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Purpose: Dose conformality and robustness are equally important in intensity modulated proton
therapy (IMPT). Despite the obvious implication of beam orientation on both dosimetry and robust-
ness, an automated, robust beam orientation optimization algorithm has not been incorporated due to
the problem complexity and paramount computational challenge. In this study, we developed a novel
IMPT framework that integrates robust beam orientation optimization (BOO) and robust fluence
map optimization (FMO) in a unified framework.
Methods: The unified framework is formulated to include a dose fidelity term, a heterogeneity-
weighted group sparsity term, and a sensitivity regularization term. The L2, 1/2-norm group sparsity
is used to reduce the number of active beams from the initial 1162 evenly distributed noncoplanar
candidate beams, to between two and four. A heterogeneity index, which evaluates the lateral tissue
heterogeneity of a beam, is used to weigh the group sparsity term. With this index, beams more resili-
ent to setup uncertainties are encouraged. There is a symbiotic relationship between the heterogeneity
index and the sensitivity regularization; the integrated optimization framework further improves
beam robustness against both range and setup uncertainties. This Sensitivity regularization and
Heterogeneity weighting based BOO and FMO framework (SHBOO-FMO) was tested on two skull-
base tumor (SBT) patients and two bilateral head-and-neck (H&N) patients. The conventional CTV-
based optimized plans (Conv) with SHBOO-FMO beams (SHBOO-Conv) and manual beams
(MAN-Conv) were compared to investigate the beam robustness of the proposed method. The
dosimetry and robustness of SHBOO-FMO plan were compared against the manual beam plan with
CTV-based voxel-wise worst-case scenario approach (MAN-WC).
Results: With SHBOO-FMO method, the beams with superior range robustness over manual beams
were selected while the setup robustness was maintained or improved. On average, the lowest
[D95%, V95%, V100%] of CTV were increased from [93.85%, 91.06%, 70.64%] in MAN-Conv
plans, to [98.62%, 98.61%, 96.17%] in SHBOO-Conv plans with range uncertainties. With setup
uncertainties, the average lowest [D98%, D95%, V95%, V100%] of CTV were increased from
[92.06%, 94.83%, 94.31%, 78.93%] in MAN-Conv plans, to [93.54%, 96.61%, 97.01%, 91.98%] in
SHBOO-Conv plans. Compared with the MAN-WC plans, the final SHBOO-FMO plans achieved
comparable plan robustness and better OAR sparing, with an average reduction of [Dmean, Dmax]
of [6.31, 6.55] GyRBE for the SBT cases and [1.89, 5.08] GyRBE for the H&N cases from the
MAN-WC plans.
Conclusion: We developed a novel method to integrate robust BOO and robust FMO into IMPT
optimization for a unified solution of both BOO and FMO, generating plans with superior dosimetry
and good robustness. © 2019 American Association of Physicists in Medicine [https://doi.org/
10.1002/mp.13641]
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1. INTRODUCTION

Multifield optimized intensity-modulated proton therapy
(MFO-IMPT) is the state-of-the-art delivery technique of
radiation therapy. It utilizes the spot scanning technique1 and
three-dimensional (3D) modulation2 of pencil beams from
multiple fields to achieve high target dose conformality and
superior organs at risk (OARs) sparing. Since MFO-IMPT is

exclusively investigated in this study, we will refer to it as
IMPT in the remainder of the paper for brevity.

In general, both plan robustness and plan quality/confor-
mality depend on beam angle selection. An ideal IMPT treat-
ment planning process should include beam angle selection
and fluence map optimization (FMO) simultaneously. In cur-
rent clinical practice, the proton beam angles are manually
selected first by a planner. Different from x-ray therapy where
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equiangular or arc beams are often acceptable, the proton
beam orientations are typically asymmetric, and need to be
more carefully considered for factors such as the water-equiv-
alent thickness to the target, nearby OAR sparing, hetero-
geneity of tissues in the beam path, and setup robustness
etc.3–5 To minimize low dose regions and speed up treatment
delivery, there are practically fewer beam angles in a typical
proton plan, which makes the selection of proton beam angle
particularly important. Planners’ experience and skill can
heavily influence the final treatment plan quality. For compli-
cated patient cases, tedious trial-and-error attempts may be
needed to find better beam configurations. Yet, human opera-
tors cannot effectively search the enormous coplanar and
noncoplanar beam space, resulting in inconsistent planning
results. Beam orientation optimization (BOO) using a com-
putational model is therefore essential for improving IMPT.

The Intensity Modulated Photon Therapy (IMXT) BOO
problem has been extensively researched using stochastic and
analytical methods,6–12 but there have been limited IMPT
BOO studies. Cao et al.13 applied a local neighborhood
search (LNS) algorithm to the IMPT BOO problem and
implemented it on prostate cancer to improve beam arrange-
ment.14 The LNS is confined to be within a small search
space near the initial condition, which still has to be manually
selected. Later Lim et al.15 used global search methods, such
as branch-and-bound and simulated annealing, to find a good
feasible solution as the initial condition for LNS but these
stochastic methods were only demonstrated on much smaller
coplanar IMPT problems. In our previous work,16 we devel-
oped an integrated BOO and FMO framework for noncopla-
nar IMPT. Based on group sparsity regularization, this
algorithm efficiently performs a global search on noncopla-
nar candidate beams and finds a dosimetrically optimal solu-
tion.

