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Abstract

Robust Estimation Methods and Causal Inference for Time-Series

by

Ivana Malenica

Doctor of Philosophy in Biostatistics

University of California, Berkeley

Professor Mark van der Laan, Chair

Intensive longitudinal data, defined as time-varying data collected frequently over time, holds
immense promise to advance many healthcare and public health concerns. High quality use
of time-series primarily depends on the efficient use of causal inference methodology, online
machine learning and sequential decision-making. Today, causal inference is central to the
study of the most impactful scientific questions. For long data streams and elaborate de-
pendence, online estimation has become a paramount technique for learning in real-time,
enabling estimation despite high computational cost. Finally, sequential decision-making is
essential for practitioners and policy makers to learn when, in what context, and what expo-
sures to assign to each person with the objective of optimizing desired outcome. For example,
one might need to decide, with some confidence, when to stop administrating treatment if
sufficient benefit is not observed, and what is the best alternative based on patient’s current
characteristics and adherence. Investing in the development of methodological approaches
for intensive longitudinal data is paramount for advancement of fields such as precision
health, where we use data to learn which components of successful strategies are essential to
their success, and how best to tailor personalized exposures to meet the specific needs and
contexts of individuals, clinics, and communities. Careful considerations and new, modern
statistical methods are necessary in order to establish causality, deal with dependence (across
time and samples), and estimate relevant parts of the process without imposing unnecessary
assumptions.

This dissertation focuses on development of robust non/semi-parametric methods for com-
plex parameters involving time-series data. Divided into five chapters, content discussed
entails new methodological approaches for (1) online ensemble machine learning and (2)
(causal) sequential decision-making in time-dependent settings. Common themes through-
out the chapters deal with (1) different dependence structures (time and/or network) in
realistic statistical models and (2) leveraging fully personalized target parameters (single
time-series, “N-of-1” approaches) vs. relying on multiple samples. Ideas of studying asymp-
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totics in time, samples or both are also explored.

We start with the idea of developing a “N-of-1” online ensemble machine learning algorithm
in Chapter 1, denoted Personalized Online Super Learner. In particular, Chapter 1 studies an
Online Super Learner which learns relevant parts of the likelihood while taking into account
the amount of data collected (including dynamic enrollment), stationarity of the time-series,
and the mutual characteristics/network of a group of trajectories. Further exploring the
“N-of-1” paradigm, we propose a causal approach which assigns treatment conditional on
the current context of the patient in Chapters 2 and 3, defined as the conditional (or context-
specific) causal effects. Let Y (t) denote the outcome, and Co(t) a fixed dimensional context
at time t. A “N-of-1” statistical approach answers the following question: “Averaged over
times t, given Co(t), what is the distribution of Y (t+s) had we intervened on treatment nodes
between t and t + s, s > 0, on sample i?”. In Chapter 2, we propose a time-varying effect
of interventions on multiple repeated nodes via context-specific average treatment effect in
observation settings, and study the theoretical properties of the proposed estimator. In
Chapter 3, we propose a method that learns an optimal treatment allocation for a single
individual, adapting the randomization mechanism for future time-point experiments. We
demonstrate that one can learn the optimal context defined rule based on a single sample, and
thereby adjust the design at any point t with valid inference for the mean target parameter.

The high intensity exposure adaptation available in time-series data proves tremendous po-
tential for infectious disease surveillance and control. For instance, due to the highly dynamic
nature of most epidemic diseases, surveillance methods must adapt quickly in order to target
individuals at the highest risk of infection. Instead of only considering dependence through
time, sequential decision-making for infectious disease must account for the overall status of
the epidemic in the population, including multiple trajectories with possible network depen-
dence. In Chapter 4, we describe an adaptive surveillance design which optimizes testing
allocation among a class of testing schemes based on the current status of the epidemic.
While Chapter 4 focuses on adaptive monitoring for a closed community, the statistical
problem is addressed within a model for the data-generating distribution that is completely
nonparametric. As such, it represents a first step towards an important goal of developing
adaptive sequential design for infectious disease surveillance in the general population under
no assumptions on the dependence structure.

Finally, in order to develop data-driven, effective sequential interventions, it is crucial to
learn new policies (series of treatment decisions) using existing data, and understand their
long-term efficacy. In Chapter 5, we propose and analyze a novel double robust estimator
for the “off-policy” evaluation problem in reinforcement learning. We show empirically that
our estimator uniformly wins over existing off-policy evaluation methods, and characterize
the asymptotic distribution and rate of convergence for the proposed estimator.
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Ova disertacija se fokusira na razvoj robusnih neparametarskih i poluparametarskih metoda
za kompleksne statističke parametre vremenskih serija. Podeljen u pet poglavlja, sadržaj dis-
ertacije čine novi metodološki pristupi za (1) mašinsko učenje onlajn ansambla i (2) (uzročno)
sekvencijalno donošenje odluka u vremenski zavisnim okruženjima. Teme u poglavljima se
bave (1) različitim strukturama zavisnosti (vreme i/ili mreža) u realističnim statističkim
modelima i (2) korǐscenjem potpuno personalizovanih parametara (jedna vremenska serija,
N-od-1 pristup) naspram oslanjanja na vǐse uzoraka. Ova disertacija takodje prezentuje teo-
retsku analizu statistickih parametra gde je asimptotika u vremenu, broju uzoraka ili oboje
istovremeno.

Disertacija počinje sa idejom o N-od-1 onlajn algoritmu za mašinsko učenje ansambla.
Konkretno, Poglavlje 1 proučava onlajn Super Learner (ansambl mašinskog učenja) koji uči
relevantne delove verovatnoće uzimajuci u obzir količinu prikupljenih podataka — uključujuci
dinamički upis, stacionarnost vremenske serije i medjusobne karakteristike/mrežu grupe vre-
menskih serija. Poglavlje 2 i 3 prezentuju kauzalni pristup koji dodeljuje intervenciju uslovl-
jenu trenutnim kontekstom, definisanim kao uslovni (ili kontekstualno specifični) uzročni
efekti. Neka Y (t) bude ishod, a Co(t) fiksno-dimenzionalni kontekst u trenutku t. Statistički
pristup N-od-1 odgovara na sledeće pitanje: tokom vremena t, uzimajuci u obzir prošlost
Co(t), sta je ishod Y (t + s) ako utičemo na tretman uzorka i izmedju t i t + s, s > 0?
U Poglavlju 2 analiziramo kontekstno-specifični prosečni efekt tretmana uzimajući u obzir
prošlost, i proučavamo teoriju i asumptotiku predložene metode. U Poglavlju 3 analiziramo
algoritam koja uči optimalnu alokaciju tretmana za jednu osobu, prilagodjavajući mehanizam
randomizacije za buduće eksperimente.

Adaptacija vremenskih serija ima ogroman potencijal za nadzor i kontrolu zaraznih bolesti.
Na primer, zbog veoma dinamične prirode većine epidemija, statističke metode se moraju
brzo prilagoditi kako bi ciljale pojedince sa najvecim rizikom od infekcije. Sekvencijalno
donošenje odluka mora da uzme u obzir sveukupni status epidemije u populaciji, uključujuci
moguću mrežnu zavisnost vremenskih serija. U četvrtom poglavlju izučavamo adaptivni
dizajn koji optimizuje raspodelu testiranja na osnovu trenutnog statusa epidemije. Teoretska
analiza predloženog metoda uzima u obzir vremensku i mrežnu zavisnost u neparametarskom
modelu procesa.

Da bi se razvile efikasne sekvencijalne intervencije, ključno je koristiti postojeće podatke
i razumeti njihovu dugoročnu efikasnost. U 5. poglavlju predlažemo i analiziramo novi
robusni metod za problem evaluacije znan kao ”off-line” u reinforcement learning (pojačano
učenje). Kao deo analize, mi teoretski (i u praksi) pokazujemo da predložen metod pobedjuje
sve već predložene metode, i karakterǐsemo asimptotičku distribuciju i stopu konvergencije
algoritma.
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Za baba Stevanku. Uvek ces biti sa mnom, gde god da si.
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Chapter 1

Personalized Online Super Learner

In this chapter, we introduce the Personalized Online Super Learner (POSL): an online per-
sonalizable ensemble machine learning algorithm for streaming data and time-series. POSL
optimizes predictions with respect to baseline covariates, so personalization can vary from
completely individualized (i.e., optimization with respect to subject ID) to many individu-
als (i.e., optimization with respect to common baseline covariates). As an online algorithm,
POSL learns in real-time. As a Super Learner, POSL can leverage a diversity of candidate al-
gorithms: including online algorithms with different training and update times, fixed/offline
algorithms that are never updated during the procedure, pooled algorithms that learn from
many individuals’ time series, and individualized algorithms that learn from within a single
time series. POSL’s ensembling of this hybrid of candidates can depend on the amount of
data collected, the stationarity of the time series, and the mutual characteristics of a group
of time series. In essence, POSL is able to adapt to learning across samples or through
time, or both, depending on the underlying data-generating process and the information
available in the data. For a range of simulations that reflect realistic forecasting scenarios
and in a medical data application, we examine the performance of POSL relative to other
current ensembling and online learning methods. We show that POSL is able to provide
reliable predictions for both short and long time series, and it’s able to adjust to changing
data-generating environments. We further cultivate POSL’s practicality by extending it to
settings where time series enter and exit dynamically over time.

1.1 Introduction

Predictive analytics with large data streams is a common task across many fields, including
physics, medicine, engineering and finance. The insights drawn from these data typically
come in the form of forecasts (predictions about the future), and inform subsequent action
by the machine or user. The predictions’ usefulness often depends on their timeliness, accu-
racy, and uncertainty. For example, in a hospital’s intensive care unit (ICU), it is imperative
that any predictions derived from patient data streams are generated quickly enough for the
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clinician to respond to them appropriately [20]. Drawing from the COVID-19 pandemic,
obtaining accurate forecasts in a timely manner is crucial for making evolving policy deci-
sions [2]. In these examples, and for real-world data streams in general, the observations
are derived from dynamic environments, where time series are ever-growing and evolve in
possibly unforeseeable ways.

In order for a machine to quickly adapt with the dynamic patterns in data streams,
algorithmic strategies that regularly reassess the information learned from incoming data
relative to historical data are essential. The traditional machine learning paradigm has
been in the form of offline estimation, where a prediction algorithm is updated with new
batches of data by first adding the new data to all, or part, of the existing data and then
retraining the learner on the new training dataset. Because an offline algorithm’s training
dataset grows with each update, these strategies are generally not scalable when updates are
frequent. Tools that assess the reliability of an algorithm, such as calibration diagnostics, can
inform reactive updates for an offline algorithm. However, when new patterns are expected
to emerge quickly and often in the time series, real-time (as opposed to reactionary) learning
is important to maintain the reliability of the system. Online estimation has become a
promising technique for learning from data streams in real-time, since it involves update
procedures that do not require the revisiting of past training data. There is a growing body
of literature on online algorithms and software, including online implementations of canonical
time series algorithms [3, 58]. Some online implementations are ensemble-based, combining
forecasts from multiple algorithms as part of their procedure, and such strategies have been
shown to increase forecast accuracy. For instance, the most successful entries in the 2018
M4 Forecasting Competition were ensembling methods[115, 46, 114, 92]. Also, Hibon and
Evgeniou [56] showed empirically that the best combination of forecasts performed as well
as the best individual forecast.

Ensembling methods can help mitigate several longstanding challenges in applying online
learning strategies. These strategies, just like all other types of machine learning, require
data in order to perform well but in some settings data accumulation is a luxury that is
not guaranteed. For instance, in order to forecast a hospital patient’s trajectory, a purely
online learning strategy would require following the patient for a long period of time before
making predictions, which is not practical for in-hospital forecasting applications. Another
limitation of online learning is when new information interferes with what the has already
been learned: a phenomenon known as catastrophic forgetting/interference. This can result
in sudden drops in performance and in overwriting prior knowledge that could be informative
again in the future [72]. Constrained online learning/ensembling strategies offer the potential
to reduce catastrophic forgetting events by restricting the degree in which an algorithm is
allowed to adjust its parameters at each update. Online ensembling of a hybrid of offline
and online algorithms also provides a means to address these limitations.

A principled methodology for algorithm selection and ensembling is warranted [114, 56].
However, despite the emerging popularity of online learning implementations and ensem-
bling algorithms, literature at the intersection of these two fields is relatively scarce. Fur-
thermore, a personalized online ensembling paradigm, to fit and evaluate the performance
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of algorithms under an individualized optimization strategy, has only been described in
the commercial/proprietary realm and has not yet been formally defined in the literature
to the best of our knowledge. This chapter proposes such a paradigm and grounds it in
statistical optimality theory. In this work, we introduce a novel online ensembling algo-
rithm — Personalized Online Super Learner (POSL) — that utilizes a diversity of time
series and ensembling methods, with the goal of optimizing baseline covariate-level (includ-
ing individual-level) predictions. POSL leverages multiple candidate algorithms, including
pooled (population-based), individualized, online and offline learners, and allows for the en-
sembling to depend on the amount of data collected, status of stationarity, and residual
noise. As such, POSL is not hindered by the limitations of purely online or offline learning.

The data structure we consider for POSL consists of observing n units/subjects, which
are possibly drawn from different data-generating distributions, for a finite amount of time.
Each observation is comprised of baseline covariates, time-varying covariates, and a response.
We consider this setup in fixed time series settings (i.e., all n units’ time series enter and
exit at the same time) and in dynamic settings (i.e., the n time series enter/exit at different
chronological times and are observed for different lengths of time). We introduce new for-
mulations for online cross-validation (CV) for single time series (n = 1) and multiple time
series (n > 1) with varying dependence, and all of them can be used by POSL. Building on
theoretical foundations proposed by Benkeser et al.[7], we apply the online oracle inequalities
to multiple time series to show that the POSL candidate algorithm with the best CV perfor-
mance is asymptotically equivalent with the performance of the oracle benchmark selector.
As opposed to the original work by Benkeser et al.[7], we consider a different target param-
eter, which conditions on the shared baseline covariates. We also formulate the problem to
include multiple time series with possible baseline dependence among samples, and extend
the methodology to include CV schemes which handle dependence both across time and
subjects. Formulating the problem in this way allows us to study its asymptotics properties
across time, samples or both, depending on the dependence structure in the data. Most
importantly, we extend the work by Benkeser et al.[7] to encompass dynamic enrollment,
where time series start and exit at random times. This extension is particularly important
in healthcare applications, where enrollment is not synchronized as in a trial. Lastly, we pro-
pose an adaptive ensembling step for POSL that allows for a continuum of personalization
based on mutual characteristics of a group of time series, and aims to increase predictive
power for shorter time series.

We formulate the methodology in subsection 1.2. In particular, in subsection 1.2 we
specify the statistical estimation problem, which includes defining the likelihood, statistical
model, statistical target parameter, and the loss-based paradigm for estimation. In subsec-
tion 1.3, we present several online CV schemes and propose extensions to the multiple time
series. In subsection 1.4 we introduce the POSL, show how online CV is used to identify
the best performing individual online algorithm and the best performing online ensemble of
individual algorithms, and define the oracle selector for POSL. In subsection 1.5, we extend
the current formulation of POSL to dynamic enrollment settings, where possibly different
lengths of time series and numbers of subjects are observed at each chronological time point.
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Our formulation is purposely general, in order to encompass varying CV schemes, loss func-
tions, number of samples, and enrollment time. In section 1.4, we provide an example of
one version of the POSL algorithm. In section 1.6, we conduct multiple simulation studies
to compare POSL to various ensembling and online methods currently available in the liter-
ature. In section 1.7, we provide a data analysis example for blood pressure forecasting. We
conclude with a short discussion in section 1.8.

1.2 Statistical Formulation of the Problem

In the following, we formalize the prediction task as an estimation problem, identifying the
statistical target parameter as the minimizer of the risk induced by a valid, problem-specific
loss function.

Data, Likelihood and the Statistical Model

We model a data structure under the shape of a random variable defined as Oi = (Oi(t) : t =
1, . . . , τ), where Oi(t) is a finite-dimensional variable for sample i that is indexed by time
t. We refer to this sequence of variables across time, Oi = (Oi(1), . . . , Oi(τ)), as subject i’s
time series. We focus on situations where Oi(t) decomposes as Oi(t) = (Yi(t),Wi(t)), with
Yi(t) defining a response variable for sample i occurring at time t and Wi(t) defining a vector
of time-varying covariates for sample i occurring after time t. We denote Xi as a vector of
baseline covariates which, by definition, are initiated at t = 0 and not dependent on t. We
view each Xi and Oi = (Oi(t) : t = 1, . . . , τ) as the sample i-specific baseline covariates and
time series, respectively. We observe n independent realizations of random variables denoted
as (X1, O1), . . . , (Xn, On). For convenience, we also introduce Xn = (Xi : i = 1, . . . , n) and
On = (Oi : i = 1, . . . , n) as the collection of the n subjects’ baseline covariates and time
series, respectively.

To motivate our statistical formulation of the problem, we consider an example from
healthcare. When patients are admitted to the hospital, their medical history and all other
administrative clinical data relative to their care is recorded. This electronic health record
(EHR) is instantiated with baseline, time-invariant information (Xi), such as the patient’s
age, sex, ethnicity, insurance status, medical history, and other demographic factors. The
EHR is maintained by the provider so relevant information occurring during the patient’s
stay, such as treatment plans, laboratory/test results, clinician notes, radiology images and
vital signs, are added to the EHR over time (Oi). The EHR for patient i therefore contains
their time series Oi and the baseline covariates Xi. For simplicity, consider a simplified
EHR with Oi including blood pressure and heart rate (i.e., time-varying variables), and Xi

including age, sex, ethnicity and race (i.e., time-invariant variables). Suppose the response
variable of interest is blood pressure (Yi), and the time-varying covariates are all other
variables in the time series, which for this simple example was heart rate (Wi). Note that
patient i’s blood pressure at time t (Yi(t)) is not influenced by their heart rate at time t
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(Wi(t)), since Wi(t) does not occur before Yi(t), but Yi(t) might be influenced by patient i’s
heart rate and blood pressure from previous time points.

Let M denote the statistical model: the set of laws from which (Xn, On) can be drawn.
The more we know, or are willing to assume, about the experiment that produces the data,
the smaller M will be. Let P n

0 ∈ M be the true probability distribution of (Xn, On).
Moreover, let P0,Oi|Xi be the conditional distribution of Oi given Xi for each i = 1, . . . , n.
When conditioning on Xi, we use the short notation P0,Xi instead of P0,Oi|Xi (not to be
confused with P0,X , the marginal distribution over the baseline covariates). We emphasize
that P0,Xi could be just unit i specific, as is the case when Xi is simply a function of i
itself; alternatively, P0,Xi could be a smooth function of Xi, allowing one to smooth across
the subjects. We let pn0 denote the density of P n

0 with respect to (w.r.t) a measure µn that
dominates all elements ofM. The joint likelihood of (xn, on) can be factorized according to
the time-ordering as follows:

pn0 (xn, on) =
n∏
i=1

p0,x(xi)
τ∏
t=1

p0,oi(t)(oi(t) | xi, oi(t− 1)), (1.1)

where p0,x marks the probability density for the baseline covariates, and p0,oi(t) is the con-
ditional density of Oi(t) given Xi and all the observed past until time t for sample i. In
particular, we define Oi(t − 1) as the t-specific history of the time series for sample i, with
Oi(t− 1) = (Oi(1), . . . , Oi(t− 1)) (note the convention Oi(0) = ∅).

In order to allow learning from a dependent process, we must make a few assumptions
on the law of the data, P n

0 , through restrictions made on the statistical model M. In
particular, we assume that each factor p0,oi(t)(Oi(t)|Xi, Oi(t−1)) depends on the past through
a fixed-dimensional summary measure Zi(t−1). For some applications, the fixed dimensional
summary measure Zi(t) covers a limited history, such that the dependent process has a
finite memory allowing us to learn through time. Similarly, we could have defined Zi(t) to
be a function of finite memory of a finite number of other time series in unit i’s network.
Another example of summary measures is Zi(t) = t−1

∑t
t′=1Oi(t

′), with the means computed
component-wise. The formulation of Zi is general enough to allow for different trends (e.g.,
seasonality), because the definition of Zi can involve i itself. Secondly, we define P0,Oi as the
common conditional probability distribution of Oi(t) given Zi(t−1) and Xi under P n. As we
will describe later, this assumption is not crucial for the algorithm itself — if not enough time
points are collected, we rely on performance based on the number of trajectories. However,
if online learning is to be useful, some structure across time is necessary. We also stress
that our formulation allows for P0,Oi to be a function of time t, making it possible for the
proposed procedure to learn how much to rely on conditional stationarity over time. Thus,
in light of (1.1) and the two above mentioned assumptions, the joint likelihood of (xn, on)
under any element P n of the (constrained) statistical model M decomposes as

pn(xn, on) =
n∏
i=1

px(xi)
τ∏
t=1

poi(oi(t) | xi, zi(t− 1)), (1.2)
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where we extend the previously described notation with the substitution of P n (pn) for P n
0

(pn0 ). Note that P0,Oi is subject specific, and we don’t assume a common across i distribution;
if all the time series are drawn from the same distribution, we let the algorithm learn that.
In the rest of the manuscript, we will deal explicitly with P0,Oi and P0,Xi .

The above derivation of (1.2) hinges on independence across subjects. While we write the
likelihood as a product of both the number of samples (n) and time points (t), we emphasize
that for deriving our main results, dependent on the asymptotics in time, we do not need to
assume anything about dependence among subjects. Our statistical modelM is, in essence,
a model for a single time series. Independence across subjects however, allows us to have
asymptotics in the total number of time points observed across the n subjects (effectively
having n×τ samples). Network dependence could be allowed simply by letting each Zi(t−1)
to summarize the whole past O

n
(t− 1) = {O1(t− 1), . . . , On(t− 1)} of On at time (t− 1),

or a subgroup specific past of its network, as opposed to the i-specific past Oi(t− 1).

Statistical Target Parameter

Most prediction-based literature focuses on parameters of the population distribution P n
0

or, as is the case for the time series literature, on unit-specific forecasts. Our goal is not
to understand the population distribution P n

0 . Instead, we focus on the parameters of the
unit-specific conditional distribution P0,Xi . We define the relevant feature of the true data
distribution we are interested in as the statistical target parameter. As in above, we assume
that P n

0 belongs to a statistical modelM, defined as a collection of possible common condi-
tional distributions P0,Oi and marginal P0,X that could have given rise to the observed data.
We define a parameter mapping, Ψ : M → D, from the model M into a space D; and a
parameter value, ψ := Ψ(P ) of Ψ for a given P ∈ M. The parameter space, corresponding
to parameter mapping Ψ, is defined as ΨΨΨ := {Ψ(P ) : P ∈M} ⊆ D.

In some cases, we might be interested in learning the entire conditional distribution P0,Xi ;
however, frequently the actual goal is to learn a particular feature of the true distribution
that satisfies a scientific question of interest. In particular, we are interested in forecasting
– hence, we define our estimand for the ith subject as:

Ψ(P n
0 )(Xi, Zi(t− 1), t) = EP0,Xi

[Yi(t)|Zi(t− 1)], (1.3)

where the expectation on the right hand side is taken w.r.t the conditional distribution
P0,Xi , and ψ0(Xi, Zi(t− 1), t) := Ψ(P n

0 )(Xi, Zi(t− 1), t) is the prediction function evaluated
at the truth for the ith subject at time t. In particular, we want to learn (X,Z(t− 1), t) 7→
Ψ(P n

0 )(X,Z(t− 1), t), where Z(t− 1) is fixed dimensional, and thereby obtain a prediction
function for each unit i that predicts Yi(t) with Ψ(P )(Xi, Zi(t− 1), t) for P ∈M.

Recall the EHR example from above, where for patient i, we have a simplified EHR that
contains their time series Oi, with blood pressure as Yi and heart rate as Wi, and Xi includes
age, sex, ethnicity and race. Suppose we are interested in predicting this patient’s expected
blood pressure at time t, given the information available up until time t, including data from
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other samples. This setup represents a forecasting problem; we aim to use collected history
(from all patients) in order to predict sample i’s future blood pressure. For each time t,
patient i’s response is their blood pressure Yi(t) at time t and observed history includes all
of the past blood pressure and heart rate information until time t. The estimand can then
be defined identically to Equation 1.3.

Loss-based Parameter Definition and Estimation

We define L as a loss function; we emphasize that the chosen loss should be picked in
accordance with the target parameter. Specifically, a valid loss function for a given parameter
is defined as a function whose true conditional mean is minimized by the true value of the
parameter. As such, let L be a loss function adapted to the problem, i.e. a function that
maps every Ψ(P ) to L(Ψ(P )) : (xi, yi(t), zi(t−1)) 7→ L(Ψ(P ))(xi, yi(t), zi(t−1)). With that,
we define L(Ψ(P ))(Xi, Yi(t), Zi(t − 1)) as a time t and subject i loss for Ψ(P ). Note that
we could equivalently define L a function that maps every ψ to L(ψ) : (xi, yi(t), zi(t− 1)) 7→
L(ψ)(xi, yi(t), zi(t−1)) since ψ := Ψ(P ). As our parameter of interest is a conditional mean,
we could use the square error to define the loss; then we have that L(ψ)(Xi, Yi(t), Zi(t−1)) =
c(i, t)(Yi(t) − ψ(Xi, Zi(t − 1), t))2, where c(i, t) is a subject- and time-specific weight (e.g.,
we might down-weight losses that are further away from t and up-weight losses that are
closer to time t; alternatively, we might give weight only to a specific sample). Our emphasis
on appropriate loss functions strives from their multiple uses within our framework — as a
theoretical criterion for comparing an estimator and the truth, as well as a way to compare
multiple estimators of the target parameter.

We define the true risk as the expected value of L(ψ)(Xi, Yi(t), Zi(t− 1)) w.r.t the con-
ditional distribution P0,O across all individuals and times:

R(P n
0 , ψ) =

1

nt

n∑
i=1

τ∑
t=1

EP0,Oi
[L(ψ)(Xi, Yi(t), Zi(t− 1))|Xi, Zi(t− 1)] (1.4)

=
1

nt

n∑
i=1

τ∑
t=1

EP0,Oi
[c(i, t)(Yi(t)− ψ(Xi, Zi(t− 1), t))2|Xi, Zi(t− 1)],

where the second equality holds only when the loss function is valid for the target parameter;
we simply illustrate what R(P n

0 , ψ) would be with squared error as a loss in (1.4). The nota-
tion for true risk, R(P n

0 , ψ), emphasizes that ψ is evaluated w.r.t. the true data-generating
distribution. Finally, we define ψ0 as the minimizer over the true risk of all evaluated ψ in
the parameter space

ψ0 = argmin
ψ∈ΨΨΨ

R(P n
0 , ψ). (1.5)

The corresponding true risk is denoted as θ0 = R(P n
0 , ψ0). In particular, the true risk

establishes a true measure of performance for ψ, optimizing over all times. We note, however,
that we could also define a true i-specific risk — where the i-specific risk would measure
the performance of ψ for individual i across all time points. Note that ψ0 implies ψ0,i
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by evaluating at Xi, as ψ0,i is a prediction function given Xi. The i-specific expected loss
measures the performance of the prediction function Ψ for individual i across all time points,
optimizing the following equation:

ψ0,i = argmin
ψ∈ΨΨΨ

τ∑
t=1

EP0,Oi
[L(ψ)(Xi, Yi(t), Zi(t− 1))|Xi, Zi(t− 1)], (1.6)

with optimal risk, corresponding to ψ0,i, defined as θ0,i = R(P n
0 , ψ0,i).

The estimator mapping, Ψ̂, is a function from the empirical distribution to the parameter
space ΨΨΨ. Let Pn,t denote the empirical distribution of n time series collected until time t.

In particular, Pn,t 7→ Ψ̂(Pn,t) represents a mapping from Pn,t, with n time series collected

until time t, into a predictive function Ψ̂(Pn,t). Further, the predictive function Ψ̂(Pn,t) maps

(Xi, Zi(t−1), t) into a time- and subject-specific outcome, Yi(t). We emphasize that Ψ̂(Pn,t)
can map any (Xi, Zi(s − 1), s) into a time s prediction, even for s > t under stationarity
conditions; as such, we can forecast at any future time point using the collected data until
time t. We can write ψn,t(Xi, Zi(t − 1), t) := Ψ̂(Pn,t)(Xi, Zi(t − 1), t) as the predicted out-

come for unit i of the estimator Ψ̂(Pn,t) at time t, based on (Xi, Zi(t − 1), t). We define
the conditional risk as the risk for ψn,t with respect to the true, unknown data-generating

distribution P n
0 , denoted as θ̃n = R(P n

0 , ψn,t). The naive risk is defined as θ̂n = R(Pn,t, ψn,t).
In order to obtain an unbiased estimate of the true conditional risk, we resort to appropriate
CV for dependent data, as described in the next subsection.

1.3 Cross-validation for Dependent Data

Let C(i, s, ·) denote, at minimum, the time s- and unit i-specific record C(i, s, ·) = (Xi, Zi(s−
1), Yi(s), ·). The general formulation of C(i, s, ·) allows us to add identifying information (in
addition to time and sample ID) needed to construct a valid CV scheme; for instance,
for dynamic enrollment/exit dates, C(i, s, ·) might include enrollment and exit time for a
time series as well. If no additional information is included, we write C(i, s, ·) = C(i, s).
To derive a general representation for CV, we also define a time t specific split vector Bt,
where t indicates the final time-point of the currently available data. Then for all 1 ≤ i ≤ n,
Bt(i, ·) ∈ {−1, 0, 1}t. Let v be a particular CV fold, where v ranges from 1 to V . A realization
of Bt defines a particular split of the learning set into corresponding three disjoint subsets,

Bv
t (i, s, ·) =


−1, C(i, s, ·) not used

0, C(i, s, ·) in the training set

1, C(i, s, ·) in the validation set,

where Bv
t (i, s, ·) reflects, at minimum, unit i at time point s for fold v’s split, Bv

t . Re-
alizations of Bt therefore admit the CV folds. For each t, let P 0

n,t denote the empiri-
cal distribution of the training set until time t. Similarly, we define P 1

n,t as the empir-

ical distribution of the validation set. Let n0
t =

∑V
v=1

∑n
i=1

∑t
s=1 I(Bv

t (s, i, ·) = 0) and
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n1
t =

∑V
v=1

∑n
i=1

∑t
s=1 I(Bv

t (s, i, ·) = 1) denote the number of observations in the training
and validation sets respectively, over all folds v until time t. For fold v admitted by re-
alizing Bt, let B0

t,v denote all the (i, s, ·) indexes in the training set, and B1
t,v all indexes

in the validation set. In general, we use different time series CV schemes to evaluate how
well an estimator trained on specific samples’ past data is able to predict an outcome for
specific samples in the future. We now give relevant CV schemes that are supported by the
theoretical results for our proposed algorithm.

Rolling Origin Cross-validation

A rolling origin CV (ROCV) scheme lends itself to online CV-based ensemble learning [7].
In general, the ROCV scheme defines an initial training set and, with each iteration, the
size of the training set grows by m observations until we reach time t for split Bt [103].
Whether or not the samples in the training set are also present in the validation set is
optional, but classically, ROCV represents the scenario where the training and validation
points are evaluated on the same time series. Regardless of which samples are included in
the training and validation sets, time points included in the training set always occur before
the validation set time points. Additionally, there might be a gap between the last training
time and first validation times of size h. We define ROCV folds v = 1, . . . , V with Bv

t for a
single unit as follows:

Bv
t (i, s, ·) =



−1, C(i, s, ·) not used,

s ∈ {n0
t,v1

+m× (v − 1) + 1 : n0
t,v1

+m× (v − 1) + h}
0, C(i, s, ·) in the training set,

s ∈ {1 : n0
t,v1

+m× (v − 1)}
1, C(i, s, ·) in the validation set,

s ∈ {n0
t,v1

+m× (v − 1) + h+ 1 : n0
t,v +m× (v − 1) + h+ n1

t,v}

where n0
t,v1

is the size of the training set for the first fold (v = 1); n1
t,v is the size of the

validation set for all folds v, v = 1, . . . , V ; m is the batch size, indicating the number of
time points training set moves forward from one fold v to the next; h is the gap between
the training and validation sets. An example of ROCV is illustrated in Figure 1.1. A
variant of ROCV which accounts for sample dependence is the rolling-origin-V-fold CV
(ROVFCV) scheme. In contrast to ROCV, samples in the training and validation set differ
for a ROVFCV scheme, as it encompasses both V-fold CV for splitting across samples and
ROCV for splitting across time (Appendix B Figure 1.9).

Rolling Window Cross-validation

Instead of adding more time points to the training set per each iteration, as in ROCV, the
rolling window CV (RWCV) scheme “rolls” the training sample forward by m time units,
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Figure 1.1: Rolling origin cross-validation (ROCV) scheme invoked for a sample i whose final
time-point of their currently available data is t = 50, and with the following specification:
first training set size n0

t,v1
= 15, validation size n1

t,v = 10, batch size m = 10, gap h = 5.
Given the ROCV specification and the data provided, this scheme thus admits V = 3 ROCV
folds.

such that the training set is the same size across all RWCV folds v, v = 1, . . . , V (i.e. the
training sample size for each iteration of the RWCV scheme is always n0

t,v for all v). We
define RWCV folds v = 1, . . . , V with Bv

t , as realization of Bt, and gap of size h for a single
time series as follows:

Bv
t (i, s, ·) =



−1, C(i, s, ·) not used,

s ∈ {n0
t,v +m× (v − 1) + 1 : n0

t,v +m× (v − 1) + h}
0, C(i, s, ·) in the training set,

s ∈ {n0
t,v +m× (v − 1)− n0

t,v : n0
t,v +m× (v − 1)}

1, C(i, s, ·) in the validation set,

s ∈ {n0
t,v +m× (v − 1) + h+ 1 : n0

t,v +m× (v − 1) + h+ n1
t,v}.

where, for all folds v, v = 1, . . . , V , n0
t,v is the size of the training set and n1

t,v is the size of the
validation set; m is the batch size, indicating the number of time points training set moves
forward from one fold v to the next; and h is the gap between the last training time and
first validation time. We illustrate the canonical RWCV in Figure 1.2. The rolling-window-
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V-fold CV (RWVFCV) scheme is a variant of RWCV which accounts for sample dependence
(Appendix B Figure 1.9).

The RWCV scheme might be considered in parametric settings when one wishes to guard
against moment or parameter drift that is difficult to model explicitly. It is also more efficient
for computationally demanding settings (such as high-frequency streaming data), in which
large amounts of training data cannot be stored. We emphasize that the RWCV could also
be viewed as a subset of the ROCV, where only recent data are used for training. In fact,
we could incorporate both ROCV and RWCV schemes within POSL, by considering in the
library candidates that only learn from the recent past via RWCV and candidates that learn
from the entire past via ROCV. In such a scenario, a ROCV scheme could be used to evaluate
the final loss, but we might incorporate RWCV-based learners that train on fewer training
time-points, as they can more quickly adjust to changes over time. In all the further sections
and theoretical results, we consider RWCV as a subset of ROCV.

Figure 1.2: Rolling window cross-validation scheme invoked for a sample i whose final time-
point of their currently available data is t = 50, and with the following specification: window
size n0

t,v1
= 15, validation size n1

t,v = 10, batch size m = 10, gap h = 5. Given the RWCV
specification and the data provided, this scheme thus admits V = 3 RWCV folds.
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1.4 Personalized Online Super Learner

Online Cross-validation Selector

Suppose we have K candidate estimators, Ψ̂k, and recall the definition of an estimator from
subsection 1.2. In order to evaluate performance of each Ψ̂k, we use CV for dependent data
to estimate the average loss for each candidate. In particular, each Ψ̂k is trained on the
training set until time t, using P 0

n,t and resulting in a predictive function ψ0
n,t,k := Ψ̂k(P

0
n,t)

for k = 1, . . . , K. We define the online CV risk for each candidate estimator as:

RCV (P 1
n,t, Ψ̂k(·)) =

t∑
j=1

V∑
v=1

∑
(i,s)∈B1

j,v

L(Ψ̂k(P
0
n,j))(Xi, Yi(s), Zi(s− 1)) (1.7)

=
t∑

j=1

V∑
v=1

∑
(i,s)∈B1

j,v

L(ψ0
n,j,k)(C(i, s)),

where RCV (P 1
n,t, Ψ̂k(·)) is the cumulative performance of Ψ̂k trained on training sets and eval-

uated on corresponding validation samples across all time points until time t. For instance,
while Ψ̂k(P

0
n,t) is trained on the training set P 0

n,t, its performance will be over the validation

set P 1
n,t. Additionally, if Ψ̂k is an online estimator, then the online CV risk is also an online

estimator. For the squared error loss mentioned in subsection 1.2, where c(i, j) = 1 (and is
thus omitted), we can rewrite the above online CV risk as:

RCV (P 1
n,t, Ψ̂k(·)) =

t∑
j=1

V∑
v=1

∑
(i,s)∈B1

j,v

(Yi(s)− Ψ̂k(P
0
n,j)(Xi, Zi(s− 1), s))2. (1.8)

The online CV risk estimates the following true online CV risk, denoted as RCV (P n
0 , Ψ̂k(·))

and expressed as

RCV (P n
0 , Ψ̂k(·)) =

t∑
j=1

V∑
v=1

∑
(i,s)∈B1

j,v

EP0,O
[L(ψ0

n,j,k)(C(i, s))|Xi, Zi(s− 1)]. (1.9)

Note that RCV (P n
0 , Ψ̂k(·)) reflects the true average loss for the candidate estimator with

respect to the true conditional distribution P0,Oi . As opposed to the true online CV risk,

RCV (P 1
n,t, Ψ̂k(·)) gives an empirical measure of performance for each candidate estimator k

trained on training data until time t. In light of that, we define the discrete online CV
selector as the estimator that minimizes the online CV risk:

kn,t = arg min
k=1,...,K

RCV (P 1
n,t, Ψ̂k(·)). (1.10)
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The discrete online Super Learner (SL) is the estimator that at each time point t uses the
estimates from the discrete online CV selector — for time t, we have ψ0

n,t,kn,t
:= Ψ̂kn,t(P

0
n,t).

We emphasize that the discrete online SL can switch from one learner to another as t pro-
gresses, in response to accumulating more data and detecting changes in the time series.

Defining the Gold-Standard Oracle Selector

In order to study performance of an estimator of ψ0, we construct loss-based dissimilarity
measures. First, we define i-specific loss-based dissimilarities for the kth estimator, Ψ̂k,
trained until time t as

d0,t(ψn,t,k,i, ψ0,i) =
t∑

j=1

V∑
v=1

∑
(s)∈B1

j,v

EP0,Oi

[(
L(ψn,j,k,i)−L(ψ0,i)

)
(C(i, s))

∣∣∣∣Xi, Zi(s−1)

]
, (1.11)

which compares performance of the CV estimator to the true parameter. Note that the train-
ing and validation sample is just sample i. We further define the measure d0,t(ψn,t,k, ψ0) =
1
n

∑n
i=1 d0,t(ψn,t,k,i, ψ0,i) as an average of i-specific loss-based dissimilarities over all the sam-

ples until time t for the kth estimator; d0,t(ψn,t,k, ψ0) reflects how far ψn,t,k is from ψ0 over all
available times and samples in terms of the chosen loss. We define the time t oracle selector
as the unknown estimator that uses the candidate closest to the truth in terms of the defined
dissimilarity measure:

kn,t = arg min
k=1,...,K

d0,t(ψn,t,k, ψ0). (1.12)

Due to it being a function of the true conditional mean, the oracle selector cannot be com-
puted in practice. However, we can utilize it as benchmark in order to describe performance
of the online CV-based estimator. In Appendix Theorem 1, assuming conditional stationar-
ity as proposed in subsection 1.2 (an assumption not necessary for the algorithm function),
we extend work from Benkeser et al.[7] to multiple time series using the CV schemes de-
scribed in subsection 1.3. In particular, Appendix Theorem 1 shows that the performance
of the discrete POSL is asymptotically equivalent to that of the oracle selector. The result
relies on the martingale finite-sample inequality by van Handel [54] to show that, as t→∞,

d0,t(ψn,t,kn,t , ψ0)

d0,t(ψn,t,kn,t , ψ0)
→p 1, (1.13)

under conditional stationarity and additional conditions specified in the Appendix.

Ensemble of Candidate Estimators

In this section, we consider a more flexible online learner that generates a weighted combi-
nation of candidate estimators. Let Ψ̂α be a function of empirical distribution (Pn,t, at any
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t) generating an ensemble of K estimators (Ψ̂1, . . . , Ψ̂K) indexed by a vector of coefficients
α, where α = (α1, . . . , αK). For example, Ψ̂α could represent a convex linear combination:

Ψ̂α =
K∑
k=1

αkΨ̂k,

such that
∑K

k=1 αk = 1 and for all αk, αk ≥ 0. We define conditional meta-learning
by allowing the weight vector to depend on the baseline covariates X, where α(X) =
{α1(X), . . . , αK(X)} with

∑K
k=1 αk(X) = 1 and for all αk(X), αk(X) ≥ 0. For example,

we can define α(X) by considering a parametric family H = {αβ : β ∈ B} where

αβ(X) =
exp (βk,1 + βk,2X)∑K
k=1 exp (βk,1 + βk,2X)

.

To alleviate notation, we define α as an universal vector of coefficients (including conditional
meta-learning) in further sections. Let Ψ̂α =

∑K
k=1 αkΨ̂k, so that the predictive function

based on the training set P 0
n,t is given by ψ0

n,t,α :=
∑K

k=1 αkΨ̂k(P
0
n,t) with α ∈ H. We define

a H-specific online CV selector for the ensemble as:

αn,t = argmin
α∈H

RCV (P 1
n,t, Ψ̂α(·)) (1.14)

= argmin
α∈H

t∑
j=1

V∑
v=1

∑
(i,s)∈B1

j,v

(Yi(s)− Ψ̂α(P 0
n,j)(Xi, Zi(s− 1), s))2,

where the loss is defined as the mean squared error. We can define an oracle selector for this
class of estimators as the choice of weights that minimizes the true average of the loss-based
dissimilarity:

αn,t = argmin
α∈H

d0,t(ψ
0
n,t,α, ψ0) (1.15)

= argmin
α∈H

t∑
j=1

V∑
v=1

∑
(i,s)∈B1

j,v

EP0,Oi

[(
L(ψ0

n,j,α)− L(ψ0)
)

(C(i, s))

∣∣∣∣Xi, Zi(s− 1)

]
.

The results from Theorem 1 extend to all meta-learning, as the performance of the online
CV ensemble is asymptotically equivalent to the oracle ensemble of candidate estimators as
t goes to infinity

d0,t(ψn,t,αn,t , ψ0)

d0,t(ψn,t,αn,t , ψ0)
→p 1. (1.16)

We note that one could also define a sequence of Hm-specific online SLs, ranging from
highly parametric to nonparametric form = 1, . . . ,M , possibly stratified by the subject itself.
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Then, the online ensemble would have candidate algorithms Ψ̂k for k = 1, . . . , K augmented
with a collection of online SLs indexed by weight classes Hm, m = 1, . . . ,M . In this matter,
the discrete online SL would adaptively determine the optimal level of data adaptivity of the
meta-learner, based on many candidates for the online discrete SL considered. For example,
depending on the number of subjects n and time t, the choice kn,t of the online CV selector
might switch from discrete online SL based on K algorithms to more aggressive online SL
indexed by a more flexible weight class over time.

Algorithm

Due to the continuously updating procedure that allows the algorithm to evolve over time,
POSL generalizes to a diversity of data streams. POSL accommodates varying degrees of per-
sonalization, such as within-covariate or within-subject. It can handle multiple (potentially
time-varying) dependence structures, from individual time series to networks of connected
individuals. We delineate one version of POSL in Algorithm 1, which benefits from learning
both from other subjects and from the history of the target individual’s trajectory.

We define Historical learners as KH learners generating a pooled (across individuals and
time before t) estimator Ψ̂k(P

0
n,t) for algorithm k ∈ KH , trained on samples j = 1, . . . n

in the training sample. The motivation behind Historical learners is to provide an initial
estimate based on previously collected trajectories (or multiple concurrently collected time
series), convenient for forecasting early in the trajectory for individual i. Historical learners
can be trained on time series data collected even before the trajectory of interest is sampled,
and can be updated at specific time points ts based on the computational efficiency. We
note that Historical learners can generate a historical online SL as well, which thus provides
another candidate online estimator. On the other hand, we define Individual learners as KI

learners applied to Pn,t, which stratify per subject when training. With that, we generate

an individual estimator Ψ̂S,k(P
0
i,t) for algorithm k ∈ KI , individualized to sample target i.

Individual learners train on the training data by stratify by ID, and predict the outcome
in the future according to the forecast horizon. The KI candidate learners are possibly
time series learners, and are frequently updated in order to accommodate the continuously
incoming data. Like historical learners, individual learners can also form an individual online
SL, which becomes another candidate in the POSL library.

With this formulation, we allow the POSL to leverage CV in order to choose between
pooled and individual fits at each time point t — in essence, allowing the algorithm to choose
an appropriate structure from the data (learning from samples if no conditional stationarity
is present or learning through time). This results in a natural adaptation to the amount of
available data and the stationarity of the individual target time series. The final discrete
and full online SL for the POSL is generated based on all the samples until specified time
t. The CV selector kn,t reflects an optimized ensemble among all the available learners;
the candidate learners reflect a collection of online algorithms which range in how much
they use the current time series (stratify by ID) and use the historical data (pool across all
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available time series). All simulations in Section 1.6 test the version of the POSL described
in Algorithm 1.

Algorithm 1 Personalized Online Super Learner

ts: time steps at which Historical learner fit is updated.
KH : Historical candidate learners.
KI : Individual candidate learners.
K: All candidate learners, KH ∪KI .
k: Any learner among candidate learners.

Procedure Historical Learner(n,t)
Return Ψ̂(P 0

n,t), trained using using all available units (i = 1, . . . , n) for any t.

Procedure Individual Learner(i,t)
Return Ψ̂S(P 0

n,t), for any t where we stratify by sample i.

while t < τ do
for k ∈ KH do

if t ∈ ts then

Run Historical Learner(n,t), return ψHn,t,k = Ψ̂k(P
0
n,t).

else

ψHn,t,k = Ψ̂k(P
0
n,ts−1

).

end

end
for k ∈ KI do

Run Individual Learner(i,t), return ψIi,t,k = Ψ̂S,k(P
0
n,t).

end
if Discrete Online Super Learner then

Return ψn,t,kn,t , where kn,t = argmink RCV (Pn,t, {ψHn,t,k, ψIi,t,k}).
end
if Ensemble Online Super Learner then

Return ψn,t,αn,t , where αn,t = argminα d0,t({ψHn,t,k, ψIi,t,k}, ψ0).

end

end
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1.5 Personalized Online Super Learner with Dynamic

Streams

In most practical settings, time series data exhibit a heterogeneous streaming profile com-
prised of varied length of the series and diverse start and exit times. In order to accommodate
a manifold of different applications, including dynamic enrollment and exit (collectively re-
ferred to as dynamic streams), we extend the formulation of the estimation problem described
in the subsection 1.4 and the POSL algorithm, in this subsection. In particular, we redefine
the observed data, statistical model, and the target parameter below, taking into account the
possibly dynamic and disparate tracking of each collected sample. Afterwards, we describe
the appropriate CV for dynamic streams, redefine the loss, online CV selector, ensemble of
candidate estimators, and define a new prediction function for dynamic enrollment streaming
settings. In Figure 1.3 we provide examples of dynamic streams, introducing subject-specific
time and its relationship to chronological time, and illustrate various ways in which this
heterogeneous streaming profile can evolve.

Formulation of the Estimation Problem with Dynamic Streams

Let Ei be an entry time for each new time series, corresponding to the chronological time
domain t = 1, . . . , τ , for i = 1, . . . , n. We assume a natural ordering for all Ei, with 0 ≤
E1 ≤ . . . ≤ En even if multiple samples enroll around the same time. Our assumption on the
strictly monotone increasing entry times follows from the fluid definition of t; as we put no
restrictions on the time definition, we note that for sufficiently small t, no subjects exhibit
Ei = Ei+1 even if enrolling a group of units.

Suppose each unit i is tracked over Mi time points starting at Ei, where the final
chronological time Ti and duration Mi are within the (0, τ) range. The one-to-one map-
ping from t-chronological time to m-individual time is given by hi(t) = t − Ei, resulting
in m ∈ {0, . . . ,Mi}; with that, let hi(Ei) = 0 and hi(Ti) = Mi. The function hi is subject
specific as it depends on individual i’s start time Ei; writing just h denotes a general function
which can take a vector of start times. We define the process on each unit i as m 7→ O

′
i(m)

with O
′
i = (Oi(m) : m = 0, . . . ,Mi) being the full observed time series on subject i. Let

O
′
i(m) = Oi(hi(t)) be the observed time series on subject i at chronological time t; note

that, in order to define Oi(hi(t)), we need the current time t and the subject’s entry time,
Ei. As in subsection 1.2, the time series decomposes as O

′
i(m) = (Y

′
i (m),W

′
i (m)), equiv-

alently written as Oi(hi(t)) = (Yi(hi(t)),Wi(hi(t))) in chronological time. Here, Yi(hi(t))
is a response variable and Wi(hi(t)) is a vector of time-varying covariates for subject i at
collected point hi(t) in chronological time t. We similarly define Xi as the vector of baseline
covariates collected at entry time Ei for subject i. We define the total number of subjects in
the study at chronological time t as n(t) =

∑n
i=1 I(Ei ≤ t), reflecting all trajectories started

before (or at) time t. Equivalently, we also let nm(t) denote the number of samples with m

points up to t, where nm(t) =
∑n(t)

i=1

∑t
s=1 I(h(s) = m). We can represent the observed data
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coming from dynamic streams as a single time series through chronological time t by defining
a process F such that F (t) = F n(t)(t) ≡ {Oi(hi(t)) : all i where Ei ≤ t}. Then, we have
that (F n(0)(0), . . . , F n(τ)(τ)) reflects a single time series we can learn from. We emphasize
that, for dynamic streaming settings, F (t) describes a collection of all observed time series
enrolled at or before time point t.

In the previous sections we defined time t-specific and sample i-specific history as Oi(t−
1) = (Oi(1), . . . , Oi(t − 1)). For dynamic streams, we let the history of the i-th time series
until time t be defined as Oi(hi(t − 1)) = (Oi(hi(0)), . . . , Oi(hi(t − 1))). We define the
complete history for all samples until chronological time t as O(h(t− 1)), which includes all
trajectories observed by time t.

O(h(t− 1)) = F̄ (t− 1) = {Oi(hi(t− 1)) : all i where Ei ≤ t}.

Analogue to subsection 1.2, let Z
′
i(m − 1) = Zi(hi(t − 1)) denote the fixed dimensional

summary measure of the form Z
′
i(m − 1) = Zi(hi(t − 1)) = fi(O(h(t − 1)) ∈ Rk; note that

with this formulation, Zi(hi(t − 1)) could support both time and sample dependence, as
discussed in previous sections. We define the estimand as a time m prediction problem for
the ith subject:

Ψ(P0)(Xi, Z
′

i(m− 1),m) = Ψ(P0)(Xi, Zi(hi(t− 1)), hi(t− 1)) = EP0,Xi
[Y
′

i (m)|Z ′i(m− 1)],
(1.17)

where the expectation on the right hand side is taken w.r.t the conditional distribution P0,Xi ,
and Ψ(P0)(Xi, Z

′
i(m−1),m) is the prediction function for the ith subject at time series time m

(equivalent to chronological time hi(t)). In particular, we want to learn (X,Z
′
(m−1),m) 7→

Ψ(P0)(X,Z
′
(m−1),m), and thereby obtain a prediction function for each unit i that predicts

Y
′
i (m) with Ψ(P0)(Xi, Z

′
i(m− 1),m). Further, let Pn,t 7→ Ψ̂(Pn,t) represent a mapping from

Pn,t into a predictive function Ψ̂(Pn,t). We define Ψ̂(Pn,t)(Xi, Z
′
i(m− 1),m) as an estimator

of Ψ(P0)(Xi, Z
′
i(m− 1),m), and write Ψ̂(Pn,t)(Xi, Z

′
i(m− 1),m) = ψn,t(Xi, Z

′
i(m− 1),m) as

the predicted outcome for unit i of the estimator Ψ̂(Pn,t) based on (Xi, Z
′
i(m− 1),m).
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Figure 1.3: Examples of dynamically streaming time series data structures. The depicted
scenarios display a window of chronological time [0, τ ] where units i have varying entry times
Ei, exit times Ti, and observation periods Mi. A classic example showing units with various
start and exit times over a window of chronological time is shown in (A), and an example of
this setting includes website or sensor monitoring. In (B) streams of non-overlapping time
series, such as patients seen by a doctor, are displayed. In (C) a dynamic setting with large
amounts of historical information relative to recently entered time series (unit 1, circled) is
shown; in this scenario training algorithms on historical information might be particularly
useful for making forecasts in the beginning of subject 1’s trajectory. An example of a
network of dynamically streaming time series is provided in (D); in particular, the network
for a single subject (unit 4) is shown. This unit’s network is constrained in that they can only
interact with at most two other units at any given time, and this restriction is illustrated by
the two colors for arrows and boxes that branch from the middle subject’s time series.
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Personalized Online Super Learner for Dynamic Streams

Let Ch(i, t, ·) = Ch(i, s, Ei, Ti) = (Xi, Yi(hi(t)), Zi(hi(t− 1)), Ei, Ti) denote the subject i and
chronological time t observed data. As previously defined, Bt defines a time-specific split
vector such that, for all 1 ≤ i ≤ n, Bt(i, ·, Ei, Ti) ∈ {−1, 0, 1}t. We define the following split
of the learning set into corresponding three disjoint subsets,

Bv
t (i, s, Ei, Ti) =


−1, Ch(i, s, Ei, Ti) not used

0, Ch(i, s, Ei, Ti) in the training set

1, Ch(i, s, Ei, Ti) in the validation set,

where our CV scheme now takes into account if we have yet to observe sample i (by chrono-
logical time t) and how long is its trajectory. Knowing Ei and Ti proves important shortly,
as we define how the loss, and the corresponding (online) CV risk are defined and evaluated.

