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POPULATION STUDY ARTICLE OPEN

SARS-CoV-2 acquisition and immune pathogenesis among
school-aged learners in four diverse schools
Dan M. Cooper1,2, Michael Z. Zulu3, Allen Jankeel3, Izabela Coimbra Ibraim3, Jessica Ardo4, Kirsten Kasper4, Diana Stephens1,
Andria Meyer1, Annamarie Stehli5, Curt Condon6, Mary E. Londoño7, Casey M. Schreiber4,8, Nanette V. Lopez9, Ricky L. Camplain9,
Michael Weiss4, Charles Golden4, Shlomit Radom-Aizik5, Bernadette Boden-Albala10, Clayton Chau6, Ilhem Messaoudi3 and
Erlinda R. Ulloa2,4✉

© The Author(s) 2021

BACKGROUND: Understanding SARS-CoV-2 infection in children is necessary to reopen schools safely.
METHODS: We measured SARS-CoV-2 infection in 320 learners [10.5 ± 2.1 (sd); 7–17 y.o.] at four diverse schools with either remote
or on-site learning. Schools A and B served low-income Hispanic learners; school C served many special-needs learners, and all
provided predominantly remote instruction. School D served middle- and upper-income learners, with predominantly on-site
instruction. Testing occurred in the fall (2020), and 6–8 weeks later during the fall-winter surge (notable for a tenfold increase in
COVID-19 cases). Immune responses and mitigation fidelity were also measured.
RESULTS: We found SARS-CoV-2 infections in 17 learners only during the surge. School A (97% remote learners) had the highest
infection (10/70, 14.3%, p < 0.01) and IgG positivity rates (13/66, 19.7%). School D (93% on-site learners) had the lowest infection and IgG
positivity rates (1/63, 1.6%). Mitigation compliance [physical distancing (mean 87.4%) and face-covering (91.3%)] was remarkably high at
all schools. Documented SARS-CoV-2-infected learners had neutralizing antibodies (94.7%), robust IFN-γ+ T cell responses, and reduced
monocytes.
CONCLUSIONS: Schools can implement successful mitigation strategies across a wide range of student diversity. Despite asymptomatic
to mild SARS-CoV-2 infection, children generate robust humoral and cellular immune responses.

Pediatric Research; https://doi.org/10.1038/s41390-021-01660-x

IMPACT:

● Successful COVID-19 mitigation was implemented across a diverse range of schools.
● School-associated SARS-CoV-2 infections reflect regional rates rather than remote or on-site learning.
● Seropositive school-aged children with asymptomatic to mild SARS-CoV-2 infections generate robust humoral and cellular immunity.

INTRODUCTION
An urgent need for data on SARS-CoV-2 incidence, immune
mechanisms, and mitigation fidelity in the unique setting of K-12
schools was recognized at the earliest stages of the COVID-19
pandemic1 when K-12 schools closed in the U.S. and across the
world. In this report, we summarize the results of the Healthy School
Restart Study, a prospective study of four diverse schools in Orange
County, California, at two distinct phases of the COVID-19 pandemic:
(1) early in the fall (2020) school semester, at a relatively low level of
community COVID-19 case rates of ~3–4 cases per 100,000 across
the county (in September 2020, surveillance rates for the county
were estimated at 12% but 17% in communities of color2), and (2)
~6–8 weeks later in the midst of the fall-winter surge in which
COVID-19 had increased to about 40 cases per 100,000. We tested

the assumption used to support school closures that learners would
be less susceptible to viral infection if they avoided on-site
learning3–5. Key objectives were (1) to begin to understand SARS-
CoV-2 infection in schools that reflected the diversity of our region,
(2) to gain insight into the serological and cellular mechanisms in
the pediatric population in response to SARS-CoV-2 infection, and (3)
to measure the fidelity of SARS-CoV-2 mitigation procedures.

METHODS
Design
A total of 320 learners [mean age 10.5 ± 2.1 (sd); range 7–17 y.o.] and
99 school staff enrolled in our study across four schools for two testing
cycles. Participants were allowed to enroll in the study at the second cycle
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even if they did not participate in the first visit. During the first cycle,
181 students aged 10–13 y.o. were enrolled. During the second cycle, 161
learners returned, and 139 new learners aged 7–17 y.o. were enrolled to
accommodate additional requests for testing by the schools. During the
first cycle, 99 adults were enrolled, and during the second cycle, 90
returned. At each of the testing cycles, each participant underwent:

1. Brief medical history and a COVID-19 symptom screening
2. Anterior nasal swab for SARS-CoV-2 and co-circulating respiratory

pathogens
3. Optional non-fasting phlebotomy for serological and other immu-

nological markers of SARS-CoV-2 infection

Pediatric participants were also offered a non-fasting lipid screening as
an added benefit to the optional phlebotomy at cycle 2, as this screening
test is recommended by the American Academy of Pediatrics.

