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P H Y S I C S

Optically pumped spin polarization as a probe of  
many-body thermalization
Daniela Pagliero1*, Pablo R. Zangara2,3*, Jacob Henshaw1, Ashok Ajoy4, Rodolfo H. Acosta2,3, 
Jeffrey A. Reimer5,6, Alexander Pines4,6, Carlos A. Meriles1,7†

Disorder and many body interactions are known to impact transport and thermalization in competing ways, with 
the dominance of one or the other giving rise to fundamentally different dynamical phases. Here we investigate 
the spin diffusion dynamics of 13C in diamond, which we dynamically polarize at room temperature via optical 
spin pumping of engineered color centers. We focus on low-abundance, strongly hyperfine-coupled nuclei, whose 
role in the polarization transport we expose through the integrated impact of variable radio-frequency excitation 
on the observable bulk 13C magnetic resonance signal. Unexpectedly, we find good thermal contact throughout 
the nuclear spin bath, virtually independent of the hyperfine coupling strength, which we attribute to effective 
carbon-carbon interactions mediated by the electronic spin ensemble. In particular, observations across the full 
range of hyperfine couplings indicate the nuclear spin diffusion constant takes values up to two orders of magni-
tude greater than that expected from homo-nuclear spin couplings.

INTRODUCTION
Although the quest to understand the roles of disorder and couplings 
in the out-of-equilibrium dynamics of many-body systems goes back 
several decades (1), the field is presently witnessing a resurgence, in 
part, because of its intrinsic connection to the development of novel 
quantum technologies. Progress has been made largely possible by 
captivating experiments in cold gases where the coupling to outer 
reservoirs can be virtually suppressed and the evolution of each of 
the atoms in the interacting ensemble is probed individually (2–4). 
An example of recently observed phenomena is many-body local-
ization (MBL) (5, 6), a process where, despite the interactions 
between its inner units, the system fails to thermalize, i.e., its long-
term properties cannot be captured by conventional equilibrium 
statistical mechanics (7, 8). Unlike Anderson localization (9), inter-
particle couplings lead to dephasing of individual, initially localized 
states (7). However, the absence of exchange between different MBL 
modes endows these systems with a long-term memory, which makes 
them potentially useful platforms to store and retrieve quantum 
information.

Interacting spins in diamond provide an intriguing platform to 
investigate the interplay between localization and thermalization 
because electrons and nuclei feature species-specific interactions 
and concentrations that can be tuned and dynamically controlled. 
Hyperfine couplings with paramagnetic centers can take extreme 
values (exceeding hundreds of megahertz for first shell carbons), 
while the low gyromagnetic ratio and natural abundance of 13C spins 
make homonuclear couplings orders of magnitude weaker (~100 Hz). 
Given our understanding of thermalization as a spin diffusion process, 

the large frequency mismatch between hyperfine-coupled and bulk 
nuclei immediately raises questions on the system’s ability to reach 
equilibrium. This problem, paramount to interpreting nuclear spin- 
lattice relaxation (10) but equally relevant to carrier transport (9, 11), 
has been traditionally explained through the notion of a “spin diffusion 
barrier,” i.e., a virtual line in the space around a paramagnetic center 
separating “a frozen core” of nuclei unable to communicate (i.e., 
“flip-flop”) with bulk spins (12–14) .

Here, we combine optical excitation and nuclear magnetic reso-
nance (NMR) at low magnetic fields to investigate the generation and 
transport of nuclear magnetization in a diamond crystal hosting 
nitrogen-vacancy (NV) centers. Formed by a substitutional nitrogen 
immediately adjacent to a vacancy, these spin-1 point defects polarize 
efficiently under green illumination, which can be exploited to 
dynamically polarize the 13C nuclei in the crystal. Working under 
“energy matching” conditions, where NVs cross-relax with surround-
ing spin-1/2 nitrogen impurities or “P1 centers,” we find that strongly 
hyperfine-coupled carbons can efficiently exchange polarization with 
bulk nuclei; this process is made possible by many-body interactions 
involving electron and nuclear spins through mechanisms that 
we formally capture via a nuclear spin–only effective Hamiltonian. 
Furthermore, we measure nuclear spin diffusion constants across a 
range of hyperfine couplings orders of magnitude greater than the 
nuclear Larmor frequency and find values ~100-fold bigger than those 
possible via homonuclear couplings, a phenomenon that we interpret 
in terms of electron-mediated interactions between distant carbons.

