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SURFACE THEORY: I. A REPLACEMENT FOR THE 

YOUNG-LAPLACE-KELVIN THEORY FOR CURVED SURFACES 

Alan W. Searcy 

Inorganic Materials Research Division, Lawrence Radiation Laboratory, 
and Department of Materials Science and Engineering, 

College of Engineering, University of California, 
Berkeley, California 

ABSTRACT 

November 1970 

The theory developed by Young, Laplace, and Kelvin which asslimes 

that the stability and vapor pressure of liquids can be related to a 

pressure difference between opposite sides of a curved surface yields 

certain predictions that are inconsistent with the laws of thermo-

dynamics and experimental observations. A new theory is presented which 

differs from the Young-Laplace-Kelvin theory in assuming that surface 

curvature per~ has no effect on stability or vapor pressure, but that 

the number o'f atoms or molecules in the surface relative to the number 

in the bulk condensed phase is critical in determining the average 

stability and vapor pressu:re. 

The new theory yields the famili.ar equati.ons for the vapor pressure 

of drops and for capillary ri.se, but predicts vapor pressure increases 

in vapor-filled cavities and bubbles rather than the decreases predicted 

by the Kelvin equation and shows that capillary rise and vapor pressures 

in capillaries are functions of the free energies of interaction of the 

liquid with capillary walls. 

\ 
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1 2 More than 160 years ago Young and Laplace, each working independ-

ently of the other, formulated a ~uantitative theory that relates the 

degree of curvature at a li~uid surface to a pressure change through the 

surface. The theory was extended by Lord Kelvin, who obtained an expres­

sion for the variation of vapor pressures with surface curvature. 3 

The Young-Laplace-Kelvin theory has been accepted as a basic and 

central concept in surface thermodynamics by apparently all prominent 

theoreticians who have been active in surface studies over the past 

'4 
century. ' 5 The theory is used to analyze such diverse phenomena as 

vapor supersaturation,6 heterogeneous catalysis,7 the sintering of 

l
. 8. . 9 . 10 

so ~ds, . the superheat~ng of li~uids, the rise of sap in trees, and 

hydrodynamics. 11 Nonetheless, I have found serious discrepancies between 

the theory and both experiment and the accepted laws of thermodynamics. 

In this paper I present a theory that differs sharply from the 

Young-Laplace~Kelvin theory in that it associates no pressure drop with 

surface curvature, but instead, relates changes in free energy to changes 

in surface area without distinction between curved and uncurved surfaces 

and relates changes in vapor pressure to changes in the ratio of surface 

area to volume. The new theory duplicates those predictions of the 

Young-Laplace-Kelvin theory that have been reliably established but gives 

different and more reasonable predictions for the variation of vapor 

pressures in capillaries, vapor cavities, and bubbles. I conclude with 

a brief discussion of the influence that the new ::theory can be expected 

to have on our understanding of surface phenomena. 
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Apparent Success of the Young-Laplace-Kelvin Theory 

The nearly universal acceptance of the Young-Laplace-Kelvin theory 

is based primarily on the success of two equations, the Laplace equation
1

'
2 

and the Kelvin equation, 3 in quantitatively relating surface curvature 

to surface tension and to variations in vapor pressure. 

The Laplace equation (which should also be credited to Young) is 

( l) 

where a is the surface tension and tR is the pressure drop along a normal 

drawn from the center of curvature through the surface at a point for 
(' 

which the principal radii of curvature are R1 and Rz. For spheres of 

radius r, Eq. (l) reduces to 2a/r = !J.P. 

When gravity acts to distort the shape of a liquid surface, Eq. (l) 

is modified to 

(
l ' 1 ) a - +- = 
R1 · R2 ' 

/1pgh (la) 

where /1p is the difference in density between the liquid and vapor (or a 

second liquid) , g is tbe acceleration of gravity, and h is the height to 

which the surface is raised ,against gravity-.
12 

For cylindrical capil-

... 

laries, Eq. (la) takes the particular form ~ 

2a -.= 
r 

!1pgh cos e (lb) 

where r is tbe radius of the capillary and 8 is the contact angle, that 
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is the angle between the wall and the tangent to the meniscus at the 

point at which it meets the wall. 