School selection and study participants
We partnered with four schools that reflected the diverse population of
Orange County ensuring adequate representation of low-income, minority,
and special-needs learner-participants (Table 1). Inclusion criteria for the
student participants were age (7–17 y.o.), current enrollment at one of the
schools participating in the study, and fluency and literacy in English or
Spanish. The criteria for adult school staff participants were age (equal or
greater than 18 years), current employment at one of the participating
schools, and fluency and literacy in English or Spanish.

IRB approval and consent
The study was approved by the institutional review boards at the
Children’s Hospital of Orange County (CHOC) and the University of
California Irvine (UCI). Informed assent from the children and informed
consent from parents or legally authorized guardians, or from the adult
participants, were obtained remotely or in person.

Approach to participation
We organized virtual meetings with school staff and teachers to explain
the study and to answer questions at each school. We also held town-hall-
type meetings with potential students and their parents or authorized
legal guardians. Meetings were held in both English and Spanish.
We positioned our testing setup out of the way of normal school

operations.

Identification of SARS-CoV-2 and co-circulating respiratory
pathogens
Anterior nasal swabs were obtained from each participant. The
BIOFIRE Respiratory 2.1 Panel was used to identify SARS-CoV-2 in addition

to 21 other respiratory pathogens by RT-qPCR done in the CHOC Clinical
Laboratory. Per state mandates, positive SARS-CoV-2 findings were reported
by the laboratory to the Orange County Health Care Agency (OCHCA) for
subsequent confidential action and tracing by county health authorities.

Blood samples for immune response and lipid profile
Whole blood samples were collected in CPT tubes from 274 of the 320
learners. Plasma and peripheral blood mononuclear cells (PBMCs) were
isolated by centrifugation. The presence of nucleocapsid protein (NP)-
specific IgG was determined with the Abbott Architect immunoassay. IgM
and IgG antibody titers against the NP and the receptor-binding domain
(RBD) of the spike protein were measured using standard ELISA6. Specific
SARS-CoV-2 neutralizing antibodies were measured using focus reduction
neutralizing assays6. IFN-γ producing T cells following stimulation with
overlapping peptide pools were determined using mAB ELISpot plates and
PBMCs from 34 SARS-CoV-2 seropositive samples and 34 age- and sex-
matched uninfected controls from enrolled participants7. Circulating
immune and inflammatory mediators (e.g., TNF-α, IL-6) were also measured
using the Human 45-Plex kit from R&D7. Immunophenotyping to identify
innate and adaptive cells was done using flow cytometry in 15 SARS-CoV-2
seropositive samples and 15 age- and sex-matched controls7. As an added
benefit to the risk of phlebotomy, learners were offered a non-fasting lipid
screening, measured by enzymatic reflectance spectrophotometry. This
screening test is highly recommended for children and adolescents by the
American Academy of Pediatrics but underutilized8.

Regional incidence of COVID-19
OCHCA collaborators routinely collect COVID-19 case rates across the
county. To better understand the specific regional impact of COVID-19 at
each of the four schools, we collated the countywide COVID-19 case data
according to the zip codes of the learners at each of the schools during the
two testing cycles (Fig. 1).

Systematic observation of COVID-19 mitigation (SOCOM)
We adapted existing observation instruments, such as the System for
Observing Play and Leisure Activity in Youth (SOPLAY) and the System for
Observing Play and Recreation in Communities (SOPARC)9,10, to quantify
the fidelity of face-covering and physical distancing (≥6 ft.) mitigation in
schools11. This new observation technique, Systematic Observation of
COVID-19 Mitigation (SOCOM), used momentary time sampling techniques
in which systematic and periodic scans of individuals were made in
different (pre-determined) school environments (e.g., classroom, commu-
nal dining) and during physical activity (e.g., recess, physical education
classes). Trained observers visited each of the 4 schools 3–5 times over a
one-week interval and quantified mitigation in classrooms, recess,
communal dining, and physical education (PE) classes.