Let L(ψ)(Ch(i, t, Ei, Ti)) denote the loss function for the data record Ch(i, t, Ei, Ti) for
subject i, where

(Xi, Yi(hi(t)), Zi(hi(t− 1)), Ei, Ti) 7→ L(ψ)(Xi, Yi(hi(t)), Zi(hi(t− 1)), Ei, Ti).

For example, given the prediction function ψ, we might want to evaluate its performance
using the squared error loss

L(ψ)(Ch(i, t, Ei, Ti)) = c(i, hi(t), Ei, Ti)(Yi(hi(t))− ψ(Ch(i, t, Ei, Ti)))
2, (1.18)

where c(i, hi(t), Ei, Ti) represents a weight function dependent on sample i, time hi(t) and
the unit’s entry and exit time. In particular, if t ≤ Ei or t ≥ Ti, we might define
c(i, hi(t), Ei, Ti) = 0 resulting in L(ψ)(Ch(i, t, Ei, Ti)) = 0. The c(i, hi(t), Ei, Ti) weight
might additionally represent a weight function that down-weights the losses for points hi(t)
for which nl(t) is small; with that, our prediction function would not be penalized for not
having enough data collected up until certain times l.

Let I = {i : Ei ≤ t, t ≤ Ti} denote a set of all samples with start date before current
chronological time t with data still being collected (t ≤ Ti). We define the true risk as the
expected value of L(ψ)(Ch(i, t, Ei, Ti)) w.r.t the true conditional distribution P0,Oi for each
sample i:

R(P0, ψ) =
τ∑
t=1

∑
i∈I

EP0,Oi
[L(ψ)(Ch(i, t, Ei, Ti))|Xi, Zi(hi(t− 1))] (1.19)

=
τ∑
t=1

∑
i∈I

EP0,Oi
[(Yi(hi(t))− ψ(Ch(i, t, Ei, Ti)))

2|Xi, Zi(hi(t− 1))],

defined for all subjects that had their start Ei before chronological time t, and end date after
t. Note that, if sample i with start date Ei ≤ t also had their end date before time t - then
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their loss would be undefined, unless an appropriate weighting is part of the loss definition
(as discussed above). We note that R(P0, ψ) is an average of all appropriate i-specific losses
measuring the performance of ψ across all available time points. One might instead be
interested in defining a m-specific prediction function up until time τ . In particular, the true
risk of the m-specific prediction function can be written as:

Rm(P0, ψ) =
τ∑
t=1

∑
i∈I

I(hi(t) = m)EP0,Oi
[L(ψ)(Ch(i, t, Ei, Ti))|Xi, Zi(hi(t− 1))] (1.20)

reflecting an average over all available active samples and times with m time points.
Suppose we have K candidate estimators Ψ̂k, where we denote ψ0

n,t,k as ψ0
n,t,k := Ψ̂k(P

0
n,t)

for k = 1, . . . , K. In order to evaluate the time specific performance of each Ψ̂k, we use CV
for dependent dynamic steams (which takes into account Ei and Ti) in order to estimate the
average loss for each candidate k over time. The online CV risk of an online estimator is
computed at each time point in chronological time and defined as follows

RCV (P 1
n,t, Ψ̂k(·)) =

t∑
j=1

V∑
v=1

∑
(i,s,Ei,Ti)∈B1

j,v

L(Ψ̂k(P
0
n,j))(Ch(i, s, Ei, Ti)) (1.21)

=
t∑

j=1

V∑
v=1

∑
(i,s,Ei,Ti)∈B1

j,v

c(i, hi(s), Ei, Ti)(Yi(mi(s))

− Ψ̂k(P
0
n,j)(Ch(i, s, Ei, Ti)))

2,

with mean squared error as the loss. One could define the online CV risk RCV,m(P 1
n,t, Ψ̂k(·))

of Ψ̂k for evaluating the CV performance of the prediction function ψ0
n,t,k at time m as:

RCV,m(P 1
n,t, Ψ̂k(·)) =

t∑
j=1

V∑
v=1

∑
(i,s,Ei,Ti)∈B1

j,v

I(hi(s) = m)L(Ψ̂k(P
0
n,j))(Ch(i, s, Ei, Ti)) (1.22)

We define the total online CV risk of m-specific prediction functions as m-specific risks, with:

RCV (P 1
n,t, Ψ̂k(·)) =

∑
m

RCV,m(P 1
n,t, Ψ̂k(·)). (1.23)

The online CV risk RCV (P 1
n,t, Ψ̂k(·)) gives an empirical measure of performance for candidate

estimator k trained on training data until chronological time t. We define the time t discrete
online CV selector as:

kn,t = arg min
k=1,...,K

RCV (P 1
n,t, Ψ̂k(·)), (1.24)
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reflecting the discrete online SL for all m. Instead, we could define a separate selector for
the different time points m, with the discrete online SL stratifying the selector by m,

kn,t,m = arg min
k=1,...,K

RCV,m(P 1
n,t, Ψ̂k(·)). (1.25)

Finally, we consider a more flexible online learner that generates a weighted combination
of candidate estimators at each time point. Let Ψ̂α be a function of empirical distribution
generating an ensemble of K estimators {Ψ̂1, . . . , Ψ̂K} indexed by a vector of coefficients
α. Let H define a class of weight functions, where α = α(X) = (α1(X), . . . , αK(X)) is a
collection of K weights that might depend on the baseline covariates X, with

∑K
k=1 αk = 1

and ∀αk, αk ≥ 0. Let Ψ̂α =
∑K

k=1 αkΨ̂k, so that the predictive function based on the

training set P 0
n,t is given by ψ0

n,t,α :=
∑K

k=1 αkΨ̂k(P
0
n,t)(Ch(i, t, Ei, Ti)) with α ∈ H. We define

a H-specific online CV selector for the ensemble as:

αn,t = argmin
α∈H

RCV (P 1
n,t, Ψ̂α(·)) (1.26)

= argmin
α∈H

t∑
j=1

V∑
v=1

∑
(i,s,Ei,Ti)∈B1

j,v

(Yi(hi(t))− Ψ̂α(P 0
n,t)(Ch(i, t, Ei, Ti)))

2,

where the loss is defined as the mean squared error. Alternatively, we could compute an
online CV selector αn,t,m for each m, where

αn,t,m = argmin
α∈H

RCV,m(P 1
n,t, Ψ̂α(·)). (1.27)

1.6 Simulations

We used simulations to evaluate the POSL implementation described in Algorithm 1, testing
its performance and adaptivity over time for several common time series settings. For all
scenarios, we simulated a total of 31 time series with τ = 540 time-points, and repeated the
entire procedure 50 times for a total of 1550 trajectories. We used a random sample of 30
time series to train a Historical SL, and the remaining random sample for the Individual
learners. For all simulations described below, we used the same library consisting of a grid of
xgboost, glm and ARIMA learners for the Historical and Individual learners implemented
in sl3 R package[23, 27, 60, 99]. The Historical SL was fit once on the pooled data across
individuals. The Individual learners and POSL were updated every 20 time points, resulting
in possibly different fits and weights at different times. In particular, we sequentially trained
over incoming batches of 20 time points after start time 10, {10, 30, 50, . . . , 470, 490, 510},
and we evaluated the loss over the last five time points of the time series i for which we
forecast. The POSL was evaluated using four different simulation scenarios, which were
based on autoregressive integrated moving average (ARIMA) models and Gaussian mixture
autoregressive (AR) models in Simulations A–C and Simulation D, respectively. Each of
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the simulations reflect different degrees/forms of similarity between the data-generating pro-
cesses (DGP) used to generate the historical subjects and the individual subject. For each
simulation study, the time series generated by these different DGPs is shown in Figure 1.4;
the corresponding density plots can be found in the Appendix Figure 1.9.

Figure 1.4: Mean outcome for the Historical and Individual data-generating processes (DGP)
over time. Each panel corresponds to a simulation described in section 4, depicting both
the Historical DGP and Individual DGP for simulation studies A–D. For each simulation,
the mean value over time was obtained based on 100 simulated time series from both DGPs,
with a final time point of τ = 540.

In Figure 1.5, we report an average over 50 simulations of POSL’s ensembling weights,
which are assigned at each update to KH Historical learners and KI Individual candidate
learners. Here we emphasize that POSL used a convex non-negative least squares (NNLS)
regression as its meta-learner. Additionally, we compared the performance of the POSL to
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purely online and purely offline ensemble SL methods using the same library of candidate
learners, meta-learner, data, and test set. Specifically, we compared POSL to the canonical
online SL algorithm [7] and the V-fold CV-based SL for independent and identically dis-
tributed data [136]. The online SL was trained using all the samples in a sequential manner:
the loss was evaluated over a future five time-point window not seen by the learners, and
then the fit was updated with new data. The evolution of the mean squared error (MSE) is
shown in Figure 1.6.

Simulation A: Different ARIMA Processes

A simple scenario was considered as a first step to make sure that the POSL could learn the
conditional mean under the correct DGP over time for sample i of interest. In particular,
in this simulation historical subjects and the individual subject were sampled from different
DGPs. We sampled 30 time series from a fifth-order ARIMA model, ARIMA(5,0,0), and
this represented the historical subjects used to train the Historical SL. We sampled a single
time series i, who is of interest for optimizing predictions, from an ARIMA(1,0,5) model.

Simulation B: ARIMA Processes with X-dependent Common Offset

In this simulation we built on Simulation A by adding a common component to the Historical
and Individual DGPs. This permitted an investigation of the performance and behavior of
the POSL algorithm in situations where there is considerable similarity in the Historical and
Individual DGPs, but the Individual DGP is different enough that the POSL should be able
to pick up on this asymptotically. We simulated baseline covariates X = {X1, X2, X3} with

X1 ∼ Binomial(0.5),

X2 ∼ Uniform(19, 90),

X3 ∼ Uniform(0, 2).

The distribution of the baseline covariates here was motivated by the data on sex, age, and
care unit considered in the Clinical Data Application Section. We defined the X-dependent
offset as a function of X1, X2 and X3 with f(Xi) = 0.5X1,i + 0.02X2,i + 0.5X3,i being the
offset for sample i. We sampled 30 time series from f(X) + ARIMA(5,0,0) process, reflecting
the Historical DGP. We generated sample i from f(Xi) + ARIMA(0,0,5), so the trajectory
evolves as a MA process with offset f(Xi).

Simulation C: Interrupted ARIMA Processes

We continued to build on Simulation B by generating an interrupted time series as the DGP
for sample i we want to create forecasts for. The intention for this simulation was to test
if POSL can detect changes in the underlying stream of data and adjust accordingly. We
sampled 30 time series from f(X) + ARIMA(5,0,0) process, representing the Historical DGP.
As in Simulation B, we defined f(X) as a X-dependent function with f(Xi) = 0.5W1,i +
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0.02W2,i+0.5W3,i, characterizing the sample i offset. In contrast, we sampled trajectory i as
an interrupted time series, with the first half drawn from f(X) + ARIMA(0,0,5) process and
the second half drawn from the same process as the Historical DGP, f(X) + ARIMA(5,0,0).

Simulation D: Finite Mixture of Gaussian Autoregressive Processes

In Simulation D, we simulated sets of time series using the gratis R package, which was
developed to expedite simulation of dependent data with controllable features and to pro-
vide a basis for time series benchmarking [66]. The general approach employed is based
on Gaussian mixture AR models to generate a wide range of non-Gaussian and nonlinear
time series. First developed by Nhu et al.[71], mixture transition distribution models were
used to capture many non-Gaussian and nonlinear features, and were later generalized to
Gaussian mixture AR models by Wong and Li[146]. In addition to supporting generation of
heterogeneous sets of time series, gratis also provides options for simulating from a ran-
dom population of mixture AR models with specified features[66]. We used this software
to specify common features of the Historical and Individual DGPs, including entropy and
the smoothed trend component for the Seasonal and Trend decomposition using Loess (STL
decomposition). We differentiated the series based on their stability, defined as the variance
of non-overlapping window means and the largest mean shift between two consecutive win-
dows. With that, the Historical and Individual DGPs exhibited the same trend and amount
of information, but different variance.

Simulation Results

From Figure 1.5A, we can see how POSL assigned its convex NNLS-based ensembling weights
over time for Simulation A. The POSL gave more weight to the Historical learners in the
beginning as there were not enough time points to learn solely from sample i. As more data on
sample i is collected and the time series progresses, POSL progressively and consistently gave
more weight to the Individual learners. As shown in Figure 1.6A, the POSL demonstrated
good forecasting performance in terms of the MSE at all training times for this simulation,
with V-fold SL as a close second.

The evolution of meta-learning weights for the Historical and Individual learners over
time is shown for Simulation B in Figure 1.5B. As seen in Simulation A results, the POSL
gives more weight to the Historical fit in beginning, due to the scarce number of time points
collected for time series i. As data becomes more abundant, individualized learners are
better able to characterize the conditional mean for sample i, and POSL therefore gives more
weight to the Individual learners as time progresses. However, due to the common offset in
Simulation B, we can see that POSL does not start giving more weight to the Individual
learners until about 100 time points are included in the training set — much further than
seen in Simulation A. This shows that POSL is able to pick up on the resemblance between
the Historical and Individual DGPs, but also is able to distinguish the Individual DGP
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over time. As shown in Figure 1.6B, POSL demonstrates uniformly the best forecasting
performance relative to comparators for Simulation B.

From Figure 1.5C we can see that the POSL is able to detect changes in the time series
data for sample i as time progresses and more data is collected. As in Simulation B, the
POSL starts with giving more weight to the Historical learners (until about t = 100), but
quickly learns to start giving more weight to the Individual learners. At time t = 270, at
roughly about half of the training time, we can see that POSL responds to the simulated
interruption in the DGP as it reverts back to giving more weight to the Historical learners.
The distribution of weights assigned to the Individual learners continues to decrease until
the end of training, as demonstrated in Figure 1.5C, showing that POSL is able to quickly
adapt to changes in time series as time progresses. In Figure 1.6C, we can see that POSL
outperforms all other tested algorithms for Simulation C, except at rare points in the later
part of the time series i when V-fold SL slightly outperforms (or performs as well) as POSL.
This can be explained by the fact that V-fold SL fit is trained only on the samples sampled
from f(X) + ARIMA(5,0,0) process, and POSL has to learn the correct current form with
a slight delay due to the small batch sizes used for training.

For Simulation D (Figure 1.5D), we can see that POSL once again starts with giving
more weight to the Historical learners, but eventually switches completely to the Individual
learners as more data on the sample in question is collected. In terms of the MSE for this
simulation, POSL shows uniformly the best forecast performance across all tested times
compared to the other SL algorithms considered (Figure 1.6D).
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(A) Individual dissimilar to historical subjects (B) Baseline similarity between individual and historical subjects

(C) Interrupted similarity between individual and 
      historical subjects

(D) Same trends and amount of information   
      between individual and historical subjects

Figure 1.5: Sum of the Personalized Online Super Learner’s (POSL) ensembling weights
over time, stratified by Historical and Individual learners, for four simulation studies. Evo-
lution over time of POSL’s ensembling weights that were assigned to candidate learners
at each training time by its meta-learner, a convex non-negative least squares regression.
The weights assigned to each candidate learner were grouped by the learner type (either
Historical or Individual for learners trained on the historical subjects or individual subject,
respectively). The four simulation studies described in section 4 were considered. The results
for Simulations A–D are summarized in parts (A)–(D) across 50 runs of each simulation.
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(A) Individual dissimilar to historical subjects (B) Baseline similarity between individual and historical subjects

(C) Interrupted similarity between individual and 
      historical subjects

(D) Same trends and amount of information   
      between individual and historical subjects

Figure 1.6: Predictive performance over time for three different Super Learners (SL) in four
simulation studies. Evolution over time of the mean squared error (MSE) of the Personal-
ized Online SL (“Personalized”), online SL (“Online”), and offline SL trained under a V-fold
cross-validation scheme (“V-fold”) for four simulation studies. The “V-fold” SL was trained
once on the simulated data, whereas “Personalized” and “Online” were trained in an online
fashion; the loss was evaluated over a five time-point window that was not seen by the any
of them. The data for seen by the SLs was comprised of 31 subjects, and each subject’s time
series consisted of 540 time points. One individual subject was considered for making pre-
dictions and this subject’s time series was sampled from a different data-generating process
(DGP) than the other 30 subjects, which represented a set of historical / previously observed
subjects that could be used to assist in making predictions for the individual of interest. The
four simulation studies described in section 4 were considered, and each simulation was ran
50 times. The results for Simulations A–D are summarized in parts (A)–(D).
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1.7 Clinical Data Application

We illustrate the POSL algorithm in an application for five-minute ahead forecasting of an
individual’s mean arterial pressure (MAP), which is one of the most important vital signs in
the intensive care unit (ICU). Data obtained from the MIMIC II database (Multiparameter
Intelligent Monitoring in Intensive Care) included 370 subjects’ baseline covariates (age, sex,
body mass index, ICU subunit, SAPS II and SOFA mortality scores, ICU admission type),
time-varying binary exposures (vasopressors, ventilation, sedation), and time-varying con-
tinuous vitals (pulse, heart rate, systolic and diastolic blood pressures, and MAP outcome)
[47, 111]. Additional covariates were derived from this set of variables, most of them from
the time-varying variables, including lagged values of the time-series and summary measures
over at most one hour of history.

A total of 368 subjects were used for training the Historical learners using the sl3 R
package [27, 99]. The library of Historical learners included the following: multiple variations
of gradient boosted decision trees (xgboost), random forests (ranger), and elastic net
generalized linear models (glmnet); a discrete Bayesian additive regression trees model
(dbarts), a Bayesian generalized linear model (bayesglm), and a linear regression (glm)
[23, 147, 41, 24, 43]. This library was fit after reducing the number of time-varying covariates
with a pre-screening step that selected the 200 “most important” time-varying covariates
according to a ranger random forest variable importance metric, and then those 200 time-
varying covariates and the baseline covariates were passed on to the library of Historical
learners. The two patients that were not selected for training the Historical learners were
used to train, separately, a library of Individual online learners; the selection of the two
patients was random. Individual learners were updated with each batch of five observations
(i.e., updated every five minutes), following accumulation of an initial training size consisting
of 60 observations. The Individual learners included the following: multiple variations of
nonlinear time-series models (tsDyn) and elastic net generalized linear models (glmnet);
a linear regression (glm), a gradient-boosted decision tree model (xgboost), a random
forest model (ranger), and an ARIMA model with automated tuning (auto.arima) [38,
41, 23, 147, 60]. The linear regression and ARIMA Individual learners were fit following
a pre-screening step involving lasso regression, in which the variables with non-zero lasso
regression coefficients were selected and then passed to these Individual learners.

At each subject-specific 5-minute update, POSL selects the candidate with the lowest
online cross-validated risk, where the set of candidates included the Individual and Historical
learners, as well as ensembles of them. For both subjects, POSL’s risk function was the
weighted mean squared error (expectation of the weighted squared error loss), where the
weights decreased as a function of time. For losses obtained 180 minutes or more from the
subject’s current time m, the weights were set to 0 when calculating the weighted mean
loss. For losses obtained 30 minutes or less from the subject’s current time m, the weights
assigned to those losses were set to 1. The weights assigned to losses that were obtained
more than 30 minutes but less than 180 minutes from the subject’s current time m decayed
as (1 − 0.001)m−mL , where mL is the time when the loss was measured, mL = 0, . . . ,m, so
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the difference m−mL is the lag in time fromloss’s time andcurrent time. Let w(mL) denote
the weight assigned to a loss measured at time mL, then this strategy to weight losses based
on their lag from the current time can also be expressed as

w(mL) =


0 if mL ≤ m− 180

(1− 0.001)m−mL if m− 180 < mL < m− 30

1 if mL ≥ m− 30.

In Figure 1.7, we illustrate the application of POSL to the ICU data problem to obtain
five-minute ahead forecasts of an individual’s MAP, summarizing POSL’s performance for
the two subjects that were not used in training the Historical learners. In Figure 1.7A and
Figure 1.7B we show how POSL assigned weight to the Historical and Individual candidate
learners over time. For each subject, we identified the Individual learner and the Historical
learner that had the lowest MSE when averaged across the individual’s time series, and these
“best” Individual and Historical learners varied across the subjects. We present POSL’s
forecasts and the “best” Historical and Individual learners’ forecasts alongside the observed
mean arterial pressure in Figure 1.7C and Figure 1.7D. In Figure 1.7E we present the MSE of
learner forecasts plotted in Figure 1.7C and Figure 1.7D, which displays for each subject, the
performance of the learners that performed best for both subjects. This table highlights the
variability of the candidate learners’ performance across subjects and the stability of POSL’s
performance across subjects, and demonstrates POSL’s ability to adapt to an individual’s
time series and to perform better than any of its candidates.
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(D) Observations and Forecasts for Subject 2

Subject

1

POSL

2

Historical 
Elastic Net

7.596

Historical 
Ranger

7.397

Individualized 
XGBoost

7.69

Individualized 
SETAR

10.655

9.513

8.696

19.742

21.094

49.067

12.495

(E) Mean Squared Error of POSL and Best* Learners for Subjects 1 and 2

*Best denotes lowest mean squared error

Figure 1.7: Five-minute ahead forecasting of mean arterial pressure for two intensive care
unit patients with the Personalized Online Super Learner (POSL). In (A) and (B), the POSL
ensembling weights assigned at each five-minute update time, and grouped by the Historical
and Individual candidate learners, are plotted for subjects 1 and 2, respectively. In (C),
subject 1’s observed mean arterial pressure (MAP) is plotted alongside the forecasts from
the following: subject 1’s best-performing Historical learner (elastic net regression), subject
1’s best-performing Individual online learner (gradient boosted regression tree, XGBoost),
and POSL. In (D), subject 2’s observed MAP is plotted alongside the forecasts from the
following: subject 2’s best-performing Historical learner (random forest), subject 2’s best-
performing Individual online learner (self-exciting threshold autoregressive model, SETAR),
and POSL. In (E), the mean squared error of all the learners plotted in (C) and (D) is
displayed for both subjects.
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1.8 Discussion

In this work, we consider the problem of generating personalized forecasts in the data stream-
ing setting with multiple time series of unknown underlying structure. The Personalized On-
line Super Learner (POSL) is an online ensembling machine learning algorithm which utilizes
multiple time series and ensembling combination methods with the goal of optimizing per-
sonalized forecasts. The POSL is regularly updated over time using batches of streaming
data, and leverages both online pooled (learning across individuals) and individual (learn-
ing through time) learners at each time step, allowing for the ensemble weights to depend
on the amount of data collected, stationarity, and degree of noise. The scenario studied
considers observing n units’/subjects’ time series over a finite number of time points. Each
observation is comprised of baseline and time-varying covariates, and a response. The n
time series observed might be subject to intra- and inter-dependence sampled from different
data-generating processes. Also, in dynamic settings, the n time series observed might be
of varying length at chronological time t, while across t comprised of different numbers and
types of units.

We present multiple CV schemes relevant for different streaming settings, and advocate
for an adaptive meta-learning step, where the final weights of the ensemble learner are based
on mutual characteristics of a group of time series, or completely individualized. Finally,
under stronger conditions then necessary for the setup we describe, we apply the results
established by Benkeser et al.[7] in a more general time series setting. Opposed to the work
by Benkeser et al.[7], we consider a different target parameter, and formulate the problem to
include multiple time series with possible baseline dependence among samples. In addition,
we extend the results to different CV schemes supported by the problem setup (dictated by
the different dependence structure), and asynchronous enrollment of subjects across time.
The established result shows that the performance of the CV-based best algorithm is asymp-
totically equivalent with the performance of the best unknown candidate learner — providing
a powerful way to optimally, and in a personalized way, combine multiple estimators in an
online, dependent setting [36].

We note that the POSL can be used for estimation of any parameter of the conditional
distribution of Oi, given its past and past of other (possibly different) time series, that can
be defined as a minimizer of an empirical risk. Thinking of all the trajectories as a single
ordered time series provides an interesting opportunity to study the asymptotic behavior of
the proposed online SL in a variety of settings, including dynamic streams. Depending on the
number of time points, type of enrollment and dependence across subjects, it is possible to
consider asymptotics in time t, number of subjects n, or a combination. For example, one can
study asymptotics in time t only for a fixed number of dependent subjects, or asymptotics in
time t for time series sampled from different data-generating distributions. Alternatively, we
could rely on the number of samples only, which might be practically useful when subjects
are followed up for a limited time frame, when there is no common structure through time,
or when the entry times are all concentrated in a finite chronological time interval. For
low dependence settings where samples are followed for a long period of time, it is possible
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to exploit asymptotics in both the total number of time points observed as well as across
the n subjects. We emphasize that POSL is able to adapt to the underlying structure in
data for all the mentioned settings — this allows the proposed methodology to pick between
relying on structure through time, samples, or both, at each time point. As such, while we
impose assumptions on our statistical model for the sake of obtaining oracle results, our true
statistical model does not rely on conditional stationarity in order for POSL to perform well,
which is in contrast to the canonical online SL[7]. Our proposed method is also constructed
to provide optimal forecasts for unit i sampled from P0,Oi , instead of a collection of time
series.

Finally, we emphasize that the POSL represents theoretically proven, flexible, open-
source algorithm for many canonical and custom made time series prediction problems.
While motivated by precision medicine, POSL has a wide range of applications that could
be considered, including infectious disease forecasting and stock market forecasting. The
general algorithm described encompasses various forecasting horizons, CVs, dependencies
across time, enrollment/exit times, ensembling methods, and combinations of individual
time series and pooled algorithms. Our simulation results show superior performance over
current state-of-the-art online and ensembling algorithms in terms of MSE across a wide
range of forecasting scenarios. In future work, we explore formulations of the POSL for
adaptive peak detection and safe update procedures under data drift.



CHAPTER 1. PERSONALIZED ONLINE SUPER LEARNER 34

1.9 Appendix

Lemma 1. The difference between the online cross-validated (CV) risk (minimized by kn,t)
and the online CV true risk (minimized by kn,t) is a discrete martingale.

Proof. Let Mn(f) = (RCV (P 1
n,t, Ψ̂k(·)) − RCV (P0, Ψ̂k(·))). The difference between centered

CV risk RCV (P 1
n,t, Ψ̂k(·)) and the true CV risk RCV (P0, Ψ̂k(·)) conditional on the filtration

defined by the training set is a discrete martingale:

Mn(f) =
t∑

j=1

∑
(i,s)∈B1

j

[L(ψ0
n,j,k)− L(ψ0)(C(i, s))]

−
t∑

j=1

∑
(i,s)∈B1

j

EP0,Oi
[L(ψ0

n,j,k)− L(ψ0)(C(i, s))|Xi, Zi(s− 1)]

=
t∑

j=1

∑
(i,s)∈B1

j

L(ψ0
n,j,k)(C(i, s))− EP0,Oi

[L(ψ0
n,j,k)(C(i, s))|Xi, Zi(s− 1)]

=
t∑

j=1

∑
(i,s)∈B1

j

f(C(i, s))− EP0,Oi
[f(C(i, s))|Xi, Zi(s− 1)].

A1. There exists a M1 <∞ for any valid loss function L and ψ ∈ ΨΨΨ such that

sup
ψ∈ΨΨΨ

sup
C(i,s)

|L(ψ)(C(i, s))− L(ψ0)(C(i, s))| ≤M1.

A2. There exists a M2 <∞ for ψ ∈ ΨΨΨ so that with probability 1,

sup
ψ∈ΨΨΨ

P0,Oi [L(ψ)− L(ψ0)]2

P0,Oi [L(ψ)− L(ψ0)]
≤M2 <∞

A3. There exists a slowly increasing sequence M3 <∞ such that with probability tending to
1, we have

1

M3

<
d0,t(ψn,t,kn,t , ψ0)

EP0,Oi
[d0,t(ψn,t,kn,t , ψ0)]

< M3

and
1

M3

<
d0,t(ψn,t,k̄n,t , ψ0)

EP0,Oi
[d0,t(ψn,t,k̄n,t , ψ0)]

< M3.
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A4. Given that M3 is a sequence that grows arbitrarily slow to infinity,

tM3
−3 min

k
EP0,Oi

[d0,t(ψn,t,k), ψ0)]→∞

as t→∞.

Theorem 1. Let P n
0 describe the true data-generating distribution P n

0 ∈M, with the target
parameter defined as Ψ : M → ΨΨΨ evaluated at a particular P ∈ M. We establish the CV
selector kn,t as the minimizer of the CV risk, and the oracle selector kn,t as the minimizer
of the true CV risk. Under assumptions A1–A4, there exists a constant C(M1) < ∞ such
that:

EP0,Oi
[(d0,t(ψn,t,kn,t , ψ0))] ≤ EP0,Oi

[(d0,t(ψn,t,kn,t , ψ0))] + C(M1)[
log(1 +K(t ∗ n))

t ∗ n
]1/2

Proof. Under Lemma 1, the proof is a direct generalization of the oracle inequality for a
single time series proved in Benkeser et al.[7] to multiple time series under CV schemes
described in subsection 1.3, assuming conditional stationarity.
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Figure 1: Rolling origin V -fold cross-validation illustration V = 2 v’-wise folds (i.e. sample
splitting) and V = 2 time-series folds (i.e. splitting across time), with initial
training set size n0

t,v = 15, validation set size n1
t,v = 10, batch size m = 10, gap

h = 5 and 2 unique id’s.

2
Figure 1.8: Rolling origin V-fold cross-validation (ROVFCV) scheme invoked for two unique
subjects’ time series, both whose final time-point of their currently available data is t = 40.
The ROVFCV scheme is invoked with the following specification: subject identifier (i = 1
and i = 2), the initial training set size n0

t,v = 15, validation set size n1
t,v = 10, batch size

m = 10, and gap h = 5. Given the specification and the data provided, this CV scheme
thus admits V = 4 ROVFCV folds, where two of the folds are admitted due to splitting
across samples (i.e. via V-fold cross-validation, where each unique V-fold cross-validation
fold is denoted by v

′
) and the other two folds are admitted due to splitting across time (i.e.

via rolling origin cross-validation, where each unique rolling origin cross-validation fold is
denoted by v). For a ROVFCV scheme, the predictions are evaluated on the future times
of subjects’ whose time series were not seen during training, allowing for dependence across
time and samples.
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Figure 2: Rolling window cross-validation scheme for V = 2 v’-wise folds (i.e. sample
splitting) and V = 2 time-series folds (i.e. splitting across time) with n0

t,v = 15,
n1

t,v = 10, m = 10, h = 5 and two unique ids.

3

Figure 1.9: Rolling window V-fold cross-validation (RWVFCV) scheme invoked for two
unique subjects’ time series, both whose final time-point of their currently available data is
t = 40. The RWVFCV scheme is invoked with the following specification: subject identifier
(i = 1 and i = 2), the training set size n0

t,v = 15, validation set size n1
t,v = 10, batch size

m = 10, and gap h = 5. Given the specification and the data provided, this CV scheme
thus admits V = 4 RWVFCV folds, where two of the folds are admitted due to splitting
across samples (i.e. via V-fold cross-validation, where each unique V-fold cross-validation
fold is denoted by v

′
) and the other two folds are admitted due to splitting across time (i.e.

via rolling window cross-validation, where each unique rolling window cross-validation fold
is denoted by v). For a RWVFCV scheme, the predictions are evaluated on the future times
of subjects’ whose time series were not seen during training, allowing for dependence across
time and samples.
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Figure 1.10: Density for both the Historical and Individual data-generating process (DGPs)
considered in each simulation study, depicting the Historical DGP alongside Individual DGP,
and where panels (A)–(D) correspond to simulation studies A–D described in section 4. The
plotted density per panel was obtained based on a 100 simulated time series from both DGPs
with a final time point of τ = 540.
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Chapter 2

Conditional Causal Effect for a Single
time-series

Consider the case that one observes a single time-series, where at each time t one observes
a data record O(t) involving treatment nodes A(t), possible covariates L(t) and an outcome
node Y (t). We assume that the conditional distribution of O(t), given the observed past, is
described by a common function only depending on a fixed dimensional summary measure
of the past (Co(t)). The data record at time t carries information for an (potentially causal)
effect of the treatment A(t) on the outcome Y (t), in the context defined by Co(t). The con-
ditional distribution of O(t) is characterized by a conditional distribution of the treatment
nodes and the conditional distribution of possibly time-dependent covariates and outcome.
We consider the case when the (possibly causal) effects can be estimated in a double robust
manner, analogue to double robust estimation of effects in the i.i.d. causal inference liter-
ature. Previous work on the marginal distribution of counterfactual outcomes, such as the
marginal distribution of the outcome at a particular time point under a certain intervention
on one or more of the treatment nodes, cannot be estimated in a double robust manner
[131, 137]. Instead, in this chapter, we propose a general class of averages of conditional
(context-specific) causal parameters that can be estimated in a double robust manner. We
propose a targeted maximum likelihood estimator (TMLE) of these causal parameters, and
study the asymptotic theoretical properties of the TMLE. We demonstrate the favorable
statistical properties of our estimator through various simulation studies. This work opens
up robust statistical inference for causal questions based on observing a single time-series on
a particular unit.

2.1 Introduction

Suppose one observes a single time series, where at each time t, one observes a data record
O(t) involving treatment nodes A(t), an outcome node Y (t), and possibly other covariates
L(t). In order to talk about causality, we assume that the time-ordering within O(t) with



CHAPTER 2. CONDITIONAL CAUSAL EFFECT FOR A SINGLE TIME-SERIES 40

respect to the treatment nodes is known. In most of our examples, A(t) is a single treatment
node, but it could also be a vector of time-ordered treatment nodes, alternated with compo-
nents of L(t). We assume that the conditional distribution of O(t) given the observed past is
described by a common unknown function (o(t), Co(t)) → θ(o(t), Co(t)), that only depends
on the past O(1), . . . , O(t − 1) through a fixed dimensional summary measure Co(t). For
example, one might assume that the conditional density of O(t), given O(1), . . . , O(t − 1),
equals a conditional density θ(o(t) | Co(t)) for a common function θ, where this function is
otherwise unspecified. More generally, we have that the conditional distribution Pθ,Co(t) is
determined by a common function θ.

The density of O(t) is characterized by the conditional density of treatment nodes and
conditional density of the outcome and covariate nodes. One might know, by design, that
the conditional density of the treatment node is known (under control of the experimenter)
while the other conditional densities are unknown. In that case, one would assume a common
conditional density for the outcome and covariate nodes. This setup again describes a model
for the distribution of the time-series, indexed by common (in time) conditional densities,
analog to the standard conditional stationarity assumptions in time-series literature. For
certain target parameters it is also necessary to assume a limited memory in the sense that
Co(t) is only a function of a limited past O(t−k), . . . , O(t−1) for some fixed dimensional k.
We are interested in models for the probability distribution of the time-series that refrain from
making unrealistic parametric assumptions. In particular, we concentrate on models that
only make a conditional stationarity assumption for relevant parts of the likelihood. Since the
likelihood of the data is parameterized by a function θ ∈ Θ, one can consistently estimate this
common function θ and thereby the probability distribution of the time-series. For example,
one might use likelihood based estimation combined with online cross-validation, such as an
online super learner [7]. We note that the standard maximum likelihood estimation would
break down for infinite dimensional parameter spaces Θ, due to the curse of dimensionality.

While possible, our goal is not to estimate the whole mechanism θ, and thereby the whole
density of the time-series. We are concerned with statistical inference about causal impacts
of treatment on the outcome nodes, reflecting a certain part of the distribution. For example,
one might want to know what the distribution of the outcome at time τ , (Y (τ)), would have
been had we intervened on some of the past treatment nodes in the time-series. These
type of marginal parameters with the corresponding efficient influence curve and targeted
maximum likelihood estimator were developed and proposed in the previous work [131, 137].
The asymptotic normality of these estimators relies on consistent estimation (e.g., at an
appropriate rate faster than τ−1/4) of the part of θ the efficient influence curve depends
upon. However, the efficient influence curve of the marginal time-series parameter relies on
the whole mechanism θ in a non-double robust manner [131, 137]. Therefore, even for the
situation where the treatment nodes were randomly assigned and known, the inference will
still rely on consistent (at rate) estimation of the conditional distributions of the covariate
and outcome nodes. This is in stark contrast to the independent and identically distributed
case with nonparametric model for the common distribution, where the TMLE of such
parameters would be completely robust against misspecification if the treatment mechanism
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is known. The lack of robustness of the efficient influence function for the marginal time-
series parameter is due to its dependence on the density of the marginal distribution of Co(t)
across time t, a complex function of the common stationary mechanism PO(t)|Co(t),θ. As such,
estimation of the efficient influence curve of the marginal time-series parameter, and thereby
the construction of a TMLE, is quite involved and computer intensive.

This raises the question if there are causal parameters of the time-series data distribution
which are possibly easier to estimate efficiently, and which exhibit robust inference when the
treatment mechanism is known. We provide a confirmatory answer in this work. Specifically,
we propose a class of statistical target parameters Ψ(θ) defined as the average over time t
of Co(t)-specific pathwise differentiable target parameters ΨCo(t)(θ) of the conditional distri-
bution of Pθ,Co(t). That is, for context Co(t), one defines a desired target parameter of the
distribution of O(t), given Co(t), as if we were able to observe many observations from this
distribution. Interestingly and importantly, one could make the choice ΨCo(t)(θ) of target
parameter of the conditional distribution of O(t) given Co(t) depend on the context Co(t),
allowing one to adapt the choice of target parameter over time in response to Co(t).

We emphasize that statistical target parameters Ψ(θ) are data-dependent, since they are
defined as an average over time of parameters of the conditional distribution of O(t) given
the observed realization of Co(t). As such, Ψ(θ) depends on the actual realization of the
time-series, specifically (Co(1), . . . , Co(τ)). We also note that since the efficient influence
function DCo(t)(θ) of each Co(t)-specific target parameter is double robust, it follows that we
can estimate the average of Co(t)-specific causal effects in a double robust manner as well. In
addition, the linear approximation of the TMLE is a martingale sum 1

τ

∑τ
t=1 D

Co(t)(θ)(O(t)),
allowing for the asymptotic normality of the TMLE to be established based on the martingale
central limit theorem and general results for martingale processes.

2.2 Formulation of the Estimation Problem

Data and Likelihood

We model data under the shape of a random variable O, where the observed data represents
a single copy of a longitudinal structure

(W (0), A(1), Y (1),W (1), . . . , A(τ), Y (τ),W (τ)), (2.1)

which corresponds to observations from time t = 0 to the final t = τ . Let O(t) denote data at
a specific time point t, such that we can write Oτ = {O(t)}t=τt=0 for the full observed trajectory,
emphasizing the final time point τ . Further, we define O(0) = (W (0)) with A(0) = Y (0) = ∅
as a vector of baseline covariates and O(−1) = ∅ by definition. The time-varying part of
the single sample trajectory at t, O(t) for t > 0, decomposes as O(t) = (A(t), Y (t),W (t)).
The observed data collected at each time point is of a fixed dimension, and an element of an
Euclidean set O with domain O := A× Y ×W ; there are no restrictions on the dimension
and support of O. In the following, we elaborate on each component of O(t). First, let A(t)
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denote the time-varying binary exposure such that A(t) ∈ A := {0, 1}. The subsequent
observed outcome corresponds to Y (t) ∈ Y , which, without loss of generality, is assumed
to be either a binary outcome in {0, 1} or a bounded continuous response taking values in
(0, 1). We define W (t) as as a vector of all post-outcome time-varying covariates lying in an
Euclidean set W . To put it in context: A(t) might denote a suggestion to exercise at time
t, with Y (t) being an indicator of exercising in the next 30 minutes and W (t) containing
weather information at t. Finally, we denote Ō(t−1) as the t-specific history of the trajectory,
such that Ō(t−1) = (O(0), O(1), . . . , O(t−1)). With that, Ō(t−1) contains all the observed
history of the patient up until time t. Similarly, we define Ā(t − 1) = (A(1), . . . , A(t − 1)),
Ȳ (t− 1) = (Y (1), . . . , Y (t− 1)) and W̄ (t− 1) = (W (0), . . . ,W (t− 1)) as histories for A, Y
and W processes until t.

Let P τ
0 denote the true probability distribution of Oτ such that Oτ ∼ P τ

0 . Throughout
the manuscript we use the naught subscript to indicate true probability distributions, or
components thereof. Let pτ0 denote the density of P τ

0 with respect to (w.r.t) a dominating
measure µ overO. In particular, we can write µ as a product measure µ = ×τt=1(µA×µY×µW )
— where µA, µY and µW are measures over A, Y andW , respectively. We denote realizations
of a random variable Oτ as lower case letters, oτ . We also define PO(t)|Ō(t−1) as the conditional
probability of O(t) given the past until time t. In the rest of the manuscript, we will mostly
be dealing with PO(t)|Ō(t−1). The likelihood of realization oτ of Oτ under the true data
distribution P τ

0 can be factorized according to the time-ordering as follows:

pτ0(oτ ) =
τ∏
t=1

p0,a(t)(a(t) | o(t− 1))×
τ∏
t=1

p0,y(t)(y(t) | a(t), o(t− 1)) (2.2)

×
τ∏
t=0

p0,w(t)(w(t) | y(t), a(t), o(t− 1))

=
τ∏
t=1

g0,a(t)(a(t) | o(t− 1))×
τ∏
t=1

q0,y(t)(y(t) | a(t), o(t− 1))

×
τ∏
t=0

q0,w(t)(w(t) | y(t), a(t), o(t− 1)),

where a(t) 7→ p0,a(t)(a(t) | ō(t−1), y(t) 7→ p0,y(t)(y(t) | a(t), ō(t−1)), and w(t) 7→ p0,w(t)(w(t) |
y(t), a(t), ō(t−1)) are conditional densities w.r.t. the dominating measures µA, µY , and µW .
We use shorthand notation for conditional densities and distributions of the relevant nodes.
In particular, we write q0,y(t) and Q0,y(t) as the true time t-specific conditional density and
probability distribution of Y (t) given the observed past until time t. In order to denote
a conditional expectation of Y (t) given the observed past, we write Q̄0,t(A(t), Ō(t − 1)) =
E0(Y (t) | A(t), Ō(t − 1)). At time t, g0,a(t) reflects the true probability of A(t) conditional
on the past until time t, Ō(t− 1). We write Q0,w(t) and q0,w(t) as the conditional distribution
and density of W (t) given the past (Y (t), A(t), Ō(t−1)). To end the description of the data,
here we emphasize that time-specific random variables {O(t)}τt=0 are not independent draws
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from the same law: instead, they represent a dependent sequence, constituting a single draw
from P τ

0 .

Statistical Model

We define a statistical model M for the probability distribution of the data P τ
0 , such that

P τ
0 ∼M. The more we know (or are willing to assume) about the experiment that produces

the data, the smaller the statistical model M. For example, if the treatment is randomized
with known randomization probabilities, then M should incorporate knowledge about the
treatment mechanism. Referring back to the likelihood expression in (2.2), the decomposition
presented places no restrictions on the type of time dependence possible. With the structure
of dependence unknown, Oτ represents a time-indexed sequence of successive observations
collected on a single patient — a single time-series. As such, the observed data reduces to a
single draw from P τ

0 . In order to learn any relevant part of the data generating distribution,
we have to put some restrictions on the statistical model M.

We start by restricting the complexity of dependence allowed for the unknown time
structure. In particular, we assume the conditional distribution of O(t) given Ō(t − 1),
PO(t)|Ō(t−1), depends on the observed past only through a fixed dimensional summary measure
Co(t); we write Co(t) = Co(Ō(t − 1)) ∈ C for some function Co which takes Ō(t − 1)
as input. This is in contrast to assuming that O(t) depends on the full observed history,
(O(0), O(1), . . . , O(t−1)). For some applications, the summary measure might cover a finite
number of previous time points, analogue to a Markov order assumption. Then, Co(t) is a
fixed dimensional extraction from the complete history, such that Co(t) = Co(Ō(t−1)) ∈ Rk

of the form Co(t) = {O(s) : s = t−1, t−2, · · · , t−k}. Alternatively, the fixed dimensional
summary measure could encompass dependence structures described by summary measures
of the time series pattern (e.g.: moving average, finite memory, STL decomposition, spectral
entropy, Hurst coefficient), or it can depend on particular components on Ō(t−1) (e.g., only
parts of the W̄ (t− 1) process). We impose no restrictions or assumptions on what Co(t) is,
other than it must be fixed dimensional. As in the previous section, we write realizations of
Co(t) as lower case letters.

We denote the conditional distribution PO(t)|Ō(t−1) as PCo(t) when making assumptions
on the complexity of dependence allowed (short for PO(t)|Co(t)). Similarly, we define pCo(t)
as the conditional density (o, Co) → pCo(t)(o | Co) with respect to a dominating measure
µCo(t). As such, for each value of Co(t), we have that

∫
pCo(t)(o | Co(t))dµCo(t)(o) = 1.

Therefore, for every t ∈ [τ ], O(t) is independent of its past conditional on Co(t). We can
make similar assumptions on the complexity of dependence allowed for each component of the
likelihood, instead of the whole O(t). In particular, we let q0,y(t) denote the true conditional
density of Y (t) given a fixed dimensional summary Cy(t) = Cy(A(t), Ō(t − 1)), such that
q0,y(t)(y(t) | a(t), ō(t− 1)) = q0,y(t)(y(t) | cy(t)). Similarly, we define Ca(t) and Cw(t) as fixed
dimensional summaries derived as Ca(t) = Ca(Ō(t−1)) and Cw(t) = Cw(Y (t), A(t), Ō(t−1))
for the treatment and covariate processes, respectively. We define Cy(t), Ca(t) and Cw(t)
separately in order to emphasize that the conditioning set can be different for each node.
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We write assumptions on fixed dimensional summary measures as Assumptions 1, 2 and 3,
as stated below.

Assumption 1 (Decomposition of the fixed dimensional summary). For every t ∈ [τ ], the
fixed dimensional summary measure Cy(t) can be written as

Cy(t) = (A(t), Co(t)),

where Co(t) = Co(Ō(t− 1)) ∈ C.

Assumption 2 (Conditional independence of Y (t) given a summary measure). For every
t ∈ [τ ] and under Assumption 1,

q0,y(t)(y(t) | a(t), ō(t− 1)) = q0,y(t)(y(t) | cy(t)) = q0,y(t)(y(t) | a(t), co(t)).

Assumption 3 (Conditional independence of A(t) given a summary measure). For every
t ∈ [τ ] we have that

g0,a(t)(a(t) | ō(t− 1)) = g0,a(t)(y(t) | ca(t)) = g0,a(t)(y(t) | co(t)).

Additionally, we assume that pCo(t) is parameterized by a common-in-time function θ ∈ Θ,
where θ : C × O → R. Therefore, we have that (c, o) → θ(c, o), and pCo(t) depends on
θ only through θ(Co(t), ·). In the following, we write interchangeably pCo(t) and pθ,Co(t),
depending on whether we want to emphasize dependence on θ in the subscript. As pCo(t)
factors into multiple conditional densities, we can parse this assumption by the components
of the likelihood. Therefore, we assume the conditional density of Y (t) given the observed
fixed dimensional summary of the history is a constant function across time. As such, there
exists a common conditional density q0,y such that q0,y(t) = q0,y. Similarly, we define Q̄0 as the
common conditional expectation of Y (t) given Cy(t), such that Q̄0(A(t), Co(t)) =

∫
yq0,y(y |

A(t), Co(t))dµy(o). In an observational study, where the treatment mechanism is not known,
we also need to make conditional stationarity assumptions on g0,a(t). Therefore, unless in
a randomized trial, we assume that g0,a(t) = g0,a = g0 where go,a is a common conditional
probability of A(t) given Co(t). We make no conditional stationarity assumptions on q0,w(t),
allowing it to change over time; we elaborate on this point in the later sections, once the
target parameter is defined. Other than assuming conditional stationarity given a fixed
dimensional summary measure of the past, we assume no knowledge of the structural form
of q0,y or g0; both q0,y and g0 could exhibit complex relationships between the outcome
(treatment) and the fixed dimensional past. We write assumptions on q0,y(t) and g0,a(t) under
the common-in-time model as Assumptions 4 and 5.

Assumption 4 (Common in t conditional density of outcome). There exists a common
across time (t) conditional density of Y (t) given the fixed dimensional summary measure
Cy(t), such that q0,y(t) = q0,y for every t ∈ [τ ].

q0,y(t)(y(t) | Cy(t)) = q0,y(y(t) | Cy(t)).
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Assumption 5 (Common in t conditional probability of treatment). There exists a common
across time (t) conditional probability of A(t) given the fixed dimensional summary measure
Co(t), such that g0,a(t) = g0,a = g0 for every t ∈ [τ ].

g0,a(t)(a(t) | Co(t)) = g0(a(t) | Co(t)).

With a slight abuse of notation, we write θ = (g, Q̄) and let Θ = G ×Q be the Cartesian
product of two nonparametric spaces for g and Q̄. As previously defined, we write pθ,Co(t)
(short: pCo(t)) and pτθ (short: pτ ) as the density for O(t) given Co(t) and Oτ implied by θ.
This defines a statistical modelMτ = {P τ

θ : θ} for P τ , the probability measure for the time-
series. By construction, Mτ is a statistical model for P τ , and includes the true probability
distribution P τ

0 . In addition, we define a statistical model M(Co(t)) = {Pθ,Co(t) : θ} as
a model for the distribution of O(t) given Co(t) at time t. The model M(Co(t)) includes
P0,Co(t) in its interior. We formally define statistical modelsMτ andM(Co(t)) in Definition
1 and 2. We can rewrite the likelihood presented in equation (2.2) under statistical model
Mτ as follows:

pτθ(o
τ ) =

τ∏
t=1

gt(a(t) | Ca(t))
τ∏
t=1

qy(y(t) | Cy(t))
τ∏
t=0

qw(t)(w(t) | Cw(t)). (2.3)

Definition 1 (Statistical Model M(Co(t))). We define a statistical model M(Co(t)) as the
set of distributions Pθ,Co(t) over the domain O that satisfy Assumptions 1, 2, 3, 4 and 5.
In case of a randomized trial, we don’t need Assumption 5 as the treatment mechanism is
known.

Definition 2 (Statistical Model Mτ ). We define a statistical model Mτ as the set of dis-
tributions P τ

θ over the domain O that satisfy Assumptions 1, 2, 3, 4 and 5. In case of a
randomized trial, we don’t need Assumption 5 as the treatment mechanism is known.

