
UC Merced
Proceedings of the Annual Meeting of the Cognitive Science 
Society

Title
Modeling the Other-race Advantage with PCA

Permalink
https://escholarship.org/uc/item/2r66x5sq

Journal
Proceedings of the Annual Meeting of the Cognitive Science Society, 27(27)

ISSN
1069-7977

Authors
Cottrell, Garrison W.
Haque, AfmZakaria

Publication Date
2005
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/2r66x5sq
https://escholarship.org
http://www.cdlib.org/


Modeling the Other-race Advantage with PCA 
 

AfmZakaria Haque (ahaque@cs.ucsd.edu) 
Department of Computer Science & Engineering, 9500 Gilman Dr. 

La Jolla, CA, 92093 
 

Garrison W. Cottrell (gary@ucsd.edu) 
Department of Computer Science & Engineering, 9500 Gilman Dr. 

La Jolla, CA, 92093 
 

 
 

Abstract 

The Other-race effect (ORE) refers to the well-known 
phenomenon of people being less accurate in recognizing 
faces of a different race. One popular hypothesis is that we 
learn to use face-features that are optimal for individuating 
faces of our own race; thus reducing the recognition accuracy 
for faces of a different race. However this hypothesis has not 
been able to explain some advantages other-race faces have in 
certain tasks. For example, some recent experiments showed 
that in a visual search task other-race faces are found faster 
than same race faces when the subjects show the ORE. A race 
based feature selection hypothesis where deviation from the 
familiar race is treated as an explicit part of the encoding has 
been proposed to explain this other-race advantage. In this 
paper, we argue that the other-race advantage can be 
explained without this assumption. We present the results 
from our simulations that suggest that the other-race 
advantage is an inherent characteristic of an optimal feature 
selection model. 

Introduction 
It has long been known that people recognize faces from 
their own racial group with greater accuracy than faces from 
another racial group. This is known as the other-race effect 
(ORE), cross-race effect or own-race bias. Several meta-
analyses of large number of studies in face recognition have 
found a strong ORE (Bothwell, Brigham, & Malpass, 1989; 
Shapiro & Penod, 1986). 

There is naturally a strong agreement that the ORE is 
somehow caused by the learning history of each individual. 
Chance et al (1982) found that six year old children did not 
show a significant other-race effect; but for older 
participants the degree of the ORE increased with age. 
Although there is no conclusive answer to the question of 
how experience with faces can cause the ORE, there are two 
dominant hypotheses. 

What Causes the ORE 
Feingold (1914) suggested that other things being equal, the 
other-race effect depends on the contact with people of the 
other race. However, several studies (Shepard, 1981; 
Valentine, Chiroro, &  Dixon, 1995) argued against this 
contact hypothesis. They suggested that contact for 
individuation could be more significant than mere contact. It 

still leaves the question that how the need for individuation 
can cause the ORE. 

In this section we will discuss two dominant hypotheses 
of the ORE. Both of them concentrate on the feature 
selection scheme humans use for processing faces of same 
and different races. 

Optimal Feature Selection 
Optimal feature selection treats the ORE as people’s 
inability to generalize their feature selection from the same 
race faces to the other-race faces. People select face-features 
that are optimal for identifying each individual. Since 
generally people are most exposed to faces of their own 
race, their feature selection is biased towards optimizing the 
recognition of this class of faces. Assuming faces of 
different races vary along different dimensions, their feature 
selection does not capture the variations of other-race faces 
well, reducing their accuracy in other-race face recognition. 

In some ways this hypothesis is a closely related with 
perceptual expertise. The hypothesis can be interpreted as an 
effect of specialization for same race faces within the 
domain of face expertise (Tanaka et al., in press). 

Several studies (O'Toole et al., 1991, 1994) have used 
Principal component analysis (Jolliffe, 1986) to model 
optimal feature selection. PCA finds a linear transformation 
to a new set of dimensions that maximizes the variance of 
the data. Linearity might be an undesirable constraint, but 
the simplified computation is well worth the compromise. 
Moreover PCA is a neurobiologically plausible means of 
feature selection since simple networks employing hebbian 
learning can learn to extract equivalent features (Sanger, 
1989). In our  simulation we modeled optimal feature 
selection with PCA. 