Besides plan dosimetric quality, uncertainty or plan
robustness is important for IMPT. The dose of a proton pencil
beam is mostly deposited around the Bragg peak,17 whose
location is sensitive to both patient positioning and range esti-
mation uncertainties.18–22 The former is caused by the
misalignment between proton beam and patient anatomy, and
the latter due to the error of converting CT number to stop-
ping power ratio, CT image artifacts, and patient anatomy
changes. The proton dose uncertainties can lead to severely
under-dosed target and over-dosed OARs yet the geometrical
margin used in x-ray therapy is ineffective to mitigate the
problem. For IMPT, a commonly used method to reduce the
effect of uncertainties is worst-case optimization method,21–
40 where the estimated worst situations are sparsely sampled
in the optimization problem to maintain the dose distribution
even with uncertainties above. The plan robustness is better
maintained at the cost of substantially increased computa-
tional cost.21,34 To avoid the additional burden of calculating
the worst cases and provide the robustness consideration as a
soft constraint, we recently modeled the scanning spot sensi-
tivity concerning range and positioning uncertainties as a reg-
ularization term in the optimization.41 We showed improved
dosimetry, robustness to larger range uncertainties, and an

order of magnitude faster optimization time than the worst
case approach.

In our previous IMPT frameworks, robustness and BOO
were studied separately, despite their obvious inter-depen-
dence. For instance, beams passing through highly heteroge-
neous tissues are likely more sensitive to range and
positioning uncertainties than beams passing through homo-
geneous tissues. It may cause more dosimetric compromise to
achieve robustness for these beams. The robustness consider-
ation complicates beam selection in manual IMPT planning,
making integrated robust BOO and FMO even more urgently
needed. Pflugfelder et al.20 modeled the interdependence of
beam orientation and robustness as a lateral tissue hetero-
geneity across the proton pencil beams. Their heterogeneity
number, is then used to guide beam angle selection.42,43 After
evaluating the heterogeneity of each beam, Bueno et al.42 rec-
ommended to change the beam direction if the heterogeneity
exceeded a threshold, and Toramatsu et al.43 proposed to use
the beams with minimum heterogeneity in single field uni-
form dose (SFUD) plans. These heuristic heterogeneity-
guided beam angle selection methods have not quantitatively
incorporated the robustness consideration in IMPT optimiza-
tion and potentially dismiss dosimetrically superior beam ori-
entations. Cao et al.13–15 combines the worst-case approach
and local neighborhood search algorithm to achieve robust
beam angle selection. However, in addition to the limitations
above being confined to the local search, in each search step,
a subproblem of worst-case FMO is solved, making the
method impractically slow.

In this work, we develop a novel unified robust optimiza-
tion framework for IMPT, that integrates robust beam orienta-
tion selection and robust fluence map optimization in a
single problem and then solve this global optimization prob-
lem. The BOO is achieved by group sparsity regularization,
and robustness is promoted by the lateral tissue heterogeneity
penalty and dose sensitivity regularization.

2. MATERIALS AND METHODS

The integrated robust BOO and FMO framework is formu-
lated with a dose fidelity term, a heterogeneity-weighted
group sparsity term, and a dose sensitivity regularization
term. The details are described as follows.

2.A. Group sparsity-based BOO

Assume B is the set containing all the feasible candidate
beams. As proposed in our previous work,16 the selection of a
small number of beams from the set Bby group sparsity regu-
larization is formulated as the following optimization prob-
lem:

minimize
x

C Axð Þ þ
P
b2B

ab xbk k1=22

subject to x� 0
; (1)

where xb is a vector representing the intensities of scanning
spots from the candidate beam b, and x is the concatenation

Medical Physics, 46 (8), August 2019

3357 Gu et al.: IMPT robust BOO 3357



of all the vectors xb b 2 Bð Þ. A is the dose calculation matrix
including all candidate beams, with each column being the
vectorized doses delivered to the patient from one unit inten-
sity spot. The first term C Axð Þ in problem (1) is the dose fide-
lity term on target and critical organs, to penalize dose
deviation from the ideal distribution. The second termP
b2B

abjjxbjj1=22 is an L2,1/2-norm group sparsity term. Most

candidate beams are turned off with a proper value of weighting
hyperparameter for each beam b, denoted as ab. A small
number (e.g., 2–4) of beams, remain active. The weighting
parameter ab of beam b is set to be:

ab ¼ c
Ab
T 1

�� ��
2

nb

 !1=2

; (2)

where Ab
T is the dose calculation matrix of the target volume

for beam b, nb is the number of scanning spots in beam b, 1
is a vector with every element being one, and c is a regular-
ization parameter. The aim of (2) is to use a single parameter
c to control the number of active beams while the beams of
different ranges and spot numbers are unbiasedly weighted.

2.B. Heterogeneity-weighted group sparsity

The group sparsity-based BOO (GSBOO) method pre-
sented in problem (1) is designed to select beams for good
dosimetry, and the robustness is not considered yet. In order
to select beams with less sensitivity to setup uncertainties, we
incorporate lateral tissue heterogeneity into the current group
sparsity term, to encourage the algorithm to choose beams
with less lateral tissue heterogeneity. The lateral tissue hetero-
geneity observed along beam b is quantified by its hetero-
geneity index hb, which is defined as follows.

First, as shown in Fig. 1, a coordinate system is created for
each pencil beam (scanning spot) in beam b, with the z axis
along the central axis of the pencil beam and pointing from
the source to the patient. The central axis of ith pencil beam
is located at (xi, yi), and the position of (xi, yi, 0) is where the
pencil beam enters the patient.