2.3 Target Parameter and Identification

Causal Target Parameter

Translation of the scientific question of interest into a causal parameter is facilitated by
the use of a structural causal model (SCM; equivalently, structural equation model (SEM))
[93]. By specifying a SCM, we assume that each component of the data structure is a
function of the observed time-specific data (“endogenous variables”) and an unmeasured
term (“exogenous variables”) [93]. In the following, we denote all endogenous variables as
O, and exogenous variables as U . By the SCM in Equation (2.4), we assume data structure at
each time point t is a function of an observed, fixed-dimensional history and an unmeasured
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exogenous term such that

W (0) = fw(0)(UW (0)), (2.4)

A(t) = fa(t)(Co(Ō(t− 1)), Ua(t)),

Y (t) = fy(t)(Cy(A(t), Ō(t− 1)), Uy(t)),

W (t) = fw(t)(Cw(Y (t), A(t), Ō(t− 1)), Uw(t)),

where (fa(t) : t = 1, . . . , τ), (fy(t) : t = 1, . . . , τ) and (fw(t) : t = 0, . . . , τ) are unspecified,
deterministic functions. We denote a vector of exogenous variables as U = ({U(t)}t=τt=0) =
({(Ua(t), Uy(t), Uw(t))}t=τt=0) (note: U(0) = Uw(0) with Ua(0) = Uy(0) = ∅), sampled from a
probability distribution PU . Given an input (O,U), structural equations fa(t), fy(t) and fw(t)

for each time t ∈ [τ ] deterministically assign a value to each of the nodes.
LetMF define the causal model, which is a set of all probability distributions P F over the

domain of (O,U) that are compatible with the SCM defined in (2.4). We denote P F
0 as the

true probability distribution of (O,U), where P F
0 ∈MF . In order to refer to any distribution

in MF , we write P F . There is a clear connection between the full and observed data: any
distribution P F on the domain of the full data determines a corresponding distribution P
on the domain of the observed data. The causal model MF encodes all knowledge about
the data-generating process, and implies a model for the distribution of the counterfactual
random variables. As such, we conveniently define causal effects in terms of hypothetical
interventions on the SCM. For instance, we can define a static intervention as A(t) = 1,
which determnistically assigns treatment at time t. With that, O∗(t) is the counterfactual
full data generated from the SCM described in (2.4) by replacing the equation associated
with the exposure node by the counterfactual intervention at time t,

A∗(t) = 1,

Y ∗(t) = fy(t)(Cy(1, Ō(t− 1)), Uy(t)),

W ∗(t) = fw(t)(Cw(Y ∗(t), 1, Ō(t− 1)), Uw(t)).

We denote as O∗,τ the counterfactual random variable over all the times t where O∗,τ =
(O∗(t) : t = 1, . . . , τ) and (O∗(t) = (A∗(t), Y ∗(t),W ∗(t)). With that, O∗,τ denotes a counter-
factual time-series.

We also define MF (Co(t)) as the time- and context- specific causal model. In contrast
to MF , MF (Co(t)) has the true conditional probability distribution P F

0,Co(t)
in its interior.

In particular, MF (Co(t)) contains all probability distributions compatible with the SCM in
(2.4) over the domain of (O,U) where Ca(t) = Co(t) = co:

Wco(0) = fw(0)(UW (0)), (2.5)

Aco(t) = fa(t)(co, Ua(t)),

Yco(t) = fy(t)(Cy(Aco(t), co), Uy(t)),

Wco(t) = fw(t)(Cw(Yco(t), Aco(t), co), Uw(t)).
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Let O∗Co(t)(t) denote the counterfactual observation at time t, obtained by substituting input

to fa(t) with a deterministic treatment for A(t) for the SCM depicted in (2.5):

A∗co(t) = 1,

Y ∗co(t) = fy(t)(Cy(1, co), Uy(t)),

W ∗
co(t) = fw(t)(Cw(Y ∗co(t), 1, co), Uw(t)).

We write (O∗Co(t)(t), U(t)) as the full post-intervention data at time t, with the post-intervention

distribution denoted as P F∗
Co(t)

. Consequently, Y ∗co(t) then reflects the counterfactual outcome

given Co(t) = co had the treatment been deterministically assigned at t, possibly contrary
to the fact. We define our causal parameter of interest as

ΨF
Co(t)(P

F
Co(t)) := EPF∗

Co(t)

[
Y ∗co(t)

]
, (2.6)

which is the expectation of the counterfactual random variable Y ∗co(t) generated by the mod-
ified SCM as stated in equation (2.5). In words, our causal target parameter is the mean
outcome we would have obtained after one time-step, if, starting at time t given the observed
past, we had assigned treatment deterministically.

Identification and the Statistical Target Parameter

We lay the groundwork for addressing identifiability through P τ
0 by providing a link between

the causal model and the observed data. As a first step, we define the causal quantity of
interest in terms of a deterministic intervention on the SCM, as outlined in (2.5). Further,
we rely on the G-computation formula under the sequential randomization and positivity as-
sumptions to identify the distribution of the time- and context- specific observation O∗Co(t)(t),

as well as the full counterfactual time-series O∗,τ [104, 106]. The two key Assumptions, se-
quential randomization and positivity, are stated below as Assumption 6 and 7. We note
that, in case treatment mechanism is randomized at each t, Assumption 7 is satisfied by
design.

Assumption 6 (Sequential Randomization). For any t ∈ [τ ], we have that

A(t) ⊥⊥ Y ∗co(t) | Co(t) and A∗co(t) ⊥⊥ Y ∗co(t) | Co(t).

Assumption 7 (Positivity). Under the treatment mechanism g0,t, each treatment value a ∈
{0, 1} has a positive probability of being assigned given the observed history. For every t ∈ [τ ]
with P0(Co(t) = co) > 0,

g0,t(A(t) | Co(t) = co) > 0.

Under identification Assumptions 6 and 7, we can write the causal target parameter
ΨF
Co(t)

(P F
Co(t)

) defined in Equation (2.6) as a function of the true conditional data-generating
distribution P0,Co(t) where

ΨF
Co(t)(P

F
0,Co(t)) = ΨCo(t)(P0,Co(t)) = ΨCo(t)(θ) := EP0,Co(t)

[Y (t) | A(t) = 1, Co(t)]. (2.7)
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In words, we define the target parameter as the causal effect (under Assumptions 6 and 7)
of assigning treatment at t on the subsequent outcome Y (t) in the context of the observed
history until the current time point. Therefore, for a given observed summary Co(t), we define
the target mapping ΨCo(t) : M(Co(t)) → R, where ΨCo(t) is pathwise differentiable with a
canonical gradient DCo(t)(PCo(t))(o) at PCo(t) in M(Co(t)). The variance of the canonical
gradient (also known as the efficient influence function, EIC) gives the generalized Cramer-
Rao lower bond for the variance of any regular and asymptotically linear estimator, providing
a way to build efficient estimators [127, 138, 137]. As stated in Section 2.2, we can write the
canonical gradient at PCo(t) inM(Co(t)) interchangeably asDCo(t)(PCo(t))(o) andDCo(t)(θ)(o),
emphasizing dependence on θ = (g, Q̄). By the definition of a canonical gradient, DCo(t)(θ)
is a function of the observed data o with conditional mean zero w.r.t. PCo(t) [127]. In the
following theorem we provide the exact form of the canonical gradient corresponding to the
target parameter in Equation (2.7), along with its first order expansion and the double-robust
second order term.

Theorem 2 (Time- and Context-Specific Target Parameter). We define the time- and
context-specific parameter ΨC0(t)(P0,Co(t)) under statistical model M(Co(t)) as

ΨCo(t)(P0,Co(t)) := EP0,Co(t)
[Y (t) | A(t) = 1, Co(t)],

or equivalently for θ = (g, Q̄) as

ΨCo(t)(θ0) = ΨCo(t)(g0, Q̄0) := EP0,Co(t)
[Y (t) | A(t) = 1, Co(t)].

Under Assumption 7, the target parameter mapping ΨC0(t) : M(Co(t)) → R is pathwise
differentiable w.r.t. M(Co(t)) and has a canonical gradient defined as

DCo(t)(θ)(o) =
1(A(t) = 1)

g(A(t) = 1 | Co(t))
(
Y (t)− Q̄(A(t) = 1, Co(t))

)
.

The time- and context-specific parameter admits the following first order expansion

ΨCo(t)(θ)−ΨCo(t)(θ0) = −EP0,Co(t)
[DCo(t)(θ)] +RCo(t)(Q̄, Q̄0, g, g0),

where RCo(t) is a second order remainder that is doubly-robust, with RCo(t)(Q̄, Q̄0, g, g0) = 0
if either Q̄ = Q̄0 or g = g0.

Instead of the treatment specific mean (TSM) described in Equation (2.7) adapted to
the observed time and context, one could instead focus on the time- and context-specific
average treatment effect (ATE) — another common parameter of interest in causal inference
literature. By an easy extension, we define a parameter mapping ΨATE

C0(t) : M(Co(t)) →
R with a canonical gradient DATE

Co(t)
(θ)(o) at PCo(t) in M(Co(t)). In particular, we define

ΨATE
C0(t)(P0,Co(t)) = ΨATE

C0(t)(θ0) as

ΨATE
C0(t)(P0,Co(t)) := EP0,Co(t)

[Y (t) | A(t) = 1, Co(t)]− EP0,Co(t)
[Y (t) | A(t) = 0, Co(t)],
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with canonical gradient defined as

DATE
Co(t)(θ)(o) =

[
1(A(t) = 1)

g(A(t) = 1 | Co(t))
− 1(A(t) = 0)

g(A(t) = 0 | Co(t))

] (
Y (t)− Q̄(A(t) = 1, Co(t))

)
.

Then, the time- and context-specific ATE is interpreted as the causal difference at t between
assigning treatment (A(t) = 1) and control (A(t) = 0) on subsequent outcome Y (t) in the
context of the observed history until the current time point. As the theoretical analysis of
target parameters ΨCo(t)(P0,Co(t)) and ΨATE

C0(t)(P0,Co(t)) is the same, in the following we focus

on the parameter described in Equation (2.7).
The targets defined so far are parameters defined for a specific time point t intervention

given the observed past. However, we can also formulate target parameters as summaries of
single time-point interventions over time. In particular, we propose a class of statistical target
parameters Ψ(θ) defined as the counterfactual average of single time-point and context-
specific averages over time. As such, we define a target parameter mapping Ψ :Mτ → R of
the data distribution P τ ∈Mτ written as

Ψ(θ0) :=
1

τ

τ∑
t=1

ΨCo(t)(P0,Co(t)) (2.8)

=
1

τ

τ∑
t=1

EP0,Co(t)
[Y (t) | A(t) = 1, Co(t)].

The average over time of Co(t)-specific targets is a data-dependent parameter, as its value
depends on the realization of the fixed dimensional summary measure. As such, Ψ(θ0)
reflects an average over all possible contexts observed over time. In the running example
introduced in Section 2.2, if Co(t) were low dimensional weather summaries over a short
history (“sunny”, “rain”, “cloudy”), then Ψ(θ0) represents the average exercise 30 minutes
after an intervention over all observed weather conditions so far. As Ψ(θ0) is an average
over time of Co(t)-specific target parameters, its canonical gradient is also an average of
Co(t)-specific EIFs. Therefore, we have that D(θ)(o) = 1

τ

∑τ
t=1DCo(t)(θ)(o), and Ψ(θ0) can

be estimated in a double robust matter as well. We reiterate the canonical gradients and
first order expansion corresponding to the target parameter Ψ(θ0) in Mτ in Theorem (3)
below.

Theorem 3 (Average over time Target Parameter). We define the average over time pa-
rameter under statistical model Mτ as

Ψ(θ0) :=
1

τ

τ∑
t=1

EP0,Co(t)
[Y (t) | A(t) = 1, Co(t)].

Under Assumption 7, the target parameter mapping Ψ :Mτ → R is pathwise differentiable
w.r.t. Mτ and has a canonical gradient defined as

D(θ)(o) =
1

τ

τ∑
t=1

[
1(A(t) = 1)

g(A(t) = 1 | Co(t))
(
Y (t)− Q̄(A(t) = 1, Co(t))

)]
.



CHAPTER 2. CONDITIONAL CAUSAL EFFECT FOR A SINGLE TIME-SERIES 50

The average over time target parameter admits the following first order expansion

Ψ(θ)−Ψ(θ0) = −1

τ

τ∑
t=1

EP0,Co(t)
[DCo(t)(θ)] +

1

τ

τ∑
t=1

RCo(t)(θ, θ0).

2.4 Estimation Procedure

Targeted Maximum Likelihood Estimator

We build efficient estimators of the proposed estimands using the Targeted Maximum Likeli-
hood methodology [139, 138, 137]. As a plug-in estimator, the Targeted Maximum Likelihood
Estimator (TMLE) doesn’t generate estimates that fall outside of their natural range — as
may be the case with one-step and estimating equation approaches [138, 137]. First, we define
the parameter of interest as a smooth functional Ψ evaluated at a law P τ

0 ; our estimand, with
its corresponding canonical gradient, is defined in Theorem 3. Next, we generate a possibly
highly data-adaptive initial estimator θτ = (gτ , Q̄τ ) of θ0 = (g0, Q̄0), using ensemble machine
learning for dependent data (“Super Learner” or “Online Super Learner”) [136, 7, 79]. In or-
der to generate an initial estimate, we define L(θ0) as a valid loss function for θ0. Specifically,
a valid loss function for a given parameter is defined as a function whose true conditional
mean is minimized by the true value of the parameter. Let L be a loss function adapted to
the problem, i.e. a function that maps every θ to L(θ) : (O(t), Co(t)) 7→ L(θ)(O(t), Co(t)).
As θ0 = (g0, Q̄0), we let L(Q̄) and L(g) denote loss functions for Q̄0 and g0, respectively. In
the rest of the section we focus on loss-based estimation of Q̄0, as the TMLE of the target
parameter in Equation (2.8) requires an update of the initial estimate of Q̄0. We define a
parameter mapping L(Q̄) : O × C → R such that for all t,

EP0,Co(t)
L(Q̄0) = argmin

Q̄∈Q
EP0,Co(t)

L(Q̄).

Therefore, the true Q̄0 minimizes risk under the true conditional probability distribution
P0,Co(t). For instance, we could define L(Q̄) as the negative log-likelihood loss, written as

L(Q̄)(O(t), Co(t)) = − log Q̄(A(t), Co(t)).

or the mean squared error

L(Q̄)(O(t), Co(t)) = (Y (t)− Q̄(A(t), Co(t)))
2.

Next, we define a least favorable submodel through the initial estimate Q̄τ whose score spans
the canonical gradient at Q̄τ of the derivative of Ψ. In particular, we define a parametric
working model {Q̄τ,ε : ε} through Q̄τ with a finite dimensional parameter ε; note that at
ε = 0, Q̄τ,ε = Q̄τ . Intuitively, we construct a path starting at the initial estimator going in
the direction defined by the canonical gradient. As the canonical gradient is in the tangent
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space and therefore a score, it represents a valid direction for a path. Moreover, we have
that the linear combination of the components of the derivative of the loss at ε = 0 span the
canonical gradient at the initial estimator〈

d

dε
L(Q̄τ,ε)

∣∣∣∣
ε=0

〉
⊃ D(Q̄τ ),

as a path in the direction of the score. Here, we use the notation 〈S〉 for the linear span
of the components of the function S. Alternatively, we could define the universally least
favorable submodel : here, we define the path at all points along it, not just at the beginning
[134]. For the universally least-favorable submodel, the derivative of the loss evaluated at
any ε equals the canonical gradient at the fluctuated initial estimator Q̄τ,ε, such that

d

dε
L(Q̄τ,ε) = D(Q̄τ,ε).

As the fluctuation {Q̄τ,ε : ε} through Q̄τ reflects a parametric model space with a single
finite dimensional parameter ε, we can compute the minimum loss estimator (MLE) of ε as

ετ = argmin
ε

τ∑
t=1

L(Q̄τ,ε)(O(t), Co(t)).

Maximizing the log-likelihood over the fluctuation model (or minimizing any valid loss L)
defines an updated estimator Q̄τ,ετ . In particular, we update the initial estimate using the
logistic fluctuation model

logit(Q̄τ,ε) = logit(Q̄τ ) + ε
1(A(t) = 1)

g(A(t) = 1 | Co(t))
,

where ε is a coefficient in front of the “clever covariate”, which is specific to the target
parameter. Under the local least favorable submodel, the process might need to be iterated;
at each iteration, we replace the previous plug-in estimate and its canonical gradient with the
result of the previous iteration. The final update at which ετ ≈ 0 is denoted as Q̄∗τ = Q̄τ,ετ .
We define TMLE as the plug-in estimator obtained at the last update of the estimator of Q̄0,
Q̄∗τ . By construction, TMLE solves the canonical gradient estimating equation as follows

τ∑
t=1

DCo(t)(Q̄
∗
τ )(O(t)) ≈ 0.

Under the universally least favorable model, we have that the score equation of the MLE of
ε where Q̄∗τ = Q̄τ,εn immediately yields

τ∑
t=1

DCo(t)(Q̄
∗
τ )(O(t)) = 0.
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Highly Adaptive Lasso as Initial Estimator

For ATE parameters in observational data, a sufficient condition for nonparametric efficiency
of the TMLE estimator is that gτ and Q̄τ (combined, θτ ) converge to the truth (θ0) in root-
mean-square error at a rate of op(τ

1/4) each [127] As such, statistical inference in Mτ for
estimating θ0 relies on fast-converging algorithms in a large space; we elaborate on this
point in the next section. The Highly Adaptive Lasso (HAL) is a nonparametric regression
estimator that does not rely on local smoothness assumptions, in contrast to most machine
learning algorithms [6, 130]. Instead, HAL assumes the true function is right-hand continuous
with left-hand limits (cadlag) and a bounded variation norm. In essence, HAL restricts the
behavior of the true function globally, instead of locally where (1) cadlag functions are very
general, even allowing discontinuities; (2) the variation norm can be made arbitrarily large
[112]. As stated in [6], functions with infinite variation norm tend to be pathological, with
cos(1/x) as an example. To the best of our knowledge, HAL is the only algorithm with
fast-enough convergence rates to allow for efficient inference in nonparametric statistical
models [130, 112]. In the following, we generalize HAL to our problem setting, and show its
convergence rate in an online setup.

Let L(θ)(O(t), Co(t)) denote a valid loss function for θ evaluated at (O(t), Co(t)), where
the true θ ∈ Θ, θ0, is the minimizer of the risk w.r.t. P0,Co(t) such that

θ0 = argmin
θ∈Θ

1

τ

τ∑
t=1

EP0,Co(t)
L(θ).

Suppose that Θ is contained in a class of multivariate (e.g., d-variate) real valued cadlag
functions D[0, υ] on a cube [0, υ] ⊂ Rd

≥0; we denote such a class as the “HAL” class or H in
all further sections. By setup, any arbitrary function φ in D[0, υ] is right-continuous with
left-hand limits and a sectional variation norm bounded by a universal constant. Instead of
the usual definition of the variation norm where ‖φ‖v ≡

∫
[0,υ]
|φ(du)|, we write it as a sum of

the variation norm over sections of the truth, φ0 [6]. As such, we define the uniform sectional
variation norm of a multivariate real valued cadlag function φ as

‖φ‖v ≡ φ(0) +
∑

s⊂{1,...,d}

∫ υs

0s

|φs(dus)|,

where the sum is taken over all subsets s of {1, . . . , d}. For any function φ ∈ D[0, υ] and
subset s, we define us = (ui : i ∈ s), u−s = (ui : i /∈ s), with φs(us) ≡ φ(us, 0−s). Then, φs(us)
varies along the variables us according to φ, but sets variables in u−s to zero. Consequently,
any function for which ‖φ‖v < ∞ can be represented as φ(0) +

∑
s⊂{1,...,d}

∫ υs
0s
φs(dus) [45].

Therefore, a class of functions to which φ belongs to is a convex hull of the indicator class;
by [126], we know that a convex hull of a Donseker class is a Donsker class as well. This will
prove very important as we derive our theoretical results.

Let {L(θ) : θ ∈ Θ} be contained in a class of d-variate real-valued cadlag functions
on a cube [0, υ] bounded by a universal constant Mu < ∞, or the H class. Further, let
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Θ(M) = {θ ∈ Θ : ‖θ‖v ≤ M} denote a constrained subset of Θ, with a sectional variation
norm smaller or equal to the known upper bound Mu. We then define the M -specific MLE
as

θM,τ = argmin
θ∈Θ(M)

1

τ

τ∑
t=1

L(θ)(O(t), Co(t)),

where the true M -specific parameter θM,0 is written as

θM,0 = argmin
θ∈Θ(M)

1

τ

τ∑
t=1

EP0,Co(t)
L(θ).

Consequently, we also define a loss-based dissimililarity measure between θ and θ0 implied
by the loss function L(θ) as

d0(θ, θ0) =
1

τ

τ∑
t=1

EP0,Co(t)
(L(θ)− L(θ0)).

For quadratic loss-based dissimilarity, we also write d0(θ, θ0) = ‖θ−θ0‖2
P0,Co(t)

. The following

Theorem 4 establishes the rate of convergence of the MLE w.r.t. the loss-based dissimilarity
d0(θ, θ0) under Assumptions 8 and 9. In particular, it establishes that the MLE θM,τ con-
verges to its M -specific truth θM,0 at a rate no slower than τ−1/2, regardless of the dimension
of the time-series.

Assumption 8. Let L(θ) denote a valid loss function for θ, where L(θ) is a multivariate
cadlag function whose sectional variation norm can be bounded by the sectional variation
norm of θ in a sense that

sup
θ∈Θ
‖L(θ)‖v/‖θ‖v <∞.

Assumption 9. Let d0(θM,τ , θM,0) denote the dissimilarity measure corresponding to loss
L(θ) for θ ∈ Θ(M). If d0(θM,τ , θM,0)→p 0, then

1

τ

τ∑
t=1

EP0,Co(t)
[L(θM,τ )− L(θM,0)]2 →p 0.

Theorem 4 (Minimum loss-based estimator in the HAL class). Let L(θ)(O(t), Co(t)) denote
a valid loss function for θ evaluated at (O(t), Co(t)), with d0(θτ , θ0) being the loss-based
dissimilarity measure for L(θτ )(O(t), Co(t)) defined as

d0(θτ , θ0) =
1

τ

τ∑
t=1

EP0,Co(t)
(L(θτ )− L(θ0)).

Let Θ(M) define a set of cadlag functions with variation norm smaller or equal to M , such
that Θ(M) = {θ ∈ Θ : ‖θ‖v ≤M}. Under Assumptions (8) and (9), we have that

d0(θM,τ , θM,0) = op(τ
−1/2).
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2.5 Theoretical Analysis

By Theorem 2, we have that the time- and context- specific parameter admits the following
von Mises expansion

ΨCo(t)(Pθ,Co(t))−ΨCo(t)(Pθ0,Co(t)) = ΨCo(t)(θ)−ΨCo(t)(θ0) (2.9)

= −EPθ0,Co(t)
[DCo(t)(θ)] +RCo(t)(θ, θ0),

which is a natural consequence of the pathwise diffentiability of ΨCo(t). As von Mises expan-
sion is an approximation, we have that the second order difference between ΨCo(t)(Pθ,Co(t))
and ΨCo(t)(Pθ0,Co(t)) for a given Co(t) corresponds to

RCo(t)(θ, θ0) ≡ ΨCo(t)(θ)−ΨCo(t)(θ0) + EPθ0,Co(t)
[DCo(t)(θ)],

which is discussed further in following Section 2.5. As noted in Theorem 3, the same ex-
pansion and second order remainder definition follows for the target parameter defined in
Equation (2.8), but averaged over time.

In the following, at times, it proves useful to use notation from empirical process theory;
specifically, we define Pf to be the empirical average of the function f w.r.t. the distribution
P , that is, Pf =

∫
f(o)dP (o). Further, we ease notation by defining a centered martingale

process (Mτ (f) : f) for a function f in a class of multivariate real valued functions of
(O,C) ∈ O × C as

Mτ (f) =
1

τ

τ∑
t=1

[f(Co(t), O(t))− P0,Co(t)f ],

where for all f , τMτ (f) is a discrete martingale. For a centered martingale difference process,
we use the following notation

Mτ (f, h) =
1

τ

τ∑
t=1

(δCo(t),O(t) − P0,Co(t))[f(Co(t), O(t))− h(Co(t), O(t))]

with function h in a class of multivariate real valued functions of (O,C) ∈ O × C.
In general, weak convergence of (

√
τMτ (f) : f) to a Gaussian process is equivalent

with convergence of all finite dimensional distributions and an asymptotic equicontinuity
condition. As such, our theoretical analysis relies on the fact that the difference between the
TML estimator and the estimand can be decomposed as a sum of (1) an average of martingale
difference sequence, (2) a martingale process for which we can show an equicontinuity result,
(3) second order remainder. We present formally this decomposition in Theorem 5.

Theorem 5. Let θ∗τ be the one-step TMLE satisfying 1
τ

∑τ
t=1DCo(t)(θ

∗
τ )(O(t)) = 0 for θ∗τ =

(gτ , Q̄
∗
τ ). Further, we define θl = (g0, Q̄l) as the limit of θ∗τ = (gτ , Q̄

∗
τ ) for θl ∈ Θ, and θ0 =

(g0, Q̄0) as the truth. Then the difference between the TMLE and its estimand decomposes
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as

Ψ(θ∗τ )−Ψ(θ0) = M1,τ (θl)︸ ︷︷ ︸
Term 1

+M2,τ (θ
∗
τ , θl)︸ ︷︷ ︸

Term 2

+
1

τ

τ∑
t=1

RCo(t)(θ
∗
τ , θ0)︸ ︷︷ ︸

Term 3

,

with

M1,τ (θl) =
1

τ

τ∑
t=1

[DCo(t)(θl)(O(t))− EP0,Co(t)
DCo(t)(θl)],

M2,τ (θ
∗
τ , θl) =

1

τ

τ∑
t=1

[DCo(t)(θ
∗
τ )(O(t))− EP0,Co(t)

DCo(t)(θ
∗
τ )]

− 1

τ

τ∑
t=1

[DCo(t)(θl)(O(t)) + EP0,Co(t)
DCo(t)(θl)]

=
1

τ

τ∑
t=1

(δCo(t),O(t) − P0,Co(t))(DCo(t)(θ
∗
τ )−DCo(t)(θl)).

We allocate the proof of Theorem 5 to the Appendix. In the following, we study each term
from the decomposition presented in Theorem 5 separately.

Analysis of Term 1: M1,τ

The first term in the decomposition in Theorem 5, M1,τ (θl), is an average of a martingale
difference sequence. Therefore, M1,τ (θl) can immediately be analyzed with the classical
martingale central limit theorem. A set of sufficient conditions for the asymptotic normality
of the first term in Theorem 5 includes (1) strong positivity, assuring DCo(t)(θl)(O(t)) remains
bounded; (2) stabilization of the conditional variance, assuring the variance converges in
distribution as t → ∞. By Theorem 6 stated below, we have that

√
τM1,τ (θl) converges to

a normal distribution.

Assumption 10 (Strong positivity). There exists δ > 0 such that

g0(A(t) | Co(t)) ≥ δ, P0-a.s.

Assumption 11 (Stabilization of the mean of conditional variances). There exists σ2
l ∈

(0,∞) such that

1

τ

τ∑
t=1

EP0,Co(t)

(
DCo(t)(θl)(O(t)) | Co(t)

)2 d−→ σ2
l .

Theorem 6. Suppose that Assumption (10) and (11) hold. Then
√
τM1,τ (θl)

d−→ N (0, σ2
l ). (2.10)

Proof. The result follows directly from the martingale central limit theorem (e.g. Theorem
2 in [17]).
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Analysis of Term 2: M2,τ

The second term in the decomposition in Theorem 5 is a martingale process indexed by
θ ∈ Θ, and evaluated at θ = θ∗τ . The analysis of M2,τ entails showing asymptotic equicon-
tinuity/tightness under a complexity condition for a process derived from a function class
{DCo(t)(θ) : θ ∈ Θ}, which implies that if 1

τ

∑τ
t=1 EP0,Co(t)

[DCo(t)(θ
∗
τ )−DCo(t)(θl)]

2 →p 0, then

M2,τ (θ
∗
τ , θl) = oP (1/

√
τ). In particular, we analyze the martingale process {M2,τ (θ, θl) : θ ∈

Θ} under a measure of complexity introduced by [128], and denoted as sequential bracketing
entropy in [78]. In the following, we state the definition of the sequential bracketing en-
tropy adopted to the setting studied, and provide main results with a brief discussion of the
empirical process term analysis.

Definition 3 (Sequential bracketing entropy). Consider a stochastic process of the form
Ξτ := {(ξt(f))τt=1 : f ∈ F} where F is an index set such that, for every f ∈ F , t ∈ [τ ],
ξt(f) is an Ō(t)-measurable real valued random variable. We say that a collection of random
variables of the form B := {(Λj

t ,Υ
j
t)
τ
t=1 : j ∈ [J ]} is an (ε, b, Ō(τ)) bracketing of Ξτ if

1. for every t ∈ [τ ], and j ∈ [J ], (Λj
t ,Υ

j
t) is Ō(t)-measurable,

2. for every f ∈ F there exists j ∈ [J ] such that ∀t ∈ [J ], Λj
t ≤ ξt(f) ≤ Υj

t ,

3. for every t ∈ [τ ], j ∈ [J ], |Λj
t −Υj

t | ≤ b a.s.,

4. for every j ∈ [J ],

1

τ

τ∑
t=1

E
[
(Υj

t − Λj
t)

2 | Ō(t− 1)
]
≤ ε2.

We denote N[ ](ε, b,Ξτ , Ō(τ)) as the minimal cardinality of an (ε, b,Ξτ , Ō(τ))-bracketing.

Using Definition (3), we can see that {M2,τ (θ, θl) : θ ∈ Θ} is derived from the process

Ξτ :=
{(
DCo(t)(θ)(O(t))−DCo(t)(θl)(O(t))

)τ
t=1

: θ ∈ Θ
}
, (2.11)

whereN[ ](ε, b,Ξτ , Ō(τ)) is the sequential bracketing number of the canonical gradient process
Ξτ , corresponding to brackets of size ε. For results on how to formalize the connection
between the sequential bracketing entropy of the process Ξτ to a traditional bracketing
entropy measure, we refer the interested reader to the Appendix Section 8.3 of [78]. In
particular, [78] show how to characterize the sequential bracketing entropy of Ξτ in terms
of the bracketing entropy w.r.t. the norm L2(Pθ0,hτ ), where hτ is the empirical measure
defined as hτ = 1

τ

∑τ
t=1 δCo(t). One specific function class for which we know how to bound

the latter, is the “HAL” class (denoted H) discussed in subsection 2.4. The equicontinuity
result presented in Lemma 2 is the sequential equivalent of its i.i.d. counterpart studied in
[126], relying on a sequential Donsker-like condition.
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Assumption 12 (Sequential Donsker condition). Define the sequential bracketing entropy

integral as J[ ](ε, b,Ξτ , Ō(τ)) :=
∫ ε

0

√
log(1 +N[ ](u, b,Ξτ , Ō(τ))du. Suppose that there exists

a function a : R+ → R+ that converges to 0 as δ → 0, such that

J[ ](ε, b,Ξτ , Ō(τ)) ≤ a(δ).

Assumption 13 (L2 convergence). It holds that ‖θ∗τ − θl‖2,hτ = oP (1), where hτ is the
empirical measure hτ := 1

τ

∑τ
t=1 δCo(t).

Lemma 2 (Equicontinuity of the martingale process). Consider the process Ξτ defined in
equation (2.11). Under Assumptions (10), (12) and (13), we have that

M2,τ (θ
∗
τ , θl) = oP (τ−1/2).

Proof. The proof is a direct application of Theorem 4 in [78] to the current problem setting.

Analysis of Term 3: RCo(t)

Finally, we discuss term 3 of the decomposition presented in Theorem 5. The last term is
an average over time of the second order remainder given Co(t), corresponding to

RCo(t)(θ, θ0) ≡ ΨCo(t)(θ)−ΨCo(t)(θ0) + EPθ0,Co(t)
[DCo(t)(θ)]

for any θ ∈ Θ. Unlike the empirical process term (term 2), the second order remainder is
specific to the target parameter and the statistical model. Given the above expression for
RCo(t)(θ, θ0) and the EIF, applying Cauchy-Schwarz we can show that

RCo(t)(θ, θ0) =
g(1 | Co(t))− g0(1 | Co(t))

g(1 | Co(t))
[
Q̄(1, Co(t))− Q̄0(1, Co(t))

]
≤ ‖g − g0‖‖Q̄− Q̄0‖,

elucidating the double robust nature of the second order remainder, akin to the well studied
literature on TSM parameters in observational studies and i.i.d. settings [138, 137].

While studying theoretical properties of estimators, a typical condition on the second
order remainder is that it converges to zero — therefore assuming it is negligible in large
samples [138, 137]. In our problem setup, we assume that the remainder term can be
represented by a sum of a martingale and a second order term that is oP (1/

√
τ). In the

following Assumption (14), we state the exact form of asymptotic linearity of the second
order remainder term necessary for further asymptotic normality of the TMLE.
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Assumption 14 (Negligible Second Order Remainder). Let the second order remainder be
written as RCo(t)(θ, θ0), where θ = (g, Q̄). We further define θl = (g0, Q̄l) as the limit of
θ∗τ = (gτ , Q̄

∗
τ ) for θl ∈ Θ, and θ0 = (g0, Q̄0) as the truth. We set the following

1

τ

τ∑
t=1

gτ − g0

gτ
(Q̄∗τ − Q̄l) = oP (1/

√
τ),

1

τ

τ∑
t=1

(gτ − g0)2

gτg0

(Q̄l − Q̄0) = oP (1/
√
τ).

Additionally, we assume that following function of (gτ , g0, Q̄l, Q̄0) can be represented by a
martingale sum for some function f such that

1

τ

τ∑
t=1

gτ − g0

g0

(Q̄l − Q̄0) =
1

τ

τ∑
t=1

f(Co(t))(A(t)− g0(A(t) | Co(t)) + oP (1/
√
τ).

Note that, if gτ is an MLE according to a parametric model, then the martingale approxima-
tion in Assumption (14) is true under weak regularity conditions. We also emphasize that,
if Q̄τ is consistent for Q̄0, we only need to assume that

1

τ

τ∑
t=1

gτ − g0

gτ
(Q̄∗τ − Q̄0) = oP (1/

√
τ).

Asymptotic Normality of the TMLE

Finally, as an immediate consequence of the analysis presented in Section 2.5 (Theorem
6 with assumptions), Section 2.5 (Lemma 2 with assumptions) and Section 2.5 (Assump-
tion (14)), we have the following asymptotic normality result for the TMLE of the target
parameter in Equation (2.8). We allocate the proof to the Appendix Section 2.9.

Theorem 7 (Asymptotic normality of the TMLE). Let θ∗τ be the one-step TMLE satisfying
1
τ

∑τ
t=1 DCo(t)(θ

∗
τ )(O(t)) = 0 for θ∗τ = (gτ , Q̄

∗
τ ). Further, we define θl = (g0, Q̄l) as the limit

of θ∗τ = (gτ , Q̄
∗
τ ) for θl ∈ Θ, and θ0 = (g0, Q̄0) as the truth. Under Assumptions (10), (11),

(12), (13) and (14) we have that

√
τ (Ψ(θ∗τ )−Ψ(θ0))

d−→ N (0, σ2
0),

where f̄t = DCo(t)(θl)(O(t)) + f(Co(t))(A(t)− g0(1 | Co(t)) and 1
τ

∑
τ EP0,Co(t)

f̄t
d−→ σ2

0.

2.6 Simulations

In the following, we present simulation results demonstrating theoretical properties of the
estimator proposed in a single time-series setting. In particular, we focus on the average
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over time of Co(t)-specific causal effects of a single time-point intervention on the subsequent
outcome. In the following simulations we consider binary outcome and treatment, but note
that the results will be comparable for continuous outcome. Unless specified otherwise, all
results are generated based on 500 Monte Carlo draws used to evaluate the performance of
the TMLE estimator of the average over time context-specific causal effect of a single time
intervention.

Simulation 1a (simple dependence)

We explore a scenario with binary treatment (A(t) ∈ {0, 1}) and outcome (Y (t) ∈ {0, 1})
first, with simple dependence extending to Markov order 2. We observe covariates W1(t),
W2(t) and W3(t) for each t = 1, . . . , τ , with W1(t) and W3(t) drawn from a bernoulli dis-
tribution and W2(t) from a discrete uniform distribution. We note that for this scenario,
W (t) = (W1(t),W2(t)) are drawn independently with respect to the observed past Ō(t).
Further, let the treatment variable A(t) be a function of the past up until t− 2 and depend
on W1(t−1),W2(t−1), Y (t−1), A(t−1) and W3(t−2). The outcome variable Y (t) exhibits
dependence of order 2, as a function of W1(t− 1),W2(t− 1),W3(t− 1), A(t),W1(t− 2) and
W3(t − 2). For notational convenience, we define O(1 : t) as (O(1), . . . O(t)). The exact
data-generating distribution used is as follows:

A(0 : 4) ∼ Bern(0.5)

Y (0 : 4) ∼ Bern(0.5)

W1(0 : 4) ∼ Bern(0.5)

W2(0 : 4) ∼ Unif(1, 3)

W3(0 : 4) ∼ Bern(0.5)

A(4 : τ) ∼ Bern(expit(0.25 ∗W1(t− 1)− 0.2 ∗W2(t− 1)

+ 0.3 ∗ Y (t− 1)− 0.2 ∗A(t− 1)

+ 0.2 ∗W3(t− 2)))

Y (4 : t) ∼ Bern(expit(0.3− 0.8 ∗W1(t− 1)

+ 0.1 ∗W2(t− 1) + 0.2 ∗W3(t− 1)

+A(t)− 0.5 ∗W1(t− 2)

+ 0.2 ∗W3(t− 2)

W1(4 : τ) ∼ Bern(0.5)

W2(4 : τ) ∼ Unif(1, 3)

W3(4 : τ) ∼ Bern(0.5).

The initial estimates gτ and Q̄τ were obtained using the online version of the Super-Learner
algorithm [7]. In particular, our initial ensemble consisted of multiple algorithms, including
simple generalized linear models, penalized regressions and extreme gradient boosting [27].
For cross-validation, we relied on the online cross-validation scheme, also known as the
recursive scheme in the time-series literature. We report Wald-type confidence intervals, with
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asymptotic variance based on the EIF. We report the coverage of the resulting asymptotic
95% confidence intervals to evaluate the performance of the proposed method in Table 2.6.

Simulation 1b (more elaborate dependence)

Next, we explore the setting where the single time-series exhibits a more elaborate depen-
dence. Effectively, we are decreasing the sample size and therefore testing the performance of
our estimator for different finite sample settings, including the most extreme case of τ = 100.
In addition, we consider each part of O(t) to exhibit different levels of dependence, including
all the covariates in W (t). For this particular simulation, we treat A(t) as randomized, with
a simulation mimicking an observational study considered in Simulation 1c.

A(0 : 7) ∼ Bern(0.5)

Y (0 : 7) ∼ Bern(0.5)

W1(0 : 7) ∼ Bern(0.5)

W2(0 : 7) ∼ Normal(0, 1)

A(7 : τ) ∼ Bern(0.5)

Y (7 : τ) ∼ Bern(expit(1.5 ∗A(t)−A(t− 1)

+ 0.5 ∗ Y (t− 1)− 1.1 ∗W1(t− 1)

+ 0.7 ∗ Y (t− 3)−A(t− 5) +W1(t− 7))

W1(7 : τ) ∼ Bern(expit(0.5 ∗W1(t− 1)− 0.5 ∗ Y (t− 1) + 0.1 ∗W2(t− 1))

W2(7 : τ) ∼ Normal(0.6 ∗A(t− 1) + Y (t− 1)−W1(t− 1), sd = 1).

Simulation 1c (Observational study, more elaborate functions and dependence)

Finally, we consider a typical observational study with varying level of dependence and
variable interactions. In particular, Simulation 1c considers a setting where each part of
the likelihood exhibits some level of dependence, including all of the covariates grouped
in W (t). As in Simulation 1a and 1b, we keep τ at constant levels τ = (100, 500, 1000),
and report performance of our estimator for very low effective sample size (τ = 100). We
include the highly adaptive lasso (HAL) as part of our Super Learner library, in addition
to several glms, penalized regressions and extreme gradient boosting. In addition, we test
the double robustness property of our estimator for all sample sizes considered. The exact
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data-generating distribution used is as follows:

A(0 : 6) ∼ Bern(0.5)

Y (0 : 6) ∼ Bern(0.5)

W1(0 : 6) ∼ Bern(0.5)

W2(0 : 6) ∼ Normal(0, 1)

A(6 : τ) ∼ Bern(expit(0.7 ∗W1(t− 2)− 0.3 ∗A(t− 1)

+ 0.2 ∗ sin(W2(t− 2) ∗A(t− 3))

Y (6 : τ) ∼ Bern(expit(1.5 ∗A(t)− (W1(t− 1) ∗A(t− 2))2

+ 0.9 ∗ sin(W2(t− 4)) ∗A(t− 3) ∗ cos(W2(t− 6))

− abs(W2(t− 5) > 0))

W1(6 : τ) ∼ Bern(expit(0.5 ∗W1(t− 1)− 0.5 ∗ Y (t− 1) + 0.1 ∗W2(t− 1))

W2(6 : τ) ∼ Normal(0.6 ∗A(t− 1) + Y (t− 1)−W1(t− 1), sd = 1).
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τ Bias Variance Coverage

Single time-point intervention (1a) 1000 -2.37e-3 9.02e-4 94.8
500 2.02e-3 1.71e-3 96.2
100 5.02e-3 1.02e-2 92.0

Single time-point intervention (1b) 1000 -7.09e-4 7.58e-4 94.0
500 1.16e-2 2.07e-3 89.6
100 1.73e-2 1.30e-2 77.4

Single time-point intervention (1c) 1000 4.79e-3 9.45e-4 91.2
500 7.52e-3 1.92e-3 93.8
100 3.71e-3 1.25e-2 81.8

Table 2.1: Bias, variance and 95% coverage of the TMLE of the average over time context-
specific causal effects with a single time-point intervention for Simulations 1a, 1b and 1c at
sample sizes τ = 1000, τ = 500 and τ = 100, over 500 Monte Carlo draws.

τ Bias Variance Coverage

Qmgc 1000 1.43e-2 1.26e-3 88.4
Qcgm 1000 1.42e-2 1.25e-3 88.4

Qmgc 500 1.29e-2 2.63e-3 89.2
Qcgm 500 1.30e-2 2.62e-3 89.4

Qmgc 100 3.68e-2 1.47e-2 84.4
Qcgm 100 -2.62e-2 9.78e-3 85.8

Table 2.2: Illustration of the double robustness property of our estimator for Simulation
1c with misspecified (m) and correctly specified (c) models for gτ and Q̄τ at sample sizes
τ = (1000, 500, 100) over 500 Monte Carlo draws.

2.7 Data Analysis

The Insulin Dependent Diabetes Mellitus (IDDM), also known as type 1 diabetes, is char-
acterized by pancreatic beta cell dysfunction and insulin depletion [125]. The results of the
Diabetes Control and Complications Trial, as well as the Epidemiology of Diabetes Inter-
ventions and Complications follow-up study, demonstrated that most people with IDDM
need to be treated intensively to achieve hemoglobin A1c and post-meal blood glucose (BG)
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levels close to normal (hemoglobin: < 7.0%; blood glucose: 80−140 mg/d) [89]. Continuous
glucose monitoring, multiple injections of long-acting and short-acting insulin, along with
healthy diet and exercise are just few of the common simultaneous interventions prescribed
to IDDM patients. For insulin treatments in particular, error in dosing can lead to poten-
tially life-threatening hyperglycemia (blood glucose: > 200 mg/dl) and hypoglycemia events
(blood glucose: 40− 80 mg/dl, with < 40 mg/d including neuroglycopenic symptoms) [125].
Long lasting hyperglycemia increases the risk of reinopathy, neuropathy and nephropathy,
and is overall associated with poor long-term outcomes [89].

The blood glucose concentration is highly variable, and will vary even in individuals with
normal pancreatic hormonal function. While the gold standard for pre-meal blood glucose
is 80 − 120 mg/dl with 80 − 140 mg/dl for post-meal, these ranges are highly controversial
and subject to individual variability in diabetes mellitus. Insulin injections are the primary
treatment for patients with IDDM, and work by increasing the uptake of glucose in many of
the tissues. Typically a patient with IDDM needs to administer insulin injections multiple
times per day, usually at a regular schedule (e.g., before a meal, at bedtime). Each insulin
formulation has its own characteristic time of onset of effect, time of peak action, and effective
duration that needs to be taken into account while administrating a dose. In addition to the
type of insulin formulation, other typically prescribed interventions for IDDM can provide
important context for insulin dosing and blood glucose management. For example, regular
exercise in the mid-afternoon can be associated with low blood glucose levels after dinner;
on the other hand, more than usual strenuous exercise can lead to transient increase in
BG levels. Similarly, diet and meal proportions can provide context for insulin dosing. In
particular, a larger than usual meal can lead to longer and possibly higher BL levels. On the
other hand, smaller than usual, or completely missed meal, can result in higher risk of low
blood glucose in the hours that follow. All of it combined, relevant context (e.g., exercising,
ingestion, age) as well as individual blood glucose variability are important components in
deciding if an insulin dose is necessary, as well as if it might lead to a hyperglycemic or
hypoglycemic episode.

In this Section, we analyze the diabetes dataset from the AAAI Spring Symposium
on Interpreting Clinical Data available as part of the UCI Machine Learning Repository
[32]. The dataset contains time-ordered records of patients with IDDM, where each record
corresponds to a time interval around meal time and sleep (breakfast, lunch, dinner, irregular
meal, before going to bed). A total of 70 patients were monitored on a regular basis, with
the follow up in the 32 − 616 time point range (shortest follow up: 11/01/89-11/06/89;
longest follow: 4/29/90 to 12/16/90). Collected data at each time point includes BG level,
insulin dose and type (regular insulin, Neutral Protamine Hagedorn (NPH), or UltraLente),
meal ingestion (typical, more-than-usual or less-than-usual) and exercise activity (typical,
more-than-usual or less-than-usual). In the analysis, we code insulin injection as a binary
variable, instead of use the insulin dose information. We consider two outcomes, Yhyper as a
hyperglycemic and Yhypo for a hypoglycemic episode. The primary intervention was insulin
administration at time t. Context corresponding to Co(t) for insulin injection treatment
at t consisted of chronological time, time of the day (morning, midday, afternoon, night),
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pre-meal measurement, post-meal measurement, ingestion and exercise status. We analyzed
the top 12 time-series with the most data available (number of time points > 350), with the
basic characteristics of each presented in the Table below.

Blood glucose level mg/d

ID Days τ Ainsulin% Yhyper% Yhypo% Min Mean Max SD

29 232 616 75 17 4 40 161 327 45
55 149 606 92 21 8 33 158 421 66
30 151 591 75 16 7 28 153 319 51
65 137 545 73 55 5 15 208 400 77
68 288 527 31 2 8 44 122 361 33
56 125 499 76 38 18 30 177 450 95
28 170 474 74 14 12 32 142 340 54
67 120 465 73 51 7 41 209 487 92
27 271 455 74 5 17 43 127 280 45
20 135 451 91 37 17 28 173 463 93
1 135 369 79 29 14 35 159 343 69
54 103 362 73 23 24 35 140 300 70

Table 2.3: Descriptive and summary statistics for each sample used in the data analysis.
The descriptive information consists of the patient id, number of days monitored, number
of time points collected, percent time administering insulin during observation (Ainsulin%),
percent time having an hyperglycemic (Yhyper%) or hypoglycemic (Yhypo%) episode per sam-
ple. Summary statistics of blood glucose level in mg/d includes the minimum, maximum,
average and standard deviation over all available time points.

For each sample, we estimate Q̄0 and g0 across collected time points using the Online
Super Learner available as part of the sl3 software package [27]. The Super Learner library
for both Q̄0 and g0 consisted of: highly adaptive lasso (hal9001), gradient boosted decision
trees (xgboost), random forests (ranger), elastic net generalized linear models (glmnet),
Bayesian generalized linear models (bayesglm), and main terms linear regression (glm)
[28, 23, 147, 41, 43]. For cross-validation, we split the data into a minimum of 5 folds
by implementing the Rolling Origin CV scheme as implemented in the origami software
package [26, 25, 79]. We set the first window to t = 200 points for all sample with more than
450 collected time points, and t = 150 for the remaining 3 samples. The validation size was
t = 50 for all samples, with a batch of size t = 50 and no gap. For Co(t) we consider the last
5 time periods, corresponding to about a day of observed history; the considered context
includes time, time of the day, pre-/post- meal indicator, more-/less- ingestion, more-/less-
activity and previous insulin and hyperglycemic/hypoglycemic episodes.



CHAPTER 2. CONDITIONAL CAUSAL EFFECT FOR A SINGLE TIME-SERIES 65

The TMLE and its 95% confidence interval for each of the 12 analyzed samples with
hyperglycemic episode (Yhyper) and hypoglycemic event (Yhypo) are shown in Figure 2.1A and
Figure 2.1B, respectively. Based on Figure 2.1, we can roughly rank how insulin dependent
each sample is — the bigger the difference between regular insulin and no insulin, the more
dependent the patient is. Based on this premise, samples most reactive to the change in
insulin regime are patients 67, 65, 54, 30 and 20; on the other hand, sample 56 is not,
indicating perhaps a need for a higher dose or version of insulin treatment (due to its high
rate of hyperglycemis and hypoglycemic events). It’s interesting to point out that samples
with the highest proportion of less-then-usual ingestion and more-than-usual activity result
in the smallest ATE (e.g., Sample 55). Most samples (e.g., 68,67,65,56,30,29,28) would have
dramatically more hyperglycemic events on a less insulin-intensive regime, in particular
Sample 30 and 28. On the other hand, even more insulin intensive regime results in a (less
extreme) increase in hypoglycemic events, highlighting the tricky nature of insulin dependent
treatments. Finally, we note that Sample 20 would actually benefit from a different intensive
insulin regime — the trajectory of Sample 20 indicates that it’s hypoglycemic events are
largely caused by an intensive insulin treatment.

Figure 2.1: Context-Specific ATE with its 95% confidence interval for the 12 samples con-
sidered for the analysis. Panel (A) shows the mean and 95% confidence interval for Yhyper,
which is the outcome variable corresponding to a hyperglycemic episode. Panel (B) plots
the mean and 95% confidence interval for each sample where the outcome is a hypoglycemic
event, Yhypo.
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2.8 Discussion

In this chapter, we consider causal inference based on observing a single time series with
asymptotic results derived over time t. The data setup constitutes a typical longitudinal
data structure, where within each t-specific time-block one observes treatment and outcome
nodes, and possibly time-dependent covariates in-between treatment nodes. Each t-specific
data record O(t) is viewed as its own experiment in the context of the observed history Co(t),
carrying information about a causal effect of the treatment nodes on the outcome node. A
key assumption necessary in order to obtain the presented results is that the relevant history
for generating O(t), given the past Ō(t − 1), can be summarized by a fixed dimensional
summary Co(t). We note that our conditions allow for Co(t) to be a function of the whole
observed past, allowing us to avoid Markov-order type assumptions that limit dependence
on recent past.

Due to the dimension reduction assumption, each t-specific experiment in the sequence of
experiments corresponds with drawing from a conditional distribution of O(t), given Co(t).
We assume that this conditional distribution is either constant in time or is parametrized
by a constant function. We concentrate on the first setting, as it covers all the applications
presented in this chapter, but note the flexibility of our assumptions. Due to the conditional
stationarity assumption, we can asymptotically learn the true mechanism that generates this
time-series, even when the model for the mechanism is nonparametric. However, with the
exception of parametric models allowing for maximum likelihood estimation, we emphasize
that statistical inference for certain target parameters of the data generating mechanism is
a challenging problem which requires targeted machine learning.

In previous work, [131] derive the TMLE for marginal causal parameters, which marginal-
ize over the distribution of Co(t). For instance, one might be interested in the counterfactual
mean of a future (e.g., long term) outcome under a stochastic intervention on a subset of
the treatment nodes. This specific parameter addresses the important question regarding
the distribution of the outcome at time t, had we intervened on some of the past treatment
nodes in the time-series. While important, the TMLE of such target parameters are chal-
lenging to implement due to their reliance on the density estimation of the marginal density
of Co(t) (averaged across t). Additionally, we remark that such marginal causal parameters
cannot be robustly estimated if treatment is sequentially randomized, due to lack of double
robustness of the second order remainder.

