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a b s t r a c t 

A method to link bivariate statistical analysis and hydrodynamic modeling for flood hazard estimation in tidal 

channels and estuaries is presented and discussed for the general case where flood hazards are linked to up- 

stream riverine discharge Q and downstream ocean level, H . Using a bivariate approach, there are many possible 

combinations of Q and H that jointly reflect a specific return period, T , raising questions about the best choice 

as boundary forcing in a hydrodynamic model. We show, first of all, how possible Q and H values depend on 

whether the definition of T corresponds to the probability of exceedance of “H OR Q ” or “H AND Q ”. We also 

show that flood hazards defined by “OR ” return periods are more conservative than “AND ” return periods. Fi- 

nally, we introduce a new composite water surface profile to represent the spatially distributed hazard for return 

period T . The composite profile synthesizes hydrodynamic model results from the “AND ” hazard scenario and 

two scenarios based on traditional univariate analysis, a “Marginal Q ” scenario and a “Marginal H ” scenario. 
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. Introduction 

Flood risk is increasing in coastal cities around the world due to sev-

ral factors including population growth, economic development, sea

evel rise, subsidence, land use changes and intensification of rainfall

 Hallegatte et al., 2013; Hanson et al., 2011 ). By the year 2100, be-

ween 0.2–4.6% of global population and 0.3–9.3% of global gross do-

estic product may be exposed to coastal flooding if no adaptation oc-

urs ( Hinkel et al., 2014 ). 

Management of flood risk relies on statistical and hydrodynamic

odeling to delineate populations and assets exposed to flooding, antic-

pate and monetize the consequences of flooding, and develop cost effec-

ive and socially robust interventions including infrastructure projects,

nsurance programs, land use and building code policy changes and

mergency preparedness and response measures ( Sayers et al., 2013 ;

uke et al., 2018 ). To address risks, statistical and hydrodynamic mod-

ling is linked to delineate spatial fields of the intensity of flooding

e.g., depth and velocity) for a set of exceedance probabilities, informa-

ion which is subsequently used to estimate average annual losses based

n exposed assets and their vulnerability to damage ( Scawthorn et al.,

006 ). The linking of statistical and hydrodynamic modeling is straight-

orward when addressing a single hazard such as river discharge, Q .

lood risk is modeled by first performing univariate frequency analy-
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is of annual maximum discharge to estimate extreme values 𝑄̂ 𝑇 for

early return periods T (e.g., 𝑄̂ 100 for 100 year return period discharge).

ere, the hat notation indicates annual maximum discharge and the

ubscript refers to the return period. Second, hydrodynamic modeling

s performed with 𝑄̂ 𝑇 as a boundary condition to characterize spatial

elds of water surface elevation at each return period, 𝜂T ( x ), where x

epresents distance along the river ( FEMA, 2018 ). However, coastal haz-

rd assessment must account for interaction of river flooding, intense

ainfall, storm surge and waves and the likelihood of a coincidence in

xtreme and non-extreme levels of these hazards which is also known

s compounding effects ( Gallien et al., 2018; Moftakhari et al., 2017 ).

ne of the most important compounding effects is the interaction of

iver discharge and the downstream ocean level, H , in tidal channels

nd estuaries. Of the world’s 32 largest cities, 22 are located on estu-

ries ( Ross, 1995 ), at which the interactions between Q and H play a

ajor role in flood risk estimation ( Ward et al., 2018 ). In the U.S. alone,

40 million people ( ∼50% of total population) live on the coast in close

roximity to an estuary ( Kennish, 2004 ). 

Fig. 1 illustrates the estuarine flood hazard problem: the objective

s to estimate spatially distributed extreme water levels, 𝜂T ( x ), for re-

urn period T in a tidal channel or estuary. We assume knowledge of the

ystem geometry (e.g., bed elevation, channel width and shape) and re-

istance to flow (e.g., Manning resistance coefficient). We also assume
ril 2019 
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Fig. 1. The spatial distribution of the T -year return period extreme water level, 𝜂T ( x ), in an estuary or tidal channel (blue line) depends on upstream river discharge 

Q ( t ), downstream ocean water levels H ( t ), and the system geometry and resistance to flow. This paper shows how bivariate statistical analysis and hydrodynamic 

modeling can be linked to compute 𝜂T ( x ). 
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hat gauges provide time series records of boundary conditions: river

ischarge measurements representative of what enters the reach, Q ( t ),

nd water level measurements, H ( t ), representative of the downstream

nd of the reach. Hence, the key question becomes: how can statistical

nd hydrodynamic modeling be linked for the estuarine setting involv-

ng two gage records characterizing two different aspects of hydrody-

amic extremes? Put another way, can the existing paradigm of uni-

ariate flood hazard modeling described above for rivers be extended

o account for a second gage in a relatively simple and straightforward

ay? We write this mathematically as follows, 

𝑇 ( 𝑥 ) = 𝑓 ( 𝑄 ( 𝑡 ) , 𝐻 ( 𝑡 ) , 𝑝 ( 𝑥 ) ) (1)

here p ( x ) represents the parameters describing the channel geometry

nd resistance properties. Note that Eq. (1) can be extended for two-

imensional flood hazard levels by interpreting x as two-dimensional

ector representing geographical coordinates. 

