF). We find that (i) in both cases the critical

follower force density increases in magnitude as the pre-

stress in the rod increases (ii) for the same end-to-end

distance, other things being equal, FF boundary condi-

tion has a larger critical point in comparison to PF, and

(iii) the magnitude of critical follower load is nearly the

same for linear drag, quadratic drag, or no fluid drag

(discrepancies being < 2%). We can explain the first

finding by looking at the strain energies of the base

states shown in Figure 5(b). Larger slack corresponds

to larger pre-stress which in turn implies that base state

has a larger strain energy. Hence, as slack increases a

larger follower force is required to overcome the larger

barrier of elastic energy in order to initiate the flapping

oscillations. Similarly, the second finding can also be

explained by the fact that for a given pre-stress value,

FF base states possess higher strain energy than do

the PF base states. And finally, the third finding can

be explained by the fact that critical point is governed

by the linear stability of the system while undergoing

small perturbations, therefore nonlinear [M] and linear

[S] drags yield the same critical value. In addition, we

surmise that the onset of oscillations and the onset of

flutter are very close to one another for the parameter

range investigated here since values of critical load in

absence of drag are close to the values found with fluid

dissipation.

Finally, by examining the slopes in Figure 5(a), we

find that the rate at which the critical values increase

with pre-stress is larger for PF than for FF, hence PF

stability region is more sensitive to pre-stress than FF

stability region.

3.3 Frequency of Flapping

We next examine the frequency of oscillations, i.e., the

wave speed associated with the propagation of curva-

ture along the arc-length as the rods cycle in configu-

ration -time space. In all simulations we observe that

for F ≥ Fcr oscillations eventually reach a stable state,

implying the rate of energy input into the system due

to the action of the nonconservative follower forces bal-

ances the rate of energy dissipated by the fluid drag.

We track the oscillations for 40 seconds for each F value

corresponding to a minimum of 8 full oscillations up to

a maximum of 70 full oscillations (once stable state is

attained).

The computational model described in section 2 is

used here to systematically investigate the effect of pre-

stress and the follower force on the frequency of oscil-

lations, ω(F,Lee/L) near the critical point as well as

far from the critical point where |F − Fcr|/Fcr > 1. To

better understand the results, we juxtapose the can-

tilever (stress-free) force-frequency curve with those of

fixed-fixed (FF), and pinned-fixed (PF) loading scenar-

ios. Figure 6 illustrates the frequency of flapping os-
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Fig. 4 Tracking strain energy, EB(t) =
∫ L

0

1
2
EImκ · κds, kinetic energy, EK(t) =

∫ L

0

1
2
mv · vds, for F = Fcr and slack

1−Lee/L = 0.3, dissipation energy, WFM
(t) =

∫ t

0

∫ L

0
FM ·vdsdτ , and work done by follower force, WF (t) =

∫ t

0

∫ L

0
F t ·vdsdτ

illustrates that intervals of positive and negative work done by follower force correspond to increase and decrease in strain
energy, respectively, and that intervals of peak kinetic energy correspond to jumps in energy dissipation. Points on the rod are
found to trace an 8-like shaped loop. On the right, strain energy, kinetic energy, as well as the snapshots of the rod shapes at
the base state energy level (A, C, and E) and at the maximum of strain energy (B and D) show the exchange of energy during
oscillations.

Fig. 5 (a) Critical load for onset of oscillations, Fcr versus normalized decrease in end-to-end distance, 1 − Lee/L for both
pinned-fixed and fixed-fixed scenarios. For 0.05 < 1 − Lee/L < 0.5, the critical force Fcr increases as 1 − Lee/L, or pre-stress,
increases. Normalized critical load for stress-free cantilever is FcrL3/(4π2EI) = 0.0916 (b) Strain energy of the base state, EB

increases with pre-stress. It is also higher for fixed-fixed boundary condition than for the pinned-fixed condition.

cillations for rods under various end-to-end distances

and subjected to Morrison drag. The frequency val-

ues are cast on a log-log scale; shown alongside is the

power law relating the frequency to the follower force,

ω ∼ F
5
6 found theoretically using scaling arguments

based on power and dissipation rates [24]. When os-

cillations reach steady state the rate at which energy

enters the system due to the work done by nonconser-

vative follower force balances the rate at which energy

dissipates due to the fluid drag.

Figure 6 illustrates that frequencies in both PF and

FF cases converge to that of the cantilever as the pre-

stress vanishes. Moreover, far from the critical point, it

can be observed that force-frequency curves for all three

loading scenarios and all pre-stress values collapse into

one.
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3.4 Implications for Design

In this section we discuss some of the implications of

this study for design of synthetic active filaments in

applications such as biomimetic soft robots or micro

fluidic devices. First, we comment on how pre-stress

can be potentially used to control the oscillations, sec-

ond we discuss the role boundary conditions can play

in regulating the dynamics of oscillations. All of these

implications are grounded on, and hence are relevant to

the range of parameters explored in this paper.