In this chapter, we instead focus on context-specific (or conditional) target parameter
is order to explore robust statistical inference for causal questions based on observing a
single time series on a particular unit. In particular, we note that for each given Co(t), any
intervention-specific mean outcome EYg∗(t) with g∗ being a stochastic intervention w.r.t.
the conditional distribution of PCo(t) represents a well studied statistical estimation problem
based on observing τ i.i.d. copies. Due to this insight and formulation we are able to
re-purpose known efficient influence curves and corresponding double robust second order
expansions from the i.i.d. literature. Even though we do not have repeated observations from
the Co(t)-specific distribution at time t, due to the conditional stationarity assumption, the
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collection (Co(t), O(t)) across all time points represent the analogue of an i.i.d. data set
(Co(t), O(t)) ∼iid P0, where Co(t) can be viewed as a baseline covariate in this typical
longitudinal causal inference data structure. Therefore, we estimate the sample-specific
counterfactual mean (e.g., sample average treatment effect) 1

τ

∑τ
t=1E(Yg∗(t) | Co(t)) using

the TMLE of EYg∗ developed for i.i.d. data. We note however that the initial estimation
step of the TMLE should still respect the known dependence in construction of the initial
estimator, by relying on appropriate estimation techniques developed for dependent data.
In particular, we emphasize the importance of time-series based cross-validation schemes
(rolling, recursive, fixed and hybrid, to name a few) instead of usual V -fold cross-validation
commonly employed for i.i.d settings. Similarly, variance estimation can proceed as in the
i.i.d case using the relevant i.i.d. efficient influence curve, while ignoring the component
corresponding to the baseline covariate Co(t). This insight relies on the fact that the TMLE
in this case allows for the same linear approximation as the TMLE for i.i.d. data, with
the martingale central limit theorem applied to the linear approximation instead. Since the
linear expansion of the time-series TMLE for context-specific parameter is an element of the
tangent space of the statistical model, our derived TMLE is asymptotically efficient.
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2.9 Appendix

Theorem 3: Minimum loss-based estimator in a class of cadlag functions with
finite variation norm

Theorem 3 Let L(θ)(O(t), Co(t)) denote a valid loss function for θ evaluated at (O(t), Co(t)),
with d0(θτ , θ0) being the loss-based dissimilarity measure for L(θτ )(O(t), Co(t)) defined as

d0(θτ , θ0) =
1

τ

τ∑
t=1

EP0,Co(t)
(L(θτ )− L(θ0)).

Let Θ(M) define a set of cadlag functions with variation norm smaller or equal to M , such
that Θ(M) = {θ ∈ Θ : ‖θ‖v ≤M}. Under Assumptions (8) and (9), we have that

d0(θM,τ , θM,0) = op(τ
−1/2).

Proof. Let Mτ (θ) define a martingale process indexed by a class of multivariate, real-valued
cadlag functions with a uniform bound on the sectional variation norm. In particular, we
define Mτ (θ) as

Mτ (θ) =
1

τ

τ∑
t=1

[L(θ)− EP0,Co(t)
L(θ)],

which is a centered martingale of L(θ) process for any θ ∈ Θ. Then, we have that

0
(1)

≤ d0(θM,τ , θM,0)

(2)
=

1

τ

τ∑
t=1

EP0,Co(t)
(L(θM,τ )− L(θM,0))

(3)
=

1

τ

τ∑
t=1

EP0,Co(t)
(L(θM,τ )− L(θM,0))

− 1

τ

τ∑
t=1

[L(θM,τ )− L(θM,0)] +
1

τ

τ∑
t=1

[L(θM,τ )− L(θM,0)]

(4)

≤ 1

τ

τ∑
t=1

EP0,Co(t)
(L(θM,τ )− L(θM,0))− 1

τ

τ∑
t=1

[L(θM,τ )− L(θM,0)]

(5)
= −1

τ

τ∑
t=1

[L(θM,τ )− L(θM,0)] +
1

τ

τ∑
t=1

EP0,Co(t)
(L(θM,τ )− L(θM,0))

(6)
= −[Mτ (θM,τ )−Mτ (θM,0)].
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The first two inequalities follow directly from the definition of θM,τ which is a minimizer of the
empirical risk 1

τ

∑τ
t=1 L(θ)(O(t), Co(t)) over all θ ∈ Θ(M). Line (3) equals (2) by adding and

subtracting 1
τ

∑τ
t=1[L(θM,τ )−L(θM,0)]. Line (4) once again follows as the definition of θM,τ ,

with (5) and (6) due to rearranging and definition of Mτ (θ). By Assumptions (8) and (9),
we have that d0(θM,τ , θM,0) = oP (1), which implies 1

τ

∑τ
t=1 EP0,Co(t)

[L(θM,τ ) − L(θM,0)]2 →p

0. Consequently by Lemma 2 and asymptotic equicontinuity of the martingale process
Mτ (θ), we have that Mτ (θM,τ )−Mτ (θM,0) = oP (τ−1/2). It then follows that d0(θM,τ , θM,0) =
oP (τ−1/2) by the above set of inequalities, which proves our claim.

Theorem 4: Decomposition of the difference between TMLE and the estimand

Theorem 4 Let θ∗τ be the one-step TMLE satisfying 1
τ

∑τ
t=1DCo(t)(θ

∗
τ )(O(t)) = 0 for θ∗τ =

(gτ , Q̄
∗
τ ). Further, we define θl = (g0, Q̄l) as the limit of θ∗τ = (gτ , Q̄

∗
τ ) for θl ∈ Θ, and θ0 =

(g0, Q̄0) as the truth. Then the difference between the TMLE and its estimand decomposes
as

Ψ(θ∗τ )−Ψ(θ0) = M1,τ (θl) +M2,τ (θ
∗
τ , θl) +

1

τ

τ∑
t=1

RCo(t)(θ
∗
τ , θ0),

with

M1,τ (θl) =
1

τ

τ∑
t=1

[DCo(t)(θl)(O(t))− EP0,Co(t)
DCo(t)(θl)],

M2,τ (θ
∗
τ , θl) =

1

τ

τ∑
t=1

[DCo(t)(θ
∗
τ )(O(t))− EP0,Co(t)

DCo(t)(θ
∗
τ )]

− 1

τ

τ∑
t=1

[DCo(t)(θl)(O(t)) + EP0,Co(t)
DCo(t)(θl)]

=
1

τ

τ∑
t=1

(δCo(t),O(t) − P0,Co(t))(DCo(t)(θ
∗
τ )−DCo(t)(θl)).

Proof. Recall the von Mises expansion of Ψ(θ) given in Theorem 3, which gives a first order
approximation of the difference between the estimator and the estimand:

Ψ(Pθ)−Ψ(Pθ0) = Ψ(θ)−Ψ(θ0)

= −1

τ

τ∑
t=1

EP0,Co(t)
[DCo(t)(θ)] +

1

τ

τ∑
t=1

RCo(t)(θ, θ0).

As θ∗τ is a TMLE, by definition we have that 1
τ

∑τ
t=1DCo(t)(θ

∗
τ )(O(t)) = 0. With θ being a

TMLE θ∗τ , the first order expansion previously can be written as

Ψ(θ∗τ )−Ψ(θ0) =
1

τ

τ∑
t=1

[DCo(t)(θ
∗
τ )(O(t)− EP0,Co(t)

DCo(t)(θ
∗
τ )] +

1

τ

τ∑
t=1

RCo(t)(θ
∗
τ , θ0).
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By adding and subtracting 1
τ

∑τ
t=1(DCo(t)(θl)(O(t))−EP0,Co(t)

DCo(t)(θl)), we achieve the stated
decomposition.

Theorem 5: Asymptotic Normality of the TMLE

Theorem 5 Let θ∗τ be the one-step TMLE satisfying 1
τ

∑τ
t=1DCo(t)(θ

∗
τ )(O(t)) = 0 for θ∗τ =

(gτ , Q̄
∗
τ ). Further, we define θl = (g0, Q̄l) as the limit of θ∗τ = (gτ , Q̄

∗
τ ) for θl ∈ Θ, and

θ0 = (g0, Q̄0) as the truth. Under Assumptions (10), (11), (12), (13) and (14) we have that

√
τ (Ψ(θ∗τ )−Ψ(θ0))

d−→ N (0, σ2
0),

where f̄t = DCo(t)(θl)(O(t)) + f(Co(t))(A(t)− g0(1 | Co(t)) and 1
τ

∑
τ EP0,Co(t)

f̄t
d−→ σ2

0.

Proof. Recall the decomposition presented in Theorem 5, which states that the difference
between the TMLE and its estimand decomposes as

Ψ(θ∗τ )−Ψ(θ0) = M1,τ (θl) +M2,τ (θ
∗
τ , θl) +

1

τ

τ∑
t=1

RCo(t)(θ
∗
τ , θ0).

Under Assumptions (10) and (11), we have by Theorem 6 that
√
τM1,τ (θl) converges to a

normal distribution with mean zero and variance

1

τ

τ∑
t=1

EP0,Co(t)

(
DCo(t)(θl)(O(t)) | Co(t)

)2 d−→ σ2
l .

Under Assumptions (12) and (13), Lemma 2 shows the asymptotic equicontinuity under a
complexity condition for a process derived from a function class {DCo(t)(θ) : θ ∈ Θ}, which
implies that if 1

τ

∑τ
t=1 EP0,Co(t)

[DCo(t)(θ
∗
τ ) −DCo(t)(θl)]

2 →p 0, then M2,τ (θ
∗
τ , θl) = oP (1/

√
τ).

Therefore, we conclude that the second term in the decomposition, M2,τ (θ
∗
τ , θl), is negligible

under conditions outlined in Lemma 2. Finally, we consider the remainder term, which
evaluated at θ = θ∗τ can be written as

1

τ

τ∑
t=1

RCo(t)(θ
∗
τ , θ0) =

1

τ

τ∑
t=1

gτ − g0

gτ
(1 | Co(t))

[
Q̄∗τ − Q̄0

]
(1, Co(t))

=
1

τ

τ∑
t=1

gτ − g0

gτ
(1 | Co(t))

[
Q̄∗τ − Q̄l

]
(1, Co(t))︸ ︷︷ ︸

Term A

+
1

τ

τ∑
t=1

gτ − g0

gτ
(1 | Co(t))

[
Q̄l − Q̄0

]
(1, Co(t))︸ ︷︷ ︸

Term B

.
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By Assumption (14), we have that Term A is oP (1/
√
τ); as such, gτ and Q̄τ converge fast

enough to their limits (oP (1/
√
τ)). We can decompose Term B further, where we now have

that

gτ − g0

gτ
(1 | Co(t))

[
Q̄l − Q̄0

]
(1, Co(t)) =

gτ − g0

g0

(1 | Co(t))
[
Q̄l − Q̄0

]
(1, Co(t))︸ ︷︷ ︸

Term C

+
(gτ − g0)2

gτg0

(1 | Co(t))
[
Q̄l − Q̄0

]
(1, Co(t))︸ ︷︷ ︸

Term D

.

By Assumption (14), we have that Term D is oP (1/
√
τ). Assumption (14) also assumes that

Term C, a smooth function of gτ − g0, can be represented as a martingale sum for some
function f where

1

τ

τ∑
t=1

gτ − g0

g0

(Q̄l − Q̄0) =
1

τ

τ∑
t=1

f(Co(t))(A(t)− g0(A(t) | Co(t)) + oP (1/
√
τ).

The decomposition presented in Theorem 5 can then be written as

Ψ(θ∗τ )−Ψ(θ0) = M1,τ (θl) +M2,τ (θ
∗
τ , θl) +

1

τ

τ∑
t=1

RCo(t)(θ
∗
τ , θ0)

=
1

τ

τ∑
t=1

[DCo(t)(θl)(O(t))− EP0,Co(t)
DCo(t)(θl)] + oP (1/

√
τ)

+
1

τ

τ∑
t=1

f(Co(t))(A(t)− g0(A(t) | Co(t)) + oP (1/
√
τ).

Since both M1,τ (θl) and 1
τ

∑τ
t=1 f(Co(t))(A(t) − g0(A(t) | Co(t)) are discrete martingales

whose standard version converges to a normal limit distribution, we conclude that

√
τ (Ψ(θ∗τ )−Ψ(θ0))

d−→ N (0, σ2
0)

where f̄t = DCo(t)(θl)(O(t)) + f(Co(t))(A(t)− g0(1 | Co(t)) and 1
τ

∑
τ EP0,Co(t)

f̄t
d−→ σ2

0.



CHAPTER 2. CONDITIONAL CAUSAL EFFECT FOR A SINGLE TIME-SERIES 72

Additional Data Analyses

In the following, we report results for additional data analyses where exposure is more-than-
usual ingestion and more-than-usual activity. As before, a subset of the initial 70 samples is
picked based on variability in exposure variable (g0(A(t) | Ō(t − 1)) > 0.05), and length of
observation (τ > 80 time points). For each sample, we estimate Q̄0 and g0 across collected
time points using the Online Super Learner available as part of the sl3 software package [27].
The Super Learner library for both Q̄0 and g0 consisted of: highly adaptive lasso (hal9001),
gradient boosted decision trees (xgboost), random forests (ranger), elastic net generalized
linear models (glmnet), Bayesian generalized linear models (bayesglm), and main terms
linear regression (glm) [28, 23, 147, 41, 43]. For cross-validation, we split the data into folds
by implementing the Rolling Origin CV scheme as implemented in the origami software
package [26, 25, 79]. For samples with more that 100 points, we set the first window to
t = 40, with validation size of t = 25, no gap and batch of t = 20. For samples with less
data (τ < 100), we set the first window to t = 32, with validation size of t = 25, no gap and
batch of t = 20. Here, the smaller initial fold sizes are motivated by shorter trajectories then
seen in the original analysis where exposure is insulin injection. All analyses set Co(t) to
the last 5 time periods of the relevant observed history: for more-than-usual ingestion that
included time of the day, pre-/post- meal indicator, type of insulin, more-/less- activity and
previous ingestion and hyperglycemic/hypoglycemic episodes. For more-than-usual activity
as exposure, relevant fixed-dimensional summary measure was derived from the last 5 time
periods of time of the day, pre-/post- meal indicator, type of insulin, more-/less- ingestion
as well as previous activity and hyperglycemic/hypoglycemic episodes.

Ingestion as Exposure

The context-specific ATE over time with more-than-usual ingestion has a clear effect across
all analyzed samples: more exposure (more times with higher than usual ingestion) results in
higher proportion of hyperglycemic episodes over time. Similarly, less frequent more-than-
usual ingestion leads to higher proportion of hyperglycemic episodes with the exception of
Sample 58. While the effect has the same direction for most samples, the level of within-
sample heterogeneity is significant, as exemplified in Figure 2.2. To highlight the importance
of context in a single time-series context, Samples 12, 13 and 15 had the highest percent of
hyperglycemic episodes on no more-than-usual ingestion, but had one of the highest more-
than-usual activity, which reduces glucose blood levels for a significant period of time.

Activity as Exposure

The context-specific ATE over time with more-than-usual activity is not as clear as more-
than-usual ingestion exposure, except for its effect on hypoglycemia. Across all samples
but Sample 17, the effect of persistent more-than-usual activity leads to a higher rate of
hypoglycemia episodes for individuals with IDDM. Sample 17 is interesting in that it has a
higher rate of hypoglycemic episodes on no more-than-usual activity. With Yhyper being the
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Blood glucose level mg/d

ID Days τ AIngestion% Yhyper% Yhypo% Min Mean Max SD

12 44 89 24 39 35 31 163 436 106
13 36 97 20 33 31 31 161 461 104
16 56 93 19 41 17 23 179 422 102
15 53 93 18 34 30 23 159 384 97
58 30 115 12 54 11 33 218 501 104
59 31 119 12 56 13 31 208 442 99
33 29 118 10 27 15 45 154 349 68
36 33 122 10 39 14 39 173 501 86
35 29 120 10 22 23 40 141 302 66
3 38 141 7 17 22 22 136 303 64

Table 2.4: Descriptive and summary statistics for each sample used in the data analysis,
with exposure being more-than-usual ingestion. The descriptive information consists of
the patient id, number of days monitored, number of time points collected, percent time
having more-than-usual ingestion during observation (Aingestion%), percent time having an
hyperglycemic (Yhyper%) or hypoglycemic (Yhypo%) episode per sample. Summary statistics
of blood glucose level in mg/d includes the minimum, maximum, average and standard
deviation over all available time points.

outcome, most samples had more hyperglycemic episodes on the no more-than-usual activity
regime, which physiologically corresponds to what we know about the relationship between
diabetes mellitus and physical activity. Sample 50 and 49 had small to non-significant effect
of more-than-usual activity on hyperglycemic episodes, despite being one of the most active
sample during the observational period. Samples 18 and 19 were interesting in that they
had more hyperglycemic episodes on more-than-usual activity. Sample 19 had persistently
high blood glucose levels, indicating a problem that might not be possible to alleviate with
physical activity (potentially in need of a more strict insulin treatment). Sample 18 on the
other hand had the lowest percent of treatment, indicating that perhaps a longer trajectory
was necessary to properly learn the treatment mechanism.
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Figure 2.2: Context-Specific ATE and its 95% confidence interval for each sample with treat-
ment corresponding to the more-than-usual Ingestion. Panel (A) shows the mean and 95%
confidence interval for Yhyper, which is the outcome variable corresponding to a hyperglycemic
episode. Panel (B) plots the mean and 95% confidence interval for each sample where the
outcome is a hypoglycemic event, Yhypo.
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Blood glucose level mg/d

ID Days τ AActivity% Yhyper% Yhypo% Min Mean Max SD

50 60 249 7 1 44 31 86 207 33
19 31 126 8 29 21 41 161 501 89
18 32 134 4 22 23 43 141 370 75
17 31 103 5 23 30 43 142 380 76
49 45 189 6 2 40 31 92 231 38
51 39 151 6 13 36 35 114 278 60
33 29 118 7 27 15 45 154 349 68
52 47 172 5 16 37 35 128 501 83

Table 2.5: Descriptive and summary statistics for each sample used in the data analysis, with
exposure being more-than-usual activity. The descriptive information consists of the patient
id, number of days monitored, number of time points collected, percent time having more-
than-usual activity during observation (Aactivity%), percent time having an hyperglycemic
(Yhyper%) or hypoglycemic (Yhypo%) episode per sample. Summary statistics of blood glucose
level in mg/d includes the minimum, maximum, average and standard deviation over all
available time points.
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Figure 2.3: Context-Specific ATE and its 95% confidence interval for each sample with treat-
ment corresponding to the more-than-usual Activity. Panel (A) shows the mean and 95%
confidence interval for Yhyper, which is the outcome variable corresponding to a hyperglycemic
episode. Panel (B) plots the mean and 95% confidence interval for each sample where the
outcome is a hypoglycemic event, Yhypo.
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Chapter 3

Adaptive Sequential Design for a
Single time-series

The work described in this chapter is motivated by the need for robust statistical methods
for precision medicine. In particular, it pioneers the concept of a sequential, adaptive design
for a single individual. As such, we address the need for statistical methods that provide
actionable inference for a single unit at any point in time. Consider the case that one observes
a single time-series, where at each time t, we have a data record O(t) involving treatment
nodes A(t), an outcome node Y (t), and time-varying covariates W (t). We aim to learn an
optimal, unknown choice of the controlled components of the design in order to optimize the
expected outcome; with that, we adapt the randomization mechanism for future time-point
experiments based on the data collected on the individual over time. Our results demonstrate
that one can learn the optimal rule based on a single sample, and thereby adjust the design
at any point t with valid inference for the mean target parameter. We define a nonparametric
model for the probability distribution of the time-series under few assumptions, and aim to
fully utilize the sequential randomization in the estimation procedure via the double robust
structure of the efficient influence curve. This work provides several contributions to the
field of statistical precision medicine. First, we present multiple exploration-exploitation
strategies for assigning treatment, and methods for estimating the optimal rule. Secondly,
we present the study of the data-adaptive inference on the mean under the optimal treatment
rule, where the target parameter adapts over time in response to the observed context of the
individual. We characterize the limit distribution of our estimator under a Donsker condition
expressed in terms of a notion of bracketing entropy adapted to martingale settings.

3.1 Introduction

There is growing scientific enthusiasm for the use, and development, of mobile health designs
(mHealth) - broadly referring to the practice of health care mediated via mobile and wear-
able technologies [117, 80, 62, 61]. Numerous smartphones and Internet coupled devices,
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connected to a plethora of mobile health applications, support continuous assembly of data-
driven healthcare intervention and insight opportunities. Interest in mobile interventions
spans myriad of applications, including behavioral maintenance or change [40, 85], disease
management [55, 37, 84, 117], teaching and social support [69] and addiction management
[35, 149]. In particular, Istepanian and Al-Anzi [61] refer to mHealth as one of the most
transformative drivers for healthcare delivery in modern times. Recently, a new type of an
experimental design termed micro-randomized trial (MRT) was developed in order to sup-
port just-in-time adaptive exposures - with an aim to deliver the intervention at the optimal
time and location [29, 68]. To this date, multiple trials have been completed using MRT
design, including encouraging regular physical activity [67] and engaging participation in
substance use data gathering process in high-risk populations [100]. For both observational
mHealth and MRT, the time-series nature of the collected data provides an unique oppor-
tunity to collect individual characteristics and context of each subject, while studying the
effect of treatment on the outcome at a specified future time-point.

The generalized estimating equation (GEE) and random effects models are the most
commonly employed approaches for the analysis of mobile health data [144, 119, 13, 51]. As
pointed out in Boruvka et al. [14], these methods often do not yield consistent estimates of
the causal effect of interest if time-varying treatment is present. As an alternative, Boruvka
et al. [14] propose a centered and weighted least square estimation method for GEE that
provides unbiased estimation, assuming linear model for the treatment effects. They tackle
proximal and distal effects, with a focus on continuous outcome. On the other hand, Luckett
et al. [74] propose a new reinforcement learning method applicable to perennial, frequently
collected longitudinal data. While the literature on dynamic treatment regimes is vast and
well-studied [87, 105, 18, 77, 75, 76], the unique challenges posed by mHealth obstruct their
direct employment; for instance, mHealth objective typically has an infinite horizon. Luckett
et al. [74] model the data-generating distribution as a Markov decision process, and estimate
the optimal policy among a class of pre-specified policies in both offline and online setting.

While mHealth, MRT designs and the corresponding methods for their analysis aim to
deliver treatment tailored to each patient, they are still not optimized with complete “N-of-
1” applications in mind. The usual population based target estimands fail to ensnare the
full, personalized nature of the time-series trajectory, often imposing strong assumptions on
the dynamics model for the estimation purposes. To the best of our knowledge, Robins,
Greenland, and Hu [106] provide the first step towards describing a causal framework for
a single subject with time-varying exposure and binary outcome in a time-series setting.
Focusing on full potential paths, Bojinov and Shephard [12] provide a causal framework for
time-series experiments with randomization-based inference. Other methodologies focused
on single unit applications rely on strong modeling assumptions, primarily linear predictive
models and stationarity; see Bojinov and Shephard [12] for an excellent review of the few
works on the topic. Alternatively, van der Laan, Chambaz, and Lendle [131] propose causal
effects defined as marginal distributions of the outcome at a particular time point under a
certain intervention on one or more of the treatment nodes. The efficient influence function
of these estimators, however, relies on the whole mechanism in a non-double robust manner.
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Therefore, even when the assignment function is known, the inference still relies on consistent
(at rate) estimation of the conditional distributions of the covariate and outcome nodes.

The current work is motivated by the need for robust statistical methods for precision
medicine, pioneering the concept of a sequential, adaptive design for a single individual.
To the best of our knowledge, this is the first work on learning the optimal individualized
treatment rule in response to the current context for a single subject. A treatment rule
for a patient is an individualized treatment strategy based on the history accrued, and
context learned, up to the most current time point. A reward is measured on the patient at
repetitive units, and optimality is meant in terms of optimization of the mean reward at a
particular time t. We aim to learn an optimal, unknown choice of the controlled components
of the design based on the data collected on the individual over time; with that, we adapt
the randomization mechanism for future time-point experiments. Our results demonstrate
that one can learn the optimal, context defined rule based on a single sample, and thereby
adjust the design at any point t with valid inference for the mean target parameter. We
define models for the probability distribution of the time-series that refrains from making
unrealistic parametric assumptions, and aims to fully utilize the sequential randomization in
the estimation procedure. In particular, we present the study of the data-adaptive inference
on the mean under the optimal treatment rule, where the target parameter adapts over time
in response to the observed context of the individual. Our estimators are double robust and
easier to estimate efficiently than previously proposed variations [131]. For inference, we rely
on martingale Central Limit Theorem under a conditional variance stabilization condition
and a maximal inequality for martingales with respect to an extension of the notion of
bracketing entropy for martingale settings, initially proposed by [128], which we refer to as
sequential bracketing entropy.

This structure of the chapter is as follows. In Section 3.2 we formally present the gen-
eral formulation of the statistical estimation problem, consisting of specifying the statistical
model and notation, the target parameter defined as the average of context-specific target
parameters, causal assumptions and identification results, and the corresponding efficient
influence curve for the target parameter. In Section 3.3 we discuss different strategies for es-
timating the optimal treatment rule and sampling strategies for assigning treatment at each
time point. The following section, Section 3.4, introduces the Targeted Maximum Likelihood
Estimator (TMLE), with Section 3.5 covering the theory behind the proposed estimator. In
Section 3.6 we present simulation results for different dependence settings. We conclude with
a short discussion in Section 3.7.

3.2 Statistical Formulation of the Problem

Data and Likelihood

Let O(t) be the observed data at time t, where we assume to follow a patient along time steps
t = 1, . . . , N such that ON ≡ (O(0), O(1), . . . O(N)) = (O(t) : t = 0, . . . , N). At each time
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step t, the experimenter assigns to the patient a binary treatment A(t) ∈ A := {0, 1}. We
then observe, in this order, a post-treatment health outcome Y (t) ∈ Y ⊂ R, and then a post-
outcome vector of time-varying covariates W (t) lying in an Euclidean set W . We suppose
that larger values of Y (t) reflect a better health outcome; without loss of generality, we also
assume that Y (t) ≡ (0, 1), with rewards being bounded away from 0 and 1. The ordering of
the nodes matters, as W (t) is an important part of post-exposure history to be considered
for the next record, O(t+ 1). Finally, we note that O(0) = (W (0)), where O(−1) = A(0) =
Y (0) = ∅; as such, O(0) plays the role of baseline covariates for the collected time-series,
based on which exposure A(1) might be allocated. We denote O(t) := (A(t), Y (t),W (t))
the observed data collected on the patient at time step t, with O := A × Y × W as the
domain of the observation O(t). We note that O(t) has a fixed dimension in time t, and is
an element of an Euclidean set O. Our data set is the time-indexed sequence ON ∈ ON ,
or time-series, of the successive observations collected on a single patient. For any t, we let
Ō(t) := (O(1), . . . , O(t)) denote the observed history of the patient up until time t. Unlike
in more traditional statistical settings, the data points O(1), . . . , O(N) are not independent
draws from the same law: here they form a dependent sequence, which is a single draw of a
distribution over ON . In that sense, our data reduces to a single sample.

We let ON ∼ PN
0 , where PN

0 denotes the true probability distribution of ON . The
subscript “0” stands for the “truth” throughout the rest of the chapter, denoting the true,
unknown features of the distribution of the data. Realizations of a random variable ON

are denoted with lower case letters, oN . We suppose that PN
0 admits a density pN0 w.r.t. a

dominating measure µ over ON that can be written as the product measure µ = ×Nt=1(µA ×
µY × µW ), with µA, µY , and µW measures over A, Y , and W . The likelihood under the
true data distribution PN

0 of a realization ōN of ŌN can be factorized according to the time
ordering of observation nodes as:

pN0 (oN) =
N∏
t=1

p0,a(t)(a(t) | o(t− 1))×
N∏
t=1

p0,y(t)(y(t) | o(t− 1), a(t)) (3.1)

×
N∏
t=0

p0,w(t)(w(t) | o(t− 1), a(t), y(t)),

where a(t) 7→ p0,a(t)(a(t) | ō(t−1), y(t) 7→ p0,y(t)(y(t) | ō(t−1), a(t)), and w(t) 7→ p0,w(t)(w(t) |
ō(t−1), a(t), y(t)) are conditional densities w.r.t. the dominating measures µA, µY , and µW .

Statistical Model

Since ON represents a single time-series, a dependent process, we observe only a single
draw from PN

0 . As a result, we are unable to estimate any part of PN
0 without additional

assumptions. In particular, we assume that the conditional distribution ofO(t) given Ō(t−1),
PO(t)|Ō(t−1), depends on Ō(t − 1) through a summary measure Co(t) = Co(Ō(t − 1)) ∈ C of
fixed dimension; each Co(t) might contain t-specific summary of previous measurements of
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context, or is of a particular Markov order. For later notational convenience, we denote
this conditional distribution PO(t)|Ō(t−1) with PCo(t). Then, the density pCo(t) of PCo(t) with
respect to a dominating measure µCo(t) is a conditional density (o, Co) → pCo(t)(o | Co) so
that for each value of Co(t),

∫
pCo(t)(o | Co(t))dµCo(t)(o) = 1. We extend this notion to all

parts of the likelihood as described in subsection (3.1), defining qy(t) as the density for node
Y (t) conditional on a fixed dimensional summary Cy(t), with Cw(t) and Ca(t) corresponding
to fixed dimensional summaries for qw(t) = p0,w(t)(w(t) | Cw(t)) and gt = p0,a(t)(a(t) | Ca(t)),
respectively.

Additionally, we assume that pCo(t) is parameterized by a common (in time t) function θ ∈
Θ, with inputs (c, o)→ θ(c, o). The conditional distribution pCo(t) depends on θ only through
θ(Co(t), ·). We write pCo(t) = pθ,Co(t) interchangeably.Let qy be the common conditional
density of Y (t), given (A(t), Co(t)); we make no such assumption on qw(t). Additionally, we
make no conditional stationarity assumptions on gt if randomization probabilities are known,
as is the case for an adaptive sequential trial. We define Q̄(Co(t), A(t)) = EPCo(t)

(Y (t) |
Co(t), A(t)) to be the conditional mean of Y (t) given Co(t) and A(t). As such, we have that
Q̄(Cy(t)) = Q̄(Co(t), A(t)) =

∫
yqy(y | Co(t), A(t))dµy(o), and Q̄ is a common function across

time t; we put no restrictions on Q̄. We suppress dependence of the conditional density qw(t)

in future reference, as this factor plays no role in estimation. In particular, qw(t) does not
affect the efficient influence curve of the target parameter, allowing us to act as if qw(t) is
known. Finally, we define θ = (g, Q̄).

Let pθ,Co(t) and pNθ be the density for O(t) given Co(t) and ON , implied by θ. This defines
a statistical modelMN = {PN

θ : θ} where PN
θ is the probability measure for the time-series

implied by pθ,Co(t). Additionally, we define a statistical model of distributions of O(t) at
time t, conditional on realized summary Co(t). In particular, let M(Co(t)) = {Pθ,Co(t) : θ}
be the model for PCo(t) for a given Co(t) implied by MN . Note that, by setup, both MN

and M(Co(t)) contain their truth P0 and PCo(t), respectively. Similarly to the likelihood
expression in sub section (3.1), we can factorize the likelihood under the above defined
statistical model according to time ordering as:

pθ(o
N) =

N∏
t=1

gt(a(t) | Ca(t))
N∏
t=1

qy(y(t) | Cy(t))
N∏
t=0

qw(t)(w(t) | Cw(t)). (3.2)

Causal Target Parameter and Identification

Structural equation model and causal target parameter

By specifying a structural equations model (SEM; equivalently, structural causal model), we
assume that each component of the observed time-specific data structure is a function of
an observed, fixed-dimensional history and an unmeasured exogenous error term [93]. We
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encode the time-ordering of the variables using the following SEM:

W (0) = fW (0)(UW (0)), (3.3)

A(t) = fA(t)(CA(t), UA(t)), t = 1, . . . , N,

Y (t) = fY (t)(CY (t), UY (t)), t = 1, . . . , N,

W (t) = fW (t)(CW (t), UW (t)), t = 1, . . . , N,

where (fA(t) : t = 1, . . . , N), (fY (t) : t = 1, . . . , N) and (fW (t) : t = 0, . . . , N) are unspeci-
fied, deterministic functions and U = (UW (0), . . . , UA(1), . . . , UY (1), . . . , UY (N)) is a vector
of exogenous errors.

We denoteMF the set of all probability distributions P F over the domain of (O,U) that
are compatible with the NPSEM defined above. Let P F

0 be the true probability distribution
of (O,U), which we assume to belong to MF ; we denote MF as the causal model. The
causal modelMF encodes all the knowledge about the data-generating process, and implies
a model for the distribution of the counterfactual random variables; as such, causal effects
are defined in terms of hypothetical interventions on the SEM. Consider a treatment rule
Co(t) → d(Co(t)) ∈ {0, 1}, that maps the observed, fixed dimensional history Co(t) into a
treatment decision for A(t). We introduce a counterfactual random variable ON,d, defined
by substituting the equation for node A at time t in the SEM with the intervention d:

W d(0) = fW (0)(UW (0)) (3.4)

Ad(t) = d(CA(t)), t = 1, . . . , N

Y d(t) = fY (t)(CY (t), UY (t)), t = 1, . . . , N

W d(t) = fW (t)(CW (t), UW (t)), t = 1, . . . , N,

We gather all of the nodes of the above modified SEM in the random vector ON,d := (Od(t) :
t = 1, . . . , N), where Od(t) := (Ad(t), Y d(t),W d(t)). The random vector ON,d represents the
counterfactual time-series, or counterfactual trajectory the subject of interest would have
had, had each treatment assignment A(t), for t = 1, . . . , N , had been carried out following
the treatment rule d.

We now formally define time-series causal parameters. First, we introduce a time- and
context-specific causal model. Let MF (Co(t)) be the set of conditional probability dis-
tributions P F

Co(t)
over the domain of (O(t), UA(t), UY (t), UW (t)) compatible with the non-

parametric structural equation model (3.3) imposing that CA(t) = Co(t) = c:

Ac(t) =fA(t)(c, UA(t)) (3.5)

Yc(t) =fY (t)(cY (c, A(t)), UY (t))

Wc(t) =fW (t)(cW (c, A(t), Y (t)), UW (t)).
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Let Od
c (t) be the counterfactual observation at time t, obtained by substituting the A(t)

equation in the above set of equations with the deterministic intervention d:

Adc(t) =d(c) (3.6)

Y d
c (t) =fY (t)(cY (c, A(t)), UY (t))

W d
c (t) =fW (t)(cW (c, A(t), Y (t)), UW (t)).

We define our causal parameter of interest as

ΨF,d
Co(t)

(P F
Co(t)) := E[Y d

Co(t)], (3.7)

which is the expectation of the counterfactual random variable Y d, generated by the above
modified SEM. It corresponds to starting at c = Co(t), the current context, and assigning
treatment following d. Our causal target parameter is the mean outcome we would have
obtained after one time-step, if, starting at time t from the observed context Co(t), we had
carried out intervention d.

Identification of the causal target and defining the statistical target

Once we have defined our causal target parameter, the natural question that arises is how
to identify it from the observed data distribution. We can identify the distribution of the
d-specific time series ON,d, and also of the (d, Co(t))-specific observation Od

Co(t)
, from the

observed data via the G-computation formula - under the sequential randomization and
positivity assumptions, which we state below.

Assumption 15 (Sequential randomization). For every t, Y d(t) ⊥⊥ A(t) | Co(t) (and
Y d
Co(t)

(t) ⊥⊥ A(t) | Co(t)).

Assumption 16 (Positivity). It holds that under the treatment mechanism g0,t, each treat-
ment value a ∈ {0, 1} has a positive probability of being assigned, under every possible treat-
ment history:

g0,t(a | c) > 0,∀t ≥ 1, a ∈ {0, 1} and every c ∈ C such that P0[Co(t) = c] > 0. (3.8)

Note that under the setting of the present article, as we suppose that A(t) is assigned at
random conditional on Co(t) by the experimenter, assumption 15 concerning the sequential
randomization automatically holds. Under identification assumptions 15 and 16, we can
write our causal parameter ΨF,d

Co(t)
(P F

0 ) as a feature of the data-generating distribution:

ΨF,d
Co(t)

(P F
0 ) = Ψd

Co(t)(P0) := EP0

[
Y (t)

g∗(A(t) | Co(t))
g0,t(A(t) | Co(t))

| Co(t)
]
, (3.9)

which for a deterministic d can be written as

ΨF,d
Co(t)

(P F
0,Co(t)) = ΨCo(t)(P0,Co(t)) := EP0,Co(t)

[Y (t) | A(t) = d(Co(t)), Co(t)] . (3.10)
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We note that we also could have expressed the target parameter as ΨCo(t)(P0), where it is
implied that ΨCo(t)(P0) depends on P0 only through the true conditional distribution of O(t)
given Co(t). For every P , we remind that PCo(t) denotes the distribution of O(t) given Co(t),
and let M(Co(t)) be the set of such distributions corresponding to P ∈ M. At each time-
point t, given a Co(t), we define a target parameter ΨCo(t) :M(Co(t))→ R that is pathwise
differentiable with canonical gradient D∗Co(t)(PCo(t))(o) at PCo(t) in M(Co(t)). As described

in Section 3.2, we have that ΨCo(t)(PCo(t)) = ΨCo(t)(θ), where ΨCo(t)(θ) depends on θ only
though its section θ(Co(t), ·). We denote the collection of Co(t)-specific canonical gradients
as (c, o)→ D∗(PCo(t))(c, o), so that we can write them uniformly as a function of the observed
components; with that, we have that D∗Co(t)(PCo(t))(o) = D∗Co(t)(θ)(o) = D∗(θ)(co(t), o). As

is custom for canonical gradients, for a given Co(t), D
∗(θ) is a function of the observed data

with conditional mean zero with respect to PCo(t).
Finally, we propose a class of statistical target parameters Ψ̄(θ) defined as the average

over time of Co(t)-specific counterfactual means under the treatment rule. In particular, the
target parameter on MN , ΨN :MN → R of the data distribution PN ∈MN is defined as:

Ψ̄(θ) =
1

N

N∑
t=1

ΨCo(t)(θ). (3.11)

The statistical target parameter Ψ̄(θ) is data-dependent, as it is defined as an average over
time of parameters of the conditional distribution of O(t) given the observed realization
of Co(t); as such, it depends on (Co(1), . . . , Co(N)). In practice, Ψ̄(θ) is an average of the
means under optimal treatment decisions over all observed contexts over time. As an average
of Co(t)-specific causal effects with a double robust efficient influence curve D∗Co(t)(θ)(o), it

follows we can estimate Ψ̄(θ) in a double robust manner as well, as we further emphasize in
the following section.

Canonical gradient and first order expansion of the target parameter

In the following theorem we provide the canonical gradient of our target parameter that
admits a first order expansion with a double-robust second order term.

Theorem 8 (Canonical gradient and first order expansion). Under the strong positivity
assumption, the target parameter mapping ΨC0(t) :M(Co(t)) → R is pathwise differentiable
w.r.t. M(Co(t)), with a canonical gradient w.r.t. M(Co(t)) given by

D∗Co(t)(θ)(o) =
g∗t (a | Co(t))
gt(a | Co(t))

(
y − Q̄(a, Co(t))

)
, (3.12)

where A(t) = a and Y (t) = y. Furthermore ΨCo(t)(Q̄) admits the following first order
expansion:

ΨCo(t)(Q̄)−ΨCo(t)(Q̄0) = −P0,Co(t)D
∗
Co(t)(θ) +R(Q̄, Q̄0, gt, g0,t), (3.13)
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where R is a second order remainder that is doubly-robust, with R(Q̄, Q̄0, gt, g0,t) = 0 if either
Q̄ = Q̄0 or gt = g0,t.

Previous works on statistical parameters defined over a single time series model [131, 65]
consider what we refer to as marginal parameters. Unlike the conditional parameters we
consider here, the efficient influence function of marginal parameters is not double-robust in
the usual sense; that is, robust w.r.t. a pair of variation independent nuisance parameters.
More importantly, knowing or consistently estimating the treatment mechanism does not
guarantee consistency of the causal effect for parameters described by [131] and [65].

Optimal rule

Now that we have identified the context-specific counterfactual outcome under d as a pa-
rameter of the observed data distribution PN

0 , we can identify the optimal treatment rule.
The optimal treatment rule is a priori a causal object defined as a function of P F

0 , and a
parameter of the observed data generating distribution PN

0 . Under the identification as-
sumptions, we can identify the optimal rule from the observed data distribution as follows.
Fix arbitrarily Q̄ ∈ Q̄. To alleviate notation, we further introduce the blip function under
the true data generating distribution as:

B0(Co(t)) ≡ Q̄0(Co(t), A(t) = 1)− Q̄0(Co(t), A(t) = 0). (3.14)

Intuitively, if B0(Co(t)) > 0, assigning treatment A(t) = 1 is more beneficial (in terms
of optimizing Y (t)) than A(t) = 0 for time point t under the current context Co(t). If
B0(Co(t)) < 0, we can optimize the t-specific outcome by assigning the subject treatment
A(t) = 0 instead. The true optimal rule for the purpose of optimizing the mean of the next
(short-term) outcome Y (t), for binary treatment, is then given by:

d0(Co(t)) ≡ I(B0(Co(t)) > 0). (3.15)

As defined in Equation (3.15), d0(Co(t)) is a typical treatment rule that maps observed fixed
dimensional summary deterministically into one treatment; a stochastic treatment rule does
so randomly [77, 75, 19].

3.3 Optimal Rule and the Sampling Scheme

In an adaptive sequential trial, the process of generating A(t) is controlled by the experi-
menter. As such, one can simultaneously learn and start assigning treatment according to the
best current estimate of the optimal treatment rule, with varying exploration-exploitation
objectives. In this section we describe different strategies for estimating the optimal treat-
ment rule, as well as propose different sampling schemes for assigning treatment.
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Estimating the Optimal Treatment Rule

First, we consider estimating the optimal treatment rule based on a parametric working
model. As described previously, consider a treatment rule Co(t) → d(Co(t)) ∈ {0, 1} that
maps the history Co(t) into a treatment decision for A(t). We define a parametric working
model for qy indexed by parameter φ such that {qy,φ : φ}. Notice that under the specified
working model, we have that:

Q̄φ(Co(t), a) = E(Y (t) | Co(t), A(t) = a) =

∫
yqy,φ(y | Co(t), a)dµy(y).

The true conditional treatment effect, B0(Co(t)), can then be expressed as

Bφ(Co(t)) = Q̄φ(Co(t), 1)− Q̄φ(Co(t), 0)

under the parametric working model. Recall that the optimal treatment rule for A(t) for the
purpose of maximizing Y (t) is given by:

d0(Co(t)) = I(B0(Co(t)) > 0).

Under the parametric working model, we note that the optimal treatment rule can be rep-
resented as:

dφ(Co(t)) = I(Bφ(Co(t)) > 0).

Let φt−1 to be the maximum likelihood estimate of the true φ0 based on the most current
history, Ō(t − 1), and according to the working model qy,φ. We could define the fixed
dimensional history Co(t) such that for each time point t, φt−1 is included in the relevant
history Co(t) for O(t). The current estimate of the rule is then defined as:

dφt−1(Co(t)) = I(Bφt−1(Co(t)) > 0).

If the parametric model is very flexible, Bφt−1 might be a good approximation of the true
conditional treatment effect B0(Co(t)). In that case, dφt−1(Co(t)) is a good approximation of
the optimal rule d0(Co(t)). Nevertheless, we argue that φt−1 will converge to φ0 defined by a
Kullback-Leibler projection of the true qy,0 onto the working model {qy,φ : φ}. Consequently,
the rule dφt−1(Co(t)) will converge to a fixed I(B0(Co(t)) > 0) as t converges to infinity.

Instead of considering a parametric working model, we explore estimation of the optimal
treatment rule based on more flexible, possibly nonparametric approaches drawn from the
machine learning literature. As in the previous subsection, we define BQ̄t−1

(Co(t)) to be an
estimator of the true blip function, B0(Co(t)), based on the most recent observations up to
time t, Ō(t − 1). In particular, we consider estimators studied in previous work, including
Online Super-Learner of Q̄0 which provides convenient computational and statistical prop-
erties for dense time-series data described elsewhere [135, 7, 79]. Additionally, we might
consider ensemble machine learning methods that target B0 directly [77]. As mentioned in
the previous section, we can view BQ̄t−1

(Co(t)) as just another univariate covariate extracted
from the past, and include it in our definition of Co(t). If BQ̄t−1

is consistent for B0, then
the rule dQ̄t−1

(Co(t)) based on BQ̄t−1
will converge to the optimal rule I(B0(Co(t)) > 0), as

shown in previous work [77, 19].
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Defining the Sampling Scheme

In the following subsection, we describe two sampling schemes that define gN = {gt : t =
1, · · · , N} precisely. Both rely on estimating parts of the likelihood based on the time-points
collected so far for the single subject studied. The t-dependent current estimate of Q̄0 and
B0 are then further utilized to assign the next treatment, collect the next corresponding
block of data, and estimate the target parameter of interest. Following the empirical process
literature, we sometimes write PNf to be the empirical average of function f , and Pf =
EPf(O).

Stochastic Optimal Treatment Rules

Let Q̄t−1 denote the time t estimate of Q̄0 based on the time-series points collected so far,
Ō(t − 1). For a small number of samples, dQ̄t−1

(Co(t)) might not be a good estimate of
d0(Co(t)). As such, assigning treatment deterministically based on the current estimate of
the rule could be ill-advised. In addition, without exploration (enforced via a deterministic
rule), we cannot guarantee consistency of the optimal rule estimator. In light of that,
we define {ct}t≥1 and {et}t≥1 as user-defined, non-increasing sequences such that c1 ≤ 1

2
,

limt ct ≡ c∞ > 0 and limt et ≡ e∞ > 0. More specifically, we let {et}t≥1 define the level
of random perturbation around the current estimate dQ̄t−1

(Co(t)) of the optimal rule. We
define {ct}t≥1 as the probability of failure, so choosing c1 = · · · = ct = 0.5 would yield a
balanced stochastic treatment rule. In particular, we define a design that ensures that, under
any context and with a positive probability ct, we pick the treatment uniformly at random.
This positive probability ct is what is often referred to as the exploration rate in the bandit
and reinforcement learning literature [120]. For every t ≥ 1, we could have the following
function Gt over [−1, 1]:

Gt(x) = ctI[x < −et] + (1− ct)I[x ≥ et] +

(
−1/2− ct

2e3
t

x3 +
1/2− ct

2et/3
x+

1

2

)
I[−et ≤ x ≤ et],

where Gt(x) is used to derive a stochastic treatment rule from an estimated blip function,
such that

gt(1 | Co(t)) = Gt(BQ̄t−1
(Co(t))).

Note that Gt is a smooth approximation to x → I[x ≥ 0] bounded away from 0 and
1, mimicking the optimal treatment rule as an indicator of the true blip function. With
that in mind, any other non-decreasing kn-Lipschitz function with Ft(x) = ct for x < −et
and Ft(x) = 1 − ct for x ≥ et would approximate the optimal treatment rule as well. The
definitions of Gt and gt prompt the following lemma, which illustrates the ability of the
sampling scheme to learn form the collected data, while still exploring:
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Lemma 3. Let t ≥ 1. Then we have that:

inf
co(t)

gt(d(co(t)) | co(t)) ≥
1

2

inf
co(t)

gt(1− d(co(t)) | co(t)) ≥ ct.

Note that under Lemma 3, the positivity assumption needed for the identification result
is met. Finally, we reiterate that the stochastic treatment rule gt(1 | Co(t)) approximates
d(Co(t)) in the following sense:

|gt(1 | Co(t))− d(Co(t))| ≤ c∞I[|B(Co(t)) ≥ e∞|] +
1

2
I[|B(Co(t)) < e∞|].

If c∞ and e∞ are small and |B(Co(t)) ≥ e∞|, then drawing treatment assignment from a
smooth approximation of d(Co(t)) is not much different than d(Co(t)), with little impact on
the mean value of the reward.

Target sequential sampling with Highly Adaptive Lasso

Alternatively, one could allocate randomization probabilities based on the tails of an estimate
of the blip function, B(Co(t)). In particular, we present a sampling scheme that utilizes the
Highly Adaptive Lasso (HAL) estimator for obtaining the bounds around the estimate of the
true blip function. The Highly Adaptive Lasso is a nonparametric regression estimator that
does not rely on local smoothness assumptions [6, 130]. Briefly, for the class of functions
that are right-hand continuous with left-hand limits and a finite variation norm, HAL is
an MLE which can be computed based on L1-penalized regression. As such, it is similar to
standard lasso regression function in its implementation, except that the relationship between
the predictors and the outcome is described by data-dependent basis functions instead of a
parametric model. For a thorough description of the Highly Adaptive Lasso estimator, we
refer the reader to [6] and [130].

We propose to use HAL to estimate B0(Co), which implies an estimator for the optimal
rule d0(Co) = I(B0(Co) > 0). We define a quadratic loss function as follows:

LB(θ)(o, Co) = (D1(θ)(O)−B(Co))
2,

which is indexed by θ = (g, Q̄) required to evaluate D1(θ)(O). This influence function has
the property that E0(D1(θ)|Co) = B0(Co) if either Q̄ = Q̄0 or g = g0, under positivity.
As such, LB(θ0) is a double robust and efficient loss function for the true risk in the sense
that PnLB(θ) is a double robust locally efficient estimator of the true risk under regularity
conditions. As a double robust and efficient loss, the true risk of the loss function LB(θ)(o, Co)
equals P0(B0−B)2(Co) up until a constant if either D1(θ) = D1(Q̄0, g) or D1(θ) = D1(Q̄, g0).

Let E(D1(θ)|Co) = ψblip, with ψblip ∈ D[0, τ ], the Banach space of d-variate cadlag
functions. Define Co,s = {Co,j : j ∈ s} for a given subset s ⊂ {1, ..., d}. For ψblip ∈ D[0, τ ],
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we define the sth section of ψblip as ψblip
s (co) = ψblip(co,1I(1 ∈ s), . . . , co,dI(d ∈ s)), where co

denotes all possibilities of Co. We assume the variation norm of ψblip is finite:

‖ψblip‖v = ψblip(0) +
∑

s⊂{1,...,d}

∫ τs

0s

|ψblip
s (du)| < M.

The HAL estimator represents ψblip as

ψblip(co) = ψblip(0) +
∑

s⊂{1,...,d}

∫ τs

0s

ψblip
s (du)

= ψblip(0) +
∑

s⊂{1,...,d}

∫ τs

0s

I(u ≤ co,s)ψ
blip
s (du),

which uses a discrete measure ψblip
m with m support points to approximate this representation.

For each subset s, at time t = N , we select as support points the N observed values c̃o,s(t),
t = 1, . . . , N , of the context Co,s(t). Then, for each subset s, we have a discrete approximation
of ψblip

s with support defined by the actual N observations and point-masses dψblip
m,s,t

, the

pointmass assigned by ψblip
m to point c̃o,s(t), t = 1, . . . , N . This approximation consists of

a linear combination of basis functions co → φs,t(co) = I(co,s ≥ c̃o,s(t)) with corresponding
coefficients dψblip

m,s,t
summed over s and t = 1, . . . , N . The minimization of the empirical risk

PnLB(θ)(o, Co) of this estimator, ψblip
n , corresponds to lasso regression with predictors φs,t

across all subsets s ⊂ {1, . . . , d} and for t = 1, . . . , N . That is, for

ψblip
β = β0 +

∑
s⊂{1,...,d}

N∑
t=1

βs,tφs,t

and corresponding subspace Ψn,M = {ψβ : β, β0 +
∑

s⊂{1,...,d}
∑N

t=1 |βs,t| < M},

βn = argminβ,β0+
∑
s⊂{1,...,d}

∑N
t=1 |βs,t|<M

PnLBβ(θ).

The linear combination of basis function with non-zero coefficients in the HAL MLE rep-
resent a working model. We can use this data adaptively chosen parametric working model
to obtain approximate (non-formal) inference for the blip function. For example, we could
use the delta-method to obtain a Wald-type confidence interval for the blip function, recog-
nizing that βn is an MLE for this working model. Alternatively, we use the nonparametric
bootstrap, fixing the model that was selected by HAL (to maintain L1-norm), and running
lasso with the selected model for each bootstrap. We denote the resulting confidence interval
bounds around the HAL MLE of the blip as ±CI(ψblip

n ), and propose using these bounds
around the HAL MLE of the blip - that is, we would let ±CI(ψblip

n ) replace ±et in Gt(x).
Incorporating the Highly Adaptive Lasso blip estimate into the sampling scheme encourages
exploitation of the known uncertainty in the blip estimates so far, allowing for more efficient
use of the exploration step then the procedure described in subsection 3.3.
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3.4 Targeted Maximum Likelihood Estimator

In the following, we build a Targeted Maximum Likelihood Estimator (TMLE) for the target
parameter, Ψ̄(θ) [140, 138, 137]. TML estimation is a multistep procedure, where one first
obtains an estimate of the relevant parts of the data-generating distribution using machine
learning algorithms and appropriate cross-validation [136, 7, 79]. The second stage updates
the initial fit in a step targeted towards making an optimal bias-variance trade-off for Ψ̄(θ),
instead of the whole density.