The Kelvin equation gives the variation in vapor pressure with sur-

face curvature : 

(2) 

where R is the gas constant, T is the temperature, P is the vapor pres-

sure over a curved surface of a liquid of normal vapor pressure P
0 

and 

V Q, is the molar volume of the liquid. For R1 = R2 this becomes 

0 
RT ln P/P = 2VQ,cr/r (2a) 

Equation (2) follows from Eq. (1) at low enough pressures for the 

perfect gas law to be obeyed when the pressure difference in the Young-

' Laplace equation is assumed to be the vapor pressure difference that re-

sults from surface curvature. It is argued that V Q,t:J.P = !:J.G and t:J.G = 

RT ln P /P
0 

for the gas, so at equilibrium V Q,!:J.P = V Q,cr ( 1/R 1 + l/R2) = 

RT ln P/P0
• 

When Eq. (2) 1s applied to a capillary, the right hand side is 

multiplied by cos e. 

Qualitatively, the Laplace equation states that, while fluids 

separated by a plane surface are at equal pressures, a fluid bounded by 

a convex surface, say a drop, is at a higher pressure than the fluid on 

the concave side of the surface. The Kelvin equation interprets the 

pressure difference as a difference in vapor pressures, so that a liquid 

in the form of a drop, which has a convex surface, has a higher vapor 

pressure than it has when it is bounded by a plane surface. Thus the 

vapor above a conc~ve meniscus, in a vapor-filled cavity in a liquid, or 
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* inside a bubble is predicted to be lower than the vapor pressure of the. 

bulk liquid. 

Equation (1) correctly predicts the variation in bubble size with 

the total pressure difference between the interior and exterior of the 

bubble. Equation (la) correctly predicts the equilibrium shapes assumed 

py liquid surface.s and vapor-filled cavities under the combined action of 

gravity and surface tension• Equation (2) correctly predicts for drops 

the variation of vapor pressure with radius and is authoritatively 

accepted as having been proved correct in its application to capillaries. 

The qualitative consideration that atoms or molecules at the convex 

side of an interface should have fewer nearest neighbors than those on 

the concave side supports the Young-Laplace-Kelvin theory in the minds of 

many. This qualit~tive argument, however, amounts to an expectation that 

a is a function of curvature, but the Young-Laplace-Kelvin theory assumes 

that a is independent of curvature. The effect of curvature in causing a 

pressure difference between opposite sides·of.a curved interface is con-

ceived as an effect that is important even when the surface ·tension a is 

itself independent of cu~vature. 4 ' 5 In what follows I will assume a is 

independent of curvature, an assumption that is believed to be valid for 

radii -6 13-15 greater than about 10 em. 

* The term bubble is commonly applied both to a hollow liquid sphere such 
as typified by a soap bubble and to a cavity in a liquid. Here I shall 
use bubble only with the first meaning and use the expression vapo~~filled 
cavity to designate the second. 

•• 
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Long after the Young-Laplace-Kelvin theory was developed, the con­

cept of fugacity as a measure of chemical potential was invented16 and 

refined ~nto a valuable tool of chemical thermodynamics. 17 Thermo-

~amists accept as a proof of equilibrium between two phases which are 

held at the same temperature, pressure and gravitational field a demon-

stration that each chemical component of the two phases has the same 

fugacity in both phases. 17 Since the fugacity of a component is, at low 

pressures, essentially identical to its partial pressure and, even at 

higher pressures, remains closely related to the partial vapor pressure, 

the Kelvin equation predicts changes in fugacity with surface curvature. 

The effect of curvature on fugacity which is predicted by the Kelvin 

equation is difficult to reconcile with accepted theory for small 

crystallites. Small crystallites are viewed as being in internal equilib-

rium if bounded by those planes that give the minimum total surface free 

energy for a given volume, and. the fugacity (or vapor pres sure) for each 

chemical component is considered then to be the same for each face (and 

tacitly also for the edges and corners between faces) even if the faces 

that minimize the total surface free energy do not all have the same 

specific surface free energies. Edges and corners of crystallites are 

believed to be rounded at elevated temperatures, and even if edges and 

corners are sharp, they can be viewed as regions of small radii of 

curvature. The Kelvin equation, therefore, would seem to predict higher 

vapor pressures and fugacities for these regions than for the adjacent 

planar regions, in contradiction of the accepted criterion for internal 

equilibrium in crystallites. This particular discrepancy, of course, 
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might be· capable of satisfactory, resolution in ways that do not require 

rejection or even modification of'the Young-Laplace-Kelvin theory. 