Race Dependent Feature Selection 
The race dependent feature selection hypothesis assumes an 
asymmetric feature selection scheme for faces. Levin (2000) 
proposed that for other-race faces race specifying 
information is encoded at the expense of individuating 
information. Loss of individuating information reduces 
recognition accuracy for other-race faces, causing the ORE. 

In this hypothesis, for other-race faces, feature selection is 
optimal for classification by race and not for identity. Race 
specifying information, which can be treated as the   
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Figure 1: Stimuli. Visual search task [7] on left, our sample stimuli in the middle, our average faces on right. 

 
deviation from the own race is treated as an explicitly 
encoded feature. 

Although a race dependent feature selection scheme may 
seem to be less intuitive, it can explain the other-race 
advantage we discuss in the next section. 

Visual Search Asymmetry Favoring Other-
race Faces 

Levin (2000, 1996) found that people who show the ORE 
are significantly faster in searching for an other-race face 
among same-race faces than the reverse. The stimuli (Figure 
1) consisted of one White average and one Black average 
face. The faces were processed to have identical skin 
shading, hair, ears and jaw lines and differed only in internal 
features. 

Triesman & Gormican (1988) showed that visual search 
for feature positive target among feature-negative distracters 
is faster than the reverse. This effect, called the visual 
search asymmetry, was assumed to occur since the feature-
positive target stands out among the feature negative 
distracters. But feature positive distracters effectively hide 
the feature negative target in noise, making it harder to 
detect. 
Levin (2000) applied Triesman & Gormican's feature 
positive idea by suggesting that the search asymmetry 
favoring other-race face can be explained if other-race faces 
are more feature-positive. In race dependent feature 
selection, other-race faces are encoded with race specifying 
information, which naturally makes them feature positive. 
Thus, this hypothesis fits well with the search asymmetry. 

The possibility of other-race faces being more feature-
positive in an expertise model has never been explored. If 
we use PCA for feature selection, an analogous idea of 
feature positiveness is the amount of “surprise” that the 
encoding of a face induces. We can think of this as a 
measure of the mismatch between the face and the internal 
representational space of the model. We will use the 
information content of a random variable to model this. We 

describe this idea further in our second simulation. Targets 
with higher information content will provide more clues to 
the visual system for search while distracters with higher 
information content would hide the target in noise. In next 
two sections we describe our simulations. 

Simulation 1: the Other-race Effect    

Background 
A typical human experiment demonstrating the ORE is 
designed as a standard recognition task. Participants see a 
study set S of faces where half of the faces are from their 
own race and half from a different race. Then they are 
shown another set N of faces, half of which are from the 
previous set. For each face, the participants have to say if it 
is from the study set. From their response, the 
discriminability score d’ is computed. A significantly 
greater d’ for same race faces reflects the other-race effect 
(O'Toole et al., 1994). 

The concept of “own race” can be modeled with a 
training set containing a large proportion of faces of one 
race. O'Toole et al. (1991) used Principal Component 
Analysis on a dataset with 95% Caucasian and 5% Japanese 
faces. They defined features as a subset of the principal 
components on the training set and the probability of 
recognizing a novel face as the cosine between a face and its 
reconstruction from the representation space. They found 
that novel other-race faces had a higher d' than novel same-
race faces. 

In this experiment we extended the O’Toole et al. (1991) 
work by adding a recognition memory component to the 
model. In particular, we used the Generalized Context 
Model (Nosofsky, 1986, 1988) in the representation space to 
model recognition memory. We simulated a typical human 
experiment with our model and found a significantly strong 
ORE. 
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Table 1: The other-race effect simulation results 

 
Majority 
racial group 

pmean(hit) pmean(FACaucasian) pmean(FAAsian) Δd'mean= 
d'mean,Caucasian- d'mean, 

Asian 

significance 
(p-value)       
of Δd' 

Caucasian  .69  .21  .42  .58  << .05 
Asian  .70  .22  .50  -.73  << .05 
None  .73  .30  .32  .3  ~.37 

 

Model 
Similar to O'Toole et al (1991, 1994) we used PCA on a 
training dataset to model the learning of feature selection by 
long-term experience. A subset of the eigenvectors with the 
largest eigenvalues was used as features (Turk & Pentland, 
1991). The recognition memory was modeled with a version 
of GCM (Nosofsky, 1986, 1988; Dailey, Cottrell, & Busey, 
1999) where, given the representation of a face x and a set S 
of already seen faces, the probability of recognition is 
 

! 

p(x " S) = # e
y"S

$
%dx,y /&

 
 

Here β linearly normalizes the summed similarity to a 
probability. dx,y is the Euclidian distance between the 
principal component representation vector of x and y . σ 
determines how much a learned representation contributes 
to recognition. σ should be of the order of d to keep the 
exponential term in a reasonable range. In this paper we 
report the results obtained by setting σ to twice the 
minimum d between study faces. 