Let L(Q̄)(O(t), Co(t)) be a loss function for Q̄0 where L(Q̄) : O × C → R; for notational
simplicity, we can also write L(Q̄), with dependence on (O(t), Co(t)) implied. In particular,
we define L(Q̄) as the quasi negative log-likelihood loss function,

L(Q̄) = −[Y (t) log Q̄(Co(t), A(t)) + (1− Y (t)) log(1− Q̄(Co(t), A(t)))],

where the true Q̄0 minimizes the risk under the true conditional density P0,C0(t):

P0,C0(t)L(Q̄0)(O(t), Co(t)) = min
Q̄
P0,Co(t)L(Q̄)(O(t), Co(t)).

Let Q̄N be an initial estimator of Q̄0, obtained via Online Super Learner and cross-validation
suited for dependent data, such as the rolling-window or recursive-origin scheme [8, 7, 79].
For a Q̄N in the statistical model, we define a parameteric working model {Q̄N,ε : ε} through
Q̄N with finite-dimensional parameter ε; note that Q̄N,ε=0 = Q̄N . We define a parametric
family of fluctuations of the initial estimator Q̄N of Q̄0 along with the loss function, L(Q̄),
so that the linear combination of the components of the derivative of the loss evaluated at
ε = 0 span the efficient influence curve at the initial estimator:〈

d

dε
L(Q̄N,ε)

∣∣∣∣
ε=0

〉
⊃ D∗Co(t)(Q̄N),

where we used the notation 〈S〉 for the linear span of the components of the function S. We
note that {Q̄N,ε : ε} is known as the local least favorable submodel; one could also define a
universal least favorable submodel, where the derivative of the loss evaluated at any ε will
equal the efficient influence curve at the fluctuated initial estimator Q̄N,ε [134]. We proceed
to maximize the log-likelihood over the parametric model:

εN = arg min
ε

1

N

N∑
t=1

L(Q̄N,ε)(O(t), Co(t)).

In order to perform the update of the conditional expectations, we rely on the logistic
fluctuation model,

logit(Q̄N,ε) = logit(Q̄N) + εH,

where H denotes the clever covariate specific to the target parameter, H =
g∗t (A(t)|Co(t)
gt(A(t)|Co(t)) . The

TMLE update, denoted as Q̄∗N = Q̄N,εN , is the TMLE of Q̄0 which solves the efficient score
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equation,

1

N

N∑
t=1

D∗(Q̄∗N)(O(t), Co(t)) ≈ 0.

We define the TMLE as the plug-in estimator Ψ̄(Q̄∗N), obtained by evaluating Ψ̄ at the last
update of the estimator of Q̄0.

3.5 Asymptotic normality of the TMLE

Decomposition of the TMLE estimator

Our theoretical analysis relies on the fact that the difference between the TML estimator
and the target can be decomposed as the sum of (1) the average of a martignale difference
sequence, and (2) a martingale process for which we can show an equicontinuity result. We
present formally this decomposition in theorem 9 below.

Theorem 9. For any Q̄1 ∈ Q̄, the difference between the TMLE and its target decomposes
as

Ψ̄(Q̄∗N)− Ψ̄(Q̄0) = M1,N(Q̄1) +M2,N(Q̄∗N , Q̄1),

with

M1,N(Q̄1) =
1

N

N∑
t=1

D∗(Q̄1)(Co(t), O(t))− P0,Co(t)D
∗(Q̄1),

M2,N(Q̄∗N , Q̄1) =
1

N

N∑
t=1

(δCo(t),O(t) − P0,Co(t))(D
∗(Q̄∗N)−D∗(Q̄1)).

The term M1,N(Q̄1) is the average of a martingale difference sequence, and we will analyze
it with a classical martingale central limit theorem. The second term is a martingale process
indexed by Q̄ ∈ Q̄, evaluated at Q̄ = Q̄∗N . We will prove an equicontinuity result under a
complexity condition for a process derived from the function class {D∗(Q̄) : Q̄ ∈ Q̄}, which

will imply that if Q̄∗N
P−→ Q̄1 ∈ Q̄ then M2,N(Q̄∗N , Q̄1) = oP (N−1/2).

Analysis of the term M1,N(Q̄1)

A set of sufficient conditions for the asymptotic normality of the term M1,N(Q̄1) is that (a)
the terms D∗(Q̄1)(Co(t), O(t)) remain bounded, and (b) that the average of the conditional
variances of D∗(Q̄1)(Co(t), O(t)) stabilize. A sufficient condition for condition (a) to hold is
the following strong version of the positivity assumption.
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Assumption 17 (Strong positivity). There exists δ > 0 such that, for every t ≥ 1,

g0,t(A(t) | Ca(t)) ≥ δ, P0-a.s.

Assumption 18 (Stabilization of conditional variances). There exists σ2
0(Q̄1) ∈ (0,∞) such

that

1

N

N∑
t=1

Var0

(
D∗(Q̄1)(Co(t), O(t)) | Co(t)

) d−→ σ2
0(Q̄1).

Theorem 10. Suppose that assumption 17 and assumption 18 hold. Then
√
NM1,N(Q̄1)

d−→ N (0, σ2
0(Q̄1)).

Proof. The result follows directly from various versions of martingale central limit theorems
(e.g. theorem 2 in [17]).

The conditional variances stabilize under (1) mixing and ergodicity conditions for the
sequence (Co(t)) of contexts, and if (2) the design g0,t stabilizes asymptotically. We discuss
special cases in which these mixing and ergodicity conditions can be checked explicitly in
the Appendix. For variance estimation we rely on the empirical variance estimator,

σ̂2
N :=

1

N

N∑
t=1

D∗(Q̄∗N , g0,t)
2(Co(t), O(t)),

which converges to the asymptotic variance σ2
0(Q̄1) of M1,N(Q̄1).

Negligibility of the term M2,N(Q̄∗N , Q̄1)

In this susbsection, we give a brief overview of the analysis of the term M2,N(Q̄∗N , Q̄1). We
show that M2,N(Q̄∗N , Q̄1) = oP (N−1/2) by proving an equicontinuity result for the process
{M2,N(Q̄, Q̄1) : Q̄ ∈ Q̄}. Our equicontinuity result relies on a measure of complexity for the
process

ΞN :=
{(
D∗(Q̄, g0,t)(Co(t), O(t))−D∗(Q̄1, g0,t)(Co(t), O(t))

)N
t=1

: Q̄ ∈ Q̄
}
, (3.16)

which we refer to as sequential bracketing entropy, introduced by [128] for the analysis of mar-
tingale processes. Further, we denote N[ ](ε, b,ΞN , Ō(N)) as the sequential bracketing number
of ΞN corresponding to brackets of size ε. We provide theoretical derivations answering fol-
lowing two important questions (1) how to connect the sequential bracketing entropy of the
process ΞN to a traditional bracketing entropy measure for the outcome model Q̄, and (2) how
to obtain consistency of an estimator Q̄∗N fitted from sequentially collected data. Answers
to both of these questions entail bracketing entropy preservation results. Our equicontinuity
result is consequently a sequential equivalent of similar results for i.i.d. settings (e.g. [126])
and similarly relies on a Donsker-like condition.
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Assumption 19 (Sequential Donsker condition). Define the sequential bracketing entropy

integral as J[ ](ε, b,ΞN , Ō(N)) :=
∫ ε

0

√
log(1 +N[ ](u, b,ΞN , Ō(N))du. Suppose that there ex-

ists a function a : R+ → R+ that converges to 0 as δ → 0, such that

J[ ](ε, b,ΞN , Ō(N)) ≤ a(δ).

Note that a sufficient condition for assumption 19 to hold is that log(1+N[ ](u, b,ΞN , Ō(N)) ≤
Cε−p, with p ∈ (0, 2) and C > 0 a constant that does not depend on N .

Assumption 20 (L2 convergence of the outcome model). It holds that ‖Q̄∗N − Q̄1‖2,g∗,hN =

oP (1), where hN is the empirical measure hN := N−1
∑N

t=1 δCo(t).

Theorem 11 (Equicontinuity of the martingale process term). Consider the process ΞN de-
fined in equation (3.16). Suppose that assumptions 17, 19 and 20 hold. Then M2,N(Q̄∗N , Q̄1) =
oP (N−1/2).

Asymptotic normality theorem

As an immediate corollary of Theorems 10 and 11, we have the following asymptotic nor-
mality result for our TML estimator.

Theorem 12 (Asymptotic normality of the TMLE). Suppose that assumptions 17, 18, 19
and 20 hold. Then

√
N
(
Ψ̄(Q̄∗N)− Ψ̄(Q̄0)

) d−→ N (0, σ2
0(Q̄1)).

The empirical variance estimator σ̂2
N converges in probability to σ2

0(Q̄1), which implies that

σ̂−1
N

√
N
(
Ψ̄(Q̄∗N)− Ψ̄(Q̄0)

) d−→ N (0, 1).

Therefore, denoting q1−α/2 the 1−α/2-quantile of the standard normal distribution, we have
that the confidence interval[

Ψ̄(Q̄∗N)−
q1−α/2σ̂N√

N
, Ψ̄(Q̄∗N) +

q1−α/2σ̂N√
N

]
has asymptotic coverage 1− α for the target Ψ̄(Q̄0).

3.6 Simulations

In this section we present simulation results concerning the adaptive learning of the optimal
individualized treatment rule estimated using machine learning methods for a single time-
series. We focus on the stochastic sampling scheme described in subsection 3.3, and explore
performance of our estimator with different initial sample sizes and consequent sequential
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updates. We consider binary outcome and treatment, but note that the results will be
comparable for continuous bounded outcome. Finally, unless specified otherwise, we present
coverage of the mean under the current estimate of the optimal individualized treatment rule
at each update based on 500 Monte Carlo draws. We set the reference treatment mechanism
to a balanced design, assigning treatment with probability 0.5 for the data draw used to
learn the initial estimate of the optimal individualized treatment rule.

Simulation 1a

We explore a simple dependence setting first, emphasising the connection with i.i.d sequential
settings. We data consists of a binary treatment (A(t) ∈ {0, 1}) and outcome (Y (t) ∈ {0, 1}).
The time-varying covariate W (t) decomposes as W (t) ≡ (W1(t),W2(t)) with binary W1 and
continuous W2. The outcome Y at time t is conditionally drawn given {A(t), Y (t−1),W1(t−
1)} from a Bernoulli distribution, with success probability defined as 1.5 ∗A(t) + 0.5 ∗ Y (i−
1) − 1.1 ∗ W1(i − 1). We generate the initial sample of size t = 1000 and t = 500 by
first drawing a set of four O(t) samples randomly from binomial and normal distributions
in order to have a starting point to initiate time dependence. After the first 4 draws, we
draw A(t) from a binomial distribution with success probability 0.5, Y (t) from a Bernoulli
distribution with success probability dependent on {A(t), A(t − 1), Y (t − 1),W2(t − 1)},
followed by W1(t) conditional on {Y (t− 1),W1(t− 1),W2(t− 1)} and W2(t) conditional on
{A(t−1), Y (t−1),W1(t−1)}. After t = 1000 or t = 500, we continue to draw O(t) as above,
but with A(t) drawn from a stochastic intervention approximating the current estimate dQ̄t−1

of the optimal rule dQ̄0
. This procedure is repeated until reaching a specified final time point

indicating the end of a trial. Our estimator of Q̄0, and thereby the optimal rule d0, is based
on an online super-learner with an ensemble consisting of multiple algorithms, including
simple generalized linear models, penalized regressions, HAL and extreme gradient boosting
[27]. For cross-validation, we relied on the online cross-validation scheme, also known as
the recursive scheme in the time-series literature. The sequences {ct}t≥1 and {et}t≥1 are
chosen constant, with c∞ = 10% and e∞ = 5%. The TMLEs are computed at sample sizes
a multiple of 200, and no more than 1800 (for initial t = 1000) or 1300 (for initial t = 500),
at which point sampling is stopped. We use the coverage of asymptotic 95% confidence
intervals to evaluate the performance of the TMLE in estimating the average across time
t of the dQ̄t−1

-specific mean outcome. The exact data-generating distribution used is as
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follows:

A(0 : 4) ∼ Bern(0.5)

Y (0 : 4) ∼ Bern(0.5)

W1(0 : 4) ∼ Bern(0.5)

W2(0 : 4) ∼ Normal(0, 1)

A(4 : t) ∼ Bern(0.5)

Y (4 : t) ∼ Bern(expit(1.5 ∗A(i) + 0.5 ∗ Y (i− 1)− 1.1 ∗W1(i− 1)))

W1(4 : t) ∼ Bern(expit(0.5 ∗W1(i− 1)− 0.5 ∗ Y (i− 1) + 0.1 ∗W2(i− 1)))

W2(4 : t) ∼ Normal(0.6 ∗A(i− 1) + Y (i− 1)−W1(i− 1), sd = 1)

A(t : 1800) ∼ dQ̄t−1

Y (t : 1800) ∼ Bern(expit(1.5 ∗A(i) + 0.5 ∗ Y (i− 1)− 1.1 ∗W1(i− 1)))

W1(t : 1800) ∼ Bern(expit(0.5 ∗W1(i− 1)− 0.5 ∗ Y (i− 1) + 0.1 ∗W2(i− 1)))

W2(t : 1800) ∼ Normal(0.6 ∗A(i− 1) + Y (i− 1)−W1(i− 1), sd = 1).

From Table 3.1, we can see that the 95% coverage for the average across time of the
counterfactual mean outcome under the current estimate of the optimal dynamic treatment
approaches nominal coverage with increasing time-steps, for both t = 500 and t = 1000 length
of the initial time-series. The mean conditional variance stabilizes with increasing time-
steps, as illustrated in Table 3.2 and Figure 3.1A, thus satisflying assumption 18 necessary
for showing asymptotic normality of the TML estimator.

Simulation 1b

In Simulation 1b, we explore the behavior of our estimator in case of more elaborate depen-
dence. As in Simulation 1a, we only consider binary treatment (A(t) ∈ {0, 1}) and outcome
(Y (t) ∈ {0, 1}), with binary and continuous time-varying covariates. We set the reference
treatment mechanism to a balanced treatment mechanism assigning treatment with probabil-
ity P (A(t) = 1) = 0.5, and generate the initial sample of size t = (1000, 500) by sequentially
drawing W1(t),W2(t), A(t), Y (t). As before, upon the first t = 1000 or t = 500 time-points,
we continue to draw O(t) with A(t) sampled from a stochastic intervention approximating
the current estimate dQ̄t−1

of the optimal rule dQ̄0
. The estimator of the optimal rule dQ̄0

was
based on an ensemble of machine learning algorithms and regression-based algorithms, with
honest risk estimate achieved by utilizing online cross-validation scheme with validation set
size of 30. The sequences {ct}t≥1 and {et}t≥1 were set to 10% and 5%, respectively. The
TMLEs are computed at initial t = 1000 or t = 500, and consequently at sample sizes being
a multiple of 200, and no more than 1800 (or 1300), at which point sampling is stopped.
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The exact data-generating distribution used is as follows:

A(0 : 4), Y (0 : 4),W1(0 : 4) ∼ Bern(0.5)

W2(0 : 4) ∼ Normal(0, 1)

A(4 : t) ∼ Bern(0.5)

Y (4 : t) ∼ Bern(expit(1.5 ∗A(i) + 0.5 ∗ Y (i− 3)− 1.1 ∗W1(i− 4)))

W1(4 : t) ∼ Bern(expit(0.5 ∗W1(i− 1)− 0.5 ∗ Y (i− 1) + 0.1 ∗W2(i− 2)))

W2(4 : t) ∼ Normal(0.6 ∗A(i− 1) + Y (i− 1)−W1(i− 2), sd = 1)

A(t : 1800) ∼ dQ̄t−1

Y (t : 1800) ∼ Bern(expit(1.5 ∗A(i) + 0.5 ∗ Y (i− 3)− 1.1 ∗W1(i− 4)))

W1(t : 1800) ∼ Bern(expit(0.5 ∗W1(i− 1)− 0.5 ∗ Y (i− 1) + 0.1 ∗W2(i− 2)))

W2(t : 1800) ∼ Normal(0.6 ∗A(i− 1) + Y (i− 1)−W1(i− 2), sd = 1).

As demonstrated in Table 3.1, the TML estimator approaches 95% coverage with increasing
number of time points with more elaborate dependence structure as well. The assumption
of stabilization of the mean of conditional variances is shown to be valid in Table 3.2 and
Figure 3.1B, allowing for the asymptotic coverage 1− α for the target Ψ̄(Q̄0).

t Covt Covt1 Covt2 Covt3 Covt4

Simulation 1a 1000 92.60 94.00 95.20 95.40 95.80
Simulation 1a 500 90.00 93.20 93.80 94.80 94.60
Simulation 1b 1000 92.60 92.60 93.00 93.40 93.80
Simulation 1b 500 89.60 90.20 89.90 90.80 91.40

Table 3.1: The 95% coverage for the average across time of the counterfactual mean outcome
under the current estimate of the optimal dynamic treatment at time points t, t1 = t+ 200,
t2 = t + 400, t3 = t + 600 and t4 = t + 800. The first t time points sample treatment with
probability 0.5. The sequences {cn}t≥1 and {en}t≥1 are chosen constant, with c∞ = 10% and
e∞ = 5%. TMLEs are computed at t = {500, 1000}, t1, t2, t3 and t4, with sequential updates
being of size 200. The results are reported over 500 Monte-Carlo draws for Simulations 1a
and 1b with initial sample sizes 1000 and 500.
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t Vart Vart1 Vart2 Vart3 Vart4

Simulation 1a 1000 0.0018 0.0019 0.0017 0.0016 0.0004
Simulation 1a 500 0.0011 0.0024 0.0035 0.0014 0.0011
Simulation 1b 1000 0.0072 0.0075 0.0069 0.0067 0.0018
Simulation 1b 500 0.0199 0.0171 0.0187 0.0152 0.0087

Table 3.2: Variance for the average across time of the counterfactual mean outcome under the
current estimate of the optimal dynamic treatment at time points t, t1 = t+200, t2 = t+400,
t3 = t + 600 and t4 = t + 800, over 500 Monte-Carlo draws for Simulations 1a and 1b with
initial sample sizes 1000 and 500.

3.7 Discussion

In this chapter, we once again consider causal parameters based on observing a single time
series with asymptotic results derived over time t. The data setup constitutes a typical
longitudinal data structure, where within each t-specific time-block one observes treatment
and outcome nodes, and possibly time-dependent covariates in-between treatment nodes.
Each t-specific data record O(t) is viewed as its own experiment in the context of the observed
history Co(t), carrying information about a causal effect of the treatment nodes on the next
outcome node. A key assumption necessary in order to obtain the presented results is that
the relevant history for generating O(t), given the past Ō(t − 1), can be summarized by
a fixed dimensional summary Co(t). We note that our conditions allow for Co(t) to be a
function of the whole observed past, allowing us to avoid Markov-order type assumptions
that limit dependence on recent, or specifically predefined past. Components of Co(t) that
depend on the whole past, such as an estimate of the optimal treatment rule based on
(O(1), . . . , O(t− 1)), will typically converge to a fixed function of a recent past - so that the
martingale condition on the stabilization of the mean of conditional variances holds.

Due to the dimension reduction assumption, each t-specific experiment corresponds to
drawing from a conditional distribution of O(t) given Co(t). We assume that this conditional
distribution is either constant in time or is parametrized by a constant function. As such,
we can learn the true mechanism that generates the time-series, even when the model for
the mechanism is nonparametric. With the exception of parametric models allowing for
maximum likelihood estimation, we emphasize that statistical inference for proposed target
parameters of the time-series data generating mechanism is a challenging problem which
requires targeted machine learning.

The work of [131] and [65] studies marginal causal parameters, marginalizing over the
distribution of Co(t), defined on the same statistical model as the parameter we consider in
this article. In particular, [131] define target parameters and estimation of the counterfactual
mean of a future (e.g., long term) outcome under a stochastic intervention on a subset of
the treatment nodes, allowing for extensions to single unit causal effects. As such, the target
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Figure 3.1: Illustration of the data-adaptive inference of the mean reward under the optimal
treatment rule with initial sample size n = 1000 and n = 500 for Simulation 1a and 1b.
The red crosses reflect successive values of the data-adaptive true parameter, with stars
representing the estimated parameter with the corresponding 95% confidence interval for
the data-adaptive parameter.

parameter proposed by [131] addresses the important question regarding the distribution of
the outcome at time t, had we intervened on some of the past treatment nodes in a (possibly
single) time-series. While important, the TMLE of such target parameters are challenging
to implement due to their reliance on the density estimation of the marginal density of
Co(t) averaged across time t. Additionally, we remark that such marginal causal parameters
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cannot be robustly estimated if treatment is sequentially randomized, due to the lack of
double robustness of the second order remainder.

In this work, we focus on a context-specific target parameter is order to explore robust
statistical inference for causal questions based on observing a single time series of a par-
ticular unit. We note that for each given Co(t), any intervention-specific mean outcome
EYg∗(t) with g∗ being a stochastic intervention w.r.t. the conditional distribution of PCo(t)
(with deterministic rule being a special case), represents a well studied statistical estimation
problem based on observing many i.i.d. copies. Even though we do not have repeated ob-
servations from the Co(t)-specific distribution at time t, the collection (Co(t), O(t)) across
all time points represent the analogue of an i.i.d. data set (Co(t), O(t)) ∼iid P0, where Co(t)
can be viewed as a baseline covariate for the longitudinal causal inference data structure; we
make the connection with the i.i.d. sequential design in one of our simulations. The initial
estimation step of the TMLE should still respect the known dependence in construction of
the initial estimator, by relying on appropriate estimation techniques developed for depen-
dent data. Similarly, variance estimation can proceed as in the i.i.d case using the relevant
i.i.d. efficient influence curve. This insight relies on the fact that the TMLE in this case
allows for the same linear approximation as the TMLE for i.i.d. data, with the martingale
central limit theorem applied to the linear approximation instead. Since the linear expansion
of the time-series TMLE for context-specific parameter is an element of the tangent space
of the statistical model, our derived TMLE is asymptotically efficient.

Our motivation for studying the proposed context-specific parameter strives from its
important role in precision medicine, in which one wants to tailor the treatment rule to the
individual observed over time. In particular, we derive a TMLE which uses only the past
data Ō(t−1) of a single unit in order to learn the optimal treatment rule for assigning A(t) to
maximize the mean outcome Y (t). Here, we assign the treatment at the next time point t+1
according to the current estimate of the optimal rule, allowing for the time-series to learn
and apply the optimal treatment rule at the same time. The time-series generated by the
described adaptive design within a single unit can be used to estimate, and most importantly
provide inference, for the average across all time-points t of the counterfactual mean outcome
of Y (t) under the estimate d(Co(t)) of the optimal rule at a relevant time point t. Assuming
that the estimate of the optimal rule is consistent, as the number of time-points increases,
our target parameter converges to the mean outcome one would have obtained had they
carried out the optimal rule from the start. As such, we can effectively learn the optimal
rule and simultaneously obtain valid inference for its performance. Interestingly, this does
not provide inference relative to, for example, the control that always assigns A(t) = 0.
This is due to the fact that by assigning treatment A(t) according to a rule, the positivity
assumption needed to learn 1

N

∑
tE(YA(t)=0(t) | Co(t)) is violated. However, we note that

one can safely conclude that one will not be worse than this control rule, even when the
control rule is equal to the optimal rule. If one is interested in inference for a contrast based
on a single time-series, then we advocate for random assignment between the control and
estimate of optimal rule. As such, our proposed methodology still allows to learn the desired
contrast.
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Finally, we note that while the context-specific parameter enjoys many important statis-
tical and computational advantages as opposed to the marginal target parameter based on a
single time-series, the formulation employed in this article is only sensible if one is interested
in the causal effect of treatment on a short-term outcome. In particular, if the amount of
time necessary to collect outcome Y (t) in O(t) is long, then generating a long time series
would take too much time to be practically useful. If one is interested in causal effects on
a long term outcome and is willing to forgo utilizing known randomization probabilities for
treatment, we advocate for the marginal target parameters as described in previous work by
[131] or [65].
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3.8 Appendix

Comparison with marginal parameters

We present below two alternative statistical parameters defined on the same statistical model
as the parameter we consider in this article, and which were considered in previous works [131,
65]. The parameters are marginal, as opposed to context-specific parameters we consider
in the present article. The definition of the marginal parameters entails integrating against
certain marginal distributions of contexts, as we make explicit below. Let (O∗(t))∞t=1 ∼ PQ,g∗ ,
with O∗(t) = (A∗(t), Y ∗(t),W ∗(t)). Consider the distribution PQ,g∗ over infinite sequences
taking values in the infinite cartesian product space ×∞t=1O, defined from the factors of
P ∈M by the following G-computation formula:

PQ,g∗ ((o(t))∞t=1) := PCo(1)(co(1))
∞∏
t=1

g∗(a(t) | co(t))Q(y(t) | co(t))Qw(w(t) | co(t)).

Marginal parameter by van der Laan et al. 2018 [131]

As a first example of a marginal parameter, [131] consider a class of parameters which
includes

Ψ1,τ (P ) := EQ,g∗ [Y
∗(τ)],

for τ ≥ 1. Under the causal identifiability assumptions, Ψ1,τ (P0) equals the mean outcome
we would obtain at time τ , under a counterfactual time series with initial context distribution
P0,Co(1) and intervention g∗ (instead of the observed intervention g) at every time point. We
note that P0,Co(1) is the initial, observed data-generating distribution. The canonical gradient
of Ψ1,τ w.r.t. our model M (where M assumes PCo(1) known1) is

D∗(P )(oN) :=
1

N

N∑
t=1

D̄(Q,ω, g)(co(t), o(t))

with

D̄(Q,ω, g)(co, o) :=
τ∑
s=1

ωs(c)
g∗(a | co)
g(a | co)

{EQ,g∗ [Y ∗(τ) | O∗(s) = o, C∗o (s) = co]

−EQ,g∗ [Y ∗(τ) | A∗(s) = a, C∗o (s) = co]} ,

1If we instead supposed that PCo(1) is unknown and lies in a certain model MPCo(1)
, the canonical

gradient would have one additional component, which would be lying in the tangent space of MPCo(1)
. As

far as the conditional parameter of the main text are concerned, this distinction has no effect, as these do
not depend on the marginal distribution of contexts and therefore its canonical gradient has no components
in the tangent spaces corresponding to the context distributions.
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with ωs(co) = hC∗o (s)(co)/h̄N(co), where

hCo(s)(co) =PQ,g[Co(s) = co],

h̄N(co) =
1

N

N∑
t=1

hCo(t)(co),

and hC∗o (s)(co) =PQ,g∗ [C
∗
o (s) = co]

are the marginal density of context Co(s) under P , the average thereof over observed time
points t = 1, . . . , N , and the marginal density of context C∗o (s) under PQ,g∗ . We note that
Ψ1,1 is the marginal equivalent of our parameter ΨCo(1). Specifically,

Ψ1,1(P ) =

∫
dPCo(1)(co(1))Ψco(1)(P ).

Marginal parameter by Kallus and Uehara, 2019 [65]

Let γ ∈ (0, 1). Kallus and Uehara [65] consider the parameter

Ψ2(P ) :=EQ,g∗

[
∞∑
τ=1

γτY ∗(τ)

]
=
∑
τ≥1

γτΨ1,τ (P ).

Under the causal identifiability assumptions, Ψ2(P0) is the expected total discounted out-
come from time point 1 until ∞ that we would get if we carried out intervention g∗ forever
— starting from initial context distribution P0,Co(1), as in the observed data generating dis-
tribution. The canonical gradient Ψ2 w.r.t. M (again, supposing that M considers P0,Co(1)

known) is

D∗(P )(oN) :=
1

N

N∑
t=1

D̄(Q,ω, g)(co(t), o(t)),

with

D̄(Q,ω, g)(co, o) :=
∞∑
s=1

ωs(co)
g∗(a | co)
g(a | co)

{y + γV1,Q,g∗(co, o)− V2,Q,g∗(co, a)} ,

where ωs is defined as in the previous example, and

V1,Q,g∗(co, o) :=EQ,g∗

[∑
τ≥2

γτY ∗(τ) | C∗o (1) = co, O
∗(1) = o

]

and V2,Q,g∗(co, o) :=EQ,g∗

[∑
τ≥1

γτY ∗(τ) | A∗(1) = a,O∗(1) = o

]
.
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Robustness properties

In this article we are concerned with adaptive trials where the intervention is controlled by
the experimenter, hence g0 is known; we therefore only consider the case g = g0. Under
g = g0, both parameters Ψ′ ∈ {Ψ1,τ ,Ψ2} defined above admit a first order expansion of the
form

Ψ′(P )−Ψ′(P0) = −P0D
∗(P ) +R′(Q,Q0, ω, ω0),

where R′ is a second-order remainder term such that R(Q,Q0, ω, ω0) = 0 if either Q = Q0 and
ω = ω0. While this resembles a traditional double-robustness property, as that which holds
in the i.i.d. setting for the ATE or in the time series setting for our conditional parameter
(as opposed to arbitrary time-series dependence or Markov decision process) it is important
to note the following:

1. For Ψ′ ∈ {Ψ1,τ ,Ψ2}, knowledge of the treatment mechanism is not sufficient to guar-
antee that the remainder term is zero; we direct the interested reader to [131] for the
exact form of R′.

2. The parameters ω and Q are not variation independent, as appears explicitly from the
definition of ωs. In fact, when estimating ωs from a single time series, one must a
priori rely on an estimator of Q to obtain estimates of ωs (see [131]). Therefore, if the
estimator of Q is inconsistent, the corresponding estimator of ωs will be inconsistent
as well.
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Stabilization of conditional variances

Assumption 18 on the stabilization of the conditional variance of the canonical gradient
can be checked under mixing conditions on the sequence of context (Co(t)), and under the
condition that the design g0,t converges to a fixed design. We state formally below such a
set of conditions.

Assumption 21 (Convergence of the marginal law of contexts). Suppose that the marginal

law of contexts converges to a limit law, that is Co(t)
d−→ C∞, for some random variable C∞.

Definition 4 (ρ-mixing). Consider a couple of random variables (Z1, Z2) ∼ P . The ρ-mixing
coefficient, or maximum correlation coefficient of Z1 and Z2 is defined as

ρP (Z1, Z2) := sup {Corr(f1(Z1), f2(Z2)) : f1 ∈ L2(PZ1), f2 ∈ L2(PZ2)} .

Assumption 22 (ρ-mixing condition). Suppose that

sup
t≥1

N∑
s=1

ρ(Co(t), Co(t+ s)) = o(N).

Observe that if g is common across time points, the process (Co(t)) is an homogeneous
Markov chain. Conditions under which homogeneous Markov chains have marginal law
converging to a fixed law and are mixing have been extensively studied. A textbook example,
albeit perhaps a bit too contrived for many specifications of the setting of our current chapter,
is when the Markov chain has finite state space and the probability of transitioning between
any two states from one time point to the next is non-zero. In this case, ergodic theory shows
that the transition kernel of the Markov chain admits a so-called invariant law - the marginal
laws converge exponentially fast (in total variation distance) to the invariant law, and the
mixing coefficients have finite sum. We refer the interested reader to the survey paper by [16]
for more general conditions under which Markov chains have convergent marginal laws and
are strongly mixing (for various types of mixing coefficients, one of them being ρ-mixing)

Assumption 23 (Design stabilization). There is a design g∞ such that ‖g0,t−g∞‖1,Pg∗,h0,t
=

o(1), and g∞ ≥ δ, for some δ > 0.

We note that, as we will always use assumption 23 along with assumption 17, we will suppose
that the constant δ in the statement of both assumptions is the same.

Lemma 4 (Conditional variance stabilization under mixing). Suppose that assumptions 17,
21 and 22 hold. Then assumption 18 holds.
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Analysis of the martingale process term

We analyze the martingale process {M2,N(Q̄, Q̄1) : Q̄ ∈ Q̄} under a measure of complexity
introduced by [128], which we will refer to in the present work as sequential bracketing
entropy. We state below the definition of sequential bracketing entropy particularized to our
setting.

Definition 5 (Sequential bracketing entropy). Consider a stochastic process of the form
ΞN := {(ξt(f))Nt=1 : f ∈ F} where F is an index set such that, for every f ∈ F , t ∈ [N ],
ξt(f) is an Ō(t)-measurable real valued random variable. We say that a collection of random
variables of the form B := {(Λj

t ,Υ
j
t)
N
t=1 : j ∈ [J ]} is an (ε, b, Ō(N)) bracketing of ΞN if

1. for every t ∈ [N ], and j ∈ [J ], (Λj
t ,Υ

j
t) is Ō(t)-measurable,

2. for every f ∈ F , there exists j ∈ [J ], such that, for every t ∈ [J ], Λj
t ≤ ξt(f) ≤ Υj

t ,

3. for every t ∈ [N ], j ∈ [J ], |Λj
t −Υj

t | ≤ b a.s.,

4. for every j ∈ [J ],

1

N

N∑
t=1

E
[
(Υj

t − Λj
t)

2|Ō(t− 1)
]
≤ ε2.

We denote N[ ](ε, b,ΞN , Ō(N)) the minimal cardinality of an (ε, b,ΞN , Ō(N))-bracketing.

Applied to our problem, observe that the process {M2,N(Q̄, Q̄1) : Q̄ ∈ Q} is derived from
the process

ΞN :=
{(

(D∗(Q̄)−D∗(Q̄1))(Co(t), O(t))
)N
t=1

: Q̄ ∈ Q̄
}
.

Natural questions that arise are (1) how to connect the sequential bracketing entropy of
the process ΞN to a traditional bracketing entropy measure for the outcome model Q̄, and
(2) how to obtain consistency of an estimator Q̄∗N fitted from sequentially collected data.
Answers to both of these questions entail bracketing entropy preservation results that we
present in the upcoming subsection, 3.8.

We emphasize that the notion of sequential covering numbers, and the corresponding
sequential covering entropy introduced by [101], represent a measure of complexity under
which one can control martingale processes and obtain equicontinuity results. One motiva-
tion for the development of the notion of sequential covering numbers is that results that
hold for i.i.d. empirical processes under traditional covering entropy conditions do not hold
for martingale processes. Interestingly, while classical covering number conditions cannot
be used to control martingale processes, classical bracketing number bounds can usually be
turned into sequential bracketing number bounds. Our choice to state results in terms of
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one measure of sequential complexity rather than the other (or both) is motivated by con-
cision purposes, and also by the fact that we know how to bound bracketing entropy of a
certain class of statistical models we find realistic in many applications, as we describe in
later subsections.

Bracketing preservation results

We formalize the connection between the sequential bracketing entropy of the process ΞN

to a traditional bracketing entropy measure for the outcome model Q̄ in lemma 5 below.
In particular, lemma 5 bounds the sequential bracketing entropy of the canonical gradient
process ΞN in terms of the bracketing entropy of the outcome model Q̄ w.r.t. a norm defined
below.

Lemma 5. Suppose that assumption 17 holds. Then

N[ ](ε,ΞN , Ō(N)) . N[ ](ε, Q̄, L2(Pg∗,hN )),

where Pg∗,hN (a, c) = g∗(a | c)hN(c), with hN being the empirical measure hN := N−1
∑N

t=1 δCo(t).

Proof. Suppose B = {(λj, υj) : j ∈ [J ]} is an ε-bracketing in L2(Pg∗,hN ) norm of Q̄. Let
Q̄ ∈ Q. There exists j ∈ [J ] such that λj ≤ Q̄ ≤ υj. Without loss of generality, we can
suppose that 0 ≤ λj ≤ υj ≤ 1, since the bracket (λj ∨ 0, υj ∧ 1) brackets the same functions
of Q̄ as (λj, υj), as every element of Q̄ has range in [0, 1]. We have that

D∗(Q̄)−D∗(Q̄1) =
g∗

g0,t

(Q̄1 − Q̄) +
2∑

a=1

g∗(a | ·)(Q̄− Q̄1))(a, ·).

Denoting

Λj
t :=

g∗

g0,t

(Q̄1 − υj) +
2∑

a=1

g∗(a | ·)(λj − Q̄1))(a, ·),

and Υj
t :=

g∗

g0,t

(Q̄1 − λj) +
2∑

a=1

g∗(a | ·)(υj − Q̄1))(a, ·),

we have that

Λj
t ≤ (D∗(Q̄, g0,t)−D∗(Q̄, g0,t)(Co(t), O(t)) ≤ Υj

t .
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We now check the size of the sequential bracket (Λj
t ,Υ

j
t)
N
t=1. We have that

1

N

N∑
t=1

EQ0,g

[
(Υj

t − Λj
t)

2 | Ō(t− 1)
]

=
1

N

N∑
t=1

EQ0,g0

{ g∗

g0,t

(υj − λj)(A(t), Co(t)) +
2∑

a=1

(g∗(υj − λj))(a, Co(t))

}2

| Co(t)


≤ 2

N

N∑
t=1

EQ0,g0

[(
g∗

g0,t

)2

(υj − λj)2(A(t), Co(t)) | Co(t)

]
+ EQ0,g∗ [(υj − λj)(A(t), Co(t))]

2

≤ 4δ−1

N

N∑
t=1

EQ0,g∗
[
(υj − λj)2(A(t), Co(t)) | Co(t)

]
= 4δ−1‖υj − λj‖2

2,Pg∗,hN

≤ 4δ−1ε2,

where we have used assumption 17 and Jensen’s inequality in the fourth line above. From
assumption 17, it is also immediate to check that |Υj

t − Λj
t | ≤ 2δ−1. So far, we have proven

that one can construct a (2δ−1/2ε, 2δ−1, Ō(N)) bracketing of ΞN from an ε-bracketing in
L2(Pg∗,hN ) norm of Q̄. Treating δ as a constant, this implies that logN[ ](ε, 2δ

−1,ΞN , Ō(N)) .
logN[ ](ε, Q̄, L2(Pg∗,hN )).

When proving consistency and convergence rate results for the outcome model estimator
Q̄∗N , we need bounds on the sequential bracketing entropy of the following martingale process:

LN :=
{(
`t(Q̄)(Co(t), O(t))

)N
t=1

: Q̄ ∈ Q̄
}
,

where `t(Q̄)(c, o) := (g∗(a | c)/g0,t(a | c))(`(Q̄)(o) − `(Q̄1)(o)), with `(f) denoting a loss
function. We refer to LN as an inverse propensity weighted loss process. Lemma 4 in [10]
provides conditions, which hold for most common loss functions, under which the bracketing
entropy of the loss class {`(f)(Q̄) : Q̄ ∈ Q̄} is dominated up to a constant by the bracketing
entropy of Q̄. As a direct corollary of this lemma, we state the following result on the
sequential bracketing entropy of the process LN ; we refer to [10] for examples of common
settings where assumption 24 is satisfied.

Assumption 24. The loss function can be written as `(Q̄)(c, a, y) = ˜̀(Q̄(c, a), y), where ˜̀
satisfies the following conditions:

• for all f , c, a, y 7→ ˜̀(Q̄(c, a), y) is unimodal,

• for any y, u 7→ ˜̀(u, y) is L-Lispchitz, for L = O(1).
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Lemma 6 (Sequential bracketing entropy of loss process). Suppose that assumptions 24 and
17 hold. Then

N[ ](ε,LN , Ō(N)) . N[ ](ε, Q̄, L2(Pg∗,hN )).

Convergence rate of sequentially fitted outcome model estimators

In this subsection, we give convergence guarantees for outcome model estimators Q̄N , and
their targeted counterpart Q̄∗N , fitted on sequentially collected data. We first give convergence
rate guarantees for empirical risk minizers Q̄N over a class Q̄, in terms of the bracketing
entropy in L2(Pg∗,hN )-norm of Q̄. As briefly defined in section 3.4, let ` = L be a loss
function for the outcome regression such that, for every Q̄ : C × A → [0, 1], we have that

Q̄0 ∈ arg min
Q̄-measurable

PQ0,g∗,hN `(Q̄).

We denote R0,N(Q̄) := PQ0,g∗,hN `(Q̄) as the population risk; we note that this population
risk is equal to the average across t of the conditional risks PQ0g∗,hN `(Q̄) given Co(t). Let Q̄∗

be a minimizer of R0,N(Q̄) over Q̄. We further define the empirical risk as

R̂N(Q̄) :=
1

N

N∑
t=1

g∗

g0,t

(A(t) | Co(t))`(Q̄)(Co(t), O(t)).

Note that the empirical risk minimizer over Q̄ is any minimizer over Q̄ of R̂N(Q̄); as such,
we use importance sampling weighting factor g∗/g0,t in front of each term `(Q̄)(Co(t), O(t)).
This choice is motivated by the fact that we want convergence rates guarantees for Q̄N in
L2(Pg∗,hN ), as is natural to control the size of the sequential brackets of the canonical gradient
process ΞN in terms of the size of brackets of Q̄ in L2(Pg∗,hN ) norm (see lemma 5). In the
following, we state the entropy condition and additional assumptions on the loss function.

Assumption 25 (Entropy of the outcome model). Suppose that there exists p > 0 such that

log(1 +N[ ](ε, Q̄, L2(Pg∗,hN ))) ≤ ε−p.

Assumption 26 (Variance bound for the loss). Suppose that

‖`(Q̄)− `(Q̄∗)‖2
2,Q̄0,g∗,hN

. R0,N(Q̄)−R0,N(Q̄∗)

for all Q̄ ∈ Q̄.

Assumption 27 (Excess risk dominates L2 norm). Suppose that

‖Q̄− Q̄∗‖2,g∗,hN . R0,N(Q̄)−R0,N(Q̄∗).
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Theorem 13. Consider an empirical risk minimizer Q̄N over Q̄, and a population minimizer
Q̄∗, as defined above. Suppose that assumptions 25, 26, 27, and assumption 24 hold. Then,

‖Q̄N − Q̄∗‖2,g∗,hN =

{
OP (N−

1
1+p/2 ) if p < 2,

OP (N−
1
p ) if p > 2.

Proof. Consider the process LN defined in subsection 3.8. We define M0,N(Q̄, Q̄∗) and

M̂N(Q̄, Q̄∗) as population and empirical risk differences

M0,N(Q̄, Q̄∗) := R0,N(Q̄)−R0,N(Q̄∗) and M̂N(Q̄, Q̄∗) := R̂N(Q̄)− R̂N(Q̄∗). (3.17)

Let

σ2
N(Q̄, Q̄∗) :=

1

N

N∑
t=1

E

[(
g∗

g0,t

(A(t) | Co(t))(`(Q̄)− `(Q̄∗))(Co(t), O(t))

)2

| Co(t)

]
.

The quantity σN(Q̄, Q̄∗) can be seen as a sequential equivalent of an L2 norm for the process
{(g∗/g0,t)(A(t) | Co(t))(`(Q̄) − `(Q̄∗))(Co(t), O(t))}Nt=1. From assumption 17, we have that
supt≥1 ‖(g∗/g0,t)(`(Q̄) − `(Q̄∗))‖∞ = O(1). From theorem A.4 in [54], with probability at
least 1− 2e−x, we have that

sup
{
M0,N(Q̄, Q̄∗)− M̂N(Q̄, Q̄∗) : Q̄ ∈ Q̄, σN(Q̄) ≤ r

}
. r− +

1√
N

∫ r

r−

√
log(1 +N[ ](ε, 1,LN , Ō(N)))dε

+
1

N
log(1 +N[ ](r, 1,LN , Ō(N))) + r

√
x

N
+
x

N
.

From assumption 17, we have that

σN(Q̄) . ‖`(Q̄)− `(Q̄∗)‖2,g∗,hN .M0,N(Q̄, Q̄∗).

Combined with lemma 6, we have that

sup
{
M0,N(Q̄, Q̄∗)− M̂N(Q̄, Q̄∗) : Q̄ ∈ Q̄, M0,N(Q̄, Q̄∗) ≤ r

}
. r− +

1√
N

∫ r

r−

√
log(1 +N[ ](ε, Q̄, L2(Pg∗,hN ))dε

+
1

N
log(1 +N[ ](r, Q̄, L2(Pg∗,hN )) + r

√
x

N
+
x

N

with probability at least 1 − 2e−x. In the following, we treat the cases p < 2 and p > 2
separately.
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Case p > 2. Observe that

‖Q̄N − Q̄∗‖2,g∗,hN .M0,N(Q̄N , Q̄
∗)

=M0,N(Q̄N , Q̄
∗)− M̂N(Q̄N , Q̄

∗) + M̂N(Q̄N , Q̄
∗)

≤M0,N(Q̄N , Q̄
∗)− M̂N(Q̄N , Q̄

∗)

≤ sup
{
M0,N(Q̄, Q̄∗)− M̂N(Q̄, Q̄∗) : Q̄ ∈ Q̄, M0,N(Q̄, Q̄∗) ≤ r0

}
where r0 := supQ̄∈Q̄M0,N(Q̄, Q̄∗). The third line follows from the fact that QN minimizes

R̂N(Q̄) over Q̄, wich implies that M̂N(Q̄N , Q̄
∗) ≤ 0. We now use equation (??) to bound the

last line of the inequality. From assumption 17, we know that r0 = O(1). Using the entropy
bound from assumption 25 and minimizing the right hand side of (??) w.r.t. r−, we obtain
that, with probability at least 1− 2e−x,

‖Q̄N − Q̄∗‖2
2,g∗,hN

. N−2/p +
x√
N

+
x

N
,

which, by picking x appropriately, then implies that ‖Q̄N − Q̄∗‖2,g∗,hN = OP (N−1/p).

Case p < 2. Starting from the bound (??), via some algebra and by taking an integral,
we obtain

EP0

[
sup

{
M0,N(Q̄, Q̄∗)− M̂N(Q̄, Q̄∗) : Q̄ ∈ Q̄, M0,N(Q̄, Q̄∗) ≤ r

}]
. r− +

1√
N

(
r +

∫ r

r−

√
log(1 +N[ ](ε, Q̄, L2(Pg∗,hN ))dε

)
+

1

N

(
r + log(1 +N[ ](r, Q̄, L2(Pg∗,hN ))

)
.

Let r− = 0. By using the entropy bound from assumption 25, we obtain that

EP0

[
sup

{
M0,N(Q̄, Q̄∗)− M̂N(Q̄, Q̄∗) : Q̄ ∈ Q̄, M0,N(Q̄, Q̄∗) ≤ r

}]
.

1√
N
r1−p/2

(
1 +

r1−p/2

r2
√
N

)
.

Theorem 3.4.1 in [126] then implies that

M0,N(Q̄N , Q̄
∗) = OP (N−

2
1+p/2 ), and therefore ‖Q̄N − Q̄∗‖2,g∗,hN = OP (N−

1
1+p/2 ).
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Outcome model classes

Now that we know how to characterize the sequential bracketing entropy of ΞN and LN in
terms of the bracketing entropy w.r.t. the norm L2(PQ0,hC,N ) of the outcome model Q, we
look at specific function classes Q for which we know how to bound the latter.

Holder classes H(β,M) over C × O

Consider functions over a certain domain X ; in our setting we note that X = C×O. Suppose
that dim(X ) = d. We denote H(β,M) the class of functions over a certain domain X , such
that, for any x, y ∈ X , and any non-negative integers β1, . . . , βd such that β1 + . . .+βd = bβc,∣∣∣∣∣ ∂bβcf

∂xβ1

1 . . . ∂xβdd
(x)− ∂bβcf

∂xβ1

1 . . . ∂xβdd
(y)

∣∣∣∣∣ ≤M‖x− y‖.

The bracketing entropy w.r.t. the uniform norm ‖ · ‖ of such a class satisfies

logN[ ](ε,H(β,M), ‖ · ‖) . ε−d/β.

For more detail, we refer the interested reader to, for example, chapter 2.7 in [126]. As such,
our Donsker condition 19 is satisfied for β > d/2. Nevertheless, we caution that assuming
that the outcome model lies in a Holder class of differentiability order β > d/2 might be an
overly restrictive assumption.

HAL class

A class of functions that is much richer that the previous Holder classes is the class of
cadlag functions with bounded sectional variation norm — also referred to as Hardy-Krause
variation. We refer to this class as the Highly Adaptive Lasso class (HAL class), as it is the
class in which the estimator, introduced in [130], takes values. The Highly Adaptive Lasso
class is particularly attractive in i.i.d. settings for various reasons, which we enumerate
next. In particular, (1) unlike Holder classes, it doesn’t make local smoothness assumptions.
Rather it only restricts a global measure of irregularity, the sectional variation norm, thereby
allowing for functions to be differentially smooth/variable depending on the area of the
domain. (2) Emprical risk minimzers over the HAL class were shown to be competitive with
the best supervised machine learning algorithms, including Gradient Boosting Machines and
Random Forests. (3) We know how to bound both the uniform metric entropy and the
bracketing entropy of these classes of functions. These bounds show that the corresponding
entropy integrals are bounded, which imply that the HAL class is Donsker. In particular,
[10] provide a bound on the bracketing entropy w.r.t. Lr(P ), for r ∈ [1,∞), for probability
distribution that have bounded Radon-Nikodym derivative w.r.t. the Lebesgue measure,
that is dP/dµ ≤ C. [10] use this bracketing entropy bound to prove the rate of convergence
O(N−1/3(logN)2d−1).
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Unfortunately, to bound the sequential bracketing entropies of ΞN and of LN we would
need a bracketing entropy bound w.r.t. L2(PQ0,hC,N ), which, owing to the fact that hC,N is
a discrete measure, does not have bounded Radon-Nikodym derivative w.r.t. the Lebesgue
measure over C×O. Under the assumption 21 on the convergence of the marginals of (Co(t))

to a limit law (we shall denote it h∞), we have that hC,N
d−→ h∞, which can reasonably be

a continuous measure dominated by the Lebesgue measure. By convergence in distribution
of hC,N t to h∞, we have at least that the size of brackets w.r.t. hC,N converges to the size
of brackets under h∞. If this convergence were uniform over bracketings of Q̄, and that
dh∞/dµ ≤ C, then we would have that N[ ](ε, Q̄, L2(PQ0,hC,N )) . N[ ](ε, Q̄, L2(µ). Proving
the uniformity over bracket seems to be a relatively tough theoretical endeavor, and we leave
it to future research.

A modified HAL class

Given the difficulty in bounding N[ ](ε, Q̄, L2(PQ0,g∗,hN )) for the HAL, class, we consider a
modified HAL class in the case where C is discrete, that is C = {c1, . . . , cJ}. We define the
modified class as the set of functions f : C × O → R such that, for every c ∈ C, o 7→ f(c, o)
is cadlag with sectional variation norm smaller than M1. It is straightforward to show that
the bracketing entropy of such a class F is bounded as follows:

logN[ ](ε,F , L2(PQ0,g∗,hN )) . |C|ε−1(log(1/ε))2(dim(O)−1).
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Chapter 4

Adaptive Sequential Design with
Network and Time Dependence

Infectious disease surveillance via resource-constrained test allocation has become an increas-
ingly important topic during the COVID-19 pandemic. Even as vaccination rates increase
for COVID-19, widespread testing informs public health policy by (1) reducing transmis-
sion via identifying and isolating cases, and (2) tracking the outbreak dynamics. However,
infectious disease surveillance presents unique technical challenges. For instance, the true
outcome of interest we wish to minimize for outbreak control — one’s positive infectious
status, is a latent variable. In addition, unlike the usual i.i.d. settings, the presence of both
network and temporal dependence reduces the data to a single observation with dependent
components. Finally, the current literature advocates primarily for simple rule-based testing
strategies (e.g., symptom based, contact tracing, travel history), without taking into account
individual risk. In this chapter, we study an adaptive sequential design involving n individ-
uals over a period of τ time-steps, allowing for unspecified dependence among individuals
and across time. Our causal target parameter is the mean latent outcome we would have
obtained after one time-step, if, starting at time t given the observed past, we had carried
out a stochastic intervention that maximizes the outcome under a resource constraint. With
that, we propose an Online Super Learner for adaptive sequential surveillance that learns the
optimal choice of tests strategies over time, adapting to the current state of the outbreak.
Relying on a series of working models, the proposed method decides whether to learn across
samples, through time, or both — based on the underlying (unknown) structure in the data
at each time point of the disease trajectory. In addition, we present an identification result
for the latent outcome in terms of the observed data, and propose a risk-based strategy as
one of the candidate testing schemes that assigns tests based on the current risk of being
infected. We demonstrate the superior performance of the proposed strategy over commonly
implemented testing schemes in a simulation modeling a residential university environment
during the COVID-19 pandemic.
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4.1 Introduction

Most higher education institutions faced a difficult decision during the COVID-19 pandemic:
reopen and conduct in-person instruction, or face financial challenges and unpropitious social
impacts associated with continued closure. The spread of SARS-CoV-2 in a residential college
is particularly hazardous for the broader community due to a large percent of younger, poten-
tially asymptomatic individuals, higher likelihood of shared accommodation, and abundant
social contacts [83]. In the absence of pertinent prior experience, most institutions turned
to simulation models and sequential testing in order to track, and contain, the spread of
COVID-19. A rich literature on different modeling techniques emerged as a consequence —
resulting in variations of compartmental models, contact networks and agent- or individual-
based models [49, 102, 91, 82, 73, 86, 44, 21]. The interest in effective and safe reopening
strategy for an university campus extended across continents [124, 57], campus size [145, 4]
and urban settings [53]. Other groups resorted to empirical proximity networks of college
students in order to simulate and study the spread of the virus [52].