A more serious objection to the Young-Laplace-Kelvin theory arises 

if one considers the prediction of the Kelvin equation for vapor filled 

cavities. For cavities, the Kelvin equation appears acceptable only if 

one of two disturbing alternatives is adopted: 

1. The lower fugacity predicted by the Kelvin equation for. the 

liquid at a cavity does not mean an increased stability near cavities~­

although a lowered fugacity is usually interpreted as reflecting increased 

stability. 

2. The presence of vapor filled cavities makes a liquid more stable 

than it would be in the absence of the cavities--an interpretation in 

disagreement with experience. 

A more subtle, but equally serious objection, can be raised. A 

fugacity or partial vapor pressure is usually viewed as a measure of the 

escaping tendency, which is an average property of"a component of a phase 

at equilibrium. 17 
No conflict with this view arises in application of 

the Young-Laplace-Kelvin theory to drops, because for drops, the number 

of atoms or molecules in the surface and in the bulk are .both fixed for 

a given liquid when the radius is fixed. But in application of the theory 

to capillaries' cavities, and bubbles' the quantity of condensed phase 

that may be presumed to be at equilibriUm. with the vapor at the curved 

surface is usually not specified. For such systems, the vapor pressure 

is assumed to be fixed at the curved surface only by the curvature with­

out r,egard to whether the liquid at the curved surface is at equilibrium 

with a large or small amount of liquid. .Such an assumPtion leads to 
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violations of the law of conservation of energy. 

18 
Some experimentalists, in particular Folman and Shereshevsky, 

have formd vapor pressure lowerings in capillaries that differ by as much 

as a factor of 80 from predictions of the Kelvin equation. Folman and 

Shereshevsky suggested that wall interactions must influence the vapor 

pressure in capillaries in an important manner that is not taken into 

accormt by the Kelvin equation. 

It seemed certain to me that the discrepancies between predictions 

of the Young-Laplace-Kelvin theory--despite its essentially universal 

acceptance--and both experiment and familiar thermodynamic concepts are 

so frmda.mental that the rmderlying premise of a pressure difference 

across a curved liquid-vapor interface at equilibrium must be doubted. 

In the next two sections of this paper I present and apply a theory which 

makes no use of this premise. 

THE DEPENDENCE OF VAPOR PRESSURE ON VOLUME AND SURFACE AREA 

A derivation of the dependence of vapor pressure on radius for drops 

. 19 
given by Lewis and Randall many years ago is commonly presented as a 

proof that the vapor pressure increase for drops is a consequence of 

20 2l 
surface curvature. ' The derivation is more logically viewed, in my 

opinion, as a demonstration for one particular geometry of the dependence 

" 
of vapor pressure on the ratio of surface area to volume. A premise of 

this paper is that the effect of surface area on fugacity should always 

be derived from the ratio of surface area to volume without regard to 

whether the surface is convex, concave, or planar. 

When this premise is adopted, two important conclusions immediately 

follow: (1) Expressions similar to the Kelvin equation should describe 
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the variation of vapor pressures with size of particles of any fixed 

shape, whether or not the particles are bounded by curved surfaces. 

(2) An increase in the ratio of lig_uid-vapor or solid-vapor interfacial 

area to volume will always imply an increase in the vapor pressure, even 

if the surface that is formed is concave. (But an increase in the area 

of interface between a solid~and a lig_uid may decrease the lig_uid vapor 

pressure. In capillaries the solid~lig_uid interactions may reduce the 

vapor pressure--but not in the amount predicted by the Kelvin eg_uation--

and induce concave curvature for the liq_uid.) The Young-Laplace-Kelvin 

theory, by contrast, predicts a vapor pressure decrease defined by 

Eg_. ( 2) for either a vapor-filled cavity or a lig_uid that has risen in a 

capillary. 

An equation for the variation in vapor pressure with size for any 

fixed geometrical shape can be derived from the general eg_uation for the 

differential of the Gibbs free energy G. This eg_uation reduces at con­

stant temper~ture, pressure, and gravitational field
20 

to 

dG = adA + ~ J.l • dn . , 
1. 1. 