With discrete sampling, the heterogeneity index of ith pen-
cil beam in beam b at the depth zk, denoted as hkb;i, is defined
as:

hkb;i ¼P
j2SiðzkÞ /i xj; yj; zk

� �
� Srel xj; yj; zk

� �
� Srel xi; yi; zkð Þ

� �2P
j2SiðzkÞ /i xj; yj; zk

� �
 !1=2

(3)

where Srel xj; yj; zk
� �

is the relative stopping power ratio at the
voxel xj; yj; zk

� �
, and /i xj; yj; zk

� �
is the particle fluence at

xj; yj; zk
� �

for the ith pencil beam. The sampling set of lateral
voxels at depth zk is written as Si zkð Þ. In the analytical model,
the lateral dose distribution of pencil beam i is approximated
as a single Gaussian distribution, with a standard deviation of
ri zkð Þ at depth zk. The sampling set Si zkð Þ at each depth is
selected to include the voxels within 3ri zkð Þ from the central
axis.

The depth-specific hkb;i is evaluated and summed up from
zk ¼ 0. . .Rb;i, which is the path spanning from where the
pencil beam enters the patient to the end of its range. The
sum generates a single metric to indicate the lateral hetero-
geneity affecting the ith pencil beam in beam b:

hb;i ¼
XRb;i

k¼0

hkb;i: (4)

The heterogeneity index values of all scanning spots in the
same beam b are then averaged to represent the beam hetero-
geneity. Therefore, the heterogeneity index of beam b,
denoted as hb, is calculated as:

hb ¼
1
nb

Xnb
i¼1

hb;i; (5)

where nb is the number of scanning spots in beam b.
Then hb is evaluated for each candidate beam and used to

weigh the group sparsity in problem (1). The heterogeneity-
weighted group sparsity BOO (HBOO) is thus formulated as:

minimize
x

C Axð Þ þ
P
b2B

abhb xbk k1=22

subject to x� 0
: (6)

In this algorithm, the beams with higher lateral heteroge-
neity are more heavily penalized in the group sparsity term,
resulting in selecting beams with higher dose fidelity and less
sensitivity to setup errors.

2.C. Sensitivity regularization and robust BOO-FMO

Even though the beams more resilient to setup errors are
preferred in problem (6), the range uncertainty has not been
considered in FMO. Sensitivity regularization41 is thus incor-
porated into the framework to achieve simultaneous robust
beam angle selection and robust fluence map optimization.
We now describe the formulation of the sensitivity vector.

As shown in Fig. 2, a coordinate system (ub, vb, wb) is first
designated for the beam b, with the origin centered at the

FIG. 1. Diagram showing the coordinates used in heterogeneity index calcula-
tion for a specific pencil beam. [Color figure can be viewed at wileyonlinelib
rary.com]
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isocenter. ub represents the beam direction pointing from the
source to the isocenter, and vb and wb are orthogonal vectors in
the plane perpendicular to the beam direction. We define pb,i
as the spatial position of scanning-spot i from beam b, which
points from the isocenter to the position of its Bragg peak in
the patient. ab,i is the full dosimetric contribution of spot i in
beam b to all voxels of the patient, embedded as a column vec-
tor in the dose calculation matrix A, and ab is the submatrix of
A that contains only the ab,i for all the spots in the same beam
b. Then we evaluate the gradient field of ab,i with respect to
the spot position p, and denote its directional derivatives along
ub, vb, and wb in the respective functional forms:

Dubab;i ¼ rpab;i
� �

� ub;
Dvbab;i ¼ rpab;i

� �
� vb;

Dwbab;i ¼ rpab;i
� �

� wb;

(7)

This equation set evaluates the dose sensitivity level at
each voxel from a specific scanning spot along the longitudi-
nal direction (beam direction) and the lateral directions
(orthogonal to beam direction). Since both Dvbab;i and
Dwbab;i represent the lateral sensitivity, only Dubab;i and
Dvbab;i are used for optimization in the following sections.

We can obtain the vector specific to spot i of beam b in each
direction, ub or vb, by simply extracting column i from Dubab;i
or Dvbab;i, respectively. After performing this operation on
every beam-specific submatrix of the A, we can obtain two sen-
sitivity matrices, written as DuA and DvA. The absolute values
of the rows ofDuA and DvA are summed up, and the two result-
ing row vectors are transposed to produce the longitudinal and
lateral sensitivity vectors, denoted as su and sv, respectively.

After acquiring the sensitivity vectors, the sensitivity regu-
larization term is added to problem (6), to formulate the final

integrated robust BOO and FMO framework, which is written
as:

minimize
x

C Axð Þ þ
P
b2B

abhb xbk k1=22 þ
P

k2 u;vf g
kksTk x

subject to x� 0
;

(8)

where ku and kv are the sensitivity regularization parameters.
This Sensitivity regularization and Heterogeneity weighting
based BOO and FMO framework (SHBOO-FMO), allows
robust beams to be selected and robust fluence map to be
generated in a single equation. SHBOO will be used in place
of SHBOO-FMO for the rest of the paper when referring to
the BOO algorithm and the selected beams for brevity.

In this study, a one-sided quadratic function is used for
dose fidelity term, which is formulated as:

CðAxÞ ¼
X
j2L

wj lj � Ajx
� �

þ

��� ���2
2
þ
X
j2O

wj Ajx� dj
� �

þ

��� ���2
2

(9)

where L is the structure set of the target volumes, with lj
being the prescription dose to jth target, and O is the dose-
limiting structure set which includes the OARs as well as the
target to suppress its maximum dose, with dj being the pre-
scribed maximal allowed dose to the jth structure. Aj is the
dose calculation matrix block for structure j, and wj is the
structure weighting parameter.