In the absence of robust models for extreme water levels in estu-

ries, overly simplistic bathtub models have received widespread use

or estimating coastal flooding hazards and the resulting human expo-

ure at regional ( Torresan et al., 2012 ) and national/international levels

 Dasgupta et al., 2011; Hinkel et al., 2010 ). Bathtub models simply take

n estimated extreme water level and extrapolate it inland to estimate

opulation and assets exposed to flooding, which neglects the poten-

ial for flood stage to change with distance inland as a consequence of

iverine forcing and/or tidal damping/amplification ( Lanzoni and Sem-

nara, 1998 ). This points to the potential for underestimation of flood

onsequences. On the other hand, bathtub models may also overestimate

ood consequences by failing to account for flood defenses and the role

f friction, inertia and storage in flooding dynamics ( Gallien et al., 2014;

anders, 2017 ). By linking statistical analysis and hydrodynamic mod-

ls, more robust estimates of extreme water levels become possible as

ell as mechanistic routing of flood water into adjacent urban areas to

stimate flood impacts ( Gallien et al., 2014, 2011 ). 

Existing methods for flood hazard assessment (solving Eq. (1) ) in

idal channels are limited ( Hoitink and Jay, 2016 ). In particular, for the

ase where 𝑄̂ 𝑇 and 𝐻̂ 𝑇 are statistically independent, FEMA (2015) rec-

mmends the following procedure to estimate the hazard for return pe-

iod T : (1) univariate analysis of annual maximum river discharge to es-

imate 𝑄̂ 𝑇 and univariate analysis of annual maximum total water level

o estimate 𝐻̂ 𝑇 , (2) a pair of hydrodynamic model simulations with one

orced by 𝑄̂ 𝑇 and a non-extreme H value (usually chosen as mean higher

igh water) and the other forced by 𝐻̂ 𝑇 and a non-extreme Q value, and

3) synthesis of the two hydrodynamic model simulations based on the

ointwise maximum water level across the two simulations. An appeal-

ng aspect of the FEMA approach is that only two hydrodynamic simu-

ations are required for each return period, which is important because

esources for flood mapping are limited ( Burby, 2001 ) and because hy-

rodynamic flood simulation is computationally demanding (i.e., many
29 
ours for one simulation) especially for urban areas where fine resolu-

ion grids are needed to accurately depict flooding, e.g., Gallien et al.

2011, 2014) . Hence, the FEMA (2015) approach is aligned with needs

or simple and efficient assessment approaches. Nevertheless, there are

ignificant limitations. For example, univariate statistical analysis is

ot appropriate when 𝑄̂ 𝑇 and 𝐻̂ 𝑇 exhibit statistical dependence also

nown as compound risks ( Leonard et al., 2014; Moftakhari et al., 2017;

scheischler et al., 2018 ). Additionally, even when 𝑄̂ 𝑇 and 𝐻̂ 𝑇 are in-

ependent, extreme water levels may occur over the length of the tidal

each due to the interaction of non-extreme boundary forcing values.

EMA (2015, 2018) does not presently offer guidance to address this sit-

ation. Broadly, the FEMA (2015) guidance recommends multi-hazard

ssessment based on the predominant hazards, yet limitations of this

pproach are increasingly being recognized ( Hillier et al., 2015 ). 

The aforementioned challenges of linking statistical and hydrody-

amic modeling can only be partly overcome with improved access to,

nd reduced costs of, high performance computing systems that map

ood hazards through Monte Carlo simulation. That is, Monte Carlo

imulation can be applied to depict thousands of scenarios based on

ifferent combinations of 𝑄̂ 𝑇 and 𝐻̂ 𝑇 , and depict spatially varied flood

azards based on the frequency of the pointwise exceedance of a water

evel threshold ( Purvis et al., 2008 ). However, bivariate statistical anal-

sis is needed in place of univariate analysis to properly describe the

orrelation structure of the hazard drivers and for sampling representa-

ive combinations of hazard drivers in Monte Carlo simulations. 

The objective of this paper is to present a solution method for

q. (1) that accounts for statistical correlation structure and physical

ompounding effects (e.g., backwater) between boundary forcing val-

es 𝑄̂ 𝑇 and 𝐻̂ 𝑇 while using only a small number of hydrodynamic

odel simulations. Building on the existing methodology recommended

y FEMA (2015) , we present a four-step method as follows: 

(1) Bivariate statistical analysis of Q and H records to yield possible

( ̂𝑄 𝑇 , 𝐻̂ 𝑇 ) pairs for return period, T . 

(2) Selection of N specific ( ̂𝑄 𝑇 , 𝐻̂ 𝑇 ) pairs for hydrodynamic mod-

eling. Here, we recommend N = 4 (more detail will follow) al-

though other options are possible. 

(3) Hydrodynamic modeling of N scenarios defined by ( ̂𝑄 𝑇 , 𝐻̂ 𝑇 ) pairs

identified in Step 1 to yield spatial distributions of extreme water

levels, 𝜂𝑖 
𝑇 
( 𝑥 ) , i = 1, …, N . Note that the subscript on 𝜂 references

return period and the superscript references the scenario. 

(4) Synthesis of hydrodynamic modeling results, 𝜂𝑖 
𝑇 
( 𝑥 ) , 𝑖 = 1 , … , 𝑁,

to yield 𝜂T ( x ). 