( 3) 

'' ' 

where A is the surface area, ].li is the chemical potential of species i, . 

n. is the number of moles of that species, and a is explicity defined as 
1. 

the surface free energy per unit area and not as a surface tension with 

dimensions of force per unit length. 

20 
As noted by Pitzer and Brewer, when a phase grows by radial advance-· 

ment of a curved interface, A becomes a function of n., and the chemical 
1. 

potential becomes a function of the re],ative ·number of atoms at the 

~I 
! 

1,.) 



-~. 

~9- UCRL-20375 

surface and in the bulk. Pitzer and Brewer expressed A as a function of 

n. and derived an expression valid for the variation in vapor pressure 
]. 

of a component of an ideal solution in the form of drops. The expression 

reduces to Eq. (2), the Kelvin equation, for a one-component system. 

But it is equally true that~ process which causes the area of a 

single component phase or ideal solution to vary with ni will cause ~i 

(and therefore the vapor pressure) to display a similar dependence on 

geometry, so the Pitzer and Brewer proof of Eq. (2) for drops can be 

generalized. We write 

where 

dG 
0 = adA + L ll· d.n .. 
]. ]. 

o (aG ) ~ =-
i {)ni T p Ao ' ' ,n. 

J 

( 3a) 

is used to emphasize that ~i in Eq. (3) applies only for processes carried 

out at zero surface area. But if the volume of.any geometric figures 

is increased while its shape is held constant, its area increases as 

well. Then dV = L: V. dn. , where V. is the molar volume of component i, 
]. ]. . ]. . 

and 

dA (4) 

where i is a linear dimension and a is a constant characteristic of the 

particular figure. (If; for example, the figure is a rectangular box 
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with edges iri the ratio 1:2: 3, Jl, can be chosen as the length of the 

shortest side and than a = 44/18.) 

Combining (4) with Eq. (3) gives 

Then 

('"'· ) aG 
f.! = -.-

i ani T,P,n. 
. J 

Since by definition of the fugacity f, 

o I o ].1. -<-f.! • = RT ln f. f. 
l l l l 

f. aV.cr 
RTln~=~ 

f? Ji, 
l 

I! 

( 5) 

When the vapor pressure is low, fugacities can be equated to pres-

sures. If, for example, the figure is a cube of edge Jl, and a single 

component is present, Eq. (5) becomes 

(6) 

For spheres the Kelvin equation, Eq. (2), reduces to 

•· 

'j 
I 

l 
'I 

I 
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p 2V R-cr 
RT ln- = --

Po r 

Since Eq. (2) for spheres and Eq. (b) for cubes are both particular cases 

of Eq. (5) and differ only because of their different ratios of d.A to dV 

(see Eq. (4)), it is apparent that surface to volume ratio, not surface 

curvature is the more fundamental parameter in fixing the.variation in 

vapor pressure with particle size--provided, of course, that the vapor 

pressures of non-curved particles do, in fact, obey Eq. (5). 

I know of no experimental proof on this point, but Defay et al. have 

derived for solids an expression into which Eq. ()) is readily trans-

formed and describe it as "the form of Kelvin's equation applicable to 

n22 small crystals. They do not comment on the fact that in their con-

ventional derivation of Eq. (2), the vapor pressure difference is viewed 

as reflecting a pressure drop through the curved surface, while in their 

very different derivation for crystallites, no such concept is involved. 

If some crystallite surfaces have different specific surface free 

energies from others, Eq. (5) can still be used. It is only necessary to 

use an average value of a that weights the specific surface free energies 

of the various exposed planes in proportion to their relative areas. 

Edge and corner free energy contributions should be negligible over 

essentially the same range of particle size for which variation of a with 

area can be neglected for spheres, that is for particles larger than 

about 10-6 em in diameter" 

When a crystallite is bounded by its Gibbs-Wulff surfaces23--those 

that minimize the total surface free energy for the given composition, 
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volume, and crystal structure-the specific surface tree energies of the 

various surfaces obey the relationship 

( 7) 

where a. , for example, is the specific surface free energy for any one 
l 

of the Gibbs-Wulff surfaces and 2. is the distance from a common center 
l 

d . f 22 rawn normal to that sur ace. Then Eq. t5) reduces.to 

2cr. 
RT ln P/P 0 = ~ 

Jl.. 
l 

( 8) 

For an isotropic liquid, all planes have identical values of a., and' 
l 

Eq. ( 8) is valid for spheres as well as for polyhedra. 