Table 1. Study school and participant demographics.

School Description Whole school remote and on-site
populations (n)
Regional demographics41,42

Consented participating learners Staff (n)

Remoteb On-siteb

n mean
age (y.o.)

n mean
age (y.o.)

A Public, K-6 950 remote, 42 on-site 68 (36f) 9.46 2 (2f ) 10.0 25

Region: 76.8% Hispanic, 19.5% poverty level

B Public charter, K-8 730 remote, 190 on-site 89 (41f) 10.8 45 (18f) 10.2 26

Region: 76.8% Hispanic, 19.5% poverty level

C Public chartera

K-6
91 remote, 25 on-site 13 (6f ) 8.54 3 (2f ) 10.3 21

Region: 38.9% Hispanic, 44.6% White, 12.5%
poverty level

D Private, K-12 138 remote, 552 on-site 6 (3f ) 12.6 80 (35f) 11.4 27

Region: 3% Hispanic, 62% White, 6.2%
poverty level

Total 176 (57f) 130 (86f) 99
aServed many special-needs learners.
bWe were unable to confirm on-site or remote status in 14 learners.
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Statistical analysis
All serology measurements and symptom ratings were treated as binary
(yes/no) across the two visits. Lipid measures were each classified as
normal or abnormal based on age-appropriate criteria. In the case of high-
density lipoprotein (HDL) and low-density lipoprotein (LDL), the abnormal
cases were further distinguished as low or high. Site comparisons of
proportions, as well as cross-tabulations of two factors, were performed
with chi-square analysis utilizing the Mantel–Haenszel correction. An α-
level of 0.05 was used as the criterion for statistical significance. For
learners found to be infected, age- and sex-matched uninfected peers
were selected as controls for analysis. Immunological data sets were first
tested for normality. To compare differences in various immune cell
subsets between infected and age- and sex-matched uninfected
participants, we used one-way ANOVA and Holm Sidak’s multiple
comparisons tests. Group comparisons were tested using an unpaired
t-test (Mann–Whitney U-test). For focus reduction neutralization assays, the
half-maximum inhibitory concentration (IC50) was calculated by non-linear
regression analysis using normalized counted foci; 100% of infectivity was
obtained by normalizing the number of foci counted in the wells derived
from the cells infected with the SARS-CoV-2 virus in the absence of plasma.
Pearson correlation analyses were done by log-transforming antibody end-
point titers or neutralization titers.

RESULTS
Incidence of SARS-CoV-2 and other respiratory viral infections
No positive nasal RT-qPCR tests were identified in the first cycle of
testing. During the second cycle, a total of 17 SARS-CoV-2 RT-qPCR
positive results were observed among the 300 learners that were
tested [5.7%, mean age 10.4 ± 2.1 (sd); range 7–17 y.o.].
Examination of SARS-CoV-2 community case rates by school site

participants’ zip codes revealed low rates during the first cycle of
testing, and a substantial rise in rates during the second cycle of
testing (Fig. 1a). As shown in Fig. 1b, school A had the highest
number of SARS-CoV-2-infected learners (p < 0.01). In the aggre-
gate (Fig. 1c), there was no statistically significant difference in
SARS-CoV-2 positive rates among remote or on-site learners (p=
0.1468). None of the hybrid learners (n= 3) were positive for
SARS-CoV-2. There was one additional case of SARS-CoV-2 among
learners (n= 8), who declined to disclose their education modality
(i.e., remote, onsite, or hybrid). In school B (the same geographic
location as school A), we found 2 of 45 on-site learners (4.4%) and
4 of 89 remote learners (4.5%) had positive SARS-CoV-2 RT-qPCR.
School D had 1 (1.3%) of on-site learners vs. none of the remote
learners had positive SARS-CoV-2 RT-qPCR. The low number of on-
site participants in school A (n= 2) prevented us from directly
comparing SARS-CoV-2 positivity between remote and on-site
instruction at each school site. Among the 90 staff and teachers
tested in the second cycle visit, 6 (6.7%) were SARS-CoV-2 positive
(Fig. 1b). As with the learners, there were no positive results a-
mong the staff in the first cycle of testing. When normalized to
data obtained from OCHCA zip-code-based case rates, school A
showed the highest ratio of learner-to-local SARS-CoV-2 RT-qPCR
positivity. We found that a significant number of learners in
schools A and B had either low HDL or high LDL. In addition, 26%
of learners with low HDL (p < 0.0001) were also found to be SARS-
CoV-2 RT-qPCR positive. There was no evidence of either
influenza or RSV infection. Rhinovirus/enterovirus was
observed in learners at all 4 schools (A: 9 of 72, 12.5%; B:15 of
142, 10.6%; C: 1 of 17, 5.9%; and D: 8 of 89, 9.0%). There was no
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correlation between SARS-CoV-2 and rhinovirus/enterovirus infec-
tions (p= 0.8397).