The remainder of the paper presents this method in detail along with

pplications. Section 2 presents methods and materials including data

sed in this study, the bivariate statistical analysis methods to determine

ll possible ( ̂𝑄 𝑇 , 𝐻̂ 𝑇 ) pairs, identification of four specific pairs useful

or hydrodynamic modeling, and methods for one-dimensional steady
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Fig. 2. Compound flood hazards in southern California were examined for Los Angeles River, San Gabriel River, Santa Ana River, and Newport Bay using river 

discharge and ocean water level measurements at the gage locations shown. 
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ow analysis and two-dimensional unsteady analysis of extreme water

evels. Section 3 presents results of one-dimensional steady-flow anal-

sis from several sites showing differences in water level profiles aris-

ng from the ( ̂𝑄 𝑇 , 𝐻̂ 𝑇 ) pairs, and results of two-dimensional unsteady

nalysis at a single site where we further examine the limitations of

he 1D modeling and the added benefits of 2D modeling for assessment

f coastal flood hazards. Here, we also introduce an extension of the

EMA (2015) method that offers potential to systematically improve the

ssessment of coastal flood hazards by linking bivariate statistical anal-

sis and hydrodynamic modeling. We close the paper with discussion

 Section 4 ) and conclusions ( Section 5 ). 

Broadly, this work shows that extending the univariate paradigm of

iver flood hazard assessment to a bivariate paradigm of coastal flood

azard assessment is not straightforward, as has been reported for many

ther types of compound hazards ( Kappes et al., 2012 ). Nevertheless, a

ystematic approach is possible and shown herein. Furthermore, results

oint to the possibility that the existing FEMA approach underestimates

ood hazards where compounding effects are strong, and we present a

imple method to make a better estimate. 

. Methods and materials 

.1. Data 

Analysis herein focuses on tidal channels/estuaries in southern Cal-

fornia (See Fig. 2 ) where flood hazards are affected by extreme ocean

evels and flood discharges: the Los Angeles River (LAR), the Santa

na River (SAR) and Newport Bay (NB). For ocean level analysis,

ourly ocean water level measurements were obtained from the Na-

ional Oceanic and Atmospheric Administration (NOAA) Los Angeles

ide gauge (gauge ID: 9410660) at hourly intervals. Tide gauge measure-

ents capture water level fluctuations from combined effects of tides,

torm surge and other factors that affect sea levels on hourly and longer

ime scales, a reading that is sometimes called Total Water Level (TWL).
30 
ischarge measurements for the LAR were obtained from Los Ange-

es County Department of Public Works (LADPW) Station F319-R (LAR

t Wardlow Road) and consisted of 92 years of annual maximum dis-

harge data between 1928–2014. Discharge measurements for the SAR

ere obtained from USGS Gauge 11078000 (Santa Ana River at Santa

na) and consisted of 94 years of annual maximum discharge data be-

ween 1923 and 2017. River discharge measurements for Newport Bay

ere obtained from the Orange County Department of Environmental

esources Gauge 226 (San Diego Creek at Campus Drive) and consists

f 39 years of instantaneous discharge (1978–2016). The San Gabriel

iver and Coyote Creek (see Fig. 2 ) are not considered in this study

ince bivariate statistical analysis (see Section 3.1 ) showed no correla-

ion between 𝑄̂ and 𝐻̂ likely because of strong flow regulation from

hittier Narrows Dam located approximately 30 km from the coastline.

Topographic and bathymetric data for LAR, and SAR were taken

rom the 1 m resolution 2014 US Army Corps of Engineers Na-

ional Coastal Mapping Program Topobathy Lidar DEM. Topographic

nd Bathymetric data for NB were based a DEM reported by

allien et al. (2011) which merged several sources of topographic and

athymetric data. 

.2. Bivariate statistical analysis 

Statistical analysis of extreme values of discharge and water level

mpacting a tidal reach or estuary are based on records of annual max-

mum values, although threshold-based approaches are also possible.

ere, we use a hat notation to indicate annual maxima data from the

ecords of upstream discharge and downstream water level, 𝑄̂ and 𝐻̂ ,

espectively. Record lengths of several decades or more are preferred

o enable estimation of water levels at relatively low frequencies (e.g.,

eturn periods of 50 years or greater). 

Bivariate statistical analysis begins with a test for correlation struc-

ure. While either linear or rank correlation coefficient measures

an be used to assess the significance of the dependence between
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ariables, tail dependence measures are important for summarizing how

xtremes tend to occur simultaneously ( Coles et al., 1999; Hao and

ingh, 2016 ). Here, we employ joint density approaches over other

lternatives ( Hawkes et al., 2002; Heffernan and Tawn, 2004; Neal

t al., 2013; Zheng et al., 2015 ) due to their flexibility, and compu-

ational/mathematical benefits ( Hawkes, 2006; Salvadori et al., 2015 ). 

According to Sklar’s Theorem ( Sklar, 1959 ), there exists a bivari-

te Copula function 𝐶 

𝑄̂ ̂𝐻 

∶ [ 0 , 1 ] × [ 0 , 1 ] → [ 0 , 1 ] that formulates the joint

istribution 𝐹 
𝑄̂ 𝐻̂ 

of the pair ( ̂𝑄 , 𝐻̂ ) , with marginal distributions 𝐹 
𝑄̂ 

and

 

𝐻̂ 

, for all ( Q, H ) ∈ R 

2 , as: 

 

𝑄̂ 𝐻̂ 

( 𝑄, 𝐻 ) = 𝐶 

𝑄̂ 𝐻̂ 

(
𝐹 
𝑄̂ ( 𝑄 ) , 𝐹 𝐻̂ 

( 𝐻 ) 
)

(2) 