RESULTS
13C hyperfine spectroscopy at low magnetic fields
Figure 1 (A to C) summarizes the conditions in our experiments. We 
study a diamond sample with a large NV and P1 content [~10 and 
~50 parts per million (ppm), respectively] produced via high-energy 
electron irradiation and annealing. We operate in the regime of 
“cross-relaxation” where the separation between the ∣mS = 0⟩ and 
∣mS = −1⟩ energy levels of the NV spin approximately matches the P1 
Zeeman splitting in an external magnetic field B(0), whose exact value 
depends on the angle  with the NV axis (15, 16). Optical pumping 
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of the NV induces dynamic nuclear polarization (DNP) of bulk 13C, 
which we subsequently detect using a field cycling protocol (Fig. 1C). 
Figure 1D shows the amplitude of the observed 13C NMR signal as a 
function of the optical pumping magnetic field B. The DNP gener-
ation can be simplistically understood through an energy-conserving 
NV-P1-13C process where nuclear spins polarize positively or nega-
tively depending on the sign of the difference between the NV and P1 
transitions above or below B(0). On the other hand, the fact that siz-
able DNP can be observed for a field mismatch as large as ~0.4 mT 
(corresponding to hyperfine couplings of order ~10 MHz) imme-
diately points to nontrivial channels of polarization transfer from 
nuclear spins strongly coupled to defects.

To measure the 13C spectrum at a given optical pumping mag-
netic field, we apply a radio frequency (RF) pulse immediately after 
laser illumination (before sample shuttling; Fig. 1E) within a range 
around the 13C Zeeman frequency. The pulse duration (1 s) is chosen 
so as to make the up/down 13C spin populations equal when on reso-
nance, hence leading to a “dip” in the observed signal amplitudes 
plotted as a function of the RF frequency. Figure 1F shows the 
results for variable RF power. In the limit of weak RF excitation 
(−25 dBm), the NMR linewidth amounts to ~1.5 kHz, coincident 
with that observed at high field (see section S1). Stronger RF power 
results in broader dips, a consequence of the greater excitation 
bandwidth; in the experiments below, we use an RF power of −8 dBm, 
which confines the effect to a ~13-kHz band around resonance.

The ability to manipulate 13C spins gives us the opportunity to 
probe the transport of spin magnetization from paramagnetic centers 
to “bulk” (i.e., very weakly coupled) carbons as it cascades down 

across nuclear spins with different hyperfine couplings under 
NV-P1 cross-relaxation. Given the multispin nature of the dynamics 
at work, this process is better visualized in frequency space as a 
sequence of jumps along a chain formed by groups of carbons 
with varying hyperfine coupling (and, hence, different resonance 
frequencies; Fig. 2A). Nuclear spins proximal to paramagnetic 
centers (NVs or P1s) are normally invisible in the standard NMR 
signal because of their comparatively low abundance and extreme 
hyperfine-induced gradients. Nevertheless, their ability to mediate 
the transfer of magnetization to bulk spins can be selectively exposed 
through the accumulated effect of RF excitation on the polarization 
buildup during optical spin pumping.

Initial evidence revealing the nontrivial role of hyperfine-coupled 
carbons is shown in Fig. 2C, where we compare the NMR signal 
amplitudes following simultaneous RF and laser excitation (Fig. 2B). 
Accompanying the expected dip near the 13C Zeeman transition 
(I~2 × 560 kHz), we observe (partial) NMR signal reduction over 
a wide frequency range (green squares), far exceeding the excitation 
bandwidth (faint, 13-kHz-broad Gaussian in the back here serving 
as a reference). We find that this effect persists at even higher 
frequencies, where intercarbon flip-flops should be strongly sup-
pressed. This is further shown in Fig. 2D, where we measure the 
equivalent of a hyperfine-resolved spectrum over a 160-MHz range, 
selectively sensitive to nuclear spins participating in the magnetization 
transport. We identify several high-frequency regions where RF 
excitation has a substantial impact on the observed NMR signal, 
suggesting that localization, the regime naively anticipated for 
hyperfine-coupled carbons in a dilute nuclear spin system such 