Assessing humoral and cellular immunity to SARS-CoV-2 in
children
Substantial numbers of learners (n= 28) were found to have anti-
NP IgG antibodies, indicating the previous infection with SARS-
CoV-2 (Fig. 2a). As with the SARS-CoV-2 RT-qPCR results, there
were large differences among the schools, most likely reflecting
the differences in neighborhood infection rates (Fig. 1a). There
was also a significant association (p < 0.0269) between SARS-CoV-2
RT-qPCR and anti-NP IgG results. Infected learners had detectable
IgM and IgG titers against both the NP and the RBD of the spike
protein (Supplemental Fig. 1A), as well as neutralizing antibodies
specifically to SARS-CoV-2 (Fig. 2b, c). Neutralizing and binding

antibody titers showed significant correlations (Supplemental
Fig. 1B). Moreover, learners with a history of SARS-CoV-2 infection
generated broad and robust T cell responses as measured by IFN-γ
ELISPOT following stimulation with overlapping peptides covering
the entire viral proteome (Fig. 3a). While the frequency of total
CD4+ T cells was significantly lower in infected children (Fig. 3b),
the subset of proliferating (Ki-67+) CD4+ T cells was increased.
This was driven by an increased proliferation within the effector
memory CD4+ T cell (CD4+CD45RA−CCR7−Ki-67+) subset (Fig. 3c).
Levels of programmed death cell protein 1 (PD-1) were increased
on CD4+ and CD8+ T cells from infected children indicative of
recent activation (Fig. 3d). Frequencies of circulating monocytes
and natural killer (NK) cell subsets were lower in infected children
(Fig. 4a). There was no difference in inflammatory mediator
responses (such as IL-1, IL-6, TNF-α) between healthy and
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SARS-CoV-2 seropositive children. Levels of innate immune cell
activation markers such as HLA-DR were increased on myeloid
dendritic cells (mDCs), while levels of FcγIII (CD16) and co-
stimulatory molecule, CD86, were reduced on total NK cells and
various monocytes subsets (Fig. 4b, c).

COVID-19 symptoms
School A had the highest number of learners who reported
symptoms associated with COVID-19 at 30% (p= 0.0452). Rates for
schools B, C, and D were 14.9%, 7.7%, and 18.6%, respectively.
Learners who reported symptoms were significantly more likely to
have SARS-CoV-2 positivity (13.6% vs. 3.5%, p < 0.0018). Con-
versely, learners who were SARS-CoV-2 positive were more likely
to have symptoms (47.1% vs. 16.8%, p= 0.0018); in this group
cough and fatigue were the most common.

Systematic observation of COVID-19 mitigation (SOCOM)
SOCOM observations revealed high levels of face coverings and
physical distancing compliance in classrooms at all four schools
(Fig. 5) and quantified the intuitively expected reduction in face
coverings during communal dining (p < 0.0001). At school D,
which had the vast majority of on-site learners, face-covering was
consistently high (classroom, 96.7%; active recess, 97.3%; and PE,
97.0%). Physical distancing at school D varied (classroom, 81.6%;
active recess, 35.1%; PE, 50.7%).

DISCUSSION
This is one of the first school-based studies completed during the
pandemic that directly and prospectively observed SARS-CoV-2
infection rates from school learners and staff. The four participat-
ing schools reflected the enormous diversity of income, commu-
nity COVID-19 case rates, school type (private, charter, public), and
learning status (remote vs. on-site) that face learners, school staff,
and policy makers across the U.S. The huge increase in COVID-19

case rates between the two testing cycles permitted insight into
the effect of the fall surge in SARS-CoV-2 infection. A unique
feature of this research was that in contrast to the bulk of the data
recently published on school-related SARS-CoV-2 infection, data
were collected at the school site directly and not from data
measured by reports through public health agencies. Weaknesses
of the study include (1) the possibility of selection bias as each
participant and authorized legal guardian consented through a
lengthy process in a time of great stress and anxiety, and (2) only
one of our schools (school D) had predominately on-site learning.
Our results are consistent with several surveillance-based