The multivariate model is constructed by fitting suitable univari-

te laws on the marginals, and an appropriate copula on the observed

airs ( Genest and Favre, 2007; Salvadori et al., 2007 ). Here, we use the

ethod of Sadegh et al. (2018) which comprehensively analyzes the

ependence structure of multiple drivers of flooding, and models them

sing copula functions to estimate return design values and their under-

ying uncertainties. This approach first selects a marginal distribution

rom 17 univariate distributions based on measures of goodness-of-fit

ncluding Akaike Information Criterion (AIC) and Bayesian Information

riterion (BIC), and then chooses a copula model from 26 copula func-

ions. Copula model parameters are inferred through a Bayesian infer-

nce approach with Markov Chain Monte Carlo ( Sadegh et al., 2018,

017 ). The joint probability can refer to the exceedance of 𝑄̂ AND 𝐻̂ 

r the exceedance of 𝑄̂ OR 𝐻̂ ( Salvadori et al., 2016 ), and a case can

e made for the relevance of both to coastal flood hazard assessment.

irst of all, risk assessment should reflect the possibility that flooding

s caused by either extreme river discharge or extreme ocean levels,

hich is consistent with the OR scenario. On the other hand, hydrody-

amic modeling involves the simultaneous occurrence of an upstream

ischarge and downstream water level, consistent with the AND sce-

ario. 

Newport Bay data are used to illustrate this process. Fig. 3 presents

he outcome of bivariate statistical analysis using both the OR and the

ND hazard scenarios using the method of Sadegh et al. (2018) . There

s no statistically significant correlation between river flow and ocean

ater level at Newport Bay, but correlation was found between river

ow and non-tidal residual (NTR) defined as the difference between

WL and the astronomical tide level. Hence, bivariate statistical analy-

is that takes correlation structure into account is presented here using

iver flow and NTR. Fig. 3 illustrates the similarities and differences be-

ween univariate and bivariate statistical analysis as well as the relative

omplexity introduced by the copula based AND and OR hazard sce-

arios. In particular, Fig. 3 shows plots of the marginal distributions of

TR ( Fig. 3 a) and river flow ( Fig. 3 c) representative of what has tradi-

ionally been used for univariate flood hazard assessment, while Fig. 3 b

hows the copula-based AND and OR hazard scenarios. The AND and OR

azard scenarios are shown as iso- return period curve for T = 50 year

ithin a two-dimensional space whereby every point corresponds to a

ossible ( ̂𝑄 𝑇 , 𝐻̂ 𝑇 ) pair for use in hydrodynamic modeling. Additionally,

long each iso- return period curve, there is a point of maximum proba-

ility density which represents the most likely ( ̂𝑄 𝑇 , 𝐻̂ 𝑇 ) pairs given the

orrelation structure. Note that the most likely ( ̂𝑄 𝑇 , 𝐻̂ 𝑇 ) pair for the OR

azard scenario exceeds extreme values given by the marginal distribu-

ions, while the most likely ( ̂𝑄 𝑇 , 𝐻̂ 𝑇 ) pair for the AND hazard scenario

alls below the values given by the marginal distributions. This shows

hat the OR hazard scenario will lead to boundary forcing that is more

onservative (meaning a more cautious approach to risk management

erspective) than the AND hazard scenario. 

Given theoretical characteristics of the OR iso-return period curves

 Salvadori et al., 2016 ) boundary forcing associated with ( ̂𝑄 𝑇 , 𝐻̂ 𝑇 ) pairs

t the ends of the OR curve may far exceed values given by the marginal

istributions for the same return period. This shows that the OR scenario
31 
reates seemingly unrealistic (highly conservative) hazard scenarios in

reas of low probability density. 

Hydrodynamic modeling of compound flood hazards for return pe-

iod T is proposed based on four specific ( ̂𝑄 𝑇 , 𝐻̂ 𝑇 ) pairs taken from bi-

ariate statistical analysis as shown in Fig. 3: 

(S1) A “Marginal Q ” scenario defined by the T -year return period river

discharge and a non-extreme water level downstream (typically

taken as mean higher high water). 

(S2) A “Marginal H ” scenario defined by the T -year return period

ocean water level and a non-extreme river flow (typically taken

as the daily average flow). 

(S3) An “AND ” scenario based on the ( ̂𝑄 𝑇 , 𝐻̂ 𝑇 ) pair with the highest

probability density along the AND iso-return period curve. 

(S4) An “OR ” scenario based on the ( ̂𝑄 𝑇 , 𝐻̂ 𝑇 ) pair with the highest

probability density along the OR iso-return period curve. 

FEMA (2015) presently recommends hydrodynamic modeling of S1

nd S2 and estimation of 𝜂T ( x ) based on the maximum of the two. Hence,

wo additional scenarios (S3 and S4) are considered here as a way of

everaging bivariate statistical analysis. 

.3. Hydrodynamic modeling 

Dynamic changes in water surface elevation within estuaries can be

odeled with reasonable accuracy using shallow-water hydrodynamic

odels that assume a constant fluid density and a depth-averaged hor-

zontal velocity ( Sanders et al., 2010; FEMA, 2015, 2018 ). Estuaries

nvolve the mixing of riverine and ocean water with different densi-

ies, and may be characterized by strong vertical density stratification

hat acts as a major control on the velocity distribution and transport

 Geyer, 2010; Monismith, 2010 ). Consequently, three-dimensional mod-

ls that account for variable density from salinity and temperature are

ften needed to estimate velocity distributions ( Jay, 2010 ). However,

he expression of density effects on surface water elevation is weak and

an be neglected when predicting extreme water levels for the pur-

ose of flood hazard modeling ( Friedrichs, 2010 ). In this study, wa-

er levels are modeled by solving one-dimensional, constant density,

teady-state shallow-water models ( Chow, 2009 ) and two-dimensional,

onstant density, depth-averaged, shallow-water equations ( Kim et al.,

015 ). When a model is set up for estuaries, tidal embayments, or tidal

hannels, the required boundary conditions correspond to a time series

f river discharge at the upstream boundary, Q ( t ), and a time series

f water level, H ( t ), at the downstream boundary. The upstream and

ownstream boundaries of the modeled spatial domain are generally

laced adequately apart that compounding effects are avoided. This is

ot, however, always possible in practice because tide gauges may be lo-

ated within estuaries. As an aside, we note that two-dimensional mod-

ls require a spatial distribution of boundary forcing and in practice,

ydrodynamic models include methods to distribute the total volumet-

ic flow rate, Q ( t ), across the inflow boundary while the water level,

 ( t ), is typically assumed to be uniform across the outflow boundary.