For vapor-filled cavities in condensed phases, the fugacity variation 

with cavity size can again readily be derived from Eq:. (3). The free 

energy G. for a condensed phase ideal solution consisting of L.:ni moles of 

material with m id~ntical cavities per mole of solution is, if the hydro-

static head of fluid above the cavities can be neglected, 

0 
G = maA En. + En.~. 

c. l l l 

where A is the surface area of each cavity. Then 
c 

rrJJA • + ~~ 
. Cl l 
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where A . is A times the fraction of surface atoms or molecules that are 
Cl C 

component i. But 

So 

s 
lJ. 

l 

0 
lli = 0 

RT ln f. /f. 
l l 

kmOV . 
0 Cl 

RT ln f. /f. = _n,.........:;;;;. 
l l )(, 

( 9) 

This expression looks similar to Eg_. (5), but here V . is the volume V 
Cl C 

of the cavity of characteristic linear dimension £ multiplied by the 

surface fraction of component i, and k =A .£/V . which is not equal to 
Cl Cl 

~of Eq. (5). The difference arises because the surface area for cavities 

is not an implicit function of n. as is the area of drops. 
l 

If cavities of various sizes and average specific surface free 

energies are present in a condensed phase that is at internal equilibrium: 

·. 0 
RT ln f. /f. = 

l l 
L:cr .m.A .. 
j J J Jl 

(10) 

where the summation indicates that the contribution to the molar free 

energy of each kind of cavity should be added to obtain the effect of 

cavities on the vapor pressure. It is impbrtant to note that the sum-

mation is made for the cavities present per mole of the condensed phase. 

This expression indicates that the vapo,r in (metastable) equilibrium 

with a porous condensed phase is alweys at a higher pressure--both inside 

the pores and above the exterior surface-than is the vapor in equilib-

rium with the non-porous condensed phase. The new theory predicts that 
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the stability of a system is increased when two caVities of volumes V1 

and Vz and surface areas A1 and Az unite to form a single cavity of 

volume V1 + Vz but surface area less than A1 + Az. This prediction con-

trasts with predictions of the Kelvin equation. As noted earlier, the 

Kelvin equation predicts that the presence of cavities decreases the 

fugacity of a liquid6 
and certainly implies that subdividing a large 

cavity into smaller cavities of unchanged total volume but increased 

total area will lower the fugacity, that is, apparently, increase the 

stability. 

The Kelvin eq_uation has been invoked to explain the superheating 

that is required for vapor cavity formation during boiling. It is argued 

that boiling cannot occur at the normal boiling point because the pres-

sure inside a cavity is smaller than the pressure above a plane surface 

while an excess pressure is req_uired in a cavity to cause ·its expansion. 6 

Equation ( 10), however, is perfectly compatible with observations 

of boiling and can be interpreted in a manner consistent with analyses 

applied to nucleation phenomena for other types of ph.ase transformation. 24 

For a single component system RT ln.f/f0 is a measure of the excess free 

energy required to nucleate l:m. cavities of areas A. per mole. Super-
J . J 

. heating is required both to provide this excess free energy and to over-

come the hydrostatic head above the cavities. 

For a bubble, both the inside and outside surface areas must be 

summed and 

RT ln f./f~ = 2crmA. 
l 1. . l 

( ll) 
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where A. is the outside or inside surface area of the bubble multiplied 
l 

by the surface fraction of component i and m is the number of bubbles of 

that size needed to make up a mole of the condensed phase. The volume 

of li~uid in the bubble enters through the term m, so as always, the area 

.of surface per ~uantity of material is the determinent of the fugacity 

change. 

The Kelvin e~uation predicts the same vapor pressure increase out-

side a bubble as found outside a drop of the same radius and predicts ' 

that the vapor pressure inside is 

( 12) 

6 where P 
0 

is the outside pressure. E~uation ( 12) predicts that the 

(identical) inside and outside pressures for a bubble of given radius 

will be increased much more than for a drop of the same radius because 

the number of atoms or molecules near the surface of a bubble relative 

to the total number in the bubble will always be much larger than for a 

drop of the same radius. 