studies focused on schools during the pandemic. Zimmerman
et al.12 implemented a comprehensive education and collabora-
tion program and collected public health data in North Carolina;
Falk et al.13 studied a rural Wisconsin community, and Macartney
et al.14 studied preschools and K-12 schools in Australia. All studies
concluded that secondary transmission of SARS-CoV-2 within
schools was limited. We also found that infection rates reflected
those of the community and neither remote learning nor highly
mitigated on-site school attendance could eliminate SARS-CoV-2
infection. Comparisons and conclusions among our study and
others done to date must be made with caution. For example,
Zimmerman and Falk relied on public health agency contact
tracing data. SARS-CoV-2 testing in learners or teachers would
most likely result from a family reporting either symptoms or a
known exposure to a primary care provider or testing center.
Positive results would subsequently be linked to a particular
school. Some infected individuals who were asymptomatic or
symptom-deniers may not have been identified.
We show that under certain conditions, schools could host on-

site learning with relatively low SARS-CoV-2 infection rates. The
private school in our study (school D) remained open with a
majority of on-site learners from July through December 2020,
with few SARS-CoV-2 cases and low IgG positivity despite a tenfold
increase in regional case rates. School D prepared for on-site

Total monocytes

Classical monocytes

Non-classical monocytes

Total DC

mDC (CD11c+)

pDC (CD123+)

Total NK cells

CD56+KLRG1–CD57+

CD56+KLRG1+CD57+

CD56+KLRG1+CD57–

CD56+KLRG1–CD57–

CD56+CD16+Granzyme B–

CD56+CD16+Granzyme B+

CD56+CD16–Granzyme B+

CD56+CD16–Granyzme B–

Uninfected

Uninfected

Infected

Infected

150,000

a b

c

6
4.5

4.0

3.5

3.0

5

4

3

2

1

L
o

g
 C

D
16

 M
F

I

H
L

A
-D

R
 M

F
I

C
D

86
 M

F
I

C
D

86
 M

F
I

C
D

86
 M

F
I

L
o

g
 C

D
16

 M
F

I100,000

8

Myeloid dendritic cells Total NK cells Non-classical monocytes

Total monocytes Classical monocytes Non-classical monocytes

7

6

5

4

3

2

1

50,000

8000

6000

4000

2000

0

6000

4000

2000

2000

4000

6000

8000

10,000

00

0

Fig. 4 Effect of SARS-CoV-2 infection on innate immune cells. a The frequency of innate immune cell subsets was identified by flow
cytometry and demonstrated decreased frequencies of circulating monocytes and natural killer (NK) cells in infected children. b The mean
fluorescence intensity (MFI) of innate immune cell activation markers such as HLA-DR on myeloid dendritic cells (mDCs) was increased,
whereas the expression of FcγIII receptor (CD16) on total NK cells and non-classical monocytes was reduced. c The expression of a co-
stimulatory molecule, CD86, on total monocytes, classical monocytes, and non-classical monocytes was also reduced. *p < 0.05, **p < 0.01,
***p < 0.001, ****p < 0.0001.

D.M. Cooper et al.

5

Pediatric Research



learning by creating an advisory committee consisting of parents,
local physicians, and content experts, and made an initial
investment of about $1400 per student to meet mitigation
guidelines. While cost comparisons among schools serving very
heterogeneous populations are always challenging, Rice et al.15

estimated that a comprehensive program of mitigation at schools
would cost up to $442 per student.
Although SARS-CoV-2-infected children tend to report fewer

symptoms than adults16, we found that school A had both the
highest percentage of learners with symptoms and the highest
percentage of SARS-CoV-2 positivity. In addition, there was a
significant relationship between SARS-CoV-2 positivity and the
presence of symptoms. These data support the use of limited
symptom screening as a mechanism to enhance healthy school
reopening.
We found that 26% of infected learners had significantly low

circulating levels of HDL. Factors relating to obesity and physical
activity are known to affect COVID-19 disease severity in adults
and children17–19. Overweight and obesity are associated with
these lipid abnormalities, all of which tend to occur with greater
incidence in low-income school-aged children20,21. Levels of HDL
seem to be particularly sensitive to physical activity22,23. The
mechanisms responsible for the significant association that we