stuaries may also experience water level variability from internal forc-

ng by winds and waves, and accounting for these effects is outside the

cope of this study. However, the role of regional winds, waves, and at-

ospheric pressure on water levels is captured by this approach based

n the measurement of water levels at the tide gauge used for bivariate

ood hazard assessment. 

.3.1. 1D steady state modeling 

One-dimensional (1D) steady state modeling of coastal flood haz-

rds is useful as a first approximation of flood hazard levels along tidal

hannels and estuaries and can be done quickly with low computational

ffort. Application of 1D analysis at several sites is performed to study

ow differences in the selection process for ( ̂𝑄 𝑇 , 𝐻̂ 𝑇 ) pairs can affect the

stimation of flood hazard levels. Flood hazard levels are computed by

olving the gradually varied flow equation under the assumption of a
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Fig. 3. Marginal probability distribution for (a) non-tidal residual (NTR) which is a surrogate for 𝐻̂ and (c) River Flow 𝑄̂ ; (b) bivariate statistical analysis of ( ̂𝑄 𝑇 , 𝐻̂ 𝑇 ) 
pairs based on copula-based AND and OR hazard scenarios. Two iso- return period curves corresponding to T = 50 year are shown. Note that ends of the copula-based 

scenario curves for return period T are aligned with the return level of the marginal distribution for return period T . Note also that along each T = 50 year curve, 

there is a point of maximum probability density which (due to correlation structure) represents the most likely ( ̂𝑄 𝑇 , 𝐻̂ 𝑇 ) pairs. The most likely ( ̂𝑄 𝑇 , 𝐻̂ 𝑇 ) pair for the 

OR hazard scenario exceeds extreme values given by the marginal distributions, while the most likely ( ̂𝑄 𝑇 , 𝐻̂ 𝑇 ) pair for the AND hazard scenario falls below the 

values given by the marginal distributions. 
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ectangular channel with spatially variable Manning n m 

, width w, and

epth h as follows ( Chow, 2009 ) 

d 𝜂
d 𝑥 

= − 

𝑆 𝑓 

1 − 𝐹 𝑟 2 
(3)

here x represents distance measured inland from the mouth of the es-

uary, Fr = Q/(gh 3 w 

2 ) 1/2 is the Froude Number and S f = ( n m 

Q / w ) 2 /h 10/3

epresents the friction slope. Eq. (3) is integrated with geometrical data

or each site, n m 

= 0.032 m 

− 1/3 s, the downstream water level boundary

iven by 𝐻̂ , and a river discharge given by 𝑄̂ . Numerical integration

s performed with the 4th/5th order Runge Kutta Scheme ode45 sup-

orted by Matlab (Mathworks, Natick, MA). We note that the relatively

imple channel geometry and resistance approximation is used herein to

xamine the relative differences between profiles from Scenarios S1–S4,

nd not to estimate flood hazard along these rivers in an absolute sense.

ore detailed geometry and resistance modeling will change the abso-

ute value of flood hazard heights, but have little impact on the relative

ifference between scenarios. 
32 
.3.2. 2D unsteady modeling 

Two-dimensional (2D) unsteady modeling is performed at one of the

our sites, Newport Bay, to characterize limitations of the 1D steady state

pproximation and to study how the relative timing of the flood peak

nd high tide level can affect the flood hazard characterization. The

D model BreZo ( Begnudelli et al., 2008; Kim et al., 2015 ) is applied

ased on a previous validation at Newport Bay ( Gallien et al., 2011,

014 ) . BreZo relies on an unstructured mesh of triangular elements with

arying size to capture the Bay’s topography and bathymetry. The model

as originally setup to predict flood impacts in the urbanized portions of

he Newport Bay ( City of Newport Beach, California, 2008 ). It features

 fine resolution mesh with 3 m average linear resolution cells across

treets and land parcels, while across the upper Newport Bay the average

inear cell resolution is approximately 15 m. The boundary conditions in

reZo are setup to specify the riverine discharge 𝑄̂ entering the upper

ewport Bay at the outlet of the San Diego Creek, while water level
̂
 is specified along a boundary placed a short distance offshore of the

mbayment. 
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Fig. 4. Inflow into Newport Bay was modeled with a triangular hydrograph with a duration and time to rise specified based on historical average values, and the 

ocean water level was modeled with a sinusoidal function with a period of 12 h based on semidiurnal tides. The sensitivity of water level predictions to the time lag 

between peak river flow and high tide was examined with additional simulations involving forward and backwards time lags up to 6 h. 
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For unsteady analysis, riverine discharge entering Newport Bay was

odeled with a triangular hydrograph with a peak value given by 𝑄̂

nd a time of rise and total flood duration set to 3 and 8 h, respec-

ively, based on analysis of instantaneous discharge measurements. Ad-

itionally, ocean water level changes were modeled using a sinusoidal

unction with a 12 h period (based on semidiurnal tides) such that the

aximum ocean water level equals 𝐻̂ . These approximations followed

reliminary modeling, which demonstrated that flood heights in the up-

er bay were much more sensitive to the magnitude of the peak flow

han the duration of the event, within the range of observed values, and

hat high-water levels were not sensitive to the precise shape of the tidal

orcing. We note that this may not be true in all systems, and thus these

pproximations are not presented as a generalization but rather as a

easonable simplification given specific site conditions. 