Problem (8) is a nondifferentiable problem due to the pres-
ence of L2, 1/2-norm group sparsity. However, it can be effi-
ciently solved by FISTA, an accelerated proximal gradient
method known as the Fast Iterative Shrinkage-Thresholding
Algorithm.44 The details of solving problem (8) using FISTA
are shown in Appendix A.

2.D. Evaluations

This SHBOO-FMO method was tested on two patients
with skull base tumor (SBT) and two bilateral head-and-neck
(H&N) patients. Four beams were selected for the SBT
patients and three beams for the H&N patients. For each
patient, there were originally 1162 noncoplanar beams in the
candidate set, which were evenly distributed across the 4p
space with 6° separation. Geometrically undesired beams and
beams of infeasible energies, such as those directed through
the feet to the head, were manually excluded from the candi-
date set, resulting in about 700 to 800 candidate beams for
each patient. More accurate beam screening can be per-
formed for a specific proton gantry but should not affect the
generality of the current study. For each candidate beam, dose
calculation for the scanning spots covering the CTV and a
5 mm margin was performed by matRad,45,46 a MATLAB-
based 3D treatment planning toolkit. In matRad, the lateral
beam width is calculated as the root sum square of the initial
beam width from Safai et al.47 and the lateral broadening
from Gottschalk et al.48 The performance of analytical dose
calculation for IMPT optimization was compared with Monte

FIG. 2. Diagram showing the coordinates and the vectors used in spot sensi-
tivity calculation. The beam divergence due to spot lateral distance to the
isocenter is exaggerated for illustration purposes. The actual proton system
source-to-axis distance is substantially greater than the target size and the
individual pencil beams in the same beam direction are nearly parallel.
[Color figure can be viewed at wileyonlinelibrary.com]
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Carlo in our previous paper41 and found to be acceptable for
pencil beam dose calculation and robust planning. The spot
spacing was 3 mm in the beam direction, 5 mm in the lateral
direction for the H&N patients and 4 mm in the lateral direc-
tion for the SBT patients. The dose calculation resolution
was 2.5 9 2.5 9 2.5 mm. The CTV was set as the optimiza-
tion target. The prescription dose, target volume, and average
spot count per beam for each patient are shown in Table I.

The dosimetry and plan robustness of the proposed
SHBOO-FMO method was compared against (a) the voxel-
wise worst-case FMO method with manually selected beams
(MAN-WC), and (b) sensitivity-regularized FMO method
with the same manual beams (MAN-SenR). The voxel-wise
worst-case optimization considered nine scenarios, including
one nominal scenario and the following eight worst-case sce-
narios: (a) six setup uncertainty scenarios, defined by shifting
the beam isocenter by � 3 mm along anteroposterior, supe-
rior-inferior, and mediolateral directions; (b) two range uncer-
tainty scenarios, by scaling the CT number by � 3%. The
SenR robust FMO method described in our previous work41

consists of dose fidelity term and a sensitivity regularization
term, which has been described in Section 2.C. The same
quadratic loss function as Eq. (9) was used in the WC method
and the SenR method.

In addition to the robustness of the final plan, the sole
robustness of the selected beams by SHBOO-FMO, was also
evaluated and compared with the following beam sets: (a)
manually selected beams, (b) GSBOO beams, and (c) HBOO
beams. The comparison was performed by creating plans
using the same conventional CTV-based FMO method
(Conv), using the aforementioned beam sets. Same candidate
beam set, spot population, and dose calculation scheme were
used for different BOO algorithms. The acronym used for
each method and its definition can be found in Table II.

CTV homogeneity, D95%, D98%, and maximum dose
were evaluated under the nominal condition. CTV homo-
geneity is defined as D95%/D5%. The maximum dose is
defined as the dose to 2% of the structure volume, D2%, fol-
lowing the recommendation by IRCU-83.49 The mean and
maximum doses for OARs were also evaluated. The robust-
ness of a plan was evaluated by the DVH band plot,50 as well

as the worst dose metrics occurred among uncertainties sce-
narios. The robustness analysis considered the same nine sce-
narios as the WC method.

3. RESULTS

3.A. Runtime and selected beams

The dose, sensitivity, and heterogeneity calculation for all
the candidate beams were performed on a Xeon 20-core CPU
server operating at 3.10 GHz clock, with Matlab and its Par-
allel Computing Toolbox. The averaged time per beam to cal-
culate the three data is listed in Table III. The most time-
consuming step during preparation is the evaluation of the
sensitivity vector. The averaged runtime for GSBOO, HBOO,
and SHBOO, on an i7 CPU desktop, is also shown in
Table III. Depending on the target size, these BOO process
took about 6–75 min to complete. With the additional hetero-
geneity weighting and sensitivity regularization, the SHBOO
method reduced the runtime from the original GSBOO
method approximately by half.

The couch and gantry angles for the beams from manual
selection, GSBOO, HBOO, and SHBOO, are listed in
Table IV. The angle notation follows IEC 61217 coordinate
conventions. Figure 3 also shows the beam arrangement by
the four methods of the SBT #1 and H&N #1 patients. It is
observed in the four tested cases that the SHBOO algorithm
tends to select more aggregated beams while GSBOO and
HBOO prefer more scattered beams.

3.B. Beam robustness

The beam robustness was compared among the plans
using different BOO methods but the same conventional
CTV-based approach (Conv) for fluence map optimization.

TABLE I. Prescription doses, CTV volumes and average number of spots per
beam for each patient.

Case
Prescription

dose (GyRBE)
CTV

volume (cc)
Average spots
per beam

SBT #1 56 33.7 2537

SBT #2 70 36.8 2650

H&N #1

CTV54 54 108.0 10 077

CTV60 60 127.3

H&N #2

CTV54 54 110.4 9433

CTV60 60 99.0

CTV63 63 10.2

TABLE II. Acronym of each method and its definition.