Fig. 1. Low-field dynamic polarization and manipulation of 13C spins in diamond. (A) Electron-nuclear spin set. Polarization flows from hyperfine-coupled carbons to 
bulk carbons. (B) Schematics of the NV/P1 energy diagrams as a function of the magnetic field. Cross-relaxation between the NV and P1 is most favorable when the energy 
differences are matched (vertical arrows); this condition depends on the angle  between the magnetic field B and the NV symmetry axis. (C) DNP and detection protocol. 
We illuminate the sample with 532-nm laser light for a time tOP at a variable field B, followed by sample shuttling to the bore of a 9.0-T magnet for high-field 13C NMR 
detection. (D) NMR signal amplitude of hyperpolarized 13C as a function of B. In a typical experiment, the magnetic field during DNP is set at B( + ) or at B( − ), so as to produce 
the largest positive or negative 13C polarization, respectively. a.u., arbitrary units. (E) Indirect observation of low-field 13C NMR through variable-frequency RF excitation; 
for simplicity, the drawing omits the sample shuttling step. (F) Experimental results from applying the protocol in (E) for different RF powers. In (D) to (F), the optical 
pumping time is tOP = 10 s and the laser power is 1 W focused to a ~200-m-diameter focal spot; in (F), the RF-pulse duration is tRF = 250 ms, the magnetic field is B( + ) = 
52.3 mT, and its angle  with the NV axis amounts to ~6°.
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as diamond, cannot capture the dynamics at play. Very much on 
the contrary, we show next that most nuclear spins communicate 
efficiently with each other despite their relatively large frequency 
mismatch.

To shed light on the underlying mechanisms, we start with a 
comparison between the RF absorption spectrum in Fig. 2D and 
the set of hyperfine couplings to NVs and P1s (respectively, colored 
bands in the background and vertical bars in Fig. 3A). We find a 
moderate correlation between the two. For example, the dip at 
~40 MHz, associated with a second shell carbon around the P1 
center (17), suggests that substitutional nitrogen plays an important 
role in enabling spin exchange between near-defect and bulk nuclei. 
The dip disappears if one shifts the magnetic field from B( + ) to B( − ), 
a change of only ~0.2 mT (see Fig. 2E), suggesting that spin diffu-
sion emerges from a multispin process requiring precise alignment 
between the NV, P1, and 13C energy levels. This notion is consistent 
with the very premise of DNP near ~51 mT, arising from nuclear 
spin–assisted NV-P1 cross-relaxation at these fields (15, 18). On the 
other hand, one cannot rule out spin-lattice relaxation effects, as the 
bulk carbon T1 time is also seen to moderately change, from ~5 to 
~7 s when transitioning from B( + ) to B( − ). Last, the ~97.5-MHz 
resonance, which we could not match to any reported 13C site near 
the NV or P1, may instead correspond to polarization pathways 
involving the nuclear spin of the 14N host at the P1 [known to 
participate in the polarization transfer (15, 16, 18)]; additional work, 
however, will be needed to clarify its origin.

The absence of RF absorption is also an important indicator. For 
example, the flat response in Fig. 2D near RF ~ 130 MHz, coincident 
with the hyperfine splitting of first shell carbons around the NV (19), 

indicates that these sites do not partake in the polarization transfer 
process, hence suggesting that select nuclear spins, featuring exceed-
ingly strong hyperfine interactions, fail to thermalize with the rest 
(see below). By the same token, no RF dips are observable between 
~50 and ~90 MHz (omitted in Fig. 3A for simplicity), a range with 
no hyperfine-coupled carbons (17, 20, 21).

More generally, the amplitude of the RF absorption dip reflects 
on the number of diffusion channels available to the system near a 
given excitation frequency RF (Fig. 3B). A complete transport block-
ade, manifesting in the form of a full-contrast dip, is possible only 
when the nuclear spins resonant with the applied RF intervene in 
every polarization transfer event. As the number of alternative 
channels increases, the RF-induced contrast diminishes because 
most spin diffusion pathways do not involve resonant nuclei. The 
latter, of course, depends on the granularity of the frequency jumps 
d(RF), characterizing the multispin configurational change during 
spin diffusion; greater RF absorption can be regained as d(RF) 
becomes comparable to (or smaller than) the RF bandwidth b 
(~13 kHz in the present experiments). We believe that this interplay 
is responsible for the DNP signal response below ~10 MHz, where 
the number of carbon sites with comparable hyperfine couplings 
(and, thus, the number of spin diffusion pathways) increases rapidly, 
while the nuclear spin energy difference d(RF) in each jump 
gradually fades away. On a related note, a close inspection of Fig. 2D 
shows a slight offset relative to the signal amplitude observed in 
the absence of RF (faint horizontal lines). We presently ignore its 
origin but hypothesize that it could stem from weak RF absorption 
between many-body electron spin states (i.e., weakly allowed “zero- 
quantum” transitions), which subsequently causes nuclear spin 