Fig. 4 presents the sinusoidal ocean forcing and the triangular in-

ow hydrograph. To report the sensitivity of maximum water levels to

he relative timing of the peak inflow and peak high tide, the “OR ” Haz-

rd Scenario was repeated using an inflow hydrograph that was shifted

orward and backwater by as much as 6 h, as shown in Fig. 4 . 

All modeling results are expressed in metric units and referenced

o the NAD83 State Plane horizontal coordinate system and NAVD88

ertical datum. 

. Results 

.1. Bivariate statistical analysis 

Correlation analysis between 𝑄̂ and 𝐻̂ defined by TWL revealed no

tatistical significance at these southern California sites due to relatively

mall storm surges compared to variability in high tide levels attributed

o astronomical factors. However, correlation was found using NTR as a

urrogate for 𝐻̂ at three of the four sites considered: LAR, SAR and NB.

Kendall tau and Spearman rho correlation coefficients between vari-

bles 𝑄̂ and 𝐻̂ (defined using NTR) are presented in Table 1 along with

 -values. A p -value of less than 0.05 suggests a correlation at 5% sig-

ificance level. Table 1 also shows the distribution functions that best

escribe the univariate distribution of river flow and NTR. Addition-
33 
lly, the JOE bivariate Copula function was found to best describe the

orrelation structure between 𝑄̂ and 𝐻̂ in all sites. 

Flood hazard levels 𝑄̂ and 𝐻̂ for T = 50 year for Scenarios S1–S4

re presented in Table 2 . Note that the “Marginal Q ” scenarios all use a

ownstream water level corresponding to mean higher high water, and

ll of the “Marginal H ” scenarios use a small (relative to the extreme

ows) river discharge ( ∼ average daily flow) taken as 10 m 

3 /s. These

esults show that the LAR has larger river discharge values than SAR and

B, yet somewhat surprisingly, NB has larger river discharge values than

AR despite a much smaller watershed area. This is attributed to control

f runoff by dams. Also, note that the water level of the “Marginal H ”

cenario differs between the three sites despite all three relying on the

os Angeles Tide gauge. This is attributed to differences in the record

ength arising from joint probability analysis of tide gauge data and river

auge data. 

.2. 1D flood hazard analysis 

1D steady state water surface profiles were computed for the 12 sets

f ( ̂𝑄 𝑇 , 𝐻̂ 𝑇 ) pairs presented in Table 2 corresponding to S1–S4 at LAR,

AR and NB and are presented in Fig. 5 a, c, and e, respectively. Fo-

using first on the “Marginal H ” and “Marginal Q ” scenarios, these re-

ults shows that there is a transition in the dominant factor controlling

ood hazard levels along the length of the system with H controlling

ood hazards near the outlet and Q controlling flood hazards further in-

and. The length of oceanic control is relatively long for NB ( ∼4 km) and

AR ( ∼2 km) and relatively short SAR ( ∼300 m). Water levels from the

AND ” scenario are lower than the higher of the two marginal scenarios

t inflow and outflow boundaries, but, higher within an interior region

here the marginal profiles intersect. On the other hand, the “OR ” sce-

ario yields a water surface profile that is always above both marginal

cenario profiles. Conceptually, these results show that the “OR ” sce-

ario represents a more conservative (i.e., cautious) representation of

he spatially variable water surface profile associated with return period

 than the “AND ” scenario which is expected based on the magnitude

f the boundary forcing (see Table 2 ). 

FEMA (2015) guidance recommends mapping of flood hazard lev-

ls in tidally affected reaches based on the pointwise maximum of the
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Table 1 

Correlation coefficients between variables 𝑄̂ and 𝐻̂ . 

Site 

Kendall Spearman Pearson Distribution 

Correlation coefficient p -value Correlation coefficient p -value Correlation coefficient p -value Q H 

LAR 0.2616 0.0167 0.3880 0.0122 0.4666 0.0021 Rayleigh Logistic 

SAR 0.3357 0.0012 0.4907 0.0006 0.4303 0.0032 Nakagami Logistic 

NB 0.3229 0.0113 0.4478 0.0115 0.5659 0.0009 Inverse gaussian Logistic 

Fig. 5. Steady state water surface profiles versus distance from mouth, x , based on “Marginal H ”, “Marginal Q ”, “OR ” and “AND ” scenarios for (a) LAR, (c) SAR and 

(e) NB. Composite profiles based on the FEMA methodology and a proposed extension that considers the “Most Likely AND ” scenario for (b) LAR, (d) SAR and (f) 

NB. 

Table 2 

Scenario S1–S4 values of the 50-year return period river discharge (m 

3 /s) and 

ocean level (m above NAVD88) resulting from bivariate analysis as shown in 

Fig. 3 . Note that the AND and OR values correspond to maximum probability 

density (or likelihood). 