A forced choice yes/no recognition procedure can be 
modeled by responding yes if p exceeds a criterion γ. The 
optimal criterion would be the mean of the distribution of p 
for new and old faces. Signal detection methodology maps 
easily onto this Yes/No task since the distribution of p for 
old faces can be thought of as the signal distribution and the 
distribution of p for new faces as the noise. Old faces with p 
greater than γ are considered hits and new faces with p 
greater than γ are considered false alarms. A d' score can be 
computed in the standard way. A significantly lower d' for 
other-race faces will show the other-race effect. 

Stimuli 
Our stimuli consisted of 64 Caucasian and 64 Asian 128 x 
192 gray scale face images extracted from FERET database 
(Phillips, et al., 1997) release 2. The face images were 
cropped and linearly warped so that the eye and mouth 
positions line up across images. They were also normalized 
for brightness and contrast. Some sample stimuli are shown 
in Figure 1. 

Method 
1. In the first experiment, our training set for PCA, T 
contained 44 Caucasian and 4 Asian randomly chosen face 
images. We kept 20 of the eigenvectors with largest 

eigenvalues. A set, S containing 10 Caucasian and 10 Asian 
face images (randomly chosen and different from T) was 
used as the study set. N, a set of 20 Caucasian and 20 Asian 
face images (different from T and superset of S) was used as 
test set. The same simulation was done 50 times with 
randomly chosen datasets. 
2. We ran the same experiment by switching the majority 
and minority race. In this experiment, T contained 44 Asian 
and 4 Caucasian faces images. 
3. As a control group we ran the same experiment with 
unbiased learning history. In this experiment, T contained 
24 Caucasian and 24 Asian face images. 

Results & Discussion 
As Table 1 shows, in first two experiments we found a 
strong and significant (p << .05) bias (∆d') favoring other-
race face recognition. In the third experiment, where the 
learning history was not biased towards any race, there was 
no significant difference in the discriminability score of any 
one race. This is essentially the classic other race effect. 
Figure 2 shows the ROC curve for the Caucasian majority 
and the control group experiment.  

Simulation 2: Visual Search Asymmetry 

Motivation 
In this experiment we explore the feature positiveness of 
faces in our optimal feature selection model. In the previous 
experiment we found that when the learning history has a 
large proportion of faces from one race, our PCA-based 
model shows the other-race effect. In this experiment we 
found that under such biased learning history the other-race 
faces are more feature positive than the same race faces. 

Model 
Shannon Entropy, -∫ px log(px)dx of a random variable x is 
often treated as  the expected information content of x 
(Shannon, 1948; MacKay, 2003). Information content, -
log(px), in some sense measures how much of an outlier a 
given value of a random variable is. Feature positiveness 
essentially says how much activation a stimuli causes in the 
feature detectors. If the distribution in representation space 
is zero-mean unimodal, then feature positiveness is similar 
to how much of an outlier a stimulus is in representation 
space. A probabilistic interpretation of PCA assumes a 
Gaussian distribution for the latent variables (Tipping & 
Bishop, 1999) and PCA by definition zero-means the data.  
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Figure 2: ROC curve. On left Caucasian majority simulation; on right control group simulation 

 
 
The representation of a face in our model can thus be 
thought of as a multidimensional continuous random 
variable with a Gaussian distribution. If we use PCA for 
feature selection, a natural analogy for feature positiveness 
would be the information content of the representation of 
the face measured against this distribution.  