Fig. 2. 13C spin diffusion spectroscopy via signal amplification of low-abundance nuclei. (A) Schematics of the spin diffusion process. Starting with the cross-relaxation 
of an NV-P1 pair and a strongly hyperfine-coupled 13C spin (green circles), polarization flows from less abundant, unobservable nuclei to more abundant, bulk carbons. 
RF excitation at a predefined (but variable) frequency equilibrates the populations of a select nuclear spin subset (horizontal red band), hence disrupting the polarization 
flow. (B) Experimental protocol. 13C NMR detection is carried out at 9.0 T, following sample shuttling (not shown). (C) 13C NMR signal amplitude as a function of the 
RF upon application of the protocol in (B) in a vicinity of the 13C Larmor frequency at B( + ) = 52.3 mT. The faint solid trace reproduces the spectrum in Fig. 1F at 0 dBm. 
(D) Same as in (C) but for an extended RF range. Here, the magnetic field is B( + ) = 52.3 mT (B( − ) = 52.7 mT) in the upper (lower) half plot (green and red circles, respectively). 
The dashed green square on the left indicates the region of the spectrum presented in (C). Solid lines are guides to the eye; faint horizontal traces indicate signal levels in 
the absence of RF. (E) 13C NMR signal amplitude as a function of the applied magnetic field in the presence of RF excitation either resonant (39.6 MHz) or nonresonant 
(30.0 MHz) with the dip in (D). Solid lines are guides to the eye. In (C) to (E), the RF power is –8 dBm, and tOP = tRF = 5 s.
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relaxation. Additional experiments, however, are mandatory to 
clarify this point.

Effective Hamiltonian and spin diffusion dynamics
Deriving a Hamiltonian that correctly reproduces the behavior of inter-
acting electron and nuclear spin ensembles from first principles, a 
problem at the center of ongoing efforts (22), remains a challenging 
task. Here, we capture the dynamics at play by considering a pair of 
carbons, each interacting with one of two P1 centers, which, in turn, 
couple dipolarly to each other (Fig. 3C). Focusing first on the 
“hyperfine-dominated” regime (where ‖A1‖ ~ ‖A2‖ > ℐd > I), we find 
that the polarization can flow from one carbon to the other with an 
effective rate   J  eff   ~   ℐ  2    ℐ  d   / (2    ̄  A     2 ) , where ℐd is the interelectronic dipolar 
coupling constant and    ̄  A   = (‖ A  1  ‖ + ‖ A  2  ‖) / 2  denotes the average hyper-
fine coupling. Although stemming from high-order virtual processes, 
Jeff can reach sizable values when the electron spin concentration is 
sufficiently high. As an illustration, for an electron spin dipolar cou-
pling 〈ℐd/2〉~1 MHz [corresponding to a nitrogen concentration 
of ~10 ppm (23)], we obtain Jeff/2 ~ 1 kHz for    ̄  A   / 2 ~ 10  MHz.

While the above effective coupling allows most hyperfine-shifted 
nuclei to communicate, we also find that transport can be sup-
pressed if the hyperfine shift difference A = ‖A1‖ − ‖A2‖ between 
the two carbons is large. More formally, we express the condition for 
delocalization as

   ℐ  d   ≳    I    ̄  A  A / (   ̄  A     2  −   A   2 )  (1)

increasingly difficult to meet as    ̄  A    approaches A (i.e., when ‖A1‖ ≫ 
‖A2‖; see section S3). This is likely the scenario for first shell carbons 
(A~130 MHz), separated from the rest by a large spectral gap 
(see Fig. 3A). For completeness, it is worth mentioning that in the 
“dipolar-dominated” regime (where ℐd > A, I), the effective nuclear 

spin coupling takes the form Jeff ~ A2/(4ℐd). This expression shows, 
as expected, vanishing interaction for nuclei decoupled from para-
magnetic defects (ℐd > I > A), but it also suggests that Jeff can be 
quite strong, potentially exceeding 10 kHz in the narrow window 
where ℐd > A > I (sections S2 and S3).