E~uation (12) illustrates an important inconsistency in the Young-

Laplace-Kelvin theory: The Kelvin e~uation predicts a lower vapor pres-

sure inside the bubble than outside. In application of the Laplace 

e~uation to bubbles; it is recognized that the pressure inside must be ., 
. 12 25 higher than the pressure outslde. ' The Laplace e~uation cannot give 

the correct dependence of bubble radius on ~p unless the difference in 

the total pressure of all gases inside and outside the bubble are used in 

calculating M. The inconsistency, then, is that when the ·Laplace 
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e~uation is applied to bubbles, ~p must be assumed to be a total pressure 

difference; but when the Laplace e~uation is used to derive the Kelvin 

e~uation ~P must be assumed to be a. vapor pressure difference. (See the 

discussion associated with E~. (2)). If the pressures of foreign gases 

are included in calculation of ~p, predictions for vapor pressure varia-

tions wiih drop radius are no longer correct. 

The Vapor Pressure in Capillaries 

For an analysis of the effect of capillaries on the vapor pressure, 

E~. ( 3) must be modified by the introduction of a term to account for the 

interaction of the li~uid with the capillary walls: 

dG = an dAn + an dAn + E~.dn. 
NS NS NV NV l l 

( 13) 

where a Jl,s is free energy per unit area of the li~uid-capillary wall inter­

face, AJI,s is the area of capillary wall in contact with the bulk li~uid, 

and aJI,v and AJI,v are corresponding terms for the li~~d-vapor interface. 

The expression for the fugacity variation of a component of an ideal 

solution, if the components do not selectively wet the capillary walls, 

is then 

an A'n . +an A'n . 
NS NSl NV N.Vl 

( 14) 

where the subscripts i added to the designations of areas indicate that 

the areas are those portions of the total areas that can be assigned to 

component i and the primes indicate that the areas are areas per mole of 

solution. 

I 

•' 
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The effect of wall interactions on vapor pressure when the area of 

wall in contact with the liquid becomes large relative to the volume of 

liquid is important enough and complex enough so that I will make it the 

subject of a separate paper. Here I will only discuss implications of 

Eq. ( 14) when the liquid in the capillary is in equilibrium with a large 

reservoir of the liquid. 

The value of 09.,v must always be positive. Otherwise subdivision of 

condensed phases would lead to increased stability, a result that is con-

trary both to experimental observation and theoretical calculations from 

models of chemical bonding. 23 , 26 If 09-s is also positive, the effect of 

introducing a capillary tube into a reservoir of liquid is to raise its 

vapor pressure; if 0 ts is negative then introducing a capillary will 

lower the vapor pressure. The extent of vapor pressure lowering depends 

upon the solid-liquid interfacial energy and the solid-liquid inter-

facial area. For the present discussion the important point is that in 

Eq. (14), A' means area per mble of solution and when the number of 

molecules in the reservoir is large, the vapor pressure variations pre-

dieted by Eq. (14) become small in comparison with the prediction of the 

Kelvin equation. 

An experiment of Thoma27 which has been accepted as a confirmation 

of the Kelvin equation,
6 ' 17 is. faulty in assuming that the vapor pressure 

in a capillary is independent of influence by a large reservoir to which 

the capillary is connected. 

Thoma attempted to measure the expected very small pressure dif-

ference between the vapor in equilibrium with isovaleric acid in a 

capillary and the vapor in equilibrium with a plane surface of isovaleric 
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acid held at the same height. Figure 1 is a schematic drawing of his 

apparatus. He determined differences in pressure between the chambers 

of a manometer connected to a vessel (A) that contained a central capil-

lary section and to a second vessel (B) of constant, larger di.ameter 

from observations of the deflection of a thin membrane that separated 

the manometer chambers. Wide diameter chambers above and below the 

capillary section of vessel A permitted null readings to be made with 

surfaces of similar area brought to the same height in each vessel. The 

light interference technique that Thoma employed had a sensitivity of 

-10 . 
2xl0 atm pressure per interference band. 

If, as Thoma believed, the liquids in his two vessels came to 

equilibrium with vapors at the same temperature, but with a pressure 

difference that reflected on~ the curvature of the capillary meniscus, 

the law of conservati.on of energy would be violated. Suppose the liquid 

reservoirs were connected, the level would then rise i_n the capillary. 

The vapor pressure differences in vessels A and B then should be due to 

the sum of the Kelvin and gravitational effects. The gravitational 

effect balances in the two chambers Csee below}. But if the membrane in 

the manometer were pierced, a turbine i_n the aperature could be powered 

by the vapor flow maintai.ned by the Kelvin pressure di.fference. 