We differentiate between rule-based testing, broadly defined as simple deterministic rules
(e.g., based on symptoms, location, timing or network) and risk-based testing (e.g., testing
individuals at an estimated higher risk of infection). Available literature on testing strategies
for a residential campus focused mostly on rule-based testing: symptom tracking and contact
tracing, as well as scheduled on-campus screening with varying frequency [49, 15, 82, 91, 4,
102, 142, 113, 21, 96, 73, 44]. In general, the predominant infectious disease testing recom-
mendation made by the World Health Organization suggests assigning tests to individuals
having (i) symptoms consistent with COVID-19, (ii) contact with confirmed or suspected
COVID-19 cases and (iii) evidence of recent travel history [90]. Alternate suggestions ad-
vocate for fast and frequent random population testing [70] and scheduled screening with
repeated tests [143]. While contact tracing via efficient tracking system can be advantageous,
its implementation is costly and often not comprehensive enough as the spread of infectious
disease advances [42]. Other simple rule-based strategies tend to miss asymptomatic infec-
tions (e.g., symptom-based), or require significant financial burden and compliance for a
large and heterogeneous population (e.g., frequent random testing). In addition, most of
the suggested rule-based strategies are not clear on how to distribute tests across different
prioritization groups.

Other concentrated efforts consist of finding optimal testing strategies that inform epi-
demic dynamics [22] and help reduce disease spread [11, 64, 48, 31]. In particular, [64] focus
on optimal allocations designed as a combination of group and segmented testing; segments
of the population based on occupation, age and geographical location are given testing pri-
ority. Both [11] and [48] advocate for contextual bandits as a possible approach to the
optimal testing allocation, with [11] additionally suggesting an utility-based active learning
solution. On the other hand, [31] develop a probabilistic framework accounting for resource
limitations, imperfect testing and the need for prioritizing higher risk patient populations.
However, all of the proposed strategies impose strong modeling assumptions — either on
the type of dependence allowed (assuming homogeneous Markov Decision Process), model-
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ing conditional probabilities necessary to estimate the number of positive tests, or assuming
which strata of the population constitutes at-risk profile.

In this work, we propose an adaptive sequential design for a setting with network and
temporal dependence where the goal is to optimize a short term outcome. The statistical
problem is handled within a fully nonparametric model, respecting the true (unknown)
dependence structure. While the proposed method is very general, it is particularly suited
for infectious disease surveillance and control. We consider a longitudinal structure following
n individuals over a trajectory until time τ . At each time point t for sample i, one observes
the exposure variable Ai(t) (e.g., indicator of testing), outcome Yi(t) (e.g., health status) and
other time-varying covariates in Li(t) (e.g., network structure, location, symptoms). For an
infectious disease surveillance, a decision maker/experimenter is in charge of assigning a
test Ai(t) to sample i at time t, then collecting a vector of measurements Li(t) for the
same individual, including the outcome. The exposure of interest is defined as a known
stochastic intervention, where each treatment denotes a specific testing design (e.g., rule-
based or risk-based testing, etc). We study a setting in which the same decision maker can
also adapt treatment assignment over time in response to past observations. Structuring
the test allocation problem as an adaptive sequential design is paramount in order for the
testing strategy to be able to adapt as the infectious disease trajectory changes and other
variants become dominant.

In a setting where goal is surveillance and control, it is natural to define performance of
a treatment rule in terms of a short-term average over samples. Our causal target parameter
is defined as the mean outcome we would have obtained after one time-step, if, starting
at time t given the observed past, we had carried out a stochastic intervention g∗t . The
main goal is to optimize the next time-point outcome under g∗t , at each t, under a possible
resource constraint. Alternatively, one can also seek to optimize the short-term outcome
under stochastic intervention as an average over time, therefore targeting the entire trajec-
tory. The history-adjusted optimal choice for a single time point intervention then defines a
new adaptive design over time, which we denote the Online Super Learner (SL) for adaptive
sequential surveillance. The regret minimization objective of the proposed design ensures
that we assign tests such that as many infectious individuals as possible are subsequently
caught. As the design is adaptive, it learns the optimal choice of test strategies over time,
responding to the current state of the epidemic.

The proposed adaptive sequential design has crucial advantages over competing methods
which make it particularly propitious in the infectious disease context. Key strength comes
from not having to make strong (conditional) independence assumptions, or modeling net-
work and time dependence. Instead of imposing unrealistic assumptions on the statistical
model, the proposed method selects among adaptive designs with a short term performance
Online Super Learner [7, 79]. As such, it imposes an honest benchmark to choose the best
performing estimate for the sake of the adaptive design performance. The necessary parts of
the design (e.g., conditional expectation of outcome given the past) is estimated via an Online
Super Learner which relies on working models for dependence structure, letting appropriate
cross-validation choose the correct model at time t. Therefore, the proposed method decides
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whether to learn across samples, through time, or both, based on the underlying (unknown)
structure in the data. This is in contrast to previously described adaptive sequential designs,
which rely on conditional independence assumptions (across time or samples) in order to deal
with unknown dependence [78, 9]. Secondly, as the true infectious status is unknown, the
proposed target parameter is defined in terms of a latent outcome. In this work, we show
that the average of true latent infectious status at time t can be identified as the average
of observed outcomes. As such, the statistical target parameter is defined in terms of the
observed outcome, delineated as a function of the stochastic intervention we implement.

In order to illustrate utility of the proposed adaptive sequential design, we simulate a
hypothetical residential campus during the SARS-CoV-2 infection. The modeling parame-
ters - including campus available resources, class schedule, on-campus housing and expected
population size - reflect environment at the University of California (Berkeley) in the Fall
of 2020. While we strive to model a specific environment, settings and simulations can be
easily modified to reflect any residential campus and infectious disease. Extensive simula-
tions demonstrate superior performance of the proposed adaptive design as opposed to all
considered rule-based schemes (repeat random testing, contact tracing + symptomatic). We
emphasize that the reported simulation results reflect the best case scenarios for the com-
petitor testing strategies: accurate observed network and full symptoms for symptomatic
individuals. The advantage of the proposed adaptive design is evident over a variety of
scenarios, including varying resource constraints and level of problem difficulty (determined
by the percent latent component of the network and individual risk). In addition to con-
sidering gold standard testing schemes, we investigate performance of a learned risk-based
strategy individually and as a candidate stochastic intervention in the proposed Online SL
for adaptive surveillance design. Our simulations demonstrate that learned and flexible risk-
based testing is crucial for an infectious disease with a large asymptomatic population — but
might need time to perform well, as we need data to learn who is at risk. An Online SL for
adaptive designs that uses both simple rule-based and learned risk-based testing strategies as
candidate designs outperforms all schemes individually, while learning which testing strategy
does best in each infectious disease context over time. As such, it tends to pick rule-based
strategies at the beginning of the infectious disease trajectory, and risk-based testing as more
data is collected and the risk function is learned.

The article structure is as follows. In Section 4.2 we formally define the general formula-
tion of the statistical estimation problem, consisting of specifying notation, likelihood, and
the nonparametric model. In subsection 4.2, we describe all the relevant working models,
including assumptions underlying each. We define the target parameter, causal assumptions,
and provide identification results in subsection 4.2. In Section 4.3, we proceed to describe
the proposed adaptive design, denoted as the Online Super Learner for adaptive sequential
surveillance. Section 4.3 includes various proposed selectors, aimed at learning the optimal
testing strategy for the sake of adaptive design performance. We provide details on the
agent-based model used for simulations, as well as how each testing strategy considered can
be described as a stochastic intervention, in Section 4.4. Section 4.5 contains simulation
results based on the proposed agent-based model for moderate size residential campus. We
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conclude with a short discussion in Section 4.6.

4.2 Statistical Formulation of the Problem

Data and the Causal Model

Consider a random variable denoted as Oi for i = 1, · · · , n, where Oi is a sample i trajectory.
For each individual i, we define the following longitudinal data structure where

Oi = (Li(0), Ai(1), Li(1), . . . , Ai(τ), Li(τ)),

corresponding to observations from time t = 0 to the final time point t = τ . Within time
point t, we arbitrarily order data points by increasing sample index i, such that

(A1(t), . . . , An(t), L1(t), . . . , Ln(t))

reflects the unit ordering. We further decompose sample i trajectory into baseline and time-
varying parts. In particular, we define Oi(0) = Li(0) as a vector of baseline covariates
which, by definition, are initiated at t = 0. For an infectious disease surveillance, Li(0)
includes baseline infectious status, as well as other covariates (e.g., demographic information,
initial network structure). The time-varying part of sample i trajectory decomposes as
Oi(t) = (Ai(t), Li(t)), for t = 1, . . . , τ ; it includes the treatment status occurring before the
response variable and time-varying covariates, all indexed by time t. In particular, we let
Ai(t) denote the exposure variable, corresponding to a time t indicator of being tested in an
infectious disease surveillance design. We define Li(t) as a vector of time-varying covariates,
with the first component being the response variable — infectious status for sample i at
time t. In addition to outcome, Li(t) also possibly tracks the risk profile of unit i, as well
as information on other units {1, . . . , n} \ {i} that belong to the network of sample i. The
network of individual i contained in Li(t) is denoted as Fi(t), which reflects all the samples
connected to unit i at time t. In particular, we allow |Fi(t)| to vary in i, but assume that this
number is bounded by some known global constant K that does not depend on n. Finally, we
emphasize that the true infectious status for each sample and at each time point is typically
not observed. Hence, we define the true latent outcome, notably the infectious status for
sample i at time t, as Y l

i (t). The observed outcome for sample i at time point t is denoted
as Yi(t), where Li(t) = (Yi(t), . . . , Fi(t), . . .).

For n observed trajectories, we write O = Oτ,n = {Oi}ni=1, where O is a simplified
notation that does not make dependence on τ and n explicit. Under this notation, data
observed throughout the course of the trial is O, with O(t) = {Oi(t)}ni=1 being the collection
of n time t-specific points. Similarly, let L(t) and A(t) denote n dimensional time-specific
vectors, effectively including time t-specific information across all n collected samples; with
that, we have that L(t) = (L1(t), . . . , Ln(t)) and A(t) = (A1(t), . . . , An(t)). Further, we
write Pa(O(t)) = Ō(t − 1) = (O(0), . . . , O(t − 1)) to represent history of all samples up
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to time t. The complete histories until node L(t) and A(t) are denoted as Pa(L(t)) =
(Ō(t− 1), A(t)) and Pa(A(t)) = (Ō(t− 1)), which are time t histories of all n samples. We
also let time and unit-specific histories Pa(Ai(t)) and Pa(Li(t)) denote all observations that
come before Ai(t) and Li(t), according to both time and sample ordering. In particular, let
Pa(Li(t)) = (Pa(L(t)), L1(t), · · · , Li−1(t)) and Pa(Ai(t)) = (Pa(A(t)), A1(t), · · · , Ai−1(t)),
where i − 1 denotes sequential samples until sample i. Consequently, we let Pa(Oi(t)) =
Ōi(t) = (Ō(t− 1), O1(t), · · · , Oi−1(t)), where Pa(Oi(t)) includes all history until time t− 1
and t-specific samples until individual i.

Statistical Model

Let M denote the statistical model for the probability distribution of the data that is non-
parametric, beyond possible knowledge of the treatment mechanism. The more we know, or
are willing to assume about the experiment that produces the data, the smaller the model.
Let P0 ∈ M denote the true probability distribution of O, such that O ∼ P0, and let P
denote any probability distribution where P ∈ M. We let po denote the density of P0 with
respect to (w.r.t) a dominating measure µ. The likelihood of o can be factorized according
to the time-ordering as follows:

p0(o) =
n∏
i=1

p0,l(0)(li(0))
τ∏
t=1

p0,ai(t)(ai(t)|Pa(ai(t)))p0,li(t)(li(t)|Pa(li(t))) (4.1)

=
n∏
i=1

p0,l(0)(li(0))
τ∏
t=1

g0,i,t(ai(t) | Pa(ai(t)))q0,i,t(li(t) | Pa(li(t))),

where we let ai(t) 7→ p0,ai(t)(ai(t) | Pa(ai(t))) and li(t) 7→ p0,li(t)(li(t) | Pa(li(t))) denote con-
ditional densities w.r.t. the dominating measures µA and µL, respectively. We use shorthand
notation for conditional densities and distributions of the relevant nodes. In particular, we
write q0,i,t as the true (i, t)-specific conditional density of Li(t) based on the observed past
until time t, Pa(Li(t)). The corresponding true conditional distribution of Li(t) conditional
on Pa(Li(t)) is written as Q0,i,t. At time t, g0,i,t reflects the true probability of drawing the
testing indicator Ai(t) conditional on the past until time t, Pa(Ai(t)). In our randomized
experimental setting, g0,i,t is known and in control of the experimenter for most testing al-
locations; practically, it denotes a particular sampling and testing design implemented for
sample i at time t. Due to the data ordering, we make the following two remarks

Remark 1 For every t ∈ [τ ] and i ∈ [n], A(t) = (A1(t), . . . , An(t)) are independent condi-
tional on Pa(A(t)).

Remark 2 For every t ∈ [τ ] and i ∈ [n], Y (t) = (Y1(t), . . . , Yn(t)) are independent condi-
tional on Pa(L(t)).

Both Remark (1) and (2) follow from the time and sample ordering: testing is allocated
based on all of the observed past Ō(t− 1) (and not influenced by other tests at time t), and
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observed outcome is a direct consequence of tested individuals and observed past. We define
Q̄0,i,t(Pa(L(t))) = Q̄0,i,t(A(t), Pa(O(t))) ≡ E0[Y (t)|A(t), Pa(O(t))] as the true conditional
expectation of Y (t) given the observed past. In order to emphasize dependence on the
treatment mechanism gi,t, we might also write Q̄

gi,t
0,i,t(Pa(L(t))) as the conditional expectation

of Y (t) given the observed past under gi,t. Finally, recall that Pa(O(t)) = Ō(t− 1) denotes
observed history of O(t) until time t. With that in mind, we write POi(t)|Ō(t−1) (shorthand,
PŌ(t−1)) as the time t conditional distribution of Oi(t) given the observed past Ō(t− 1).

Note that the decomposition presented in likelihood expression (4.1) places no restrictions
on the type of dependence possible. Therefore, the data reduces to a dependent observation
with temporal and network dependence, and we observe only a single draw from P0. In
order to learn relevant parts of the data generating distribution, we would have to put
some restrictions on the statistical model M. In the following, we discuss several possible
working models that enable us to learn parts of the likelihood, without assuming any of
them explicitly. Via the proposed working models, one can distinguish between different
types of dependence we are willing to assume, depending on whether we can learn through
time (therefore assuming some level of conditional stationarity), learn through the number of
individuals (therefore assuming independence of samples given a known network), or both.
We emphasize that one of the strengths of the proposed method is that it does not impose any
direct assumptions on the statistical model M; we let the data decide on the appropriate
working model at each time point. In the following, we describe all considered working
models, and motivation behind each.

Working Models

We start by restricting the complexity of dependence allowed by supposing that each Li(t)
can depend on the past only through a fixed dimensional summary measure of history, instead
of the entire observed history. As such, we assume that q0,i,t(Li(t) | Pa(L(t))) depends on the
past only through a fixed dimensional summary measure CLi(t), where CLi(t) is a function of
the observed history. Therefore, for every t ∈ [τ ] and i ∈ [N ], Li(t) is independent of its past
conditional on CLi(t) and qi,t(Li(t) | Pa(L(t))) = qi,t(Li(t) | CLi(t)). For some applications,
the summary measure might cover a limited history, and the dependent process has a finite
memory allowing us to learn through time. A particular example of summary measures are
fixed dimensional extractions from the complete history, such that CLi(t) = hLi(Pa(L(t))) ∈
Rk is a (k)-dimensional extraction of the form CLi(t) = {(Lj(s), Aj(s+ 1)) : s = t− 1, t−
2, · · · , t− k, j ∈ [n]}. For other applications, the fixed dimensional summary measure might
be a function of the sample i’s network; as such, we might have that conditional probability
of Li(t) depends only on the history of j samples, where j ∈ Fi(t)∪i. In the case of both time
and network dependence, CLi(t) could be a function of both sample i’s network and previous
past time-points where CLi(t) = {(Lj(s), Aj(s+1)) : s = t−1, t−2, · · · , t−k, j ∈ Fi(t)∪i};
then CLi(t) is a summary measure of the history over last k steps of a set Fi(t) of at most
K friends. We note that, if Fi(t) = ∅, our formulation reduces to an i.i.d. setting across
samples. In order to formally present our target parameter under a working model, we make
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the following assumption on the decomposition of the fixed dimensional summary measure,
as stated below.

Assumption 28 (Decomposition of the fixed dimensional summary). For every t ∈ [τ ] and
i ∈ [n], the fixed dimensional summary measure CLi(t) can be written as

CLi(t) = (Ai(t), CAi(t)),

where CAi(t) = hAi(Pa(A(t))) = hAi(Pa(O(t))).

Assumption 29 (Conditional independence given a summary measure). For every t ∈ [τ ]
and i ∈ [n],

qi,t(li(t) | cLi(t)) = qi,t(li(t) | Pa(l(t)))

where cLi(t) is the observed fixed dimensional summary of the past until time t.

The following key assumption is a modeling assumption on the conditional density of Li(t)
given the observed past. Consistent with Assumption 4 in [9], we might assume that the
conditional distribution of Li(t) given the observed fixed dimensional summary of the history
is a constant function across samples and time. As such, there exists a common in i and t
conditional density q such that qi,t = q. Drawing from the reinforcement learning literature,
this assumption is analogous to the homogeneity assumption for the Markov Decision Process
[1]. Under Assumption 29 and allowing for a common in i and t conditional density of Li(t)
given the history, we can rewrite the likelihood from equation (4.1) as:

p(o) =
n∏
i=1

pl(0)(li(0))
τ∏
t=1

g0,i,t(ai(t) | Pa(a(t)))q(li(t) | cLi(t)). (4.2)

Note that, since g0,i,t is known, we don’t need to put any restrictions on the treatment
mechanism given the past. We emphasize that assuming common in i and t conditional
density q still allows for a rich network and time-dependent structure given CLi(t). The
proposed formulation lets us learn and measure factors that result in changes over time
and network, captured with varying CLi(t). For example, we could have that CLi(t) =
hLi(Pa(L(t))) ∈ Rk×j is a (k, j)-dimensional extraction of the form CLi(t) = {(Lj(s), Aj(s+
1)) : s = t− 1, t− 2, · · · , t− k, j ∈ Fi(t)∪ i} where Fi(t) < K and K is not a function of
n. As such, our working model covers finite memory time dependence and network structure
where each individual has a limited number of contacts, both of which could possibly vary as
the trajectory advances. Alternatively, the proposed working model could cover dependence
structures described by summary measures of the time series pattern (e.g.: moving average,
finite memory, features related to STL decomposition of the series, spectral entropy, Hurst
coefficient) and summary measures of the current state of the network (e.g.: current state
of the epidemic, percent isolated, percent wearing masks).

Overall, in the adaptive sequential surveillance design, such modeling assumptions equate
to conditional stationarity of the outcome mechanism over the entire trajectory (common in
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time) and for each sample (common across samples) given a fixed dimensional summary of
the past. Instead of assuming a common conditional density of Li(t), we might alternatively
only need to assume a common conditional expectation. Then, under the common in (i, t)-
working model, we have that Q̄i,t = Q̄ instead of the full q = qi,t. We write assumptions
on the conditional expectation of Y (t) given the observed past under the common in (i, t)
model as Assumption 30. With that, Assumption 28, 29 and 30 constitute working model
Mtn.

Assumption 30 (Common in i and t conditional expectation of the outcome). There exists
a common across samples (i) and time (t) conditional expectation of Yi(t) given the observed
past, such that Q̄i,t = Q̄ for every t ∈ [τ ] and i ∈ [n]

Q̄i,t(Ai(t), CAi(t)) = Q̄(Ai(t), CAi(t)).

Definition 6 (Working model Mtn). We define a working model Mtn as the set of distri-
butions P over the domain O that satisfy Assumptions 28, 29 and 30.

Alternatively, we may assume that the conditional expectation of Yi(t) given the past is a
t-common mechanism given the history, allowing for a possibly very dense network structure
which might be observed during a highly contagious epidemic. Conditional on the observed
fixed dimensional summary CLi(t), qi,t is a common in t density smooth enough to be learned
through time. This working model assumption is analogous to models previously described
in the time-series literature, extended to multiple trajectories [131, 78, 79]. We can rewrite
the likelihood from equation (4.1) under common-in-t density as follows

p(o) =
n∏
i=1

pl(0)(li(0))
τ∏
t=1

g0,i,t(ai(t) | Pa(a(t)))qi(li(t) | cLi(t)). (4.3)

In terms of the conditional expectation, we emphasize that the functional form of Q̄i,t = Q̄i is
unspecified, with the only assumption being that Q̄i is common in time conditional on a fixed
dimensional summary. In the current application, such modeling assumptions would equate
to conditional stationarity of the expected outcome over the entire trajectory (common in
time), but not common across samples. We denote the working model described by the
Assumptions 28, 29 and 31 as Mt.

Assumption 31 (Common in t conditional expectation of the outcome). There exists a
common across time (t) conditional expectation of Yi(t) given the observed past, such that
Q̄i,t = Q̄i for every t ∈ [τ ] and i ∈ [n]

Q̄i,t(Ai(t), CAi(t)) = Q̄i(Ai(t), CAi(t)).

Definition 7 (Working modelMt). We define a working modelMt as the set of distributions
P over the domain O that satisfy Assumptions 28, 29 and 31.
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Instead of learning across time, one might instead rely on asymptotics in the number
of individuals. An important ingredient of this modeling approach is to assume that any
dependence of unit i can be fully described by a function of the known network over time.
Following work by [116], let Fi(t) ≤ K denote the network for sample i at time t. Then, there
is a common in i density, qt, allowing for possibly very long and elaborate time-dependence.
Similarly, there is a common-in-i expectation conditional on a fixed dimensional summary
measure CLi(t). In contrast to decomposition presented in 4.1, likelihood under common-in-i
density is written as follows

p(o) =
n∏
i=1

pl(0)(li(0))
τ∏
t=1

g0,i,t(ai(t) | Pa(a(t)))qt(li(t) | cLi(t)). (4.4)

Under no conditional stationarity assumption, one could use the recent estimates of Q̄t in
order to optimize the next sampling mechanism w.r.t the status of the epidemic few time
points in the future. This implies that it is possible to learn the common-in-i expectation
Q̄t from a draw O as n → ∞, resulting in a well-defined statistical estimation problem.
For the adaptive surveillance problem, this formulation allows us to learn across samples, as
dynamics of the trajectory is not stationary over time but possibly evolving. Assumptions
28, 29 and 32 constitute the working model Mn.

Assumption 32 (Common in i conditional expectation of the outcome). There exists a
common across samples (i) conditional expectation of Yi(t) given the observed past, such
that Q̄i,t = Q̄t for every t ∈ [τ ] and i ∈ [n]

Q̄i,t(Ai(t), CAi(t)) = Q̄t(Ai(t), CAi(t)).

Definition 8 (Working modelMn). We define a working model Mn as the set of distribu-
tions P over the domain O that satisfy Assumptions 28, 29 and 32.

Target Parameters

In the following, we describe a counterfactual scenario in which the initial treatment mech-
anism is replaced by user-defined conditional distributions, and define the corresponding
target parameter of interest. Our main aim is to describe an adaptive sequential surveillance
design for infectious disease under unknown network and time dependence. This entails
defining the time t-specific testing strategy which optimizes the short term outcome among
a set of proposed testing schemes. The optimal testing strategy maximizes the number of
positive cases caught, with the target parameter under a resource constraint being of partic-
ular interest in practice. Instead of focusing only on the time t-parameter, we also define an
average over the entire trajectory as a target parameter of interest. In the following Sections,
we describe a new testing allocation scheme based on the current risk of infection, termed
the risk-based strategy.



CHAPTER 4. ADAPTIVE SEQUENTIAL DESIGN WITH NETWORK AND TIME
DEPENDENCE 123

Structural Equations Model

In the previous section, we discuss the distribution of the observed data. Given a data-set,
we can estimate parameters of this distribution, resulting in statistical parameters. However,
without more structure, statistical parameters do not have a causal interpretation. In order
to translate the scientific question of interest into a formal causal quantity, we must first
specify a structural equations model (SEM; equivalently, structural causal model (SCM))
[93].

By specifying a SEM, we assume that each component of the data structure is a function
of the observed endogenous variables and an unmeasured exogenous error term [93]. We
encode the time-ordering of the variables using the following SEM for each t:

Li(0) = zLi(0)(ULi(0)) (4.5)

Ai(t) = zAi(t)(Ō(t− 1), UAi(t))

Li(t) = zLi(t)((Ō(t− 1), Ai(t)), ULi(t)),

where U := (UA, UL) with UA := (UAi(t) : t ∈ [τ ], i ∈ [n]) and UL := (ULi(t) : t ∈ [τ ], i ∈ [n]).
The unmeasured exogenous variables are sampled from PU , such that U ∼ PU . Given an
input (U,O), structural equations zAi(t) and zLi(t) for each time t ∈ [τ ] and sample i ∈ [n]
deterministically assign a value to each of the nodes. While we have a specification of zAi(t)
in a randomized trial, the structural equations zLi(t) do not restrict the functional form of
the causal relationships for any t or i. The SEM defines a collection of distributions (U,O)
representing the full data model, here defined in terms of U and observed data O. Let P F

0

denote the true probability distribution of (U,O); in the remainder of the article, we will
use the subscript “0” to indicate true probability distributions or components thereof. Here
we emphasize that any distribution P F on the domain of the full data fully determines a
corresponding distribution P on the domain of the observed data. Finally, we denote the
model for P F

0 as MF , known as the causal model.
We can also define the time- and history- specific causal model. LetMF

t (ō(t− 1)) denote
the set of conditional probability distributions P F

Ō(t−1)
, which condition on the observed

history by time t, ō(t − 1). In particular, MF
t (ō(t − 1)) is compatible with the structural

equations model (4.5) by imposing Ō(t− 1) = ō(t− 1):

Li(0) = zLi(0)(ULi(0)) (4.6)

Ai(t) = zAi(t)(ō(t− 1), UAi(t))

Li(t) = zLi(t)((ō(t− 1), Ai(t)), ULi(t)).

Target Parameter on the SEM and Identifiability

The causal model allows us to define counterfactual random variables as functions of (U,O)
corresponding with arbitrary interventions. In particular, we can replace data generating
distribution for the treatment mechanism by user-specified conditional distributions; such



CHAPTER 4. ADAPTIVE SEQUENTIAL DESIGN WITH NETWORK AND TIME
DEPENDENCE 124

non-degenerate choices of intervention distributions are referred to as stochastic interventions
[30]. Let g∗i,t denote a stochastic intervention at time t identified as a conditional distribution
of A∗i (t) given the observed past. We write g∗t = {g∗1,t, . . . , g∗n,t} for all n interventions at time
t. With that, O∗(t) is the counterfactual full data generated from the SEM described in
(4.6) by replacing the equation associated with the exposure node by the counterfactual
intervention g∗i,t at time t,

Li(0) = zLi(0)(ULi(0)) (4.7)

Ai,g∗i,t(t) ∼ g∗i,t(·|ō(t− 1))

Li,g∗i,t(t) = zli(t)((ō(t− 1), Ai,g∗i,t(t)), ULi(t)).

We write (U(t), O∗(t)) as the full post-intervention data at time t, with the post-intervention
distribution denoted as P F∗

Ō(t−1)
. Consequently, the counterfactual latent outcome under g∗i,t

is written as Y l
i,g∗i,t

(t) for the sample i at time t. We define our causal parameter of interest
as

ΨF
t,g∗t

(P F
Ō(t−1)) = EPF∗

Ō(t−1)

[
1

n

n∑
i=1

Y l
i,g∗i,t

(t)

]
, (4.8)

which is the expectation of the counterfactual random variable Y l
i,g∗i,t

(t) generated by the

modified SEM as written in equation (4.7). Our causal target parameter is the mean latent
outcome we would have obtained after one time-step, if, starting at time t given the observed
past, we had carried out intervention g∗t .

By defining the causal quantity of interest in terms of stochastic interventions on the
SEM and providing a link between the causal model and the observed data, we lay the
groundwork for addressing identifiability through P0. In order to express ΨF

t,g∗t
(P F

Ō(t−1)
) as a

parameter of the distribution PŌ(t−1) of the observed data O, we add two key assumptions
on the SEM: the sequential randomization assumption (Assumption 33) and the positivity
assumption (Assumption 34) in the following.

Assumption 33 (Sequential Randomization). For any t ∈ [τ ] and i ∈ [n],

Ai(t) ⊥⊥ Y l
i,g∗i,t

(t) | Pa(A(t)) and Ai,g∗i,t(t) ⊥⊥ Y l
i,g∗i,t

(t) | Pa(A(t)).

Assumption 34 (Positivity). For any t ∈ [τ ] and i ∈ [n] with P (Pa(A(t)) = Pa(a(t))) > 0,

go(Ai(t) | Pa(A(t)) = Pa(a(t))) > 0.

Theorem 14. Assume assumptions 33 and 34 hold. Under consistency, we denote the time
t value under the stochastic intervention g∗t as

ΨF
t,g∗t

(P F
Ō(t−1)) = Ψt,g∗t

(PŌ(t−1)) =

∫
a

1

n

n∑
i=1

EP [Y l
i (t) | Ai(t) = a, ō(t− 1)]g∗i,t(a | ō(t− 1))dµa(a)

=
1

n

n∑
i=1

EQ̄i,t,g∗i,t [Yi(t) | ō(t− 1)]
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where the observed outcome is defined as Yi(t) = Ai(t)Y
l
i (t)/gi,t(Ai(t) | Ō(t− 1)) and ψt,g∗t =

Ψt,g∗t
(PŌ(t−1)).

Proof. We allocate the derivation to the Appendix section.

Note that Theorem 14 identifies the causal parameter in terms of both the latent and observed
outcome at each time point. As we can identify the causal target parameter in terms of the
observed O, we can proceed with the estimation step in the following sections. As per
Theorem 14, the statistical target parameter is denoted as

ψt,g∗t = Ψt,g∗t
(PŌ(t−1)) =

1

n

n∑
i=1

EQ̄i,t,g∗i,t [Yi(t) | Ō(t− 1)]. (4.9)

Instead of focusing on just the time t-target Ψt,g∗t
(PŌ(t−1)), we can additionally define a time-

and sample- specific target parameter

ψi,t,g∗i,t = Ψi,t,g∗i,t
(PŌ(t−1)) = EQ̄i,t,g∗i,t [Yi(t) | Ō(t− 1)], (4.10)

where ψt,g∗t = 1/n
∑n

i=1 ψi,t,g∗i,t . Of even more interest is the target parameter defined as an
average of observed outcomes over the length of the entire trajectory, denoted as

ψ =
1

τ

τ∑
t=1

Ψt,g∗t
(PŌ(t−1)). (4.11)

We refer to all three in the following sections, with a particular focus on parameters in
Equation (4.9) and (4.11).

Finally, as testing resources are typically limited during a highly contagious infectious
disease, we assume a fixed testing capacity at each time-point until the end of the epidemic.
As such, it is necessary to provide an optimal allocation of the available resources, analogous
to the resource constrained optimal individualized treatment literature [75]. Suppose that the
number of available tests are limited at each time point t, so that at most k ∈ (0, 1) proportion
of the population can get tested. Our ultimate interest might be in optimizing Equation
(4.11) under a resource constraint, meaning that we want to optimize the true number of
infected individuals by the end of the trajectory. The more positive cases we can detect
(and isolate) at each t under the k testing constraint, the fewer incidence of downstream
transmission can occur — resulting in a greater infection control. In the following, we focus
on the target parameters presented in Equation (4.9) and (4.11) under a possible k resource
constraint.
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4.3 Online Super Learner for Adaptive Surveillance

As defined in Section 4.2, our goal is to optimize the time t parameter

ψt,g∗t = Ψt,g∗t
(PŌ(t−1)) =

1

n

n∑
i=1

ψi,t,g∗i,t

=
1

n

n∑
i=1

EQ̄i,t,g∗i,t [Yi(t) | Ō(t− 1)],

or the full trajectory target parameter

ψ =
1

τ

τ∑
t=1

Ψt,g∗t
(PŌ(t−1)),

under a possible resource constraint. We reiterate here that ψt,g∗t is (t, g∗t )- specific and ψi,t,g∗i,t
is (i, t, g∗i,t)- specific. With a slight abuse of notation, we write Ψt,g∗t

(PŌ(t−1)) as Ψt,g∗t
(Q̄t).

Let {g∗t,1, . . . , g∗t,S} ∈ G denote a collection of S user-specified stochastic interventions for all
samples i ∈ [n] at t. Note that all considered testing schemes are an element of a space
G, which consists of a finite number of testing strategies considered at each time point.
Therefore, g∗t,s is a s-specific conditional distribution of A(t) given the observed past Ō(t−1)
at time t. For the s-specific stochastic intervention, it then follows that

ψt,g∗t,s = Ψt,g∗t,s
(Q̄t) =

1

n

n∑
i=1

EQ̄i,t,g∗i,t,s [Yi(t) | Ō(t− 1)],

and we have a separate ψt,g∗t,s = Ψt,g∗t,s
(Q̄t) for each s ∈ {1, . . . , S} at t. As infectious

disease progression evolves over time, we want the proposed adaptive sequential design to
be able to respond to the current state of the epidemic. At the beginning of the disease
trajectory, catching the few infected individuals and testing their proximate network might
be enough to control the spread. However, as the contagion reaches the state of an epidemic,
identifying individuals at high risk might be crucial in order to establish control. While one
of the s-specific stochastic interventions might be optimal at the beginning of the trajectory,
another one might be optimal at later points. The enforced adaptive sequential surveillance
should evolve and adapt over time in response to the current state of the infectious disease
progression. The problem then becomes — how to do we pick among stochastic interventions
in G, over the entire trajectory, while not imposing assumptions on the statistical modelM?
In the following, we describe an Online Super Learner for adaptive sequential surveillance
which uses different selectors to pick the optimal stochastic intervention s at time t.

Loss-based selector

We can define an adaptive design as an online algorithm that at each time point t fits a
conditional distribution of treatment given the past observations. As such, it’s an online
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mapping of past data into a conditional distribution g∗t (A(t) | Ō(t− 1)), while learning over
time how to adapt g∗t in order to optimize the short term outcome. With that it mind, we
can formulate the problem at hand within the loss-based estimation paradigm [34, 132, 141,
133]. In the following, we proceed to define key concepts necessary for establishing an Online
Super Learner — including a valid loss, risk, cross-validation scheme, and the discrete Super
Learner [136, 7, 79].

To start, let Pn,t denote the empirical distribution of n time-series collected until time

t. We define the estimator mapping, Ψ̂t,g∗t
, as a function from the empirical distribution to

the parameter space. In particular, let Pn,t 7→ Ψ̂t,g∗t
represent a mapping from Pn,t (based on

n time-series collected until time t) into a function Ψ̂t,g∗t
(Pn,t). Then, Ψ̂t,g∗t

(Pn,t)(Ō(t − 1))
denotes the target function evaluated at the observed past. Similarly, the estimator mapping
ˆ̄Qi,t is defined as a function of the empirical distribution. We can write ˆ̄Qi,t(Pn,t)(Ai(t), Ō(t−
1)) as the predicted outcome for unit i of the estimator ˆ̄Qi,t(Pn,t) at time t, based on
(Ai(t), Ō(t − 1)). In Section 4.7, elaborate more on the loss-based parameter definition
and estimation of the conditional expectation of the outcome given the past under working
models described in Section 4.2.

Let C(i,m) denote the timem- and unit i-specific collection C(i,m) = (Yi(m), Ai(m), Ō(m−
1)); similarly, we write C(m) = (Y (m), A(m), Ō(m− 1)) as the time m- specific record. Let
L(Ψ̂t,gt(Pn,t))(C(m)) define a loss function for the time- specific target, such that L(Ψ̂t,gt(Pn,t)) :
C → R. By construction, a valid loss for a given parameter of interest is defined as a function
whose true conditional mean is minimized by the true value of the target. For instance, for
the time- specific target we then have that

P0,Ō(t−1)L(Ψ̂t,g0,t(Q̄0,t))(C(t)) = min
Ψ̂t,gt (Q̄t)

P0,Ō(t−1)L(Ψ̂t,gt(Q̄t))(C(t)).

For a binary outcome, we can further define L(Ψ̂t,gt(Pn,t)) as the inverse weighted mean
squared error function (MSE), which is the loss we are trying to minimize

1

n

n∑
i=1

1

gi,t(Ai(t) | Ōi(t− 1))

(
Yi,gi,t(t)− Ψ̂i,t,gi,t(Pn,t)(Ō(t− 1))

)2

.

Consequently, the true risk is defined as the expected value of the loss evaluated w.r.t
the true distribution. As such, it establishes the true measure of performance for the target
parameter with respect to the specified loss — however, it is unattainable quantity, as the
truth is unknown. In order to obtain an unbiased estimate of the true risk, we instead resort
to its cross-validated estimate. Let P 0

n,t denote the empirical distribution of the training
sample until time t, with P 1

n,t the corresponding empirical distribution of the validation set
for any cross-validation scheme (CV). In general, we use different cross-validation schemes
to evaluate how well an estimator trained on specific samples’ past is able to predict an
outcome for samples in the future, reflected in different empirical distributions P 0

n,t and P 1
n,t.

For an infectious disease, we might expect its trajectory to vary over time, but have a
similar profile across close time points. Therefore, we let P 0

n,t be the empirical distribution
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of all the data until time t, with P 1
n,t consisting of samples at the next time step t+ 1. The

cross-validated risk over all times then corresponds to

RCV,m =
1

τ −m

τ∑
m=t+1

L(Ψ̂m−1,gm−1(P 0
n,m−1))(C(m)).

Let Ψ̂t,g∗t,s
(Pn,t) denote the estimator of the target parameter under design g∗t,s, where

we have a separate Ψ̂t,g∗t,s
(Pn,t) for each s ∈ S. We can evaluate the performance of each

stochastic intervention g∗t,s using the loss-based framework. The proposed evaluation there-

fore proceeds as follows: with each new C(t+ 1), evaluate the loss L(Ψ̂t,g∗t,s
(P 0

n,t))(C(t+ 1))
for each s ∈ S; add this loss to the current estimate of the online CV risk; update each
online estimator Ψ̂t,g∗t,s

into Ψ̂t+1,g∗t+1,s
using C(t+1). Upon observing the next batch of data,

C(t+ 2), the process is repeated. The Online CV risk gives us estimated performance of the
adaptive design over time. We can use the full online CV risk, or an average over a more
recent window in order to pick among proposed designs at each time point. We define the
discrete SL design st as the design which minimizes the online CV risk:

st = min
s

1

τw −m

τw∑
m=t+1

L(Ψ̂m,g∗m,s(Pn,m))(C(m))

= min
s

1

τw −m

τw∑
m=t+1

1

n

n∑
i=1

1

g∗i,m,s(Ai(t) | Ōi(t− 1))(
Yi,g∗i,m,s(t)− Ψ̂i,m,g∗i,m,s

(Pn,m)(Ō(m− 1))
)2

,

where τw is a future time point based on the window size w.

TMLE- and TMLE-CI-based selector

Thinking further in terms of an adaptive sequential design being an online algorithm, we
could use the past data in order to fit the likelihood of O. At each time step t, we run a
simulation under a different design g∗t,s, and select the one that optimizes the short term
mean outcome. The loss-based selector in the previous section optimizes over a window of
recent losses (e.g., inverse weighted MSE over a window of time points). We could instead
optimize for the MSE such that we also have inference for the target parameter — allowing
us to pick a design by taking into account uncertainty in the point estimate as well. This
motivates a new selector, based on the Targeted Minimum Loss Estimation (TMLE) [139,
138, 137]. In order to derive a TMLE, we utilize one of the working model outlined in
Section 4.2. The estimated mean outcome under each of the s designs is a TMLE based
on the working model, optimized for MSE with inference. Here we emphasize that reliance
on working models is a necessary step in order to obtain a ranking of designs based on the
TMLE, but our proposed method does not rely on assumptions imposed by the working
models.
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For the TMLE-based selector, we want to obtain a TMLE of each s-specific conditional
mean outcome ψt,g∗t,s . The standard TMLE, as originally defined by [139], first computes an

initial estimator of Q̄0,i,t. In general, the functional form of Q̄0,i,t is unknown, with arbitrary
dependence structure. In order to avoid unnecessary assumptions, we resort to data-adaptive
predictive methods such as the Online Super Learner under various working models; as
such, we allow for flexibility in the specification of the functional form and dependence
structure. Consistent estimation of Q̄0,i,t is key for achieving asymptotic efficiency of the
target parameter [138, 137]. We denote the initial estimator of the conditional mean outcome

given the past as ˆ̄Qi,t(P
0
n,t), trained on the training data available until time t, P 0

n,t.
The initial estimator of the conditional mean outcome given the past is then updated

in such a way that the efficient influence function (EIF) estimating equation is zero when
computed at the updated estimate. The TML estimators defined in this way generally require
optimizing a loss function iteratively for the likelihood of the observed data. Achieving a
solution to the EIF estimating equation guarantees, under regularity assumptions, that the
estimator enjoys optimality properties such as double robustness and local efficiency [139,
138, 137]. We solve the estimating equation by fitting the following logistic model

logit ˆ̄Qt,ε(A(t), CAi(t)) = logit ˆ̄Qt(A(t), CAi(t)) + ε,

with weights defined as wt = g∗t (A(t) | CAi(t))/gt(A(t) | CAi(t)). We emphasize that gt(A(t) |
CAi(t)) denotes the treatment mechanism generating the data so far. The estimate of ε is
written as εt, with the updated initial estimator of Q̄0,i,t evaluated at (Ai(t), CAi(t)) denoted

as ˆ̄Q∗i,t(Ai(t), CAi(t)) = ˆ̄Qi,t,εt(Ai(t), CAi(t)). The targeted estimate ˆ̄Q∗i,t(Ai(t), CAi(t)) then
solves the following EIF estimating equation,

1

n

n∑
i=1

g∗t,i(Ai(t) | CAi(t))
gt,i(Ai(t) | CAi(t))

(Yi(t)− ˆ̄Q∗i,t(Ai(t), CAi(t))) = 0.

The TMLE of the s-specific stochastic intervention is defined as the plug-in estimator under

the targeted estimate ˆ̄Q∗i,t and g∗i,t,s,

Ψt,g∗t,s
( ˆ̄Q∗t ) =

1

n

n∑
i=1

E ˆ̄Q∗i,t,g
∗
i,t,s

[Yi(t) | CAi(t)].

In the following, we refer to Equation (4.10) denoting the time- and sample- specific target
parameter in order to more easily define the canonical gradient and the first order expansion.
The desired target parameter and the subsequent analysis is then defined as an average over
samples, under the working model Mtn(Ō(t− 1)).

Lemma 7 (Canonical gradient and first order expansion). Under the positivity assumption,
target parameter mapping Ψi,t,gi,t :Mtn(Ō(t− 1))→ R is pathwise differentiable with respect
to Mtn(Ō(t− 1)) and has a canonical gradient defined as

φPŌ(t−1)
= D∗Ō(t−1)(Q̄i,t)(o) =

g∗t,i(Ai(t)|CAi(t))
gt,i(Ai(t)|CAi(t))

(Yi(t)− Q̄i,t(Ai(t), CAi(t))).
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The time- and sample- specific parameter admits the following first order expansion:

Ψi,t,gi,t(Q̄i,t)−Ψi,t,g0,i,t
(Q̄0,i,t) = −P0,Ō(t−1)D

∗
Ō(t−1)(Q̄i,t) +R(Q̄i,t, Q̄0,i,t, gi,t, g0,i,t),

where R is a second order remainder that is doubly-robust, with R(Q̄i,t, Q̄0,i,t, gi,t, g0,i,t) = 0
if either Q̄i,t = Q̄0,i,t or gi,t = g0,i,t.

Since we are in a randomized trial and the treatment mechanism is known, the second order
remainder in Lemma 7 is zero. All further theoretical analysis relies on the fact that the
difference between the TML estimator and the target can be decomposed as the average of
a martingale difference sequence, as shown in Theorem 15.

Theorem 15 (Asymptotic Normality of the t-specific TMLE). Under the working model
Mtn(Ō(t− 1)), the difference between the TMLE and its target decomposes as

Ψt,g∗t
( ˆ̄Q∗t )−Ψt,g0,t(Q̄0,t) =

1

n

n∑
i=1

D∗Ō(t−1)(
ˆ̄Q∗i,t)(Oi(t))− EQ̄0,t,g0,t

D∗Ō(t−1)(
ˆ̄Q∗i,t)

=
1

n

n∑
i=1

g∗t,i(Ai(t)|CAi(t))
gt,i(Ai(t)|CAi(t))

(Yi(t)− ˆ̄Q∗i,t(Ai(t), CAi(t)))

− EQ̄0,t,g0,t

[
g∗t,i(Ai(t)|CAi(t))
gt,i(Ai(t)|CAi(t))

(Yi(t)− ˆ̄Q∗i,t(Ai(t), CAi(t)))

]
Under weak conditions we have that

Ψt,g∗t
( ˆ̄Q∗t )−Ψt,g0,t(Q̄0,t)

d−→ N (0, σ2
t ),

where σ2
t is the asymptotic variance.

Theorem 16 (Asymptotic Normality of the TMLE). Under working model Mtn(Ō(t− 1))
and weak conditions, we have that

ψ − ψ0
d−→ N (0, σ2),

where ψ = 1
τ

∑τ
t=1 Ψt,g∗t

( ˆ̄Q∗t ), ψ0 = 1
τ

∑τ
t=1 Ψt,g0,t(Q̄0,t), ˆ̄Q∗t is the TMLE and σ2 is the asymp-

totic variance.

Relevant derivations and conditions are presented in previous chapters. Note that under
Theorem 15, each adaptive design g∗t,s has its corresponding asymptotic variance σ2

t,s. We
can estimate σ2

t,s using the empirical variance estimator as follows

σ̂2
t,s =

1

n

n∑
i=1

(
g∗t,i(Ai(t)|CAi(t))
gt,i(Ai(t)|CAi(t))

(Yi(t)− ˆ̄Q∗i,t(Ai(t), CAi(t)))

)2

,
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corresponding to the variance of the EIF. Therefore, each adaptive design g∗t,s has a confidence
interval for its overall mean outcome given by

1

n

n∑
i=1

∫
a

ˆ̄Q∗i,t(a, CAi(t))g
∗
i,t,s(a | CAi(t))± 1.96

σ̂t,s√
n
.

We can define two different selectors based on the TML estimator. First, denoted as
the the TMLE-based selector, chooses the design st among s ∈ S that maximizes the point
TMLE estimate of the target parameter, such that

st = max
s

Ψt,g∗t,s
( ˆ̄Q∗t ).

Alternatively, we can take advantage of the asymptotic normality of the TMLE under work-
ing modelMtn(Ō(t− 1). The second selector, denoted TMLE-CI-based selector, maximizes
the lower bound of the confidence interval — picking the design st with the highest minimum
value of the confidence interval

st = max
s

[Ψt,g∗t,s
( ˆ̄Q∗t )− 1.96σt,s/

√
n].

Either way, st corresponds to the discrete Online Super Learner selector, and at time point
t+ 1 we use the design g∗t,st in order to assign tests to all subjects.

4.4 Agent-based model of the university campus

In the following, we illustrate utility of the proposed Online Super Learner for adaptive
sequential surveillance by simulating an environment which models the University of Cali-
fornia, Berkeley in the Fall of 2020. In addition, we elaborate on how all testing strategies
(risk-based, symptomatic, contact tracing) can be seen as stochastic interventions with dif-
ferent sampling strategies. In Section 4.5 we show the performance of the proposed adaptive
design for surveillance using the closed sample population and infectious disease dynamics
described below.

Model Description

We develop a dynamic, agent-based model of transmission of SARS-CoV-2 on a residential
university campus. The model parameters reflect transmission dynamics among students and
faculty on a medium-size public university with on- and off-campus living arrangements, class
number and size compatible with the University of California, Berkeley. In particular, we
present an agent-based model for a setting with 20,000 university-affiliated individuals with
varying age, social network, class size, risk-level and living accommodations in a U.S. college
town. While we parameterized the model according to U.C. Berkeley, our simulations can
be easily modified to reflect any residential higher-education institution. In the following
subsections, we describe the core features, dynamics and assumptions underlying the agent-
based model.
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Population and Network Structure

We focus on a residential campus community as the target population, broadly reflecting stu-
dents and faculty/staff at a medium size university. During the pandemic, most universities
implemented a wide array of measures aimed at limiting transmission on campus — includ-
ing mandatory vaccination, mask-wearing, social distancing, enhanced cleaning protocols,
increased availability of sanitizing products and cancelling large social gatherings. While
each of these interventions has benefits, we focus solely on the optimal testing strategy. By
not including other interventions which can alleviate the spread of the infectious disease, we
aim to investigate performance of the proposed method under the worst-case scenario. We
don’t model any breaks or high-risk events during the semester, such as holiday travel. Most
importantly, we assume the modeled population is constant, where individuals can only be
removed due to isolation, but no new individuals can join. While we model the campus pop-
ulation as a closed community, infections induced by interactions with individuals outside
the campus population are allowed - thus providing a steady stream of new cases.

We assume the campus population is divided into distinct groups with different collective
behavior, dictated by their covariates. For example, we model three sub-populations —
students living on-campus, students living off-campus, and faculty/staff, as shown in Table
4.1. The distinct groups are differentiated by baseline covariates, underlying risk of infection,
and different degrees of interaction within one’s network. The age distribution is modeled in
order to reflect a predominately younger campus population, with 6 age categories (< 18, 18−
28, 29− 38, 39− 48, 49− 68, > 68) sampled with probabilities (0, 1, 0.5, 0.2, 0.07, 0.07, 0.06),
respectively. The baseline risk of infection is sampled from a beta(1, n/36000) distribution,
reflecting dependence on the size of the observed population. The modeled network structure
consists of several components, including off-campus living for both students and faculty, on-
campus housing, in person classes, and random exposure. Each network type has an unique
probability of transmission within a graph, with highest being for students in a communal
housing. Below, we describe each component of the network structure in more details.

1. Off-campus housing for students: We model off-campus housing separately for stu-
dents and faculty. Students of similar age category are grouped in off-campus housing
units, with household sample size drawn from (1 − 8) range from a negative binomial
distribution with µ = 2. While we concentrate on the university campus population,
this is not exclusively represented in the observed housing structure population, with
students being vastly dispersed in the region. With that in mind, we assign house-
mates randomly to a total of n∗0.01 off-campus houses of varying household size. The
probability of transmission among the same household is 0.03.

2. Off-campus housing for faculty and staff: We model off-campus housing for
faculty/staff similar to the student off-campus accommodations. Individuals older
that 28 years old are candidates for faculty/staff housing. We sample the size of
a faculty/staff household from (0 − 2) range from a negative binomial distribution
with µ = 0.5. We assign housemates randomly with no age preference (accounting for
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possible family ties). We distribute sampled household individuals to a total of n∗0.005
faculty/staff houses. The probability of transmission among the same household is 0.03,
as in off-campus living arrangements for students.

3. On-campus housing: The probability of a student being part of on-campus housing
available at U.C. Berkeley is derived based on the 25 communal living buildings with
8908 students at maximum occupancy. During the regular school year, 14% of the
student population is living in a university provided dorms and Greek housing. In the
Summer of 2020, approximately 5% were projected to return to communal housing in
the Fall of 2020, with an average occupancy of 2 students per room. We sample the size
of a household from a negative binomial distribution with µ = 2, and allocate people
to the 25 available communal buildings with equal probability. We assume that the
risk of transmission from the community to off-campus students is lower than the risk
of transmission from the community to on-campus students, based on the evidence
from a campus outbreak of H1N1 in 2009 [50]. We further assume that on-campus
students living in congregate settings are considered at a higher risk for transmission.
If a student is part of the communal housing (dorms or Greek housing), the risk of
infection increases by 0.01 in addition to the regular housing risk.