ℐd-induced state mixing activates transitions at frequencies other 
than those expected for pure nuclear spin flips. This is shown in 
Fig. 3 (C and D), where we plot the calculated nuclear spin polarization 
in a 13C-P1-P1-13C chain under continuous RF excitation, assuming 
that both carbons start from a polarized state (see also section S4). 
When ℐd ~ 0, the system absorbs selectively at the single nuclear spin 
hyperfine transitions. As ℐd increases, however, new dips correspond-
ing to simultaneous nuclear and electron spin flips emerge. Given 
the range of possible spatial configurations in disordered spin en-
sembles, RF excitation should therefore yield broad bands of less- 
than-optimal DNP crudely centered around the hyperfine transitions, 
in qualitative agreement with our observations.

From the above considerations, we surmise that the ensemble 
of paramagnetic defects can be thought of as an underlying net-
work providing the couplings required for nuclear spins to ther-
malize (24); correspondingly, the spin Hamiltonian for a group 
of (otherwise noninteracting) NI carbon spins Ii takes the form 
(see section S3)

   H  eff   =  ∑ 
i
  

 N  I  
      I  

(i)   I i  
z  +  ∑ 

i>j
  

 N  I  
   ( J eff,zz  

(ij)    I i  
z   I j  z  +  J eff,xy  (ij)  ( I i  

+   I j  −  +  I i  
−   I j  +  ) )  (2)

where    I  
(i)   denotes the (electron spin–dependent) local field at the 

ith nuclear spin site and Jeff, zz and Jeff, xy represent effective electron 
spin–mediated internuclear couplings, which, in general, must be 
seen as functions of the applied magnetic field and electron spin 
concentration.

Fig. 3. Electron spin–mediated many-body nuclear spin diffusion under NV-P1 cross-relaxation. (A) Histograms of hyperfine resonance frequencies above 1 MHz 
for 13C nuclei near individual P1s and NVs (upper and lower plots, respectively). For reference, the faint green and red bands reproduce the level of RF absorption observed 
in Fig. 2D. (B) The impact of RF excitation on DNP efficiency can be cast in terms of a polarization sink of width b defined by the excited bandwidth. For a given RF power, 
the sink efficiency reflects on the spin network connectivity: (i) Full contrast arises when all polarization transfer pathways (solid lines) rely on a single nuclear spin site 
(grey circle) featuring a characteristic hyperfine shift. (ii) For a typical frequency change d between consecutive nuclear spin nodes and assuming d > b, the sink 
efficiency diminishes as the number of alternative pathways increases. (iii) Full contrast reappears when d ≲ b. (C) (Top) Model spin chain comprising two carbons 
hyperfine-coupled to two P1s subject to a dipolar interaction ℐd. (Bottom) Calculated eigenenergies for eigenstates ∣i⟩, i = 1 … 8 within the subspace where the electron 
spins are antiparallel; for these calculations, ‖A1‖ = 2 × 6 MHz and ‖A2‖ = 2 × 10 MHz. (D) 13C polarization in the presence of RF for the spin system in (C) for different ℐd; 
both 13C spins are assumed to be initially polarized. (E) Network of 22 13C spins in a Cayley tree configuration; green, yellow, and orange lines indicate Jeff equal to 100, 10, 
and 1 kHz, respectively. (F) Computed 13C magnetization in each ring as a function of time starting from a configuration where only the central spin is polarized.
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While chain-like systems are often integrable, added spatial 
dimensions break any underlying symmetry and typically render 
the dynamics chaotic. A realistic simulation of the system at hand 
requires, therefore, the use of multidimensional spin arrays, an 
increasingly challenging task as the number of nuclei grows. Here, 
we qualitatively test the dynamics of the Hamiltonian in Eq. 2 using 
a model nuclear spin set of 22 carbons in a Cayley tree geometry, 
assuming that only the central spin is initially polarized (Fig. 3E). 
The effective couplings between nuclear spins in different rings grow 
to the outside of the tree, so as to emulate the transition between the 
hyperfine-dominated (i.e., A > ℐd > I) and the dipolar-dominated 
(i.e., ℐd > A > I) regimes. It is known that the interplay between the 
terms linear and bilinear in Iz [respectively corresponding to the 
local potential and interaction terms of the Hubbard Hamiltonian 
in a carrier transport picture (7) ] may lead to MBL. To make the 
numerical problem tractable, we assume below that the flip-flop 
terms are dominant, and thus, the system is in an ergodic phase.