Acronym Definition

SHBOO-FMO Group sparsity-based integrated BOO and FMO
framework with sensitivity regularization and
heterogeneity weighting

SHBOO Short for SHBOO-FMO when referring to the BOO
algorithm and the beams selected by SHBOO-FMO

MAN Manually selected beams

GSBOO Group sparsity-based BOO algorithm

HBOO Heterogeneity-weighted group sparsity BOO
algorithm

Conv Conventional CTV-based FMO method

MAN-ConvGSBOO-
ConvHBOO-Conv
SHBOO-Conv

Conventional CTV-based FMO plan with MAN,
GSBOO, HBOO, and SHBOO beams, respectively

MAN-WC CTV-based voxel-wise worst-case FMO method with
manually selected beams

MAN-SenR Sensitivity-regularized FMO method with manually
selected beams
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Figure 4 shows the DVH bands of the CTVs of these Conv
plans with range uncertainty and setup uncertainty for the
SBT patients and H&N patients. In these DVH band plots,
the solid lines are the nominal DVHs without uncertainties,
the dotted lines and bands bound the worst-case dose distri-
butions, and the horizontal and vertical lines label the worst
D95% of each method for each CTV. For the tested cases, the
beam robustness of the GSBOO method is not maintained.
For example, the GSBOO beams lead to wide DVH bands
under range uncertainties for the SBT #2 and H&N #2
patients, and wide bands under setup uncertainties for the
two SBT patients. With heterogeneity-weighted group spar-
sity, the beam robustness against setup uncertainty is
improved from the GSBOO beams for the four tested

patients, while the robustness against range uncertainty varies
among patients. With SHBOO method, the beams with supe-
rior range robustness over manual beams and HBOO beams
are selected while the setup robustness is maintained or
improved.

The lowest (worst) D98%, D95%, V95%, and V100% of
each CTV with range uncertainties and setup uncertainties
were evaluated and plotted in Fig. 5. Compared with the man-
ual selection, the D98%, D95%, V95%, and V100% were
improved by the SHBOO method. On average, the lowest
[D98%, D95%, V95%, V100%] of CTV increased from
[90.85%, 93.85%, 91.06%, 70.64%] in MAN beams, to
[96.05%, 98.62%, 98.61%, 96.17%] in SHBOO beams.
Under setup uncertainties, the average lowest [D98%, D95%,
V95%, V100%] of CTV increased from [92.06%, 94.83%,
94.31%, 78.93%] in MAN beams, to [93.54%, 96.61%,
97.01%, 91.98%] in SHBOO beams.

3.C. Plan robustness

The plan robustness of SHBOO-FMO method was com-
pared with the plan with manual beams and voxel-wise
worst-case FMO (MAN-WC) as well as that with manual
beams and SenR FMO (MAN-SenR). The CTV DVH bands
of the three methods are shown in Fig. 6 for the SBT patients

TABLE III. Preparation time and runtime of each BOO method for the tested
patients.

Case

Calculation time per beam (s) BOO runtime (s)

Dose Sensitivity Heterogeneity GSBOO HBOO SHBOO

SBT #1 0.4 1.5 1.5 804 745 362

SBT #2 0.6 2.0 1.6 1102 999 682

H&N #1 1.9 24.0 8.2 3214 2978 1446

H&N #2 1.4 14.9 7.2 4407 3996 2728

TABLE IV. Beam angles (gantry and couch angle) selected in each method.

Patient MAN GSBOO HBOO SHBOO

SBT #1 (60, 273), (270, 0), (90, 0),
(180, 0)

(84, 312), (80, 323), (30, 272),
(289, 25)

(252, 45), (206, 69), (96, 342),
(96, 348)

(78, 348), (96, 348), (96, 354), (96, 0)

SBT #2 (60, 273), (270, 0), (90, 0),
(180, 0)

(285, 80), (270, 342), (62, 21),
(37, 43)

(262, 81), (126, 270), (72, 354),
(67, 20).

(66, 353), (72, 354), (62, 21), (67, 20)

H&N #1 (0, 0), (162, 0), (198, 0) (153, 332), (197, 46), (37, 57) (167, 296), (197, 46), (32, 23) (36, 0), (328, 291), (33, 66)

H&N #2 (0, 0), (162, 0), (198, 0) (145, 327), (49, 344), (192, 270) (188, 45), (180, 0), (324, 301) (32, 23), (30, 39), (324, 301)

FIG. 3. The beam arrangement of each method for the SBT #1 patient (top row) and H&N #1 patient (bottom row). From left to right, each column is MAN,
GSBOO, HBOO, and SHBOO beams, respectively. [Color figure can be viewed at wileyonlinelibrary.com]
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and the H&N patients. Under range uncertainties, narrower
DVH bands were observed in the SHBOO-FMO plans com-
pared with the MAN-WC plans, and the CTV underdosage in
the MAN-SenR plans was also improved by the SHBOO-
FMO method. Under setup uncertainties, the SHBOO-FMO

method was less robust than MAN-WC but comparable with
or more robust than MAN-SenR.