4. In-person classes: We modeled in-person, online and hybrid available classes in Fall
of 2020 based on the suggested schedule announced by the U.C. Berkeley administration
in the Summer of 2020. This consisted of 111 hybrid and 98 flexible classes, and up to
314 in-person lectures with a maximum of 25 students per class. This is in accordance
with the wide-spread university policy to strive for majority online classes, with few
small-in-size in-person lectures and staggered class times in order to decrease student
contact. We sample the in-person class size from a negative binomial distribution with
a minimum of 15 and maximum of 25 students per class. We further assume 18%
of total student and faculty/staff population would return to U.C. Berkeley for in-
person classes and university-based responsibilities. The probability of transmission
for an in-person attendance among class members and people that frequent the same
classroom/building is 0.01.

5. Random: Finally, we account for random exposure from people being in close con-
tact during their regular day-to-day activities (e.g., taking public transportation). We
model random exposure as the number of people outside one’s network that come in
close contact with the individual in question. We sample the number of nodes in a ran-
dom graph from the negative binomial distribution with a minimum of 3 and maximum
of 25 encounters per day. This allocation is dependent on individual risk, and corre-
sponds to the latent part of the network structure. The probability of transmission in
a random graph is 0.005. In Appendix Section 4.7 we investigate how the proposed
method responds to increased individual risk.



CHAPTER 4. ADAPTIVE SEQUENTIAL DESIGN WITH NETWORK AND TIME
DEPENDENCE 134

Individual Disease Progression

We assume that the disease evolution always progresses through set stages in each infected
individual, as exemplified in Figure 4.4 and Table 4.2. We separate the overall student and
faculty/staff populations into the following compartments at each time step: susceptible
(S), exposed (E), detectable infectious (It), symptomatic infectious (Is), asymptomatic
infectious (Ia), recovered (R) and isolated (I). The probability of a new infection, conditional
on being susceptible, depends on the hazard at the current time-step t. In particular, the
hazard function takes into account the individual’s current stage, time spent in the state,
one’s full network, individual risk and covariates, and the current state of the epidemic; the
more infectious people and the more advanced the epidemic, the greater the risk of a new
infection. If an individual is never infected, they remain susceptible until the end of the
observation period. Infected individuals advance to the next compartment, or remain in
their current one, stochastically at each time step. The transition probabilities and average
length of stay for each compartment are modeled based on the literature available in Summer
of 2020, and described in more details in the following. We initiate the infectious disease
trajectory with 8 exposed, 2 temporarily infectious and 2 symptomatic infectious cases of
SARS-CoV-2 infection at the start of data collection.

1. Susceptible (S): Except for the seeded samples, all individuals start as susceptible.
The S stage has no time to next state, as all units remain susceptible until infection
or end of the semester.

2. Exposed (E): If infected, a susceptible individual transitions to an exposed status.
This stage is not yet infectious due to a low viral load, and it is not detectable via
testing. Exposed units spend 4.5 days on average as exposed, with the number of days
in the E compartment sampled from gamma(9, 2) distribution.

3. Detectable Infectious (It): From the E compartment, exposed individual transi-
tions to a temporary state It. Each individual spends 1 day on average as It, with the
number of days in the detectable infectious compartment sampled from the gamma(1, 1)
distribution. During this transition period, individuals are not symptomatic, but are
infectious. The compartment It is also the first stage of the disease trajectory at which
the infection can be detected via a test. We model the ability to infect others as reduced
while It, but increasing with each time step with a peak at the transition to the next
compartment. Since a significant fraction of COVID-19 patients are asymptomatic,
especially within the younger population, we divided the next infectious compartment
into symptomatic and asymptomatic with distinct transition probabilities and duration
of the infectious state. Determination whether one is asymptomatic or symptomatic
is a Bernoulli trial with success probability depending on the age of the exposed in-
dividual. For instance, all samples within the age gap < 18 to 28 were symptomatic
with success probability 0.4, 29 − 48 with probability 0.6, and the oldest members of
the campus probability were symptomatic with probability 0.8.
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4. Symptomatic (Is): Infected individual can transition to a symptomatic class follow-
ing the temporarily infectious state. One spends 13 days on average as a symptomatic
patient, with the number of days in the Is stage sampled from the gamma(13, 1) dis-
tribution. The symptomatic compartment encompasses any COVID-19 symptom, or
combination of, that warrants a test; we assume a patient that is symptomatic ex-
hibits symptoms the entire time while Is. Consequently, a test can be requested and
administered at any time point during the symptomatic stage, not just at the onset of
symptoms. As a Is, a person is infectious for the duration of the state; however, their
infectiousness decreases the longer they are in the current stage.

5. Asymptomatic (Ia): Infected individual can also transition to an asymptomatic in-
fectious state following the It compartment. If asymptomatic, one spends 7.5 days
on average as Ia, with the number of days in the current stage sampled from the
gamma(7.5, 1) distribution. While there is still emerging research in this area, we
assume relative infectiousness for the asymptomatic class to be less than for the symp-
tomatic class; the reduction in transmission probability is assumed at 39% [94]. We
let asymptomatic individuals remain asymptomatic for the duration of the infection,
assuming no transition from Ia to Is compartment. As the campus population is pre-
dominately young, the percentage of asymptomatic individual is higher than in the
general population. This makes detecting active infections a more difficult task for the
campus community.

6. Recovered (R): An individual recovers by going through the full disease cycle,
(S,E, It, Is/Ia,R). As the campus population is predominately young and healthy,
we don’t model death as an outcome. Instead, all individuals eventually reach a ter-
minal state R. We assume recovered individuals obtain at least a temporary immunity
that lasts the length of the semester. Therefore, recovered individuals do not become
susceptible again. Studies are still ongoing regarding the duration, if any, of temporary
immunity [148].

7. Isolated (I): Finally, an infected member of the campus population can be identified
via testing at any point of the disease trajectory, except for the E and R state. Positive
test results at time t lead to possible contact tracing at t + 1 for the complete known
network. Individuals administered a test and diagnosed positive for COVID-19 are
isolated. Quarantine conditions are modeled on a continuum via the isolation factor,
in an attempt to mimic realistic conditions. In particular, if the isolation factor is 0,
quarantine is modeled as isolation with complete reduction in one’s contact rate for
the duration of the infection. For higher isolation factor, detected infectious individual
is still able to infect others at a reduced rate. If caught, the infected individual goes
though all the usual disease stages with a varying isolation level, until it reaches a
terminal R state. As mentioned previously, isolated, and eventually recovered patients,
do not become susceptible again.
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Table 4.1: Simulated university population during COVID-19 pandemic

Parameter Population On-campus housing In-person class

Value (total or %) 20,000 5% 18%

Table 4.2: Simulation model parameters for the COVID-19 pandemic

Parameter Symbol Average (days) Range (Q1,Q3) Distribution

Latent Period E 4.5 (3.4, 5.4) gamma(9,2)
Detectable and Infectious It 1 (0.7, 1.4) gamma(1,1)

Asymptomatic Ia 7.5 (5.5, 9.1) gamma(7.5,1)
Symptomatic Is 13 (10.4, 15.2) gamma(13,1)

Testing Strategies as Stochastic Interventions

We can describe a wide range of testing schemes by a stochastic intervention g∗t . The familiar
case of static interventions — defined by setting Ai(t) to a value a in its support A — can
be recovered by choosing degenerate candidate distributions which place all mass on just a
single value [118, 30]. In particular, we can conceptualize a testing strategy as an intervention
that assigns all individuals testing allocations {A1(t), . . . , An(t)} ∈ {0, 1}n at time t in a
two-step procedure. Operationally, we delineate between the probability of receiving a test
based on the available history, and how the said probabilities are used in order to output
a final testing decision. For example, g∗t could assign tests based on the ranking of the
probability of receiving a test given the past, or based on the probability itself. Alternatively,
g∗t could be a deterministic intervention conditional on the observed past (e.g., rule-based,
static interventions). Let f denote a function that takes the probability of being assigned
a test given the past, and outputs either a stochastic or deterministic rule as to how such
probabilities are to be used to assign a test. We formally define the stochastic intervention
g∗t as a function that maps every f to g∗t (f) : (Pa(A(t))) 7→ g∗t (f)(1 | Pa(A(t))) = g∗t (f)(1 |
Ō(t− 1)). If f is an identity function, and each sample is to receive a test just based on its
conditional probability, we simply write g∗t (f)(1 | Pa(A(t))) = g∗t (1 | Pa(A(t))).

In the following, we define several testing strategies used to pick k percent of the popula-
tion to be tested — from a new risk-based testing scheme to commonly allocated strategies,
such as symptomatic testing and contact tracing. In connection to our general stochastic
intervention framework, we emphasize that the testing allocation could be a static rule de-
pending on just the current knowledge of the network, recovering the contact tracing testing
scheme. On the other hand, a static rule depending on the reported symptoms results in
symptomatic testing. Instead of relying on simple rules, g∗t could depend on the current
estimate of Q̄0,i,t, in which case we can incorporate the current risk of being infected as part
of the test allocation strategy. Further, we can then sample based on the current estimate of
Q̄0,i,t, or pick the top k percent ranked samples. We compare all proposed testing strategies
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to benchmarks where we either know the true unknown status of each individual or the true
Q̄0,i,t. We denote as “realistic” all testing strategies that can be implemented in the general
population during an epidemic.

Testing allocation functions

Let f denote any function that takes as input the conditional probability of being assigned
a test given the observed past, and outputs either a stochastic or deterministic rule as to
how such probabilities are to be used to assign a test. The function f , together with the
collected past, defines a stochastic intervention g∗t at time t. We study two such functions:
f = fS and f = fR, defining sample and rank functions, respectively. We define fS as an
identity function such that

g∗t (fS)(1 | Ō(t− 1)) ≡ g∗t (1 | Ō(t− 1)) = p∗ai(t)(Ai(t) | Ō(t− 1)). (4.12)

With that, g∗t (fS)(1 | Ō(t − 1)) is a stochastic intervention which assigns tests according
to the probability of being tested given the past. On the other hand, fR ranks the current
estimate of the conditional probability of being tested and allocates k percent of tests to the
top ranked samples. In particular, let SP denote the survival function of g∗t (1 | Ō(t − 1))
such that c 7→ P (g∗t (1 | Ō(t − 1)) > c). Then, we can define c∗ ≡ inf{c : SP (c) ≤ k} as
the cutoff at which at most k percent of individuals get tested based on SP . We define the
rank-based stochastic intervention as

g∗t (fR)(1 | Ō(t− 1)) ≡ I(g∗t (1 | Ō(t− 1)) > c∗), (4.13)

which allocates tests to the top k percent of individuals with the highest ranked probability of
treatment given the observed history. In the following subsections, we describe and compare
a range of testing allocation schemes based on g∗t (f)(1 | Ō(t−1)) for each i ∈ [n] and t ∈ [τ ],
with f = fS and f = fR.

Realistic Testing Strategies

The “realistic” testing strategies include test allocations often described in the literature,
including symptomatic and contact tracing. In addition, it includes the new risk-based strat-
egy based on the current estimate of the conditional expectation of Yi(t) given the observed
past. In the following, we assume L(t) includes covariates that describe the current presence
of symptoms associated with the infectious disease in question (Lsymp(t)) and the time t
network of each individual (F (t)).

1. Symptomatic Testing
One of the most commonly described test allocation strategy in the literature is symp-
tomatic testing. Briefly, symptomatic testing entails giving a test to k percent of
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individuals with reported symptoms, where Lsymp
i (t) = 1 describes a symptomatic pa-

tient at time t. We can denote such testing strategy as the following deterministic
intervention g∗t at t:

g∗t (f)(1 | Ō(t− 1)) =

{
1, Lsymp

i (t) = 1

0, Lsymp
i (t) = 0,

where E[g∗t (f)(1 | Ō(t− 1))] ≤ k.

2. Contact Tracing
Another commonly described and implemented testing strategy is based on contact
tracing. Here, each individual with a current positive test has their entire known net-
work tested for the same cause as well, while respecting the testing resource constraint.
The sample i’s network consists of family, friends, colleges and all other individuals who
came in close contact with an infected individual within a specified time frame. Typi-
cally the more comprehensive one’s network, the more effective contact tracing is as a
testing strategy. We write contact tracing as the following deterministic intervention
at time t:

g∗t (f)(1 | Ō(t− 1)) =

{
1, Fi(t) = 1

0, Fi(t) = 0.

3. Random
Random testing corresponds to assigning tests with equal probability to k proportion of
available individuals. Here, no information on the samples, or the current state of the
epidemic trajectory, is used to assign tests. The stochastic intervention g∗t corresponds
to assigning uniform testing weights

g∗t (f)(1 | Ō(t− 1)) = 1/n,

at each time t ∈ [τ ] and for all samples i ∈ [n].

4. Risk-Based Testing
Instead of relying solely on the current symptoms, known network of each patient or
the combination of both — we can instead incorporate an estimate of the current risk
of being infected into the testing scheme. In particular, we use the current estimate of
Q̄0,i,t fit on the training set and available covariates in order to assign tests at the next
time step. We can define the risk-based testing scheme as the following intervention at
time t:

g∗t (f)(1 | Ō(t− 1)) ≡ f( ˆ̄Qi,t(Pa(L(t)))

which assigns tests based on the current estimate of one’s risk of being infected, given
their observed past.
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Benchmark Testing Strategies

In this subsection, we define several benchmark testing strategies used to evaluate perfor-
mance of above described “realistic” testing schemes. As previously noted, most benchmark
allocations are impossible to implement in practice due to ethical concerns, dependence on
unknown statistical quantities, or latent variables.

1. No Testing
The first benchmark strategy includes the natural progression of the epidemic when
no individuals are isolated, and no tests are allocated. As such, we define g∗t at each
time t ∈ [τ ] and for all samples i ∈ [n] as g∗t (f)(1 | Ō(t− 1)) = 0.

2. True Risk
The true risk benchmark entails using the true risk function in order to assign tests
at each time point t ∈ [τ ], instead of the current estimate of Q̄0,i,t. The true risk
scheme is based on unknown components of the process, as we don’t know Q̄0,i,t. While
not possible to implement in practice (unless we a priory know Q̄0,i,t), it is a useful
benchmark for risk-based testing strategies, setting an upper limit on their performance
over time. We can denote the true risk testing benchmark as the following intervention
at time t:

g∗t (f)(1 | Ō(t− 1)) ≡ f(Q̄0,i,t(Pa(L(t)))

which assigns tests based on the true risk of being infected at time t, given the observed
past.

3. Perfect (True Status)
The true status benchmark entails testing k proportion of individuals with current
active infection. As Y l(t) is a latent variable, it is not observed. While impossible to
implement in practice, the true status benchmark serves as an upper bound on the
effectiveness of testing for infection control. We define it as the following deterministic
intervention g∗t at time t:

g∗t (f)(1 | Ō(t− 1)) =

{
1, Y l

i (t) = 1

0, Y l
i (t) = 0.

4.5 Simulations

In the following we report simulation results testing the performance of the Online Super
Learner for adaptive sequential surveillance in a closed population. We compare several
different testing strategies using the agent-based model described in Section 4.4, which sim-
ulates transmission of SARS-CoV-2 on a residential university campus of moderate size. We
focus on various stochastic interventions reflecting different testing strategies and design se-
lectors including TMLE-, TMLE-CI- and loss-based, while assessing the state of the infection
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spread during the length of an academic semester. In particular, we compare performance
of the proposed Online Super Learner for adaptive surveillance using different selectors with
commonly implemented rule-based testing strategies — including symptomatic, contact trac-
ing and random testing. A simple risk-based strategy with Q̄0,i,t learned using a generalized
linear model is also used as a comparison (denoted as risk-based with glm). All designs
are further compared to benchmarks, including no testing and when true infectious status is
known (”perfect”), corresponding respectively to the lower and upper bounds of performance
for any intervention.

All simulations results represent averages over 500 Monte Carlo draws and trajectory of
t = 120 time points. While the size of the population is set to n = 20, 000, we investigate
performance of the proposed methodology under various resource constraints, testing 1%−4%
of the total population at each time point (corresponding to k = {200, 400, 600, 800}). In
the Appendix Section 4.7 we also consider different levels of outside transmission, reflected
by the risk scale parameter; higher the risk scale score, higher the role of the latent parts of
the network and individual risk on transmission dynamics. All simulations are initiated with
8 exposed, 2 temporarily infectious and 2 symptomatic cases of COVID-19. We purposely
focus on the scenario where simple rule-based strategies might do well (knowing the network
of the few infected individuals), and it is difficult to learn one’s risk due to a limited number
of infections. We also want to mimic a new start of a semester in an environment with a
stable number of daily infections, as otherwise the in-person instruction might be omitted.
While we only present results with the (E = 8, It = 2, Is = 2, Ia = 0) configuration, other
random seeds result in a similar design performance and ranking.

Testing Performance

We evaluate testing performance by the cumulative incidence curve at each time point and
the cumulative percent of infected individuals by t = 120 (final cumulative incidence). The
best performing testing strategy keeps the infection rate low over time, and achieves the
lowest cumulative incidence at the end of observation. Testing performance is a function of
testing strategy, number of available tests, and the number of currently infected individuals.
As such, we evaluate multiple different testing designs (from simple rule-based and risk-based,
to Online SL for adaptive surveillance with the TMLE-, TMLE-CI- and loss-based selector)
under different resource constrains (k = {200, 400, 600, 800}) across the entire trajectory of
the infectious disease progression.

The average cumulative incidence curves at each time point for all considered designs and
available resources are shown in Figure 4.1. For instance, random strategy performs as good
as no testing under k = 200, but gets better as more tests become available. Nevertheless,
it is always outperformed by competing testing strategies in our simulations, no matter the
number of available tests or starting conditions. The symptomatic + contact and the risk-
based strategy with glm perform much better than random and no testing, with barely any
overlap of trajectories. The Online SL for adaptive surveillance has the lowest cumulative
incidence compared to competitors across all times and all selectors. Differences between
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individual selectors occur at the beginning and end of the trajectory. As can be seen in Figure
4.1, loss-based approach starts with lower cumulative incidence, but gets outperformed by
TMLE-based strategies towards the end of the trajectory. While testing only 1%−4% of the
total population at each time point, no design achieves performance of the oracle that knows
the true infectious status. However, as more resources are allocated, cumulative incidence
curves for all strategies get flatter, especially for the Online SL for adaptive surveillance.

The average cumulative incidence by time point t = 120 is shown in Figure 4.2; we refer
to it as the average final cumulative incidence. The Online SL for adaptive surveillance with
TMLE-CI selector outperforms all competing designs across all simulation setups — with the
most stark difference at k = 800 (CI: (1.8%, 2.1%) vs. (2.4%, 2.9%) for the second best design,
TMLE-based selector). As expected, the performance of the TMLE-CI selector gets better
as a function of more available tests (CI with k = 200: (14.9%, 16.2%); CI with k = 400:
(7.1%, 8.0%); CI with k = 600: (3.6%, 4.2%); CI with k = 800: (1.8%, 2.1%)). As such, even
with testing only 4% of the campus population, we can achieve good control of the infectious
disease spread in our simulations. Compared to simple rule-based and risk-based competitors,
Online SL for adaptive surveillance achieves much lower cumulative incidence by t = 120,
across all proposed selectors. On average and across all resource constraints, Online SL with
TMLE-CI selector has 1.6 lower cumulative incidence then implementing just risk-based
testing strategy with glm. Compared with the symptomatic + contact scheme, which might
be considered standard testing practice, mean final cumulative incidence was reduced from
23.8% to 15.5% at k = 200, and from 3.6% to 1.9% at k = 800 with the TMLE-CI selector.
Figure 4.2 also shows that TMLE-based and loss-based selector have similar performance
under higher k values (CI with k = 200: (16.2%, 17.4%) vs. (17.2%, 18.6%); CI with k = 400:
(8.1%, 9.1%) vs. (9.6%, 10.8%); CI with k = 600: (4.5%, 5.4%) vs. (4.3%, 5.0%); CI with
k = 800: (2.4%, 2.9%) vs. (2.5%, 3.0%)). One reason for similar performance could be that
the advantage of smooth transitions across designs achieved by weights in the TMLE-based
selector is offset by averaging loss over a recent window (size 5 in simulations) in the loss-
based selector. Ultimately, both TMLE- and loss-based strategies perform worse than the
TMLE-CI selector in terms of final cumulative incidence — this could be explained by the
fact that neither of the two selectors take into account uncertainty in the point estimates.
Finally, as also observed in Figure 4.1, all designs perform better than no testing (except for
random at k = 200) and worse than the oracle which knows the true infectious status at all
values of k.

Finally, we investigate design performance under different levels of outside transmission
governed by the risk scale parameter. In our agent-based model, higher values of the risk
parameter correspond to higher weighted latent parts of the network and individual risk on
transmission dynamics. Intuitively, higher the risk parameter, more difficult of a problem
catching infectious individuals becomes. In Appendix Section 4.7 we show the cumulative
incidence curve at each time point (Figure 4.4) and the final cumulative incidence by t = 120
(Figure 4.5). Similarly to previously reported results for the risk scale parameter (value 0.5),
the Online SL for adaptive surveillance with TMLE-CI-based selector outperforms all other
designs over a grid of risk parameters (values considered: 0.4, 0.6, 0.7). In fact, as the
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problem becomes harder, TMLE-CI-based selector seems to gain even more advantage over
the second best design (CI for risk parameter 0.4: (2.1%,2.5%) vs. (2.8%,2.9%); CI for risk
parameter 0.5: (3.6%,4.2%) vs. (4.3%,5.0%); CI for risk parameter 0.6: (5.6%,6.5%) vs.
(8.4%,9.9%); CI for risk parameter 0.7: (10.5%,12.1%) vs. (16.2%,18.1%)). In comparison
to the standard testing practice, symptomatic + contact, Online SL for adaptive surveillance
with TMLE-CI-based selector vastly outperforms across all risk scale parameters (CI for
risk parameter 0.4: (2.1%,2.5%) vs. (3.5%,4.1%); CI for risk parameter 0.5: (3.6%,4.2%)
vs. (6.8%,7.7%); CI for risk parameter 0.6: (5.6%,6.5%) vs. (12.1%,13.8%); CI for risk
parameter 0.7: (10.5%,12.1%) vs. (21.9%,23.4%)). Comparison with the risk-based testing
scheme remains parallel to symptomatic + contact, with high advantages over random testing
as well, as shown in Figure 4.5. Finally, as expected, higher risk scale parameter corresponds
to higher average final cumulative incidence under any design. Even for the TMLE-CI-based
selector, as the risk scale jumps to 0.7, average final cumulative incidence at k = 600 is
11.3% vs. 3.9% at value 0.5. Nevertheless, no matter the level of difficulty of the problem,
the ranking of the designs in terms of testing performance remains the same.

Picked Designs

Designs used as candidates in the Online SL for adaptive surveillance include a combination of
rule-based and risk-based strategies. Figure 4.3 demonstrates picked designs (discrete Super
Learners) over time and 500 simulations using the TMLE-CI-based selector. In particular,
one of the candidates used is the canonical symptomatic + contact testing strategy with
a known network. As shown in Figure 4.3, symptomatic + contact design is often picked
at the beginning of the trajectory, while there is not a lot of information collected; as
more data becomes available, it is picked less. All the risk-based strategies include Online
Super Learners of Q̄0,i,t with candidate algorithms which reflect working models described in
Section 4.2. In particular, some of the candidates train on the full training history collected,
windows of past points (window sizes used: (7, 10, 14)), and exponential weights of the form
(1 − rate)lag where rate is (0.01, 0.05, 0.1). As shown in Figure 4.3, designs trained on full
history are often picked at the beginning of the trajectory. As time progresses, candidates
trained on particular extractions of the past win for most resource constraints, converging
to a stable allocation of picked designs. This could be explained by the fact that, as the
trajectory progresses, distant past becomes irrelevant in the current state of epidemic due to
the fast evolving nature of an infectious disease. Once the selector learns that designs trained
on more recent past does well, it starts picking them as discrete SL more consistently. Other
working models not shown in Figure 4.3 include various network components, corresponding
to different working models for the network dependence.

In addition to various working models for Q̄0,i,t, Online SL for adaptive surveillance can
also pick among different sampling schemes. As described in Section 4.4, one can allocate
tests to the top ranked samples or sample based on the estimated risk. As shown in Figure
4.3 each risk-based strategy was a candidate design based on both sampling and top sampling
strategy; hence, if the full training data was used to estimate Q̄0,i,t, tests were allocated both
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based on the top ranked samples and sample proportional to the estimated Q̄0,i,t. In terms
of sampling schemes, top based strategy seems to outperform sampling across all simulation
scenarios considered. This could be explained by the fact that the sample strategy introduces
more exploration than necessary for this problem, especially as we achieve a good estimate
of Q̄0,i,t with more data over time. While a deterministic sampling strategy with a good
estimate of Q̄0,i,t is preferential in our simulations, it is important to keep the sampling
option as a candidate design for cases when more exploration is necessary.

Figure 4.1: Average cumulative incidence at each time point over 500 simulations with
n = 20, 000 sample size and capacity k = {200, 400, 600, 800} using TMLE-based, TMLE-
CI-based and loss-based selectors of the testing strategy. We compare different proposed
selectors to symptomatic + contact, random and glm risk-based testing, with perfect as the
upper and no testing as lower bound on performance.
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Figure 4.2: Average final cumulative incidence at t = 120 over 500 simulations, with
n = 20, 000 sample size and capacity k = {200, 400, 600, 800} using TMLE-based, TMLE-
CI-based and loss-based selectors of the testing strategy. We compare different proposed
selectors to symptomatic + contact, random and glm risk-based testing, with perfect as the
upper and no testing as lower bound on performance.

4.6 Discussion

In this work, we develop an Online Super Learner for the adaptive sequential design. Our
proposed method is especially suited for infectious disease surveillance and control, or any
adaptive sequential problem with unknown dependence within a fully nonparameteric model.
The data setup constitutes a typical longitudinal structure of n individuals over a period of
τ time points. Within each t-specific time block, one observes the exposure variable (e.g.,
indicator of testing), time-varying covariates (e.g., network structure, health status) and
outcome (e.g., infectious status) for all n individuals.

Our causal target parameter is the mean outcome we would have obtained after one
time-step, if, starting at time t given the observed past, we had carried out a stochastic
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Figure 4.3: Percent design over the full trajectory and 500 simulations with n = 20, 000
sample size and capacity k = {200, 400, 600, 800} using TMLE-CI-based selector of the
testing strategy. Candidate designs include symptomatic + contact and various risk-based
designs where the Super Learner is either trained on the full past, exponentially weighted
past, or a window of t = 14 days. All risk-based testing strategies also consider different
sampling schemes, including picking the top samples for testing or randomly sampling based
on the estimated risk.
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intervention g∗t . The main goal is to optimize the next time-point outcome under g∗t at each
t, or as an average of short term outcomes over time, under a possible resource constraint.
As such, the history-adjusted optimal choice for a single time point intervention defines
the adaptive design over time. In the setting of an infectious disease outbreak, we define
exposures of interest as user-defined stochastic interventions, where each g∗t denotes a specific
testing design (symptomatic, random, contact tracing, risk-based testing, etc). The proposed
Online Super Learner for adaptive sequential surveillance then learns the optimal choice
of test strategies over time, adapting to the current state of the epidemic. The optimal
testing allocation aims to maximize the number of caught infectious individuals — resulting
in infectious disease monitoring, prompt isolation, and prevention of further spread.

The infectious disease setup, however, presents unique technical challenges. For instance,
our target parameter is defined in terms of a latent outcome, as the true infectious status is
often unknown. In this work we present an identification result for the causal target param-
eter in terms of the observed outcome, defined as a function of the stochastic intervention
— as we only observe the true status for individuals we test. In addition, unlike the usual
i.i.d. settings, infectious disease propagation induces both network and temporal depen-
dence. The adaptive sequential designs described in the literature are typically asymptotic
in the number of subjects enrolled in the trial [19], or in the number of time points [78].
Unlike the usual settings, the presence of both network and temporal dependence reduces
data to a single observation. Instead of imposing unrealistic assumptions on the statistical
modelM, we rely on working models in order estimate the conditional mean function Q̄0,i,t

and an honest benchmark to choose the best performing estimate for the sake of the adap-
tive design performance. Therefore, the proposed method decides whether to learn across
samples, through time, or both, based on the underlying (unknown) structure in the data at
each time point of the disease trajectory.

As part of the Online SL for adaptive sequential surveillance, we propose a discrete Super
Learner for selecting among different adaptive designs. Namely at each time t, we evaluate
the performance of a choice g∗t by proportion of infected individuals we catch. We might
use as criterion for an adaptive design its average loss over a recent time window (loss-based
selector), the TMLE estimate under g∗t and working model (TMLE-based), or the maximum
lower confidence interval under the stochastic intervention (TMLE-CI-based). All of the
evaluation strategies aim to provide smooth transitions from discrete SL at time t to the one
at t+1, by either averaging over a window of recent performances or weighting by the ratio of
current and proposed probability of treatment given the past. Therefore, the Online SL for
adaptive sequential design is also an adaptive design itself, and the discrete Super Learner
evolves and changes as a function of the underlying dynamics over time. The key strength
of the proposed method is that it does not depend on a strong statistical model, or imposes
unrealistic assumptions. Instead, it relies on different working models to estimate Q̄0,i,t, and
selects among adaptive designs with a short term performance Online Super Learner. As
such, the proposed adaptive design avoids stationarity and independence assumptions, which
are unrealistic in an infectious disease setup.

In addition to proposing a new adaptive sequential design suitable for studying infectious
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disease, we also develop an agent-based model for a moderate size campus during an epidemic.
While we strive to model the environment analogue to the University of California (Berkeley),
all the settings and simulations can be easily modified to reflect any residential campus
and infectious disease. We made all the code and simulations public for the interested
reader, including the proposed adaptive design. Within the simulation framework defined
by the agent-based model, the Online SL for adaptive sequential surveillance outperforms all
considered gold standard testing schemes (random, contact tracing + symptomatic) including
the risk-based testing alone. The advantages of the proposed adaptive design are evident over
a variety of scenarios, including varying resource constraints and level of problem difficulty
(determined by the percent latent component of the network and individual risk). The
reported simulation results reflect the best case scenarios for the competitor testing strategies
- perfect accuracy of the allocated tests, accurate observed network, and full symptoms for
symptomatic individuals. As response to COVID-19 pandemic evolved, most universities
started to require mandatory vaccination, mask-wearing, social distancing, enhanced cleaning
protocols, increased availability of sanitizing products and no large social gatherings. In
future work, we plan to investigate performance of the proposed Online SL for adaptive
surveillance in addition to a wide array of other transmission-limiting measures.

Our proposed method can be extended in various ways. Instead of picking a single selector
as done in our simulations, we could instead have an Online SL for adaptive surveillance
where each candidate is one of the described methods. As such, it would be possible to
pick among TMLE-, TMLE-CI- and loss-based selectors at any time point t; this would be
particularly advantageous at the beginning of the trajectory, when loss-based methods seems
to perform best, but TMLE-CI-based selector minimizes the final cumulative incidence. In
addition, we could extend the proposed methodology to consider a convex combination of
different designs, instead of focusing on the discrete Online SL. While this extension could
provide better performance (in terms of optimizing our target parameter), it might be more
difficult to interpret and implement in practice. In addition, while the Online SL for adaptive
surveillance outperforms all considered testing schemes, it does not provides inference for
our main target parameter. If we were willing to make additional assumptions, or known
more about the data generating process — for example, assume a known network structure
over time or conduct detailed surveillance as done in some countries — we could analyze
the TMLE of our target parameter under one of the working models discussed in Section
4.2. Alternatively, one could data-adaptively learn the underlying true model by giving up
certain statistical properties of the estimator, such as regularity. We explore all of these
interesting avenues and extensions in future work.
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4.7 Appendix

Identifiability Results

Theorem 1 Assume assumptions 33 and 34 hold. Under consistency, we denote the time t
value under the stochastic intervention g∗t as

ΨF
t,g∗t

(P F
Ō(t−1)) = Ψt,g∗t

(PŌ(t−1)) =

∫
a

1

n

n∑
i=1

EP [Y l
i (t) | Ai(t) = a, ō(t− 1)]g∗t (a | ō(t− 1))dµa(a)

=
1

n

n∑
i=1

EQ̄i,t,g∗i,t [Yi(t) | ō(t− 1)]

where the observed outcome is defined as Yi(t) = Ai(t)Y
l
i (t)/gi,t(Ai(t) | Ō(t− 1)) and ψt,g∗t =

Ψt,g∗t
(PŌ(t−1)).

Proof. First, we identify the causal parameter in terms of the conditional distribution of the
observed data PŌ(t−1) and latent outcome Y l(t). Under Assumptions 33 (A6) and 34 (A7),
jointly with consistency (A8), we can denote value at t under the stochastic intervention g∗t
as

E

[
1

n

n∑
i=1

Y l
i,g∗i,t

(t)

]
= E[Ȳ l

g∗t
(t)] (4.14)

def
=

∫
a

1

n

n∑
i=1

E[Y l
i,g∗i,t

(t) = yl | Ai,g∗i,t(t) = a, ō(t− 1)]g∗i,t(a | ō(t− 1))dµ(a)

def
=

∫
a

1

n

n∑
i=1

E[Y l
i,a(t) = yl | Ai,g∗i,t(t) = a, ō(t− 1)]g∗i,t(a | ō(t− 1))dµ(a)

A6
=

∫
a

1

n

n∑
i=1

E[Y l
i,a(t) = yl | ō(t− 1)]g∗i,t(a | ō(t− 1))dµ(a)

A8
=

∫
a

1

n

n∑
i=1

E[Y l
i (t) = yl | Ai(t) = a, ō(t− 1)]g∗i,t(a | ō(t− 1))dµ(a)

def
=

∫
a

1

n

n∑
i=1

E[Y l
i (t) = yl | Ai(t) = a, ō(t− 1)]g∗i,t(a | ō(t− 1))dµ(a).

Note that, for conditional expectations to be well defined, Assumption 34 must hold. The
last equality in equation (4.14) gives us the identification result in terms of the conditional
expectation of the latent outcome. We proceed to define the observed outcome as

Yi(t) = Ai(t)Y
l
i (t)/gi,t(Ai(t) | Ō(t− 1)), (4.15)
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with the conditional expectation of the observed outcome as follows

E[Ȳ (t) | ō(t− 1)] =
1

n

n∑
i=1

E
[

Ai(t)

gi,t(Ai(t) | ō(t− 1))
Y l
i (t) | ō(t− 1)

]
=

1

n

n∑
i=1

∫
y

y

gi,t(Ai(t) | ō(t− 1))
P (y | 1, ō(t− 1))gi,t(Ai(t) | ō(t− 1))dµ(y)

=
1

n

n∑
i=1

Egi,t [Y l
i (t) | 1, Ō(t− 1) = ō(t− 1)].

Therefore, the conditional expectation of the observed outcome defined as in equation (4.15)
is equal to the conditional expectation of the latent outcome Y l

i (t). We can write the final
identification results as

E

[
1

n

n∑
i=1

Y l
i,g∗i,t

(t)

]
=

∫
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n∑
i=1

E[Y l
i (t) = yl | Ai(t) = a, ō(t− 1)]g∗t (a | ō(t− 1))dµ(a)

=

∫
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E[
Ai(t)y
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gi,t(Ai(t) | ō(t− 1))
| a, ō(t− 1)]g∗i,t(a | ō(t− 1))dµ(a)

=
1

n

n∑
i=1

EQ̄i,t,g∗i,t [Yi(t) | ō(t− 1)].

Comment on the Oracle Adaptive Design

The oracle for the proposed adaptive design aims to maximize the overall number of detected
cases at each time step under a resource constraint, such that

arg max
g∗t ∈G

(Ψt,g∗t
(PŌ(t−1))) subject to E[g∗t (1 | Pa(A(t)))] ≤ k for all t. (4.16)

The proposed Online SL for adaptive surveillance aims to approximate and learn the oracle
design in Equation (4.16). Since we are optimizing a short term outcome, this equates
to optimizing the mean over time parameter under a resource constraint at each t. The
optimal strategy goptt then corresponds to the intervention g∗t that maximizes Equation (4.16)
at t under the k percent constraint. Under the t-optimal testing allocation, contagious
individuals can be quickly isolated from the general population with the ultimate goal of
minimizing transmission at future time-points by prompt detection of active, circulating
infections. Consequently, maximizing the number of caught infected individuals at each time
step results in minimizing the total number of circulating infectious by time τ . As such, the
short term outcome serves as a surrogate outcome for the ultimate goal of minimizing the
number of active infections at the end of the observed trajectory.
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Online Super Learner under Working Models

In the following, we outline the Online Super Learner algorithm under flexible working
models described in Subsection 4.2. This work builds on ideas presented by [7] and [79]
under various working models describing the possible underlying dependence structure. The
proposed Online Super Learner is used to estimate Q̄0,i,t, the true conditional expectation of
Yi(t) given the observed past.

Loss-based Parameter Definition and Estimation

LetMY denote the working model for Q̄0,i,t, consisting of all functions Q̄i,t that map A×CA
to [0, 1]. The working model MY reflects a large class of candidate working models de-
scribed in subsection 4.2. With that, we define MY as a collection of all conditional ex-
pectations with some possible dependence structure across time and/or network that could
have given rise to the observed data.More specifically, for all Q̄i,t ∈ MY , the conditional
expectation of the outcome depends on the past only through a fixed dimensional sum-
mary measure CLi(t), with MY satisfying Assumption 29. Under the decomposition of
the fixed dimensional summary outlined in Assumption 28, CLi(t) = (Ai(t), CAi(t)) where
CAi(t) = hAi(Pa(A(t))) = hAi(Pa(O(t))). In addition, any Q̄i,t ∈ MY could be common in
both samples and times (i, t), in time (t), or across samples (i) — thereby satisfying some
combination of Assumption 30, 31 or 32, respectively. By specifying Q̄i,t ∈MY , we are im-
plying there is some structure to the dependent process, as described by one of the working
models in Section 4.2; we are, however, not specifying the exact structure.

Let Q̄i,t ∈MY . Under the working modelMY , we write the risk-based target parameter
ψrisk

0,t corresponding to the risk-based testing strategy as

ψrisk
0,t (Ai(t), CAi(t)) = Ψrisk

t (P0)(Ai(t), CAi(t)) ≡ Q̄0,i,t(Ai(t), CAi(t)),

denoting the true conditional expectation of Yi(t) given the fixed dimensional summary
of the observed past. Note that, in addition to defining the risk-based testing strategy,
estimating Q̄0,i,t is an integral part of the Online SL for adaptive sequential surveillance
(both for the loss- and TMLE- based selectors). In the following, we will refer mostly to
the risk-based target parameter, but the analysis follows for all applications of Q̄0,i,t. Let
L denote a valid loss function for Ψrisk

t (P0), and C(i,m) the time m- and unit i-specific
record C(i,m) = (Yi(m), Ai(m), Ō(m − 1)). A valid loss L is defined as a function whose
true conditional expectation is minimized by the true value of the target parameter; here,
the minimizer is therefore Q̄0,i,t. Further, let L be a function that maps every Ψrisk

t (P ) to
L(Ψrisk

t (P )) : C(i, t) 7→ L(Ψrisk
t (P ))(C(i, t)). As our parameter of interest is a conditional

mean, we could use the square error to define the loss, resulting in

L(Ψrisk
t (P ))(C(i, t)) = w(i, t)(Yi(t)−Ψrisk

t (P )(Ai(t), CAi(t)))
2,

for sample i and time t, where w(i, t) is the subject and time specific weight. Our accent
on appropriate loss functions strives from their multiple use within our framework — as a
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theoretical criterion for comparing the estimator and the truth, and as a way to compare
multiple estimators of the target parameter [132, 34, 133, 141]. The loss function L and the
working model MY will be used to estimate Q̄0,i,t.

We define the true risk, R(P0,Ψ
risk
t (P )) = R(P0, ψ

risk
t ), as the expected value of the loss

w.r.t the true probability distribution over all samples and times. As ψrisk
0,t = Ψrisk

t (P0), we
note that ψrisk

0,t is the minimizer of the true risk over all evaluated ψrisk
t in the parameter

space, such that ψrisk
0,t = arg minψrisk

t
R(P0, ψ

risk
t ). Therefore, the true risk establishes the true

measure of performance for Ψrisk
t (P ), with Ψrisk

t (P0) denoting the minimum. Further, we
define the estimator mapping, Ψ̂risk

t , as a function from the empirical distribution to the
parameter space

We resort to appropriate CV for dependent data in order to obtain an unbiased estimate
of the true risk. To derive a general representation for cross-validation, we define a time t
specific split vector Bt, where t indicates the final time-point of the currently available data
where for all 1 ≤ i ≤ n, Bt(i, ·) ∈ {−1, 0, 1}t. Let v be a particular v-fold, where v range from
1 to V . A realization of Bt defines a particular split of the learning set into corresponding
three disjoint subsets,

Bv
t (i, s, ·) =


−1, C(i,m) not used

0, C(i,m) in the training set

1, C(i,m) in the validation set,

where Bv
t (i,m) reflects the v-fold assignment of, at minimum, unit i at time point m for split

Bv
t trained on data until time t. Then, for each t, we define P 0

n,t as the empirical distribution
of the training sample until time t. Similarly, we let P 1

n,t denote the empirical distribution of
the validation set. Sets B0

t,v and B1
t,v contain all (i,m) indexes in the training and validation

sets for fold v, respectively.
Suppose we have K candidate estimators Ψ̂risk

k,t , k = 1, . . . , K, that can be applied to
(Ai(t), CAi(t)) for i ∈ [n] and t ∈ [τ ]. For a given problem, a library of prediction algorithms
can be proposed. In particular, the candidate estimators for the outcome regression should
include different learners corresponding to the underlying working model. The algorithms in
the candidate library may range from single time-series learners to networks of time-series,
as well as learners that pool data across time, network, or all the data available up to time
t. The Online Super Learner library can also include algorithms that put decaying weight
of different rates on components of the past, or consider learners indexed by subsets of a
network. We utilize working models in the estimation procedure without explicit reliance
on any of the described working models in particular; we let the cross-validation procedure
determine the underlying structure of the process at each time step. In order to evaluate
performance of each Ψ̂risk

k,t , we use cross-validation for dependent data to estimate the average

loss for each candidate. In particular, each Ψ̂risk
k,t is trained on the training set P 0

n,t and results

in a predictive function Ψ̂risk
k,t (P 0

n,t) for k = 1, . . . , K. We define the online cross-validated
risk for each candidate estimator as:
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Rt,CV (P 1
n,t, Ψ̂

risk
k,t (·)) =

t∑
j=1

V∑
v=1

∑
(i,s)∈B1

j,v

L(Ψ̂risk
k,t (P 0

n,j))(C(i, s)),

where Rt,CV (P 1
n,t, Ψ̂

risk
k,t (·)) is the cumulative performance of Ψ̂risk

k,t trained on the training sets
and evaluated on the corresponding validation samples until time t. For instance, while
Ψ̂risk
k,t (P 0

n,t) is trained on the training set P 0
n,t, its performance will be evaluated over the

validation set P 1
n,t. The online cross-validated risk estimates the following true online cross-

validated risk, denoted as Rt,CV (P0, Ψ̂
risk
k,t (·)) and expressed as

Rt,CV (P0, Ψ̂
risk
k,t (·)) =

t∑
j=1

V∑
v=1

∑
(i,s)∈B1

j,v

E0[L(Ψ̂risk
k,t (P 0

n,j))(C(i, s))|CAi(s)].

Note that Rt,CV (P0, Ψ̂
risk
k,t (·)) reflects the true average loss for the candidate estimator with

respect to the true conditional distribution. As opposed to the true online cross-validated
risk, Rt,CV (P 1

n,t, Ψ̂
risk
k,t (·)) gives an empirical measure of performance for each candidate esti-

mator k trained on training data until time t. In light of that, we define the discrete online
cross-validation selector as:

kn,t = arg min
k=1,...,K

Rt,CV (P 1
n,t, Ψ̂

risk
k,t (·)), (4.17)

which is the estimator that minimizes the online cross-validated risk. The discrete (online)
Super Learner is the estimator that at each time point uses the estimates from the discrete
online cross-validation selector. Since each of the k learners can reflect different working
models, the discrete (online) SL picks one of the candidate dependence structures for time
point t. We emphasize that the discrete SL can switch from one learner to another as t
progresses, in response to accumulating more data and detecting changes in the network
and trajectory. Note that, if all the candidate estimators are online estimators, the discrete
(online) SL is itself an online estimator.

In order to study performance of an estimator, we construct loss-based dissimilarity
measures. In particular, loss-based dissimilarity compares the performance of a particular
estimator to the true parameter, defined as

d0,t(Ψ̂
risk
k,t , ψ

risk
0,t ) =

t∑
j=1

V∑
v=1

∑
(s)∈B1

j,v

E0

[(
L(Ψ̂risk

k,t (P 0
n,t))− L(ψrisk

0,t )
)

(C(i, s))

∣∣∣∣CAi(s)].
We define the time t oracle selector as the unknown estimator that uses the candidate closest
to the truth in terms of the defined dissimilarity measure:

kn,t = arg min
k=1,...,K

d0,t(Ψ̂
risk
k,t (P 0

n,t), ψ
risk
0,t ). (4.18)
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Due to it being a function of the true conditional mean, the oracle selector cannot be com-
puted in practice. However, we can utilize it as benchmark in order to describe performance
of the online cross-validation based estimator. Following the argument given by [7], it follows
that the performance of the discrete Online Super Learner is asymptotically equivalent to
that of the oracle selector. The result relies on the martingale finite-sample inequality by
[54] to show that, as t→∞,

d0,t(Ψ̂
risk
kn,t,t

(P 0
n,t), ψ

risk
0,t )

d0,t(Ψ̂risk
kn,t,t

(P 0
n,t), ψ

risk
0,t )
→p 1. (4.19)

Ensemble of Candidate Estimators

In this section, we consider a more flexible online learner by considering an ensemble of a
given set of estimators. As individual learners reflect different candidate working models
for time and network dependence, a weighted combination of candidate estimators reflects
a mixture of working models. We define Ψ̂risk

β,t as an ensemble of K estimators indexed by a

finite-dimensional vector of coefficients β, where β = (β1, . . . , βK). For example, Ψ̂risk
β,t could

represent a convex linear combination:

Ψ̂risk
β,t =

K∑
k=1

βkΨ̂
risk
k,t ,

such that
∑K

k=1 βk = 1 with βk ≥ 0 for all βk. Let Rt,CV (P 1
n,t, Ψ̂

risk
β,t (·)) be the online cross-

validated risk for Ψ̂risk
β,t given by

Rt,CV (P 1
n,t, Ψ̂

risk
β,t (·)) =

t∑
j=1

V∑
v=1

∑
(i,s)∈B1

j,v

L(Ψ̂risk
β,t (P 0

n,j))(C(i, s)).

We denote βn,t as the choice of β that minimizes the online cross-validated risk,

βn,t = arg min
β
Rt,CV (P 1

n,t, Ψ̂
risk
β,t (·)). (4.20)

Note that βn,t itself is not an online estimator, since it involves recomputing the minimum for
each t. We can define an oracle selector for this class of estimators as the choice of weights
that minimizes the true average of the loss-based dissimilarity:

βn,t = arg min
β
d0,t(Ψ̂

risk
β,t (P 0

n,t), ψ
risk
0,t ). (4.21)

The oracle results extend to an ensemble of candidate estimators, and we can show that

d0,t(Ψ̂
risk
βn,t,t

(P 0
n,t), ψ

risk
0,t )

d0,t(Ψ̂risk
βn,t,t

(P 0
n,t), ψ

risk
0,t )
→p 1 (4.22)
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as t goes to infinity. As such, the performance of the Online Super Learner is asymptotically
equivalent with the optimal ensemble of candidate estimators, which reflect different working
models.
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Additional Simulations

Figure 4.4: Average cumulative incidence at each time point over 500 simulations with
n = 20, 000 sample size and capacity k = 600 using TMLE-based, TMLE-CI-based and loss-
based selectors of the testing strategy. Performance is evaluated at different risk scale values
{0.4, 0.5, 0.6, 0.7}, where higher risk scale score corresponds to higher individual risk. We
compare different proposed selectors to symptomatic + contact, random and glm risk-based
testing, with perfect as the upper and no testing as lower bound on performance.
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Figure 4.5: Average final cumulative incidence at t = 120 over 500 simulations, with n =
20, 000 sample size and capacity k = 600 using TMLE-based, TMLE-CI-based and loss-
based selectors of the testing strategy. Performance is evaluated at different risk scale values
{0.4, 0.5, 0.6, 0.7}, where higher risk scale score corresponds to higher individual risk. We
compare different proposed selectors to symptomatic + contact, random and glm risk-based
testing, with perfect as the upper and no testing as lower bound on performance.
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Figure 4.6: Percent design over the full trajectory and 500 simulations with n = 20, 000
sample size and capacity k = 600 using TMLE-CI-based selector of the testing strategy.
Performance is evaluated at different risk scale values {0.4, 0.5, 0.6, 0.7}, where higher risk
scale score corresponds to higher individual risk. Candidate designs include symptomatic
+ contact and various risk-based designs where the Super Learner is either trained on the
full past, exponentially weighted past, or a window of t = 14 days. All risk-based testing
strategies also consider different sampling schemes, including picking the top samples for
testing or randomly sampling based on the estimated risk.
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Chapter 5

Regularized Targeted Learning in
Reinforcement Learning

In this chapter, we study the problem of off-policy evaluation (OPE) in Reinforcement Learn-
ing (RL), where the aim is to estimate the performance of a new policy given historical data
that may have been generated by a different policy (or policies). In particular, we intro-
duce a novel doubly-robust estimator for the OPE problem in RL, based on the Targeted
Maximum Likelihood Estimation principle from the statistical causal inference literature.
We also introduce several variance reduction techniques that lead to impressive performance
gains in off-policy evaluation. We show empirically that our estimator uniformly wins over
existing off-policy evaluation methods across multiple RL environments and various levels of
model misspecification. Finally, we further the existing theoretical analysis of estimators for
the RL off-policy estimation problem by showing their OP (1/

√
n) rate of convergence and

characterizing their asymptotic distribution.

5.1 Introduction

Off-policy evaluation (OPE) is an increasingly important problem in reinforcement learning.
Works on OPE address the pressing issue of evaluating the performance of a novel policy in
a setting where actual enforcement might be too costly, infeasible, or even hazardous. This
situation arises in many fields, including medicine, finance, advertising, and education, to
name a few [88, 95, 121, 59]. The OPE problem can be treated as a counterfactual quantity
estimation problem, as we inquire about the mean reward we would have accrued, had
we, contrary to fact, implemented the policy πe at the time of data-collection. Estimating
and inferring such counterfactual quantities is a well studied problem in statistical causal
inference, and has led to many methodological developments. This chapter aims to further
earlier efforts by [33] in bridging the gap between the reinforcement learning and causal
inference fields.

There are roughly two predominant classes of approaches to off-policy value evaluation
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in RL [63]. The first is the direct method (DM), analogous to the G-computation procedure
in causal inference [106, 107]. The direct method first fits a model of the system’s dynamics
and then uses the learned fit in order to estimate the mean reward of the target policy
(evaluation policy). The estimators produced by this approach usually exhibit low variance,
but suffer from high bias when the model fit is misspecified or the sample size is small relative
to the complexity of the function class of the model [81]. The second major avenue for off-
policy value evaluation is importance sampling methods, also termed inverse propensity score
methods in statistical causal inference [110]. Importance sampling (IS) attempts to correct
the mismatch between the distributions produced by the behavior and target policies [98,
97]. The IS estimators are unbiased under mild conditions, but their variance tends to be
large when the evaluation and behavior policies differ significantly [39]. Their variance also
grows exponentially with the horizon, rendering IS approach [39] impractical for many RL
settings. A third class of estimators, Doubly Robust (DR) estimators, obtained by combining
a DM estimator and an IS estimator, are becoming standard in OPE [39, 63, 123]. These
originate from the statistics literature [109, 108, 5, 140, 138, 137], and were introduced in
the RL literature by Dudik, Langford, and Li [33]. Combining a DM and an IS estimator
under the form of a DR estimator leads to lower bias than DM alone, and lower variance
than IS alone.