To compute the many-body spin dynamics, we use a Trotter- 
Suzuki (TS) decomposition assisted by quantum parallelism (25). 
Unlike other, more common approaches (26, 27), this technique does 
not require truncation of the Hilbert space and is thus applicable to 
long times (see Materials and Methods). As shown in Fig. 3F, we 
observe a diffusive (i.e., recurrence-free) evolution, pointing to the 
onset of quantum chaos (28–30). Chaoticity arises in the Cayley 
geometry as a consequence of the system branching, effectively 
enlarging the size of the accessible Hilbert space as the polarization 
moves from inner to outer rings. Note that despite the growing inter-
nuclear couplings, the characteristic time constant (of order ~2 ms) 
is uniform across the tree structure, dictated by the higher-order (and 
hence weaker) effective electronic couplings communicating the central 
spin with nuclei in the first ring.

Experimentally, we probe the time scale of spin diffusion in our 
sample via the protocol in Fig. 4A where we evenly distribute 
RF pulses of fixed duration throughout the illumination interval; 
the pulse length is chosen so as to ensure several 13C Rabi cycles 
(section S1). The upper half of Fig. 4B shows an example plot cor-
responding to RF at 10 MHz. For interpulse intervals  ≳ 10 ms, we 
find that the effect of RF pulses on the hyperpolarization amplitude 
is negligible, an early indication that spin diffusion takes place on a 
time scale faster than that deriving from direct internuclear dipolar 
couplings (averaging ~100 Hz in nonenriched diamond). Overall, 
our data can be reasonably described via a stretched exponential 
dependence of the form S = S0 − S1 exp(− (/d)), where  is the 
interpulse separation and all other variables are fitting parameters, 
with d representing the characteristic nuclear spin diffusion time. 
We find that  < 1, typically indicative of heterogeneity in the 
underlying physical process (31, 32). This idea is consistent with 
the multichannel nature of the transport dynamics at play, here 
expressed via the probability distribution ℒ(, ), satisfying  
exp(−  ( /    d  )     ) =  ∫0  

∞
    ℒ(,  ) exp(−  ) d . Using an inverse Laplace 

transform to explicitly compute ℒ (, ), we find that the distribu-
tion median satisfies    ̄    ~ 1 /    d   , i.e., diffusion rates are equally likely to 
lie above or below 1/d (lower half plot in Fig. 4B). In particular, we 
identify a broad set of fast transport processes whose rates extend 
beyond ~1 ms−1 (shadowed tail in the plot).

To capture these observations into a functional microscopic model, 
we now return to the notion of magnetization transport along a 
one-dimensional (spectral) chain formed by m spin sets {Ni}, i : 
1…m, each featuring resonance frequencies within bands i 
centered around effective hyperfine couplings ‖Ai‖ (Fig. 4C). Aiming 
at a qualitative comparison with experiment, this time, we model 
the transport problem classically using a set of coupled differential 