For a face x and its d dimensional representation y, the 
information content h(x) is, 

 

! 

h(x) = "log(p(y))  
 

Here p(y) is the distribution of the faces people are 
familiar with, i.e., the faces used for PCA. Our limited data 
is an obstacle in estimating p(y). However, the distribution 
can be simplified under the Gaussian assumption. Since 
PCA decorrelates the latent variables and uncorrelated 
Gaussians are statistically independent, we can decompose 
p(y) as, 

  

! 

p(y) = p(yd )
d

"  

 
Therefore,  

! 

h(x) = " log(pd (yd )
d

# )  
 

Since the Gaussian assumption was crucial in estimating 
p(y) we used Kolmogorov-Smirnov test (Chakravarti, Laha, 
& Roy, 1967) for goodness of fit to test if the face images 
used for PCA in fact have a Gaussian distribution in 
representation space. We dropped from consideration any 
simulation where the test failed at 5% significance level 
(which occurred in 6% experiments). For the valid 
experiments, we approximated p(y) with a Gaussian 
distribution and  computed the information content  of novel 
faces. Our prediction was that in this model, minority faces 
would have significantly more information content than 
majority faces. 

Stimuli 
We used the same stimuli as the previous experiment. To 
generate prototypical stimuli for each race, we averaged 
same number  of Caucasian and Asian faces not used for 
PCA. Two sample average faces are shown in Figure 1. 

Method 
1. We used the same stimuli as the previous experiment. 
Similar to the previous experiment, we use PCA on 44 
Caucasian and 4 Asian face images and kept 20 
eigenvectors with largest eigenvalues to develop the 
representation space. 40 new Caucasian and Asian face 
images (20 each) were projected to the representation space. 
The total information content of each face, h was computed. 
The experiment was run 50 times with randomly chosen 
face images. 
2. We ran the same experiment by switching the majority 
and minority race. In this case, 44 Asian and 4 Caucasian 
face images were used for PCA. 
3. As a control group, we used 24 Caucasian and 24 Asian 
face images for PCA and ran the same experiment 50 times. 
4. The human experiment showing the visual search 
asymmetry (Levin, 2000) used average faces. Therefore we 
repeated the above three experiments with the test set 
containing one Caucasian average and one Asian average 
face. 

Results 
In the first experiment, the average information content of 
faces of each race from the 50 runs were used in a t test with 
Caucasian faces having the same information as the 
alternate hypothesis. The average information for Asian 
faces was significantly (p ~ 10-6) higher than that of 
Caucasian faces. We found similar results for Asian 
majority experiment where Caucasian faces contained 
significantly more information (p << .05). For the control 
group, the t test accepted the null hypothesis that both races 
have the same amount of information with p ~ .26. 

We found similar results with the average faces. The 
average minority face contained significantly more 
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information when the learning history was biased towards 
one race. For the control group, the difference between 
information content of the average faces was not statistically 
significant (p ~ .19) 

Discussion 
In this experiment we showed that in the expertise based 
hypothesis, in the presence of the ORE, the other-race faces 
are encoded with more information than same-race faces. 
This is equivalent to other-race faces being more feature 
positive. Using the argument developed in previous studies 
(Levin, 2000), as mentioned above, this explains the visual 
search asymmetry. 

Although we tested our Gaussian assumption with 
Kolmogorov-Smirnov test, assuming a functional form for 
the density may be too restrictive. We found qualitatively 
similar results using kernel density estimation. However, the 
small number of number of data points compared to the 
dimensionality of the representation space makes the 
nonparametric estimation less reliable. 

A natural question is why other-race faces contain more 
information in our model. Since the dataset used for PCA 
had a large number of majority-race faces and PCA zero-
means the data, the new minority-race faces ended up 
further away from the majority faces in representation 
space. This effectively lowered their probability and 
increased information content.  

Other-race faces containing more information and being 
less discriminable may seem paradoxical. Although other-
ace faces contain more information in the representation 
space, as we showed in first simulation, the representation 
space is not optimal for recognizing them, making them less 
discriminable. 

Future work 
There are other instances of the other-race advantage 
(Levin, 2000) that we are not addressing in this paper. 
However, preliminary work shows that our model should 
explain those effects as well. We will be applying our model 
to those effects in near future.  

Conclusion 
In this work, we showed that our simple expertise-based 
model could explain some seemingly paradoxical human 
data. While, we are far from providing a conclusive 
framework for visual features people use for face-
recognition, we hope this will help our understanding of this 
interesting domain. 
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