3.4.1 Regulation by pre-stress

Based on the results presented in Figure 5, we conclude

that pre-stress can be effectively used to regulate the

onset of oscillations and to control the stability margin

in both FF and PF cases. In the region near the critical

point, pre-stress can be also an effective parameter to

control the frequency of the oscillations in both FF and

PF scenarios, however far form the critical point the

frequency of oscillations become independent of pre-

stress and independent of the boundary conditions.

3.4.2 Regulation from boundary constraints

Another important observation we have made is that

in PF scenario if the direction of the follower force is

from the fixed end towards the pinned end (F to P),

there would be no emergent oscillations possible. Thus,

all the PF results presented here can be produced only

when direction of the follower force is from the pinned

end towards the fixed end (P to F). This feature can

be used to manipulate the oscillations. Altering bound-

ary conditions independently from the mechanism that

generate follower force can be used to start or stop the

flapping oscillations. For example, in FF scenarios by

converting one clamped end into a pin joint this feature

can be used to suppress oscillations.

4 Conclusions

In this paper we analyzed the post-buckling flapping

oscillations of constrained slender structures subjected

to tangential follower loads using a computational rod

model. This scheme was benchmarked by comparing

with established results of critical buckling force for

Beck’s column [24]. We focused on slender rods main-

taining a straight shape in stress-free state (i.e., hav-

ing neither intrinsic curvature and twist nor axial ten-

sion) with boundary conditions being either both ends

clamped, or one end clamped and the other pinned. By

moving the two ends of the rod towards one another, the

Fig. 6 Frequency for the Morrison [M] drag plotted as a func-
tion of the force density F plotted in logarithmic scales to il-
lustrate two salient features; (i) as the follower force increases
to values much larger than the critical values, the effect of
the pre-stress diminishes–similar frequencies are observed for
fixed-fixed (FF) and pinned-fixed (PF) scenarios far from
criticality–and (ii) the frequencies in the limit F � Fcr scale
roughly as ω ∼ F 5/6 consistent with our theoretical predic-
tion.

structure is forced to buckle. Thus, effects of pre-stress

and boundary conditions are systematically tested both

on the emergence of buckling instabilities, as well as on

the post-buckling oscillations induced by follower force.

In these computations the inertia of the rod, geometry

and the fluid drag coefficients are held fixed. We found

that beyond a critical value of distributed and compres-

sive follower loads the buckled shapes become unstable

and oscillatory beating emerges. This critical value is

found to be larger for rods with fixed-fixed boundary

condition in comparison to the rods with pinned-free

constraints. Nonetheless, the magnitude of the critical

follower load increases as the magnitude of the pre-

stress in the structure increases. Far from criticality,

i.e. for F much greater than the critical value needed

to initiate the oscillations, the response frequencies ex-

hibit a power law dependence on F with an exponent 5
6 .

This exponent is explained by consideration of a power

balance between the active energy pumped into the sys-

tem by the nonconservative follower forces and energy

dissipated due to fluid drag.

As mentioned earlier, we have found critical forces

for pinned-fixed condition to be smaller that the criti-

cal force for fixed-fixed boundary condition for the same

value of the slack. This is consistent with previous work

on animated filaments without pre-stress [7] where it

is found that the critical load for pinned-free scenario

is smaller than that of fixed-free (cantilever). A lin-
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ear stability analysis for these two cases indicates that

non-trivial solutions emerge from the trivial state via a

Hopf-Poincare bifurcation with flapping (complex con-

jugate eigenvalues crossing the real axis) for fixed-free

loading condition. For the pinned-free scenario, since

there is a rotational degree of freedom at the pin and

no energy penalty for free-rotations about this point,

the linear stability suggests a simple global bifurcation

(single eigenvalue crossing zero) and the nonlinear sta-

ble state is a rotating coil. In our study, when the fol-

lower force is directed towards the pinned end while

the other end is clamped, the strained rod cannot ro-

tate about the pin, instead it deforms and reaches a

state of static equilibrium; in the vicinity of the pivot

the rod is highly curved.

Our approach provides a platform to investigate the

interplay between geometry, elasticity, dissipation, and

activity and overall to contribute towards designing bio-

inspired multi-functional, and synthetic structures to

manipulate and control fluid at various length scales

or generate propulsion in soft robotics. Further exten-

sions and developments of this study need to examine

the stability margin and dynamics of emergent oscil-

lations subjected to three-dimensional perturbations.

Moreover, the fluid-structure interaction model can be

improved to incorporate two-way coupling and hence

analyze, inter alia, an ensemble of filaments and their

interaction. Finally, continuation and homotopy meth-

ods using Newton-GMRES [28] or variants that are

adapted to use time-steppers to trace both unstable and

stable solutions branches will complement the analysis

presented here.
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