The lowest (worst) D98%, D95%, V95%, and V100% of
each CTV with range uncertainties and setup uncertainties
were also evaluated and plotted in Fig. 7. Compared with

FIG. 4. CTV DVH bands of the four patients, indicating the robustness of the beams chosen by different methods. The situation with only range uncertainty is
shown on the left and situation with only setup uncertainty is shown on the right. The worst D95% of each method is labeled by reference lines in the x-y plane.
The two CTVs in the H&N #1 patient are plotted together in the third row, and the three CTVs in the H&N #2 patient are plotted together in the fourth row, with
different transparencies. [Color figure can be viewed at wileyonlinelibrary.com]
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MAN-SenR, the D98%, D95%, V95%, and V100% were
improved by the SHBOO-FMO method. On average, the low-
est [D98%, D95%, V95%, V100%] of CTV were increased

from [93.95%, 97.42%, 97.64%, 94.60%] in MAN-SenR
plans, to [96.18%, 98.75%, 98.68%, 96.68%] in SHBOO-
FMO plans. Under setup uncertainties, the averaged lowest

FIG. 5. The comparison of worst D98% (top row), D95% (second row), V95% (third row), and V100% (bottom row) of the CTVs as a percentage of prescription
doses, for every patient, between the plans with Conv FMO and MAN, GSBOO, HBOO and SHBOO beams, respectively. The situation with only range uncer-
tainty is shown on the left and situation with only setup uncertainty is shown on the right in each plot. [Color figure can be viewed at wileyonlinelibrary.com]
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[D98%, D95%, V95%, V100%] of CTV were increased from
[93.10%, 96.54%, 96.93%, 92.01%] in MAN-SenR plans, to
[93.80%, 96.89%, 97.29%, 92.99%] in SHBOO-FMO plans.
Overall the MAN-WC method achieved the best CTV

metrics, with the averaged lowest [D98%, D95%, V95%,
V100%] of [97.53%, 98.82%, 99.36%, 97.44%] under range
uncertainties and [97.86%, 99.10%, 99.59%, 97.90%] under
setup uncertainties.

FIG. 6. CTV DVH bands of the four patients, indicating the robustness of the plans generated by SHBOO-FMO, MAN-WC and MAN-SenR. Situation with only
range uncertainty is shown on the left and situation with only setup uncertainty is shown on the right. The two CTVs in the H&N #1 patient are plotted together
in the third row, and the three CTVs in the H&N #2 patient are plotted together in two figures in the fourth row. The worst D95% of each method is labeled by
reference lines in the x-y plane. [Color figure can be viewed at wileyonlinelibrary.com]
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FIG. 7. The comparison of worst D98% (top row), D95% (second row), V95% (third row), and V100% (bottom row) of the CTVs as a percentage of prescription
doses, for every patient, between the MAN-WC plan, MAN-SenR plan and SHBOO-FMO plan Situation with only range uncertainty is shown on the left and sit-
uation with only setup uncertainty is shown on the right. [Color figure can be viewed at wileyonlinelibrary.com]
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3.D. Nominal dose comparison

Table V compares the nominal CTV statistics of each
patient between the MAN-WC, MAN-SenR, and SHBOO-

FMO methods. Without uncertainties, the three methods
achieved similar CTV dose coverage. Several OARs are
selected for the SBT and H&N sites, respectively, and the dif-
ferences of their mean and maximum doses between the

TABLE V. CTV statistic comparison between three methods for all patients under the nominal situation.

Case

Dmax D95% D98% Heterogeneity

MAN-
WC

MAN-
SenR

SHBOO-
FMO

MAN-
WC

MAN-
SenR

SHBOO-
FMO

MAN-
WC

MAN-
SenR

SHBOO-
FMO

MAN-
WC

MAN-
SenR

SHBOO-
FMO

SBT #1 106.8 106.2 106.8 100.0 100.0 100.0 99.1 99.6 99.5 94.4 94.6 94.0

SBT #2 108.7 108.5 108.3 100.0 100.0 100.0 97.0 96.4 98.2 92.7 92.8 93.1

HN #1

CTV54 112.0 110.4 111.4 101.9 100.0 102.1 101.0 99.7 101.4 92.2 91.9 92.8

CTV60 107.2 106.4 106.6 100.0 100.0 100.0 99.3 99.7 99.5 94.0 94.5 94.5

HN #2

CTV54 108.0 108.6 108.3 101.1 100.7 101.0 100.6 100.3 100.6 95.2 95.6 96.6

CTV60 108.4 106.8 106.8 101.1 100.7 101.0 100.5 100.4 100.7 94.4 95.0 95.3

CTV63 105.2 103.2 103.3 100.0 100.0 100.0 99.6 99.8 99.7 95.7 97.4 97.3

TABLE VI. OAR mean dose and max dose reduction of the SHBOO-FMO plans from the MAN-WC plans and MAN-SenR, for the SBT cases under nominal sit-
uation.

SBT case

SHBOO-FMO—MAN-WC (GyRBE) SHBOO-FMO— MAN-SenR (GyRBE)

Dmean Dmax Dmean Dmax

#1 #2 #1 #2 #1 #2 #1 #2

Left optic nerve �5.06 �15.12 �1.40 �0.90 +0.07 �10.05 +0.83 +1.40

Right optic nerve �13.93 �1.80 �4.57 �11.20 �2.07 �0.18 �2.00 �4.60

Chiasm �2.35 �13.72 �0.76 �7.18 �2.07 �5.14 +0.24 �4.18

Brainstem �1.45 �4.63 �5.75 �7.32 �0.37 �0.39 �3.33 +2.34

Left eye �0.57 �13.65 �5.42 �25.63 +0.50 �6.01 �2.23 �16.66

Right eye �1.21 0.00 �8.38 0.00 �0.13 0.00 �0.72 0.00

Left cochlea 0.00 �3.59 0.00 0.00 0.00 0.79 0.00 +1.20

Right cochlea 0.00 �4.89 0.00 �6.72 0.00 �2.06 0.00 �3.52

TABLE VII. OAR mean dose and max dose reduction of the SHBOO-FMO plans from the MAN-WC plans and MAN-SenR, for the H&N cases under the nomi-
nal situation.