Th.oma t s- results must also be questioned as experimental~ faulty. . . 

His temperature control was too crude to permit him to isolate pressure 

variations of the magnitude predicted by the Kelvin equation from varia-

tions due to fluctuations in temperature during measurement. · The pre­

sure differences that he measured were of the order of 1 to 3xlo-9 atm. 

Yet he reports temperatures only to O.l°C and 'records temperature 
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differences between his thermostat water and air of 0.5°C during measure­

ments. The temperature need only have varied by O.Ol°C to cause vapor 

pressure variations of more than 10-S atm for isovaleric acid at the 

temperature of his experiments. 

A strai@tforward analysis of the thermodynamic effect of gravity 

shows that there is a vapor pressure decrease as a consequence of the 

rise of a liquid in a capillary, and this decrease is almost exactly that 

predicted by the Kelvin equation. This well known fact has quite 

naturally been viewed as a confirmation of the validity of the concept 

that concave liquid surfaces have lower vapor pressures than flat sur­

faces. But as Thoma recognized in the design of his experiment, the 

Young-Laplace-Kelvin theory asserts that curvature alters the vapor 

pressure from that of a plane surface after a~ effect of gravity has 

been corrected for. When the effect of gravity on fugacity is taken into 

account there is no effect left to attribute to curvature of the meniscus. 

The difference in fugacity that is calculated between the level of 

the meniscus in a capillary and the level of the surface of a reservoir 

into which the capillary is inserted does not occur sharply across the 

meniscus as conceived in the Young-Laplace-Kelvin equation. The dif-

ference is a function only of the effect of gravity in changing the 

tugaci ty with height and the fugacity change is a monotonic function of 

height that is identical for a vapor and for the liq¢d with which the 

vapor is in equilibrium, whether the liquid is rais;ed by capillary action 

or by some other means. A comparison of the free energy changes when a 

liquid at height zero is converted to vapor at height h by different 

paths shows the correctness of these assertions. 
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The free energy change when a mole of li~uid in a large reservoir 

is converted to the e~uilibrium vapor at height h by vaporizing the 

li~uid reversibly at height zero and then raising the vapor. to height h 

Ls"~G1 = ~Gv + Mgh + V~P = 0, where Gv is the free energy of vaporiza­

tion, M is the mass of a mole of the vapor, and.g is the acceleration of 

. 20 
graVl ty. For a vapor at low pressure VdP = RTd ln f so V~P = RT ln 

fh/f
0 

where fh and f
0 

are the fugacities at hei@lts h and zero. For the 

e~uilibrium process, ~G = 0 
v ' 

and therefore Mgh = - RT ln fh/f
0

• 

The free energy change when a mole of liquid is raised reversibly 

from the reservoir up the capillary' and vaporized at height h is ~G2 = 
c c . . 

Mgh + V~P + ~Gv' where ~Gv represents the free energy of vaporization 

through the curved meniscus. If the entire reservoir is raised to 

height· h and allowed to vaporize at that height, the free energy change 

per mole is.~G3 = Mgh + V~P + ~Gh, where ~Gh is its free energy of 
v v 

vaporization at height h. But since the free energy content is a func-

tion only of state, ~G1 = ~Gz = ~03 ·= 0. Now for the li~uid in either 
.M 

the capillary or in the elevated reservoir dp = - ~ dh where V£ is the 
£ 

li~uid volume. Then Mgdh = Vdp, that is the change in free energy with 

• n-"h h ;t . d f h 20 
heJ.er ... t cancels t at with pressure, as ..... dJ. or t e vapor. But the 

overall change must be the same as for the first process, so that 

c h 
~G = ~G = 0· there is no difference between the free energy of vapori-

v v ' 

zation through a curved meniscus and that through a plarie surface. 

There is no difference of fugacity between the e~uilibrium li~uid just 

under the.meniscus f 0 , and of the vapor just over it, f, since ~Gc = 
:N V V 

\ ., 

i 
! 
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The numerical identities that have in the past led to the belief 

that the Kelvin equation is proved by capillary rise are: (A) RT ln 

fh/f = M gh = Mngh, where M = Mn are masses of one mole of vapor or 
o v N . 20vv ;v 

liquid, and (B) LlpghV Jl, = ~' where Llp is the difference in density be-

tween the fluids below and above the meniscus, and VJI, is the molar volume 

of the lower fluid. This second relationship is that obtained by mul-

tiplying both sides of the Laplace equation, Eq. ( la) by V Jl, and setting 

R1 = R2. 