found between low HDL levels and SARS-CoV-2 are at present
unknown, but may be related to the association of overweight/
obesity and chronic inflammation in children24. Increases in
physical inactivity and weight in children have accompanied
school closures over the past year25,26.
Widespread implementation of pediatric COVID-19 vaccina-

tion27 is many months away, and it is likely that adherence to
COVID-19 mitigation procedures, including physical distancing
and face-covering, will need to continue for the near future.
Previous studies cited above all highlighted the need to achieve
high fidelity of COVID-19 mitigation procedures if the viral
transmission were to be limited. The in-classroom SOCOM data
that we collected also revealed high fidelity at all four schools,
including school C, which served many children with special
needs, presenting additional challenges to COVID-19 mitigation.
The successful implementation of mitigation procedures both in
on-site settings and in the instruction to remote learners might
have played a role in the complete absence of the influenza virus
that we observed28,29. In contrast, rhinovirus (which has the
highest detection rate on schoolroom desks among any
respiratory viruses30) was observed in all schools. Implementation
of quantifiable non-intrusive instruments like SOCOM along with
testing of several respiratory viruses could help schools implement
actionable strategies to limit SARS-CoV-2 transmission. The
SOCOM method can help schools not only implement but also
determine compliance with mitigation strategies.
Our immunological analyses revealed patterns that can explain

the mild symptomatology that accompanies SARS-CoV-2 infection
in most children. Frequencies of circulating total and classical
monocytes, and expression levels of monocyte activation markers
were lower in the infected compared with uninfected children.
Moreover, key inflammatory mediators (e.g., IL-1, IL-6, and TNF-α)
did not differ between the infected and uninfected comparison
groups. This is in contrast to the monocytosis and heightened
systemic inflammation observed in adult patients31,32. The
absence of a heightened inflammatory profile, however, did not
indicate a weaker immune response to SARS-CoV-2. Infected
children generated robust and broad humoral and cellular
immune responses and had detectable levels of SARS-CoV-2-
specific IFN-γ secreting CD4+ T cells following exposure to SARS-
CoV-2 antigens. The infected children also had increased
expression of PD-1 on both total CD4+ and CD8+ T cells and a
higher frequency of proliferating effector memory CD4+ T cells
indicative of a recent history of activation. The frequency of
circulating cytolytic NK cells, those that mediate antibody-
dependent cell cytotoxicity, was lower in the infected children.
This observation corroborates previous studies in both children
and adults, and supports the speculation that NK cells may be
recruited into the lung31,33–35. Similarly, the frequency of
circulating CD4+ T cells was reduced, suggestive of potential
recruitment into the site of infection. These results support a
maturation-dependent immune response to SARS-CoV-2 infection
in children, one that specifically leads to milder disease and,
possibly, to reduced transmission. The immune dysregulation that
occurs in the rare but serious pediatric multisystem inflammatory
syndrome in children (MIS-C) remains poorly understood36.
However, based on the literature, MIS-C patients have much
higher levels of circulating inflammatory mediators37 than what
we observed in our study in acutely infected children who were
asymptomatic to mildly symptomatic.

CONCLUSION
This study indicated that neither remote nor on-site learning
strategies could eliminate SARS-CoV-2 infection in school-aged
children. Varied levels of successful infection prevention were
observed in the four diverse schools studied that had differences
in income level and regional levels of COVID-19 infection. The key
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challenge, of course, is balancing the damaging effects of school
closures, which in the U.S. and throughout the world have
adversely impacted low-income school-aged children and those
with disabilities38,39, with the consequences of SARS-CoV-2
transmission to other learners and school staff. In retrospect, a
larger, arguably national, more comprehensive approach to
prospectively collecting SARS-CoV-2 infection patterns in school-
aged children, their school staff and faculty, and family contacts
would likely have provided the necessary information to achieve
the shared goal of the healthiest environment for the continued
education and physical and mental health of children and
adolescents throughout the country. Our data do support the
notion embodied in the Centers for Disease Control and
Prevention (CDC) School Health Index that schools can effectively
promote good health in children40. We speculate that even at
times of high community SARS-CoV-2 prevalence, schools can be
among the healthiest places for children to be so long as the right
mitigation strategies are in place. Finally, we would be remiss in
not highlighting the remarkable dedication of the faculty and staff
at all four schools who worked tirelessly to continue to provide
meaningful learning to their students, and willingly and enthu-
siastically permitted us to intrude into their sites during an
anxiety-provoking and uncertain time.
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