Fig. 4. Probing paramagnetic center–assisted nuclear spin diffusion. (A) Experimental protocol. We apply a train of short, equidistant RF pulses during the fixed illu-
mination time tOP = 5 s and monitor the 13C DNP signal as we increase the number of pulses l. (B) (Top) 13C NMR signal amplitude S() as a function of the interpulse time 
 ≈ tOP/l at a representative RF. The RF pulse duration is RF = 1 ms at a power of −8 dBm; the solid line is a fit to a stretched exponential (see the main text). (Bottom) 
Probability distribution for the diffusion rate ; the vertical dotted and dashed lines indicate the characteristic diffusion rate 1/d and distribution median    ̄   . The shadowed 
half corresponds to transport processes with rates faster than    d  −1  . (C) We model the observed response as a classical flow of magnetization through a chain of m boxes, 
each containing Ni spins with hyperfine resonance frequencies within box-selective bandwidths i. The arrow indicates increasing hyperfine coupling ‖A‖, and i, i + 1 
denotes the polarization transfer rate between neighboring boxes. (D) Numerical simulations of the model in (C) for chains of length m = 40 and with uniform (but variable) 
spin transfer rate . We attain a sigmoidal response, whose inflection point at d grows with the inverse of the spin diffusion rate . The magnetization contrast Mm reflects 
on the RF impact, here set to act on a fraction of the spins in the 20th box of the chain. (E) Effective spin diffusion constant   D  eff   =  〈  r  C   〉   2    d  −1   at different RF frequencies RF 
as determined from data plots similar to those in (C); DC is the spin diffusion for carbon in pure diamond. The broad green band reproduces the RF absorption from Fig. 2D 
and has been included as a reference. All experiments are carried out at a fixed magnetic field B( + ) = 52.3 mT.
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equations adapted to describe magnetization hops between boxes in 
the presence of optical and RF excitation, as well as nuclear spin-lattice 
relaxation (section S5). A train of RF pulses (resonant with nuclear 
spins within a band b along the chain) partly disrupts the trans-
port of polarization and leads to a change Mm in the magnetization 
stored in box m (here, serving as the observable). This effect satu-
rates in the limit where the interpulse separation  is equal to (or 
shorter than) the interval required to replenish the magnetization in 
the depleted cell (roughly, the inflexion point in the sigmoid), hence 
allowing us to extract the characteristic spin diffusion time d at the 
corresponding excitation frequency RF (Fig. 4D).

Figure 4D summarizes numerical results from a chain of m = 40 
spin cells, each connected to its immediate neighbors via transfer 
rates i, i + 1. To establish a starting connection between d and the 
underlying rates, we first investigate the case where i, i + 1 takes a 
constant value  throughout the chain (Fig. 4D). As expected, we 
find that d grows inversely with −1, although the dependence is not 
linear, a consequence of the finite duration of the RF pulse. To 
investigate the impact of transport heterogeneity, we also consider 
the case where i, i + 1 takes on different values depending on the 
position across the chain, peaking at the midpoint. Imposing greater 
transfer rates between cells effectively amounts to fusing neighboring 
groups of spins into a larger cell, hence amplifying the impact of 
individual RF pulses resonant with the set and thus altering d. Since 
the experimental response upon excitation at different frequencies 
does not substantially depart from our observations in Fig. 4B 
(see section S5), we tentatively conclude that the transfer rates 
across the hyperfine spectrum, or, more generally, the representative 
values from the transfer rate distributions connecting each cell in 
the chain with all others, are relatively uniform. On a related note, 
our numerical model exhibits only a moderate departure from a 
single exponential response (~0.9 in Fig. 4D). The latter could well 
be a consequence of the first neighbor coupling structure assumed 
for the spin chain, likely oversimplifying the system complexity by 
limiting the number of channels available to the transport of nuclear 
polarization.

Capitalizing on the above considerations to interpret our observa-
tions, we find that the characteristic diffusion rate    d  −1 (   RF  )  in the present 
spin system falls within the range 0.3 to 0.6 ms−1. The agreement with 
the quantum model in Fig. 3 (E and F) should be considered rather 
fortuitous, as a numerical value of the diffusion time can only emerge 
from a suitable average over the set of possible spin configurations. 
On the other hand, given the mean intercarbon distance in diamond 
〈rC〉 = 0.5 nm, we conclude that the effective diffusion constant 
observed herein can be as large as   D  eff   ~  〈  r  C   〉   2    d  −1 ~1.5 ×  10   2   nm2 s−1, 
about 100-fold greater than that derived from nuclear dipolar inter-
actions alone (Fig. 4C) (33, 34). This result reinforces the under-
standing of the cross-relaxing electron spin bath as a mediator to 
swiftly move around magnetization from otherwise many-body 
localized groups of nuclei. This behavior could prove advantageous 
to expedite the transport of polarization across the diamond surface 
into arbitrary nuclear spin targets (16, 35).