The contribution of this chapter to OPE in RL is multifold. First, it proposes an adap-
tation of a doubly robust estimator from statistical causal inference, the Longitudinal Tar-
geted Maximum Likelihood Estimator (LTMLE) to the OPE in RL setting. We show that
our adapted estimator converges at rate OP (1/

√
n) to the true policy value. Deriving the

LTMLE requires us to identify a mathematical object known in semiparametric statistics
as the efficient influence function (EIF) of the estimand (policy value). To the best of our
knowledge, this work is the first one to explicitly derive the EIF of the policy value for
the OPE problem in RL. Knowledge of the EIF allows us to prove that both our estimator
(the LTMLE) and recently proposed DR estimators [63, 123] are optimal in the sense that
they achieve the generalized Cramer-Rao lower bound. Second, it introduces an idea from
statistics to make better use of the data than prior OPE works [63, 123]. Most OPE papers,
at least in theory, use sample splitting: the Q-function is fitted on a split of the data, while
the DR estimator is obtained by evaluating the fitted Q-function on another split. This
chapter proposes a cross-validation-based technique that allows to average the Q-function
over the entire sample, leading to a constant-factor gain in risk. Finally, and most impor-
tantly for practice, it proposes several regularization techniques for the LTMLE estimators,
out of which some, but not all, apply to other DR estimators. Using the MAGIC ensemble
method from Thomas and Brunskill [123], we construct an estimator that combines various
regularized LTMLEs. We call our final estimator RLTMLE (TMLE for RL). The simula-
tions reported demonstrate that RLTMLE outperforms all considered competing off-policy
methods, uniformly across multiple RL environments and levels of model misspecification.
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5.2 Statistical Formulation of the Problem

Markov Decision Process and Target Parameter

Consider a Markov Decision Process (MDP) defined as a tuple (S,A,R, P1, P, γ), where S
and A are the state and action spaces, and γ ∈ (0, 1] is a discount factor. A trajectory H
is a succession of states St, actions At and rewards Rt, observed from t = 1 to the horizon
t = T : H = (S1, A1, R1, ..., ST , AT , RT ). For all (s, a, r, s′) ∈ S × A ×R× S, P (s′, r|s, a) is
the probability of collecting reward r and transitioning to state s′, conditional on starting
in state s and taking action a, and P1(s) is the probability that the initial is s. A policy
π is a sequence of conditional distributions (π1, π2, ...) that stochastically map a state to an
action: for all t, At|St ∼ πt. Suppose we are given n i.i.d. T -step trajectories of the MDP,
D = (H1, ..., Hn), collected under the behavior policy πb = (πb,1, ...., πb,T ). We assume all
trajectories have the same initial state s1, allowing for the data-generating mechanism to be
fully characterized by (P, πb).

The goal of OPE is to estimate the average cumulative discounted reward we would have
obtained by carrying out the target policy πe instead of policy πb. That is, we want to
estimate the following counterfactual quantity:

V πe
1 (s1) := EP,πe

[
T∑
t=1

γtRt|S1 = s1

]
. (5.1)

Assumption 35 (Absolute continuity). ∀s, a ∈ S ×A, if πb(a|s) = 0, then πe(a|s) = 0.

Under assumption 35 and the Markov assumption of the MDP model, V πe
1 (s1) can be

written as an expectation under the data-generating mechanism (P, πb):

V πe
1 (s1) = EP,πb

[
T∏
t=1

πe,t(At|St)
πb,t(At|St)

T∑
t=1

γtRt

∣∣∣∣S1 = s1

]
. (5.2)

For t = 1, ..., T , define R̄t:T :=
∑T

τ=t γ
τ−tRτ as the total reward from step t to step T . For

all 1 ≤ t1 ≤ t2 ≤ T , define ρt1:t2 :=
∏t2

τ=t1
πe,τ (Aτ |Sτ )/πb,τ (Aτ |Sτ ). For all t = 1, ..., T , we

will use the shortcut notation ρt := ρ1:t. We use the convention that ρ0 = 0. Denote R̄
(i)
t:T ,

ρ
(i)
t , ρ

(i)
t1:t2 the corresponding quantities for a sample trajectory Hi. Consistently with (5.1)

and (5.2), we define, for any t = 1, ..., T , and s ∈ S, the value function (or reward-to-go)
from time point t and state s, as

V πe
t (s) : = EP,πe [R̄t:T |St = s] (5.3)

= EP,πb
[
ρt:T R̄t:T |St = s

]
.

For every t = 1, ..., T , s ∈ S, a ∈ A, we further define the action-value function from time
step t as

Qπe
t (s, a) := EP,πe

[
R̄t:T |St = s, At = a

]
(5.4)

= EP,πb
[
ρt:T R̄t:T |St = s, At = a

]
.
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5.3 Current state-of-the art approach

Our method can be seen as building upon and improving on Thomas and Brunskill [123]. We
believe it helps understanding our contribution to first briefly describe their estimators. For
a detailed review of OPE methods, we refer the interested reader to the vast and excellent
literature on the topic [98, 122, 63, 39].

Weighted Doubly Robust Estimator

Jiang et al [63] were the first authors to propose a doubly robust estimator for off-policy
evaluation in the MDP setting. Building on their work, Thomas et al [123] build a stabi-
lized version termed Weighted Doubly Robust (WDR) estimator. The stabilized importance

sampling weight for observation i at time step t is then defined as w
(i)
t = ρ

(i)
t /
∑n

i=1 ρ
(i)
t , with

the final WDR estimator written as

WDR :=
n∑
i=1

{
1

n
V πe

1 (S
(i)
1 ) (5.5)

+
T∑
t=1

γtw
(i)
t

[
R

(i)
t −Qπe

t (S
(i)
t , A

(i)
t ) + γV πe

t+1(S
(i)
t+1)

]}
.

MAGIC

While WDR has low bias and converges at a rate OP (1/
√
n) to the truth, its reliance on

importance weights can make it highly variable. As a result, in some settings, especially
if model misspecification is not too prevalent, DM estimators can beat WDR [123]. This
motivates the construction of an estimator that interpolates between DM and WDR, so as
to benefit from both. Thomas et al. [123] propose partial importance sampling estimators,
which correspond to cutting off the sum in (5.5) for terms with index t ≥ j corresponding
to some 0 ≤ j ≤ T . Formally, they define their partial importance sampling estimator as
the average gj :=

∑n
i=1 g

(i)
j of the so-called off-policy j-step return, that they define, for each

trajectory i, as

g
(j)
i :=

j∑
t=1

γtwitR
(i)
t︸ ︷︷ ︸

a

+ γj+1wijV
πe
j+1(Sij+1)︸ ︷︷ ︸
b

(5.6)

−
j∑
t=1

γt[witQ
πe
t (S

(i)
t , A

(i)
t )− wit−1V

πe
t (S

(i)
t )]︸ ︷︷ ︸

c

.

Here we emphasize that g0 is equal to the DM estimator, and that the last component, (c),
represents the combined control variate for the importance sampling (a) and model based
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term (b). Hence, as j increases, we expect bias to decrease, at the expense of an increase in
variance.

The final estimator by Thomas et al. [123] is a convex combination of the partial im-
portance sampling estimators gj. Ideally, we would like this convex combination to mini-
mize mean squared error (MSE): that is, we would like to use as estimator (x∗)>g, with
g = (g0, ..., gT ), where

x∗ = arg min
0≤x≤1∑T
j=0 xj=1

MSE(x>g, V πe
1 ) (5.7)

= arg min
0≤x≤1∑T
j=0 xj=1

{
Bias2(x>g, V πe

1 ) + Var(x>g)

}
.

As we do not have access to the true variance and bias, Thomas et al. [123] propose to use
as estimator x̂>g, where x̂ is a minimizer, over the convex weights simplex, of an estimate
of the MSE. The covariance matrix of g, which we will denote

High level description

Our proposed estimator extends the longitudinal Targeted Maximum Likelihood Estimation
(TMLE) methodology, initially developed in the statistics causal inference literature, to the
MDP setting [140, 129, 138, 137]. In order to build intuition on our estimator, we start with
a high-level description. Targeted Maximum Likelihood Estimation is a general framework
that allows to construct efficient nonparametric estimators of low-dimensional characteris-
tics of the data-generating distribution, given machine learning based estimators of high-
dimensional characteristics. Let us illustrate on an example what these low-dimensional and
high-dimensional characteristics can be. Suppose we want to estimate an average treatment
effect (ATE), where we have pre-treatment covariates X, a treatment T and an outcome
Y , with (X,T, Y ) ∼ P . In this situation, the low-dimensional characteristic is the ATE
EP [EP [Y |T = 1, X] − EP [Y |T = 0, X]], while the high-dimensional characteristics of P
are the outcome regression function x, a 7→ EP [Y |A = a,X = x] and the propensity score
function x 7→ EP [T |X = x].

Suppose we are provided with n i.i.d. trajectories, D = (H1, ..., Hn). First, we generate
two splits of the sample: for some 0 < p < 1, let D(0) = (H1, ..., H(1−p)n) and D(1) =

(H(1−p)n+1, ..., Hn). We use D(0) to fit estimators Q̂πe
1 , · · · , Q̂πe

T of the action value functions

Qπe
1 , · · · , Qπe

T , and call Q̂πe
1 , · · · , Q̂πe

T the initial estimators. Such estimators can be obtained,
for instance, by fitting a model of the dynamics of the MDP (or by SARSA) among other
methods [120]. Estimators fitted in such a way tend to exhibit low variance but often suffer
from misspecification bias. As mentioned in section 5.3, doubly-robust estimators take initial
estimates as input and evaluate on D(1). An average of a certain function of the evaluated
input produces an unbiased estimator of V πe

1 (s1). These doubly-robust estimators rely on

the addition of terms weighted by the importance sampling (IS) ratios ρ
(i)
i:t , i = 1, · · · , n,
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t = 1, · · · , n. The TMLE methodology takes another route: for each t, it defines, on top of
the initial estimator fit, a parametric model — which we will call a second-stage parametric
model. The second-stage parametric model Q̂πe

t achieves bias reduction by fitting a maximum
likelihood over it, on the sample split D(1).

Formal presentation of the simplified algorithm

To formally describe our algorithm, it suffices to define the second-stage parametric models
and describe the loss used for the fit. For all x ∈ R, we define σ(x) = 1/(1 + e−x) as the
logistic function, and we denote σ−1 as its inverse. Observe that bounding the range of
rewards where ∀t, Rt ∈ [rmin, rmax], implies that ∀t and ∀(s, a) ∈ S ×A, Qt(s, a) ∈ [−∆t,∆t]
with ∆t :=

∑T
τ=t γ

τ−t max(rmax, |rmin|). We further denote Q̃πe
t (s, a) := (Q̂πe

t + ∆t)/(2∆t)
as the normalized initial estimator. In addition, ∀δ ∈ (0, 1/2) and ∀(s, a), we define the
following thresholded version of Q̃πe

t :

Q̃πe,δ
t (s, a) :=


1− δ if Q̃πe

t (s, a) > 1− δ,
Q̃πe
t (s, a) if Q̃πe

t (s, a) ∈ [δ, 1− δ],
δ if Q̃πe

t (s, a) < δ.

(5.8)

For all ε ∈ R, we can now define the normalized version of our second-stage parametric
model as:

Q̃πe,δ
t (ε)(s, a) := σ(σ−1(Q̃πe,δ

t (s, a)) + ε). (5.9)

Finally, we denote Q̂πe,δ
t (ε) = 2∆t(Q̃

πe,δ
t (ε)− 1/2) as the rescaled version of Q̃πe,δ

t (ε).
The normalization, thresholding and rescaling steps in the definition of the parametric

second-stage model ensure that (1) Q̃πe,δ
t (ε) ∈ [δ, 1−δ] ⊂ (0, 1) for all ε, and that (2) Q̂πe,δ

t (ε)
always stays in the allowed range of rewards [−∆t,∆t]. The definition of Q̃πe,δ

t (ε) as a logistic
transform of ε that lies in (0, 1) makes the fitting of ε possible through maximum likelihood
for a logistic likelihood. For t = T , since Qπe

T (s, a) = EP,πb [ρ1:TRT |ST = s, AT = a], it is
natural to consider the log likelihood,

Rδ
n,T (ε) =

1

n

n∑
i=1

ρ
(i)
1:T

(
Ũ

(i)
T log(Q̃πe,δ

T (ε)(S
(i)
T , A

(i)
T )) (5.10)

+ (1− Ũ (i)
T ) log(1− Q̃πe,δ

T (ε)(S
(i)
T , A

(i)
T ))

)
,

where Ũ
(i)
T := (R

(i)
T + ∆T )/(2∆T ) is the normalized reward at time T . Normalization of

the reward is necessary since we are using logistic regression to optimize ε, and to keep
the definition of Ũ

(i)
T and Q̃πe,δ

T (s, a) consistent. The thresholding step that defines Q̃δ
t (s, a)

prevents the log likelihood from taking on non-finite values. In order to make the bias
introduced by thresholding vanish as the sample size grows, we use a vanishing sequence
δn ↓ 0 of thresholding values.
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Let εn,T be the minimizer over R of the log likelihood Rδ
n,t for step T . We fit the second-

stage models for t = T − 1, ..., 1 by backward recursion, a procedure which we describe in
more detail in this paragraph. Start with observing that for all t = 1, ..., T , and for all
(s, a) ∈ S × A, Qπe

t (s, a) = Eπb [ρ1:t(Rt + γV πe
t+1(St+1))|St = s, At = a]. This motivates

defining, as outcome of the rescaled logistic regression model for time step t, the normalized
reward-to-go:

Ũ
(i)
t,n := (R

(i)
t + γV̂ πe

t+1(εn,t+1)(S
(i)
t+1) + ∆t)/(2∆t). (5.11)

Define V̂ πe
t (ε) as the value function corresponding to the action-value function Q̂πe,δn

t (ε), that
is, for all s ∈ S, set V̂ πe

t (ε)(s) =
∑

a′∈A πe(a
′|s)Q̂πe,δn(ε)(s, a′). We define the second-stage

model log likelihood for each t = T − 1, ..., 1 as

Rδ
t,n(ε) =

1

n

n∑
i=1

ρ
(i)
1:t

(
Ũ

(i)
t log(Q̃πe,δ

t (ε)(S
(i)
t , A

(i)
t )) (5.12)

+ (1− Ũ (i)
t ) log(1− Q̃πe,δ

t (ε)(S
(i)
t , A

(i)
t ))

)
.

The fact that the outcome in the second-stage logistic model at time step t depends on the
second-stage model fit at time step t+ 1 is why we have to proceed backwards in time. It is
also the reason why we say this procedure is a backward recursion. Finally, once all of the T
second-stage models have been fitted, we define the LTMLE estimator of V πe

1 (s1) as follows:

V̂ πe,LTMLE
1 (s1) := V̂ πe

1 (εn,1)(s1). (5.13)

The idea of backward recursion originates from sequential regression, first described by [5].
We present the pseudo-code of the procedure as Algorithm 2.

Algorithm 2 Longitudinal TMLE for MDPs

Input: Logged data split D(1), target policy πe, initial estimators Q̂πe
1 , ..., Q̂

πe
T , discount

factor γ.
Set ∆T = 0 and V̂ πe

T+1 = 0.

for t = T to 1 do
Set ∆t = maxt,i |Rt|+ γ∆t.

Set Ũt = (Rt + γV̂ πe
t+1 + ∆t)/2∆t.

Set Q̃πe,δn
t = threshold(δn, (Q̂

πe
t + ∆t)/2∆t).

Compute εn,t = arg minεRδn
n,t(ε).

Set Q̂πe,δn
t = 2∆t(Q̃

πe,δn
t − 0.5).

Set, for all s ∈ S,

V̂ πe
t (s) =

∑
a′∈A

πe(a
′|s)Q̂πe,δn

t (s, a′).

end

return V̂ πe
1 (εn,1)(s1).
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Convergence Rate and Asymptotic Distribution

It might at first appear surprising that fitting the second-stage models, which amounts to
simply fitting the intercept of a logistic regression model, suffices to fully remove the bias.
We nevertheless prove that it does so in Theorem 17 under mild assumptions. Theorem 17
requires Assumption 35 stated in section 5.2, and Assumptions 2-4 stated below. We can
also characterize the asymptotic distribution and the asymptotic variance of the LTMLE
estimator. In particular, we can show that, provided that Q̂πe is consistent, our estimator
attains the generalized Cramer-Rao bound and is therefore locally efficient. We also argue
that it is asymptotically equivalent with the doubly robust estimator presented before in the
literature [123, 63].

Assumption 36. For all t = 1, ...., T , rt ∈ [rmin, rmax] almost surely.

Assumption 37. For all t = 1, ..., T , the initial estimator Q̂πe
t,n converges in probability to

some limit Qt,∞ : S ×A → R, that is ‖Q̂πe
t,n −Qt,∞‖P,2 = oP (1).

Assumption 38. For all t = 1, ..., T , let Qt,∞ be the limit as defined in Assumption 37.
Assume there exists a (small) positive constant η ∈ (0, 1/2) such that ∀t and ∀(s, a) ∈ S×A,
Qt,∞(s, a) ∈ [η, 1− η].

Assumption 39. Suppose there exists a finite positive constant M such that ∀t, ρ1:t ≤ M
almost surely.

Theorem 17. Suppose Assumptions 36, 37, 38, and 39 hold. Then the LTMLE estimator
has bias o(1/

√
n), that is

EP,πb [V̂
πe,LTMLE

1 (s1)]− V πe
1 (s1) = o(1/

√
n).

In addition, the LTMLE estimator converges in probability at rate
√
n, that is

V̂ πe,LTMLE
1 (s1)− V πe

1 (s1) = OP (1/
√
n). (5.14)

5.4 RLTMLE

In the following, we (1) present regularizations which can be applied to LTMLE, and (2) de-
scribe our “final estimator”, denoted RLTMLE (standing for LTMLE for RL). In particular,
RLTMLE consists of a convex combination of regularized LTMLE estimators. The weights
in the RLTMLE convex combination are obtained following a variant of the ensembling
procedure of the MAGIC estimator, presented earlier [123].
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Regularization and base estimators

We introduce three ready-to-use regularization techniques which allow variance stabilization
of the LTMLE estimator. The first two have a clear WDR analogue, while the third one
only applies to LTMLE.

1. Weight softening: For α ∈ [0, 1], x ∈ Rd, we define weight softening as
soften(x, α) := (xαk/

∑d
l=1 x

α
l : k = 1, ..., d). The LTMLE algorithm corresponding

to softening level α is obtained by replacing, in the second-stage log likelihoods (5.10)

and (5.12), the IS ratios (ρ
(i)
1:t : i = 1, ..., n) by soften((ρ

(i)
1:t : i = 1, ..., n), α). The same

operation can be applied to the importance weights of the WDR estimator.

2. Partial horizon: The LTMLE with partial horizon τ < T is obtained by setting to
zero the coefficients εn,τ1 , ..., εn,T before fitting the other second-stage coefficients. This
enforces importance sampling ratios ρ1:t for t ≥ j to have no impact on the estimator.
The WDR equivalent is to use the τ -step return gτ .

3. Penalization: The penalized LTMLE is obtained by adding a penalty λ|εn,t| for some
λ ≥ 0 to the the log-likelihoods (5.10) and (5.12) of the second-stage models.

The three regularizations can be applied simultaneously, as well as individually. A reg-
ularized LTMLE estimator can therefore be indexed by a triple (α, τ, λ), where α, τ and λ
denote the level of softening, the partial horizon, and the level of likelihood penalization.

Ensemble estimator

Our final proposed estimator is an ensemble of a pool of regularized LTMLE estimators,
which we denote g1, ..., gK . In particular, the ensembled estimator corresponds to a sequence
of triples (α1, τ1, λ1), ..., (αK , τK , λK) of regularization levels. We set gK to be the unregular-
ized LTMLE, that is we set (αK , τK , λK) = (1, T, 0). We ensemble the regularized LTMLE
estimators g1, ..., gK by taking a convex combination of them that minimizes an estimate of
MSE; the ensembling step closely follows that of the MAGIC procedure. We propose two
variants of it, which we call RLTMLE 1 and RLTMLE 2, differing in how we estimate the
covariance matrix Ωn (defined in section 5.3) of base estimators g1, ..., gK .

For RLTMLE1, covariance estimation relies on asymptotic properties of the LTMLE esti-
mator. In particular, the difference between a regularized LTMLE estimator with regulariza-
tion parameters (α, τ, λ), and its asymptotic limit is given by n−1

∑n
i=1 EIF(Q̂, α, τ, λ)(Hi)+

oP (n−1/2), where EIF is the efficient influence function whose expression is given by

EIF(Q̂πe , α, λ, τ)(h) (5.15)

=
T∑
t=1

γtρt ×
(
rt + γV̂ πe

t+1(εn,t+1)(st+1)− Q̂πe
t (εn,t)(st, at)

)
.
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Here, for all t, εn,t is the maximizer of the regularized version of the log-likelihood (5.12)
(where ρt is replaced with soften(ρt, α) and penalized by λ|ε|). We denote the EIF corre-
sponding to estimator gk as EIFk(h) = EIF(Q̂, αk, λk, τk)(h). The estimate of the covariance
matrix Ωn is then the empirical covariance matrix Ω̂n of (EIF1(H), ...,EIFK(H)).

On the other hand, for RLTMLE2, an estimate of the covariance matrix Ωn of the base
estimators g = (g1, ..., gK) is obtained by computing bootstrapped values g(1), ..., g(B) of g.
In particular, we generate a large enough number of bootstrap samples B, and compute the
empirical covariance Ω̂n matrix of g(1), ..., g(B). In Algorithm 3 we present the pseudo-code
description of RLTMLE2, which is our most performant algorithm.

Bias Estimation

For bias estimation, we follow closely the method proposed by Thomas et al. [123]. In par-
ticular, for k = 1, ..., K, we denote by bn,k the bias of estimator gK , and bn := (bn,1, ..., bn,K).
Further, let CI(α) denote the α-percentile bootstrap confidence interval for the LTMLE es-
timator. For both RLTMLE 1 and RLTMLE 2, and for each k = 1, ..., K, we estimate the
bias bn,k with b̂n,k := dist(gk,CI(α)). Finally, we denote b̂n := (b̂n,1, ..., b̂n,K).
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Algorithm 3 RLTMLE 2
Input:
Logged data split D(1),
target policy πe,
initial estimator Q̂πe := (Q̂πe

1 , ..., Q̂
πe
T ),

discount factor γ,
triples of regularization levels (α1, τ1, λ1), ..., (αK , τK , λK),
number of bootstrap samples B.

for b = 1 to B do
Sample with replacement from D(1) a bootstrap sample D∗,(b).
for k = 1 to K do

Compute g
(b)
k with algorithm 2 using inputs D∗,(b), Q̂πe , πe, γ and (αk, τk, λk).

end

end

for k = 1 to K do

Compute gk with algorithm 2 using inputs D(1), Q̂πe , πe, γ and (αk, τk, λk).

for l = 1 to K do

Ω̂k,l ← n−1
∑B

b=1 g
(b)
k g

(b)
l −

(
n−1

∑B
b=1 g

(b)
k

)(
n−1

∑B
b=1 g

(b)
l

)
.

end

CI(α)←
[
percentile({g(b)

k : b}, α), percentile({g(b)
k : b}, 1− α)

]
.

b̂n,k ← distance(gk,CI(α)).

end

x̂← arg min
0≤x≤1
x>1=1

1

n
x>Ω̂nx+ (x>b̂n)2.

return x̂>g.
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5.5 Simulations

Figure 5.1: Empirical results for three different environments and varying level of model mis-
specification. (a) GridWorld MSE across varying sample size n = (100, 200, 500, 1000) and
bias equivalent to b0 = 0.005∗Normal(0, 1) over 71 trials; (b) ModelFail MSE across varying
sample size n = (100, 200, 500, 1000) and bias equivalent to b0 = 0.005∗Normal(0, 1) over 71
trials; (c) ModelWin MSE across varying sample size n = (100, 500, 1000, 5000, 10000) and
bias equivalent to b0 = 0.005∗Normal(0, 1) over 63 trials; (d) ModelWin MSE across varying
sample size n = (100, 500, 1000, 5000, 10000) and bias equivalent to b0 = 0.05 ∗ Normal(0, 1)
over 63 trials.

In this section, we demonstrate effectiveness of RLTMLE by comparing it with other
state-of-the-art methods used for OPE problem in various RL benchmark environments. We
used three main domains, often described in the OPE literature. We implement the same
behavior and evaluation policies as in previous work [123, 39].

1. ModelFail: a partially observable, deterministic domain with T = 3. Here the approx-
imate model is incorrect, even asymptotically, due to three of the four states appearing
identical to the agent.
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Figure 5.2: Comparison of WDR and LTMLE base estimators across various regularization
methods in ModelWin at low (b0 = 0.005 ∗Normal(0, 1)) and high (b0 = 0.05 ∗Normal(0, 1))
model misspecification. Regularized base estimators include ps LTMLE (partial, softened
LTMLE), ps WDR (partial, softened WDR), psp LTMLE (partial, softened, penalized
LTMLE), s LTMLE (softened LTMLE) and WDR (no regularization). The x-axis indicates
the id of the kth estimator, corresponding to (αk, λk, τk). (a) ModelWin MSE for sample
size n = 1000 and low bias over 315 trials; (b) ModelWin MSE for sample size n = 1000
and high bias over 315 trials.

2. ModelWin: a stochastic MDP with T = 10, where the approximate model can per-
fectly represent the MDP.

3. GridWorld: a 4 × 4 grid used for evaluating OPE methods, with an episode ending
at T = 100 or when a final state (s16) is reached.

We omit benefits of RLTMLE over IS, PDIS (per-decision IS), WIS (weighted IS), CW-
PDIS (consistent weighted per-decision IS) and DR (doubly robust) estimators due to the
extensive empirical studies performed by Thomas et al. [123]. Instead, we compare our esti-
mator to WDR and MAGIC, as they demonstrate improved performance over all simulations
in benchmark RL environments considered [123].

In evaluating our estimator, we also explore how various degree of model misspecification
and sample size can affect the performance of considered methods. We start with small
amount of bias, b0 = 0.005 ∗ Normal(0, 1), where most estimators should do well. Conse-
quently, we increase model misspecification to b0 = 0.05 ∗ Normal(0, 1) at the same sample
size, and consider the performance of all estimators. In addition, we test sensitivity to the
number of episodes in D with n = {100, 200, 500, 1000) for GridWorld and ModelFail, and
n = {100, 500, 1000, 5000, 10000) for ModelWin. In addition, we consider the benefits of
adding few regularization techniques as opposed to all three described in subsection 5.4.
In particular, we concentrate on RLTMLE with only weight softening and partial LTMLE
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(RLTMLE 1) as opposed to using penalized LTMLE as well (RLTMLE 2). The goal of
these experiments was to demonstrate the improved performance of our estimator when
fully exploiting all the variance reduction techniques in a clever way. The MSE across vary-
ing sample size and model misspecification for GridWorld, ModelFail and ModelWin can be
found in Figure 5.1. We can see that RLTMLE 2 outperforms all other estimators for all RL
environments and varying levels of model misspecification.

Finally, we compare WDR and LTMLE base estimators augmented with various regu-
larization methods before the ensemble step in Figure 5.5. In particular, for ModelWin, we
look at the MSE of V̂ πe,j

1 (εn,1)(s1) and gk for each k, where the kth estimator corresponds to
regularization (αk, λk, τk). Regularized base estimators considered include ps LTMLE (par-
tial, softened LTMLE), ps WDR (partial, softened WDR), psp LTMLE (partial, softened,
penalized LTMLE), s LTMLE (softened LTMLE) and WDR (no regularization). We note
the vast improvement of WDR just by adding weight softening across all base estimators,
evident for both low and high model misspecification setting. For the low bias environment
of ModelWin, psp LTMLE (RLTMLE 2) uniformly outperforms all competitors for all k.
High bias setting loses to s LTMLE for low k, but still outperforms majority of the time,
including having the best ensemble MSE. While uniform win over all k is not necessary, we
note that this behavior stems from the fact that for k < 3, (αk, λk, τk) used had very small
τk and αk. As such, with no strong debiasing effect of LTMLE, minimizing variance becomes
more effective with respect to minimizing MSE.

5.6 Discussion

In this chapter, we propose a new doubly robust estimator for off-policy value evaluation
in reinforcement learning. In particular, we present a convex combination of regularized
LTMLE estimators which aim at minimizing the MSE. We showed that our estimator is con-
sistent and asymptotically optimal, achieving the Cramer-Rao lower bound. We prove the
OP (1/

√
n) rate of convergence of our estimator, and characterize its asymptotic distribution.

The LTMLE is guaranteed to lie in the allowed rewards domain, both for discrete and con-
tinuous state, and is amenable to several regularization techniques. Finally, our experiments
demonstrate uniform win of RLTMLE over all considered off-policy methods across multiple
RL environments and various levels of model misspecification.

The RLTMLE enjoys multiple distinguishing features that contribute to its finite sample
performance. First, its base estimator is a substitution estimator, therefore it inherently
respects the reward domain for the RL problem. While this is true for DR if states and
actions are discrete, our estimator by design produces estimates that lie in the allowed reward
domain for both discrete and continuous state space. Our estimator also allows for clever
usage of importance weights, instead of explicitly summing over IS terms. This property
strives from using LTMLE as a base estimator, where stabilized IS ratios can be used as
weights of the observations in the log likelihood of the second-stage models. This is an
important feature of RLTMLE, that greatly contributes to its stability without introducing
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bias. Finally, LTMLE is amenable to many regularization methods, with RLTMLE enjoying
a rich family of regularized base estimators. Our experiments show impressive performance
gains from utilizing variance reduction techniques for both RLTMLE and WDR. Finally, our
method does not refit the entire reward-to-go model for each new target policy as the More
Robust Doubly Robust estimator, demonstrating some practical advantages. Since refitting
the reward-to-go model can be quite computationally expensive, our estimator might be
beneficial in situations where one wants to scan through many candidate target policies.
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5.7 Appendix

Simplified sample-splitting-based algorithm

In this section, we present the theoretical analysis for the algorithm derived in section 5.3.
We first outline the steps of the proof in the proof sketch below. We then state the four
main lemmas on which the proof relies, and present the formal proof.

The first fact underpinning the proof is that for any of candidate action-value Q′ =
(Q′1, ..., Q

′
T ) and corresponding value functions V ′ = (V ′1 , ..., V

′
T ), the difference between the

candidate and the true value function at time point t = 1 can be decomposed as follows:

V ′1(s1)− V (s1) = −
∫
D(Q′)(h)dP πb(h), (5.16)

where D(Q′)(h) =
∑T

t=1 Dt(Q
′)(h), with Dt(Q

′)(h) = ρ1:t(h)(rt + γV ′t+1(st+1) − Q′t(st, at)).
This is formally stated in lemma 8 below. For non-random functions Q′ and V ′ note that
the RHS of (5.16) is equal to −EP,πb [D(Q′)]. The second fact the proof relies on is that

the estimators Q̂(εn) resulting from the fitting of the parametric second stages verify the
following equation:

1

n

n∑
i=1

D(Q̂(εn))(Hi) = 0. (5.17)

This is formally stated in lemma 9 below. The argument in the proof of lemma 9 can
be simply summarized as follows. For each t, Dt(Q̂(εn,t)) is the score function of the log
likelihood of the second-stage logistic model for time point t. The third fact we use in the
proof is that εn converges in probability to some limit ε∞. Heuristically, the reason why this
is the case is that, due to the convergence of Q̂n to Q∞, the log likelihoods of the second
stage models converge to a limit, which in turns implies that their arg min εn converges to
the arg min of their limit. We make this rigorous in lemma 10 below.

Using the first two facts stated above, we obtain, by adding up equations (5.16) and
(5.17), that the difference between our estimator V̂ LTMLE

1 (εn)(s1) and the truth V1(s1) is

V̂ LTMLE
1 (εn)(s1)− V1(s1)

=
1

n

n∑
i=1

D(Q̂(εn))(Hi)−
∫
D(Q̂(εn))(h)dP πb(h).

Using the third fact stated above, that εn converges to some ε∞, motivates rewriting the
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above display as

V̂ LTMLE
1 (εn)(s1)− V1(s1)

=
1

n

n∑
i=1

D(Q̂(ε∞))(Hi)−
∫
D(Q̂(ε∞))(h)dP πb(h)

+
1

n

n∑
i=1

D(Q̂(εn))(Hi)−D(Q̂(ε∞))(Hi)

−
∫
D(Q̂(ε∞))(h)−D(Q̂(εn))(h)dP πb(h).

Denote T as the sample split on which the initial estimators are fitted. Since h 7→ D(Q̂(ε∞))(h)
is a non-random function conditional on T , we have that∫

D(Q̂(ε∞))(h)dP πb(h) = EP,πb [D(Q̂(ε∞))|T ].

Therefore, applying the Central Limit theorem conditional on T gives us that the first
line of the RHS in the above display is asymptotically normally distributed and is of order
OP (1/

√
n). As we will show in the formal proof, this also holds after marginilazing w.r.t.

T . The term formed by the second and third lines in the RHS of the above display can be
shown to be oP (1/

√
n). This is formally stated in the lemma below.

Lemma 8 (First order expansion). Consider Q′ = (Q′1, ..., Q
′
T ) a candidate vector of action-

value functions S × A → R for polict πe, and let V ′ = (V ′1 , ..., V
′
T ) the corresponding vector

of state-value functions under πe, that is, for all t, s ∈ S, V ′t (s) =
∑

a′∈A πe(a
′|s)Q′t(s, a′).

Denote Q = (Q1, ..., QT ) and V = (V1, ..., VT ) the true action-value and state value functions
under πe. For all t, for all h ∈ H, denote ρ′1:t(h) an importance sampling ratio for time
point t and trajectory h, not necessarily equal to the true importance sampling ratio. Denote
ρ = (ρ1, ..., ρT ) and ρ′ = (ρ′1, ..., ρ

′
T ). We have that

V ′1(s1)− V1(s1) = −
∫
D(ρ′, Q′)(h)dP πb(h)−

∫
Rem(ρ, ρ′, Q,Q′)(h)dP πb(h),

D(ρ′, Q′)(h) =
∑T

t=1Dt(ρ
′, Q′)(h) and Rem(ρ, ρ′, Q,Q′)(h)

=
∑T

t=1Remt(ρ, ρ
′, Q,Q′)(h) with

Dt(ρ
′, Q′)(h) = γt−1ρ′1:t(h)

(
rt + γV ′t+1(st+1)−Q′t(st, at)

)
,

and

Remt(ρ, ρ
′, Q,Q′)(h)

= γt−1
(
ρ1:t(h)− ρ′1:t(h)

)(
Qt(st, at)−Q′t(st, at)

+ (Vt+1(st+1)− V ′t+1(st+1))
)
.
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From the expression in the RHS of the above display, it is immediately clear that

Remt(ρ, ρ
′, Q,Q′)(h) = 0

if ρ = ρ′ or Q = Q′.

The lemma below shows that the maximum likelihood fits εn,t of the second-stage para-
metric models solve a certain equation, termed score equation in statistics.

Lemma 9 (Score equation). Consider the simplified LTMLE algorithm described in section
5.3. For each t = 1, ..., T , the maximum likelihood fit εn,t satisfies

n∑
i=1

Dt(ρ1:t, Q̂(εn,t))(Hi) = 0.

The following lemma shows that the vector εn = (εn,1, ..., εn,T ) of the maximum likelihood
fits of the second stage models converges in probability to a limit.

Lemma 10 (Convergence of εn). Under assumptions 36, 37, 38 and 39, there exists ε∞ ∈ RT

such that

εn − ε∞ = oP (1).

Lemma 11 (Equicontinuity). Denote, for all h ∈ H, ε ∈ R, Q′ and ρ′

gε(Q
′, ρ′)(h) = D(Q′(ε), ρ′)(h),

where Q′ and ρ′ are possibly random. Suppose H1, ..., Hn are i.i.d. trajectories drawn from
P πb. Suppose further that H1, ..., Hn are independent from the potentially random functions

Q′ and ρ′. Suppose ε′n
P−→ ε′∞ for some ε′∞. Then

1

n

n∑
i=1

gε′n(Q′, ρ′)(Hi)−
∫
gε′n(Q′, ρ′)(h)dP πb(h)

− 1

n

n∑
i=1

gε′∞(Q′, ρ′)(Hi)−
∫
gε′∞(Q′, ρ′)(h)dP πb(h) = oP

(
1√
n

)
.

Proof. From lemma 8,

V̂ TMLE
1 (s1)− V1(s1) = −P πbD(Q̂n(εn), ρ).

Since from lemma 9 we have Pn(D(Q̂n(εn), ρ) = 0, we can add this latter identity to the
above display, which yields

V̂ TMLE
1 (s1)− V1(s1) =(Pn − P πb)D(Q̂n(εn), ρ) (5.18)

=(Pn − P πb)D(Q∞(ε∞), ρ)

+ (Pn − P πb)(D(Q∞(ε∞), ρ)−D(Q̂n(εn), ρ)).
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From the Central Limit theorem applied conditionally on T ,
√
n((Pn−P πb)D(Q∞(ε∞), ρ))

d−→
N (0, σ2(Q∞(ε∞)), with

σ2(Q∞(ε∞)) := V arPπb (D(Q∞(ε∞), ρ)).

Using dominated convergence on the c.d.f. on the LHS,
√
n((Pn − P πb)D(Q∞(ε∞), ρ))

d−→
N (0, σ2(Q∞(ε∞)) also holds true unconditionally.

Proof of lemma 8

Proof. Let H ∼ P πe . If Q′, V ′ are random functions, further suppose, without loss of
generality, that H is independent of Q′ and V ′. Denote G a σ-field such that Q′, V ′ are
G-measurable.

Step 1. Observe that

P πbD(Q′, ρ′) = P πbD(Q′, ρ) + P pib(D(Q′, ρ′)−D(Q′, ρ))

Step 2: First order term. Observe that

P πbD(Q′, ρ) = EPπb [D(Q′, ρ)(H)|G].

For all t ≥ 1, ..., T , denote Ft the σ-field induced by S1, A1, R1, ..., St, At, Rt. Observe that

EPπb [Dt(Q
′, ρ)(H)|St, At,Ft−1,G]

= γt−1EPπb [ρ1:t(Rt + γV ′t+1(St+1)−Q′t(St, At))|St, At,Ft−1,G]

= γt−1ρ1:tEP [Rt + γVt+1(St+1)−Q′t(St, At)|St, At,G]

+ γtρ1:tEP [(V ′t+1(St+1)− Vt+1(St+1))|St, At,G].

Recall that by definition of Q, we have that EP [Rt + γVt+1(St+1)|St, At] = Qt(St, At). In-
serting this in the last line of the above display yields

EPπb [Dt(Q
′, ρ)(H)|St, At,Ft−1,G] = (5.19)

γt−1ρ1:t(Qt(St, At)−Q′t(St, At))
+ γtρ1:tEP [V ′t+1(St+1)− Vt+1(St+1)|St, At,G].

We take the expectation conditional on St, Ft−1, G of the first term in the right-hand side
of the above display:

EPπb [γ
t−1ρ1:t(Qt(St, At)−Q′t(St, At))|St,Ft−1,G] (5.20)

= γt−1ρ1:t−1EP,πb [ρt(Qt(St, At)−Q′t(St, At)|St,G]

= γt−1ρ1:t−1EP,πe [(Qt(St, At)−Q′t(St, At)|St,G]

= γt−1ρ1:t−1(Vt(St)− V ′t (St)).



CHAPTER 5. REGULARIZED TARGETED LEARNING IN REINFORCEMENT
LEARNING 177

The second equality above uses that, for all G-measurable function f ,
EP,πb [ρtf(St, At)|St,G] = EP,πe [f(St, At)|St,G]. The third equality follows from the rela-
tionship between the value function and the action value function. Using the law of iterated
expectations, and identities (5.20) and (5.21), we have that

EP,πb [Dt(Q
′, ρ)(H)|G] (5.21)

= EP,πb [EP,πb [Dt(Q
′, ρ)(H)|St, At,Ft−1,G]|G]

= EP,πb [γ
t−1ρ1:t(Qt(St, At)−Q′t(St, At))|G]

+ EP,πb [γ
tρ1:tEP [V ′t+1(St+1)− Vt+1(St+1)|St, At,G]|G]

= EP,πb [EP,πb [γ
t−1ρ1:t(Qt(St, At)−Q′t(St, At))|St,Ft−1,G]|G]

+ EP,πb [γ
tρ1:t(V

′
t+1(St+1)− Vt+1(St+1))|G]

= EP,πb [γ
t−1ρ1:t−1(Vt(St)− V ′t (St))|G]

+ EP,πb [γ
tρ1:t(V

′
t+1(St+1)− Vt+1(St+1))|G]

Using the above expression in the definition of D(Q′, V ′) yields

EP,πb [D(Q′, ρ)(H)|G] =
T∑
t=1

EP,πb [γ
tρ1:t(V

′
t+1(St+1)− V ′t+1(St+1)) (5.22)

− γt−1ρ1:t−1(V ′t (St)− Vt(St))|G]

=EP,πb [γ
Tρ1:T+1(V ′T+1(ST+1)− VT+1(ST+1))

− ρ1:0(V ′1(s1)− V1(s1))|G]

=− (V ′1(s1)− V1(s1)),

where we have used that by convention V ′T+1(ST+1) = VT+1(ST+1) = 0 and ρ1:0 = 1.

Step 3: remainder term. Similarly, we show that

P πb(D′(Q′, ρ)−D(Q′, ρ)) = Remt(Q,Q
′, ρ, ρ′).

Proof of lemma 9

We only present a proof sketch in this subsection of the Chapter, with the full proof allocated
to the article. The result essentially follows from the following two facts:

1. The score of the logistic likelihood of the second stage model at t is PnDt(Q̂.ρ).

2. The maximum likelihood fit solves the empirical score equation.
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Proof of lemma 10

The convergence of Q̂ to Q∞ implies the pointwise convergence of the log likelihood risk
Rn,t to some asymptotic risk R∞,t. The fact that Q∞,t ∈ [δ, 1− δ] ⊂ (0, 1) (in other words,
that Q∞,t is bounded away from 0 and 1) implies that the asymptotic log likelihood risk
R∞,t is strongly convex; this implies it has a unique minimizer ε∞,t. We then show in the
formal proof that since Rn,t are a sequence of convex functions that converge pointwise in
probability to a strongly convex function minimized by ε∞,t, the sequence of their minimizers
εn,t converges in probability to ε∞,t

Proof of lemma 11

The proof of lemma 11 relies on the following three technical lemmas. Recall the following
definition: for all Q′ ρ′, h ∈ H, ε ∈ R,

gε(Q
′, ρ′)(h) = D(Q′(ε), ρ′)(h).

Lemma 12. Assume that 0 ≤ ρ′1:t(H) ≤ M almost surely for all t = 1, ..., T . Under
assumption 36 on the range of the rewards, for all ε ∈ RT we have that

‖gε(Q′, ρ′)‖L∞(Pπb ) ≤ 3MT,

and for all ε1, ε2 ∈ RT

‖gε1(Q′, ρ′)− gε2(Q′, ρ′)‖L∞(Pπb ) ≤ 2MT‖ε1 − ε2‖∞. (5.23)

For any ε0 ∈ R, and any ξ > 0, define the class of functions

G(Q′, ρ′)(ε0, ξ) := {gε(Q′, ρ′)− gε0(Q′, ρ′) : ‖ε− ε0‖∞ ≤ ξ}.

Lemma 13. For any α > 0 and any probability distribution Λ on H with L = 2MT ,

N(α,L2(Λ),G(ε0, ξ)) ≤
(

2ξL

α

)T
.

Proof. Consider the set{(
ε0,1 + i1

α

L
, ..., ε0,T + iT

α

L

)
: ∀t = 1, ...T, it ∈ Z ∩

[
−ξL
α
,
ξL

α

]}
. (5.24)

Observe that for any fε := gε(Q
′, ρ′) − gε0(Q′, ρ′) ∈ G(Q′, ρ′)(ε0, ξ), there exists an fε′ :=

gε′(Q
′, ρ′) − gε0(Q′, ρ′) in the set above such that ‖ε − ε′‖∞ ≤ α/L. From the second claim

in lemma 12, for all h ∈ H, |fε′(h)− fε(h)| ≤ α. Therefore, for any probability distribution
Λ over H,

‖fε′ − fε‖L2(Λ) =

(∫
(fε′(h)− fε(h))2dΛ(h)

)1/2

≤ α.
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Therefore the set defined above is an α-cover of G(ε0, ξ)) for the norm L2(Λ). Since this set
has at most (2εL/α)T elements, this proves that

N(α,L2(Λ),G(ε0, ξ)) ≤
(

2ξL

α

)T
.

The covering numbers characterized in lemma 13 are the basis for another measure of geo-
metric complexity of a class of function, the uniform entropy integral, whose definition we
recall below (see also [126]).

Definition 9 (Uniform entropy integral). Consider a class of functions X → R. Let F :
X → R be an envelope function for F , that is a function such that for all x ∈ X , |f(x)| ≤
F (x). The uniform entropy integral of F , w.r.t. the envelope function F and L2 norm is
defined, for all β > 0 as

JF (β,F , L2) :=

∫ β

0

sup
Λ

√
log(1 +N(α‖F‖Λ,2, L2(Λ),F)dα,

where the supremum is over all discrete probability distributions on X .

Lemma 14. Let β > 0, and denote L = 2MT . The function Fξ : h 7→ Lξ is an envelope
function for G(ε0, ξ). The uniform entropy integral of G(ε0, ξ) w.r.t. the envelope function
Fξ and for the L2 norm is upper bounded as follows:

JFξ(β,G(ε0, ξ), L2) = O
(
Tβ
√

log(1/β)
)
.

Proof. For every probability distribution Λ on H, ‖Fξ‖Λ,2 = Lξ. From lemma 13, we have
that

N(α‖Fξ‖2,Λ, L2(Λ),G(ε0, ξ)) ≤ (2/α)T .

Therefore,

JFξ(β,G(ε0, ξ), L2) ≤
∫ β

0

√
log(1 + (2/α)T )dα = O

(
Tβ
√

log(1/β)
)
,

where the second equality above follows from an integration by parts.

Finally, we prove the lemma 11. The proof relies on a classical result in empirical process
theory. We first introduce the relevant definitions and the relevant result before stating the
proof of our lemma.
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Definition 10 (Empirical process and empirical process notation). Consider X ,Σ, P ′) a
probability space and let X1, ..., Xn be n i.i.d. draws from P ′. Let F be a class of functions
X → R. For all f ∈ F , define the so-called “empirical process notation”

P ′f :=

∫
f(h)dP ′(h).

Denote Pn := n−1
∑n

i=1 δXi the empirical probability distribution associated to the sample
X1, ..., Xn. Observe that using the empirical process notation defined above, we have that
Pnf = n−1

∑n
i=1 f(Xi). The stochastic process

{(Pn − P ′)f : f ∈ F}

is termed the empirical process associated to P ′ and n indexed by F .

Lemma 15 (Pollard’s maximal inequality, vdV-Wellner 1996 2.14.1). Consider (X ,Σ, P ′) a
probability space and let X1, ..., Xn be n i.i.d. draws from P ′. Let F be a class of functions
X → R. Let F be a class of functions X → R with envelope function F . Then

EP ′ [sup
f∈F

√
n|(Pn − P ′)f |] . JF (1,F , L2)‖F‖L2(P ′).

Proof of lemma 11. Recasting the claim of lemma 8 in terms of empirical process notations,
we want to show that

√
n(Pn − P πb)(gεn(Q′, ρ′)− gε∞(Q′, ρ′)) = oP (1).

Let κ > 0, γ ∈ (0, 1/2). Define, for all ξ > 0, the following two events:

E1(ξ) := {‖εn − ε∞‖∞ ≤ ξ}

E2(ξ) :=

{
sup

ε:‖ε−ε∞‖∞≤ξ

√
n|(Pn − P πb)(gε(Q

′, ρ′)− gε∞(Q′, ρ′))| ≤ κ

}
.

The function Fξ : h 7→ ξL is an envelope function for G(ε0, ξ). By Markov’s inequality and
lemma 15 applied with the uniform entropy integral bound given in lemma 14, we have that

1− P πb [E2(ξ)] =P πb
[√
n|(Pn − P πb)(gεn(Q′, ρ′)− gε∞(Q′, ρ′))| ≥ κ

]
≤κ−1EPπb

[√
n|(Pn − P πb)(gεn(Q′, ρ′)− gε∞(Q′, ρ′))|

]
≤κ−1JF (1,G(ε0, ξ), L2)‖Fξ‖2,Λ

≤Kκ−1ξL,

for some constantK. Set ξ = κγ/(2KL). Then, from the above display, P πb [E2(κγ/(2KL))] ≥
1− γ/2.
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Since εn
P−→ ε∞, there exists n0 such that for all n ≥ n0,

P πb [E1(κγ/(2KL))] ≥ 1 − γ/2. Observe that if E1(κγ/(2KL)) ∩ E2(κγ/(2KL)) is realized,
then

√
n|(Pn − P πb)(gεn(Q′, ρ′)− gε∞(Q′, ρ′))| ≤ κ.

Using a union bound, we have that, for all n ≥ n0,

P πb
[√
n|(Pn − P πb)(gεn(Q′, ρ′)− gε∞(Q′, ρ′))| ≤ κ

]
≥ 1− (1− P πb [E1(κγ/(2KL))])− (1− P πb [E2(κγ/(2KL))])

≥ 1− γ.

Recapitulating the above, we have proven that for all κ > 0, γ ∈ (0, 1/2), there exists n0

such that for all n ≥ n0,

P πb
[√
n|(Pn − P πb)(gεn(Q′, ρ′)− gε∞(Q′, ρ′))| ≤ κ

]
≥ 1− γ.

In other words, we have thus proven that
√
n|(Pn − P πb)(gεn(Q′, ρ′)− gε∞(Q′, ρ′))| = oP (1).

which concludes the proof.

Experiment Details

In this subsection, we provide full details of our experiments and utilized domains. In
particular, we provide detailed descriptions of discrete-state domains ModelWin, ModelFail
and Gridworld.

ModelWin

The ModelWin environment was constructed in order to simulate situations in which the
approximate model of the MDP will converge quickly to the truth. On the other hand,
importance-sampling based methods might suffer from high variance.

The ModelWin MDP consists of 3 states, and the agent always begins at state s1. At s1,
the agent stochastically picks between two actions, a1 and a2. Under action a1, the agent
transitions to s2 with probability 0.4 and s3 with probability 0.6. On the other hand, under
action a2 the agent does the opposite- it transitions to s2 and s3 with probability 0.6 and
0.4, respectively. Under both actions, if the agent transitions to s2, it gets a positive reward
of +1. Consequently s1 to s3 transitions are penalized with -1 reward. In states s3 and s2,
both actions a1 and a2 will take the agent back to s1 with probability 1 and no reward. The
horizon is set to T = 20.

The considered behavior policy takes action a1 from s1 with probability 0.73, and action
a2 with probability 0.27. The evaluation policy has the opposite behavior. Note that both
the behavior and evaluation policies select actions uniformly at random while in states s1

and s2.
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ModelFail

Unlike the ModelWin domain, the agent does not observe the true underlying states of
the MDP in ModelFail. The purpose of this domain is to test environments are not known
perfectly, and where the approximate model will fail to converge to the true MDP. ModelFail
attempts to mimic partial observability, common in real applications.

The actual MDP consists of 4 states, 3 states and a final absorbing state, however the
agent is not able to distinguish between them. The agent always starts at the same state,
s1, where it has two actions available. With actions a1 it transitions into the upper state
(s2), whereas with action a2 it goes to the lower state (s3). No matter which state the agent
transitioned to, both s2 and s3 lead to the terminal absorbing state s4. However, s2 to s4

transition carries reward +1, whereas s3 to s4 leads to reward of -1. The horizon is T = 2.
The considered behavior policy takes action a1 with probability 0.88, and action a2 with

probability 0.22. The evaluation policy has the opposite behavior.

Gridworld

The last discrete-state environment used is a 4 × 4 gridworld domain with 4 actions (up,
down, left, right) developed by [122]. As emphasized by [123], this is a domain specifically
developed for evaluation of OPE estimators. However, due to its deterministic nature, it will
favor model-based approaches.

The horizon for GridWorld is T = 100, after which the episode ends unless the terminal
state of s12 is reached before T . The reward is always -1, expect at states s8 where it is +1,
s12 with +10, and s6 where the agent is penalized with -10 reward.

We used two different polices for the gridworld, as described in [122]. In particular,
policy π1 selects each of the 4 actions with equal probability regardless of the observation.
Intuitively this policy takes a long time to reach the goal, and potentially often visits the
state with the maximum negative reward. In addition, we also considered the near-optimal+
policy π5, which exemplifies a near-deterministic near-optimal policy that moves quickly to
s8 with reward +1, without visiting s6 with -10 reward. At s8 it chooses action down with
high probability, collecting as many positive rewards as possible until the time limit runs
out. Once it eventually chooses the right action, it moves almost deterministically to s12

where it collects its final reward and end the episode.
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