Site 

S1: Marginal Q S2: Marginal H S3: AND S4: OR 

𝑄̂ 𝐻̂ 𝑄̂ 𝐻̂ 𝑄̂ 𝐻̂ 𝑄̂ 𝐻̂ 

LAR 2435 1.611 10 1.901 2295 1.882 2531 1.914 

SAR 693 1.611 10 1.983 640 1.965 730 1.997 

NB 1090 1.611 10 1.922 1005 1.911 1167 1.930 
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wo marginal scenarios. This profile (labeled “FEMA ”) is presented in

ig. 5 b, d, and f for LAR, SAR and NB, respectively, alongside the “AND ”,

OR ”, and a proposed composite profile based on the pointwise maxi-

um of the “H Marginal ”, “Q Marginal ” and “AND ” hazard scenarios. At

ll three sites, the FEMA method underestimates the T year return period

ater level, compared to the “AND ” scenario, within a region where the

arginal water surface profiles intersect. Hence, the proposed compos-

te profile is slightly higher than the FEMA method profile where there
34 
re physical compounding effects due to the interaction of river and

ceanic influences on water levels; otherwise the proposed composite

rofile tracks the FEMA method profile. 

.3. 2D flood hazard analysis 

Two-dimensional modeling of flood hazards in Newport Bay leads to

patially and temporally distributed water levels. Hence, flood hazards

re mapped based on the point maximum water level attained over an

nsteady simulation covering the rise and fall of a flood peak with mag-

itude 𝑄̂ and the rise and fall of an ocean tide of height 𝐻̂ . Results are

resented first for the case of the temporal coincidence in the two peaks,

nd later the sensitivity of the results to the time lag between peaks is

hown. 

A comparison of extreme water level scenarios (S1–S4) along the

ain channel of Newport bay using 1D and 2D methods is shown in

ig. 6 . For each scenario, the modeling method has little impact on wa-

er profiles in the lower bay ( x < 4000 m) while differences are evident

n upper bay ( x > 4000 m) and attributed mainly to differences in the

reatment of complex system topography/bathymetry. That is, the 1D

odel assumes a rectangular cross-sectional with a width and depth
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Fig. 6. NB flood hazard levels versus distance from mouth, x , based on 1D steady model (a, c, e, f) and 2D unsteady model (b, d, g, h). 2D results based on 5 points 

selected from along the main channel and linearly interpolated between points. Using both 1D and 2D approaches, the “AND ” scenario predicts lower flood hazard 

levels compared to the maximum of the marginal profiles at the mouth ( x = 0) and head ( x = 10,000 m), and higher flood hazard levels near where the marginal 

profiles intersect ( x = 4000 m).; the “OR ” scenario predicts the highest water levels everywhere. Differences between 1D and 2D models attributed to unsteadiness 

and treatment of complex geometry. 
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ased on the main channel, while the 2D model resolves both channel

nd floodplain/marsh topography allowing for greater conveyance at

igher flood stages. Similar to the 1D model results presented earlier,

he 2D results show that the “AND ” scenario predicts lower flood haz-

rd levels compared to the maximum of the marginal profiles at the

outh ( x = 0) and head ( x = 10,000 m), and higher flood hazard lev-

ls near where the marginal profiles intersect ( x = 4000 m). Addition-

lly, the “OR ” scenario predicts the highest water levels everywhere.

 magnified view of water surface profiles at the mouth is presented

n Fig. 6 e (1D) and 6 g (2D) and at x = 4000 m in Fig. 6 f (1D) and 6 h

2D). 

Fig. 6 also shows the FEMA (2015) composite profile and the pro-

osed composite water surface profile, which takes the pointwise maxi-

um of the marginal scenarios and the “AND ” scenario. In this case, the

D modeling predicts a smaller difference between composite profiles

 ∼6 cm) than 1D modeling ( ∼15 cm) and this is attributed mainly to the

reatment of complex topography. Nevertheless, small height differences

an be significant with respect to the delineation of flood hazard zones

here floodplain topography is relatively flat. For example, a vertical

eight of 6 cm on a slope of 1/1000 implies a 60 m change in horizontal

osition which is larger than many land parcels in developed areas. 

Fig. 7 a shows the spatial distribution of the differences between wa-

er surface levels based on the FEMA method and the proposed method.

he largest differences ( d 𝜂 ≥ 1 cm) are found in the lower NB and are

aximum at the constriction between upper and lower bay located at

acific Coast Highway. Fig. 7 a also shows differences in the western part

f NB, off line from the main channel connecting San Diego Creek to the

outh of NB. 
c  

35 
The effect of the relative timing of peak inflow and high tide to

chieve maximum water surface elevations using the “OR ” Hazard sce-

ario was found to be relatively small compared to differences between

azard scenarios (i.e., AND vs. OR). Fig. 7 b shows color contours of

he difference in water surface elevations between the scenario where

ydrograph peaks are matched in time (peak at time = 9 h in Fig. 4 )

nd water surface elevations obtained by shifting the peaks in time to

chieve maximum water level. In the uppermost section of the upper bay

aximum water level is achieved by delaying peak river discharge by

ne hour (peak Q at hour 10 in Fig. 4 ), while in the lower bay maximum

ater level is achieved by advancing peak Q by one hour (peak Q at hour

 in Fig. 4 ). The difference between water levels based on the timing of

igh tides vs peak flow was found to be less than 3 cm across the ma-

ority of the bay. This constitutes only about a third of the difference

etween the proposed composite profile and the FEMA (2015) compos-

te profile. This result provides a posteriori validation of selecting Q and

 as the basis for bivariate statistical analysis at this site as opposed to

ther system attributes such as the time lag between river flow and high

ide. 