DISCUSSION
While the effective Hamiltonian in Eq. 1 supports the notion of a 
coherent, electron-mediated nuclear spin transport, a question of 
interest is whether spin-lattice relaxation (electronic or nuclear) 
affects the diffusion process itself (beyond imposing a limit on the 

polarization buildup). Supporting this notion, recent numerical studies 
suggest that incoherent dynamics can help drive the spin system away 
from “blockade” regimes, i.e., spin configurations that prevent the 
transport of spin polarization (35). In the present framework, these 
processes could, e.g., flip P1 centers that have previously been 
polarized upon cross-relaxation with the NVs. Note that coherent 
channels remain the main transport driver and interacting para-
magnetic defects are still central to the process, but here, it is 
spin-lattice relaxation (not necessarily electron spin diffusion) 
that prepares the P1 for the next cycle of spin transport. This picture 
is consistent with the measured d, comparable, on average, to the 
NV or P1 spin-lattice relaxation times (of order 1 ms in this diamond 
sample). Future experiments, for example, above and below room 
temperature or for samples with variable NV or P1 concentrations 
could help shed light on the role of incoherent processes.

Extensions of the ideas introduced herein can provide additional 
insights on the complex spin dynamics at play. For example, the use 
of chirped micro-wave (MW) pulses to induce nuclear spin polar-
ization (36, 37), away from the NV-P1 cross-relaxation condition, 
can be exploited to separate the roles of NVs and P1s during the 
spin diffusion process. Along the same lines, microwave manipula-
tion of the electron spin bath should give us the opportunity to 
controllably reintroduce localization in the nuclear spin system 
or to count the number of correlated carbons as the polarization 
spreads (38, 39). Particularly attractive is the combined use of 
super-resolution microscopy (40–42) and magnetic resonance 
techniques to monitor the spin dynamics of small ensembles of 
nuclear spins communicating via NV-P1 networks, which could 
be relevant to quantum information processing with many-body 
disordered systems (43).

While our experiments centered on spins in diamond, we antici-
pate that similar techniques can be adapted to investigate the dy-
namics of other material systems hosting spin active nuclear and 
electronic spins. These include organic systems exhibiting (nonoptical) 
DNP, where simultaneous microwave and RF excitation could be 
exploited to gain information on nuclear spins proximal to radicals, 
normally invisible in standard DNP-enhanced NMR experiments.

MATERIALS AND METHODS
Experiment
Throughout our measurements, we use a chemical vapor deposition– 
grown, type 1b diamond, which was previously electron-irradiated 
and annealed to create NV centers throughout the bulk crystal at an 
approximate concentration of 10 ppm (15). DNP is carried out via 
1-W laser excitation at 532 nm. We rely on a pair of coils and the 
stray field of a 9-T NMR magnet to adjust the magnetic field during 
optical illumination in the vicinity of 51 mT and use a home-made, 
compressed air–driven device to shuttle the NMR probe between the 
polarization (51 mT) and detection fields (9 T). We orient the dia-
mond crystal so that the external magnetic field nearly coincides with 
one of the NV axes and use a single loop around the crystal as the 
source of RF excitation. All experiments are conducted at room tempera-
ture. Additional details, including a characterization of the 13C spin 
response as a function of the RF power, are presented in section S1.

Numerical simulations
We use a fourth-order TS method (44) to numerically evaluate 
the time dependence of large spin systems. The TS protocol avoids 
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manipulating and diagonalizing the full Hamiltonian H, instead 
approximating the total evolution operator U(t) = exp { − iHt} by a 
suitable sequence of partial evolution operators    ̃  U  (t ) =  ∏ k     exp { − i  
H  k   t} . Here, {Hk} corresponds to each of the single-spin and two-
spin terms in the Hamiltonian H, proportional to either linear (  I n   , 
 = x, y, z ) or bilinear operators (  I n     I m    ,  = x, y, z ). The evaluation 
of the time evolution for an arbitrary finite time t requires the 
successive application of the step-like evolutions. The approximated 
dynamics remains always unitary, and the accuracy of the approxi-
mation relies on the TS time step t being sufficiently small as 
compared to the shortest local time scale of the original Hamiltonian. 
In our simulations, we have tuned the TS time step so that, for the 
system size considered (22 spins), relative error bounds are estimated 
to be 10−4. Regarding the computational implementation, an expo-
nential speedup of our simulations is achieved by means of a massive 
parallelization scheme via general-purpose graphical processing 
units (45).

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/6/18/eaaz6986/DC1
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