H&N case

SHBOO-FMO— MAN-WC(GyRBE) SHBOO-FMO—MAN-SenR(GyRBE)

Dmean Dmax Dmean Dmax

#1 #2 #1 #2 #1 #2 #1 #2

Right submandibular gland �6.76 +11.48 �5.25 �0.33 +9.22 +10.31 �1.60 +0.76

Left parotid �3.79 �0.42 �1.85 �0.27 +5.67 +0.94 +0.25 +0.07

Right parotid �1.45 �3.33 0.00 �4.27 �0.79 �3.22 +0.22 �3.99

Larynx �3.18 �2.28 �5.39 �9.63 �1.30 +0.04 �0.48 �3.91

Spinal cord �1.56 �2.33 �5.88 �8.68 �0.49 �0.30 �3.58 �2.75

BrainStem �1.77 �0.35 �13.57 �4.11 �0.68 �0.06 �8.82 �0.79

Oral cavity +0.12 �3.28 +2.86 �9.20 1.91 �0.41 +5.46 +1.52

Constrictors �3.37 �1.24 �6.28 �2.17 �0.20 +0.98 �3.15 �0.04

Left middle ear �3.40 �5.33 �10.05 �9.06 �1.77 �10.51 �4.78 �16.46

Esophagus �1.82 �3.36 �6.80 �11.89 �0.80 �1.34 �2.02 �7.73

Mandible +0.68 �4.87 +0.15 �0.05 4.02 �3.48 +2.98 �5.96
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SHBOO plans and the MAN plans are presented in Tables
VI, and VII. Figure 8 shows the nominal DVHs comparison
between the SHBOO-FMO method and MAN-WC method
for the four tested patients.

The SHBOO-FMO plans achieved substantially better OAR
sparing compared with the MAN-WC plans. For example, in
the SBTcases, the dose sparing of all the OARs was improved.
In the SBT #2 patient, the SHBOO-FMO plan reduced the
max dose to the right optical nerve and left eye by 13.93 and
25.63 GyRBE from the MAN-WC plan. In the H&N cases,
the overall OAR sparing was also improved by SHBOO-FMO
method from MAN-WC method, except for the increase in
mean dose to the right submandibular gland. The average
reduction of [Dmean, Dmax] of the SHBOO-FMO plans from
the MAN-WC plans were [6.31, 6.55] GyRBE for the SBT
cases and [1.89, 5.08] GyRBE for the H&N cases.

From Tables VI, and VII, the overall OAR sparing of
SHBOO-FMO was better than MAN-SenR in the SBT cases
and comparable with the MAN-SenR in the H&N cases. The
average reduction of [Dmean, Dmax] of the SHBOO-FMO
plans from the MAN-SenR plans were of [2.09,
2.40] GyRBE for the SBT cases, and [�0.35, 2.49] GyRBE
for the H&N cases.

4. DISCUSSION

To the best of our knowledge, this work describes the first
integrated IMPT optimization method that optimizes beam

orientation and scanning-spot intensities for both nominal
dose conformality and robustness. It is known that the beam
orientation directly impacts the IMPT dose conformality and
robustness, requiring substantial manual effort from the dosi-
metrists in clinical IMPT planning to find better beam angles.
However, a manual search is ineffective to identify beams
from the enormous noncoplanar space for both dosimetry and
robustness goals. The combination of group sparsity, lateral
heterogeneity, and sensitivity into a formulation that allows
global search on all feasible candidate beams is a major con-
tribution of this study.

Proton beam has a unique feature that protons stop at the
end of its Bragg Peak. This is different from photon beam. As
a result, the experience in beam angle selection is different
from the photon experience, in particular for noncoplanar
beams. The results on tested patients show that the proposed
robust BOO algorithm selects beams that are more resilient to
range and setup uncertainties. The final SHBOO-FMO plans
better spared the OAR sparing compared with the voxel-wise
worst-case method on the manual beams while maintaining
similar robustness. Compared with the plans using manually
selected beams and SenR FMO, the proposed method achieved
better target coverage under simulated uncertainties.

Furthermore, the sensitivity regularization term helps to
directly generate the fluence map which is more robust to
range and setup uncertainties. In the limited existing IMPT
BOO studies, the FMO is a nested subproblem that is solved
post hoc, which not only is inefficient but also compromises

FIG. 8. Comparison of nominal DVHs for four patients between the SHBOO-FMO method (solid) and MAN-WC method (dotted). [Color figure can be viewed
at wileyonlinelibrary.com]
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plan optimality as the FMO results could influence the selected
beams. Our algorithm integrates FMO and BOO in a single
function to ensure that both the beam orientations and the spot
intensities are matched for the desired dosimetry and robust-
ness. The second important aspect of our study is that rather
than the commonly used worst-case scenario optimization
method for FMO, we apply sensitivity regularization to
improve the plan robustness against errors. This nonscenario-
based method can be easily and efficiently incorporated into
the optimization framework and provides the flexibility
between the dosimetry and the robustness. Our previous
study41 showed that the sensitivity regularization is more effec-
tive to mitigate range uncertainties than setup uncertainties.
The latter weakness is largely remedied in the current frame-
work by incorporating lateral tissue heterogeneity in the BOO.