. Discussion 

Multivariate statistical analysis is limited here to two variables (bi-

ariate analysis) chosen to represent annual maximum river discharge

nd ocean level. Hazard scenarios beyond two variables are possible

sing copula-based methods, however expansion to higher dimensions

an have drawbacks including uncertainty bounds so large that no con-

lusion may be drawn from its results (see Bevacqua et al. (2017) for
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Fig. 7. Difference in water surface elevations between (a) the proposed composite profile and the FEMA composite profile, and (b) “OR Hazard ” scenarios with 

coincident peaks at hour 9 vs scenarios with shifted peaks that achieve maximum water surface level. 
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xample). For the sites considered, the importance of the randomness

f annual maximum river discharge and ocean level (over other vari-

bles) justifies the formulation of the bivariate statistical analysis prob-

em around these two variables. In systems where flood hazards are con-

rolled by randomness in other factors such as waves or rainfall or even

ncertain internal processes, a different approach would be needed. Ex-

mples of internal processes include the frictional interaction between

treamflow and tidal levels ( Kukulka and Jay, 2003a , b; Moftakhari et al.,

013, 2016 ). Applications at a broader set of sites are warranted to bet-

er understand the broader applicability of the proposed method of bi-

ariate analysis for flood hazard assessment in tidal channels and estu-

ries. 

Composite profiles derived from the pointwise maximum of water

evels predicted by two or more hydrodynamic modeling scenarios of-

er a practical approach for delineating compound flood hazards in tidal

hannels and estuaries for a return period, T . Only a limited number of

relatively expensive) hydrodynamic model simulations need to be com-

leted despite an infinite number of possible forcing scenarios based on

ivariate statistical analysis. The most likely “AND ” hazard scenario was

dentified as a promising candidate for extending FEMA (2015) guidance

n flood hazard mapping in tidal channels and estuaries. That is, results

ere suggest that the FEMA (2015) method may underestimate the flood

azard level over an interior section of tidal reaches and estuaries where

igh water levels are sensitive to both riverine discharge and ocean lev-

ls. In NB, this section corresponds to the urbanized lower bay where

xposure and vulnerability to flooding is highest. Moreover, an impor-

ant implication is that extreme water levels may be higher at certain

oints within a system from combinations of river discharge and ocean

eights that both fall below the return levels given by the marginal dis-

ribution (i.e., univariate analysis). On the other hand, the most likely

OR ” hazard scenario results in boundary forcing that exceeds the return

evels given by univariate analysis, and it produces water levels that are

igher than the marginal scenarios and the “AND ” hazard scenario. The

OR ” hazard scenario could be useful when there is interest in using a
36 
ingle hydrodynamic modeling scenario to represent compound flood

azard levels and to avoid the need to compute composite profiles from

ultiple hydrodynamic modeling scenarios. Importantly, the “OR ” haz-

rd represents a more conservative interpretation of the T year return

eriod hazard compared to traditional univariate assessment methods

s well the “AND ” hazard scenario. 

This paper points to the possibility of a more robust framework for

apping coastal flood hazards in tidal channels in estuaries that takes

dvantage of recent advances in multivariate statistical modeling (e.g.,

adegh et al., 2018 ) and hydrodynamic coastal flood hazard mapping

e.g., Gallien et al. 2011 ; Luke et al., 2018 ) and is in line with the lim-

ted resources and past practices of flood hazard mapping ( Burby 2001 ;

EMA 2015 ). In short, the method involves: (1) bivariate statistical anal-

sis where correlations in extreme values exist, (2) selection of a limited

umber of ( ̂𝑄 𝑇 , 𝐻̂ 𝑇 ) for return period T , (3) hydrodynamic modeling

f the chosen pairs to produce extreme water levels, and (4) synthe-

is of the model results to provide a spatial distribution of water level

ssociated with return period T . If this approach is taken to be more

obust than existing methods (and more research will be needed at a

roader set of sites to make this assessment), then the limited testing pre-

ented herein points to the existence of compound flood hazards that are

resently underestimated by the existing FEMA method for tidal chan-

els ( FEMA, 2015 ). That is, at all three sites, there was a reach of the

hannel where the proposed composite profile accounting for the “AND ”

azard scenario was higher than the composite profile accounting only

or marginal scenarios as a result of physical compounding effects. Re-

ent research has also shown that flood hazard zones in the U.S. are un-

erestimated due to poor representation of pluvial flood hazards (e.g.,

ing et al., 2017 ). 

Finally, we note that the hydrodynamic modeling shown here

or Newport Bay is for only a single return period to demonstrate

he hybrid statistical-hydrodynamic framework. Assessment of flood

azard levels corresonding to other return periods follows the same

pproach. 
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. Conclusions 

A method of linking statistical analysis with hydrodynamic modeling

o estimate spatially distributed compound flood hazard levels in tidal

hannels and estuaries is presented for cases where flood hazards are

ssociated with both high river discharge (upstream forcing) and high

cean levels (downstream forcing). Bivariate statistical analysis is intro-

uced to create combinations of river discharge and ocean levels suited

or hydrodynamic modeling, and extreme water levels produced by hy-

rodynamic models are synthesized to create a composite water surface

rofile representative of return period, T . The method accounts for com-

ound flood hazards in two ways. First, it accounts for statistical corre-

ation between upstream and downstream forcing which represents one

imension of compound hazards. Secondly, hydrodynamic modeling ac-

ounts for physical compounding effects. Importantly, this work shows

hat water levels at interior points of a tidal channel or estuary resulting

rom the bivariate “AND ” hazard scenario can be higher than water lev-

ls from marginal scenarios even though the boundary forcing is smaller

han the corresponding marginal scenarios. This is attributed to physi-

al compounding effects, i.e., nonlinear interactions between discharge

nd water level described by shallow-water wave theory. This work also

hows that if a single scenario is needed to depict spatially distributed

ompound flood hazard levels, the bivariate “OR ” hazard can be used

nd results here show that it provides a conservative assessment of the

 year return period hazard. 
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