Compared with GSBOO16 or SenR41 alone, the planning
time of SHBOO-FMO is longer. The computational cost of
the proposed method attributes to two main components: the
preoptimization calculation and optimization of the objective
function. Preoptimization includes calculating a dose calcula-
tion matrix, heterogeneity index, and sensitivity vector for
each candidate beam. Under the analytical calculation model,
the dose calculation and heterogeneity evaluation, in theory,
could have shared the same ray tracing step to reduce the cal-
culation time shown in Table III. Calculation of the sensitiv-
ity is more time-consuming. However, this parallel
calculation process can be accelerated using the modern
graphics processing unit (GPU) platform. Further accelera-
tion is expected using a nonuniform sampling of the dose
matrix to have a higher resolution in the CTV and its vicinity
and lower resolution elsewhere.

For the optimization step, the problem (8) itself is a large-
scale problem due to the extra freedom of proton energy in
IMPT and a large number of noncoplanar candidate beams
used in this study. With the linear formulation of the sensitiv-
ity regularization term and the proximal operators derived in
our previous work,16 we are able to efficiently solve the prob-
lem with FISTA, which converges at a rate of O(1/k2) among
the first-order methods.44 Moreover, by adding the sensitivity
regularization term, the time spent on beam pruning within
the SHBOO method is reduced to approximately half of the
initial group sparsity-based BOO method.

It is necessary to clarify that the study only handles range
uncertainties and setup errors from interfractional setup vari-
ations. Other sources of uncertainties such as intrafractional
respiratory motion and anatomy changes, which heavily
affect the beam selection process, require separate approaches
to tackle. Biological effect is another important factor to con-
sider in BOO. In our future work, linear energy transfer
(LET) will be included in this framework to encourage select-
ing beams with a higher biological effect on the target and
lower biological risk on the OARs.

5. CONCLUSIONS

We developed a novel IMPT robust optimization method,
which efficiently solved robust BOO and FMO in a unified

framework, generating plans with superior dosimetry and
good robustness.
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APPENDIX A

To solve an optimization problem using FISTA, the prob-
lem needs to be formulated in the following form:

minimize
x

f xð Þ þ g xð Þ; (A1)

where f is a smooth convex function, which is continu-
ously differentiable with Lipschitz continuous gradient
(rf ); g is a function which is possibly nonsmooth, but
has a proximal operator that can be evaluated efficiently.
The proximal operator with step size t> 0 for function g
is defined by:

proxtg xð Þ ¼ argmin
y

g yð Þ þ 1
2t

y� xk k22: (A2)

Once the optimization problem is formulated as in Equa-
tion (A1) and the conditions for f(x) and g(x) are satisfied,
FISTA is relatively straightforward to implement as it only
involves elementary matrix-vector arithmetic operations and
inexpensive proximal operator evaluations. FISTA with line
search is used in this work, which follows the steps shown in
Table A1.

TABLE A1. Pseudo code for FISTAwith line search.

FISTAwith line search

Initialize x0:= 0, v0:= x0, t0> 0, 0 < r < 1

for k = 1,2,. . .,n, do

t :¼ tk�1=r

Repeat

h :¼ 1 if k ¼ 1
positive root of tk�1h

2 ¼ th2k�1 1� hð Þ if k[ 1

�

y :¼ 1� hð Þxk�1 þ hvk�1

x :¼ proxtg y� trfðyÞð Þ
break if f xð Þ� f yð Þ þ\rf yð Þ; x� y[ þ 1

2t x� yk k22
t :¼ rt

tk :¼ t

hk :¼ hxk :¼ x

vk :¼ xk þ 1
hk

xk � xk�1ð Þ
end

return x
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In the problem (8), the objective function can be rewritten
in the following format:

f xð Þ ¼ C Axð Þ þ
X

k2 b;uf g
kks

T
k x

g xð Þ ¼
X
b2B

abhb xbk k1=22 þI� 0 xð Þ;
(A3)

where I� 0 xð Þ is an indicator function on non-negative
orthant, with its ith element equal to 0 if ifxi � 0 and 1
otherwise.

For the quadratic fidelity formulation, the gradient of f is
given by:

rf xð Þ ¼ ATrC Axð Þ þ
X

k2 b;uf g
kksk

¼
X
q2T

wqA
T
q lq � Aqx
� �

þþ
X
q2O

wqA
T
q Aqx� dq
� �

þ

þ
X

k2 b;uf g
kksk;

(A4)

g xð Þ is a separable sum: g xð Þ ¼
P
b2B

abhbgb xbð Þ, where

gb xbð Þ ¼ abhb xbk k1=22 þI� 0 xbð Þ: (A5)

Following the separable sum rule, the problem evaluating
the proximal operator of g xð Þ reduces to independently evalu-
ating the proximal operators of the functions gb xbð Þ. To sim-
plify notation, we derive an expression for the proximal
operator of the function h xð Þ ¼ bjjxjj1=22 þ I� 0 xð Þ. The prox-
imal operator of function h is.16

proxth xð Þ ¼ prox
bt �k k1=22

max x; 0ð Þð Þ: (A6)

The form of proximal operator for L2, 1/2-norm is
known41:

prox
t �k k

1
2
2

xð Þ¼

0 ; if t xk k�1:5
2 [ 2

ffiffi
6

p

9

x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ffiffi
3

p sin 1
3 arccos 3

ffiffi
3

p

4 t xk k�1:5
2

	 

þp

2

	 
	 
r
; otherwise

8><
>:

(A7)

Using these formulas for the gradient of the function f and
the proximal operator of function g, the problem (8) is readily
solved using FISTA.

a)Author to whom correspondence should be addressed. Electronic mail:
ksheng@mednet.ucla.edu.
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