Identity (A) shows the change in fugacity with height when a mole 

of either a vapor or liquid is raised in a gravitational field. Identity 

(B) gives the relationship between gravitational and surface energies 

when a liquid has risen to its equilibrium height in a capillary. 

Usually the upper fluid is air plus the vapor of the liquid below the 
'\) 2crv Jl. 

meniscus, and then LlpV Jl, is approximately MJI,, and RT ln fh/f = --. o r 

But if the density of the upper fluid is not negligible, as for two 

nearly immiscible liquids, 

For such cases RT ln fh/f
0 

the value of LlpVJI, can be much less than MJI,. 
20VJI, 

and ---- are not even approximately equal. 
r 

The principal points that I have tried to stress in this discussion 

of the non-applicability of the Kelvin equation in capillaries can now be 

summarized. The Kelvin equation as used for capillaries assumes that any 

vapor pressure change depends on the solid-liquid surface interaction 
~ .... 1 

only through the contact angle and is independent of the volume of liquid 

with which the liquid in the capillary may be in equilibrium. These 

assumptions are inconsistent with the view accepted in other applications 

of thermodynamics, that fugacity, and therefore partial pressures, are 

measures of an average escaping tendency of all molecules of a particular 
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kind which are at equilibrium. Two capillary solid materials could meet 

a liquid with the same contact angle, but yet bond it at the liquid-solid 

interface with different free. energies. And the average escaping ten-

dency should clearly be altered by charge in the numbers of atoms near 

surfaces relative to the number in the bulk. 

When a liquid rises in a capillary there is a vapor pressure de-

crease between the level of the reservoir and tre capillary surface which 

is often interpreted as confirming the prediction of the Kelvin equation. 

But this decrease is due purely to a monotonic effect of gravity and not 

to the abrupt drop in pressure through the curved meniscus which is en-

visioned in the Young-Laplace-Kelvin theory ·as 'applied in other connec-

tions. Furthermore, even the apparent agreement disappears if the 

density of the vapor phase is not negligible; the Kelvin equation pre-

diets a dependence on the difference in densities between liquid and 

vapor phases, while the gravitational effect that actually alters the 

pressure depends on the mass of molecules raised to height h. (An effect 

of gas pressure on vapor pressure of liquid
28 

in both the capillary and 

reservoir should nearly cancel and can be neglected.) 

FREE ENERGY MINIMIZATION AS THE DETERMINANT 
OF SHAPE AND CAPILLARY RISE 

Direct application of the Laplace equation (Eqs. (l), (la) and (lb)) 

has, unlike use of the Kelvin equation, apparently not led to predictions 

that violate experience or the laws· of thermodynamics. Its original form, 

Eq. (1), is only applied in practice to discussions of bubbles, for which 

it can be shown to be a consequence of the laws of thermodynamics. 

Equation (l) is applied to drops only as a step in justifying use of the 

... 

! 
I .1): 
I 
I 

I~ I 
'C I 
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Kelvin equation and for calculation of a presumed compressive force due 

to surface tension, whose existence so far apparently cannot be confirmed 

or disproved by experiment. 

For discussions of the shapes of drops or vapor filled cavities in 

gravitational fields, and of capillary rise or fall, the assumed 

pressure drop through curved surfaces does not enter the expression that 

is actually used (see Eq. (la)). 

The problem is that the theory of Young and Laplace has directed 

attention away from the solid-liquid interfacial interaction. Their 

attitude--one that still dvminates the literature of capillarity--is 

30 illustrated by a passage from Laplace which was quoted by Young, who 

obviously agreed: 

"Since it has been hitherto usual with natural philosophers, to con-

sider the concavity and convexity of the surfaces pf fluids in capillary 

spaces, as a secondary effect of capillary attraction only, and not as 

the principal cause of phenomena of this kind, they have not attached 

much importance to the determination of the curvature of these surfaces. 

But the theory, which has been here advanced, having shown that all these 

phenomena depend principally on the curvature, it becomes of consequence 

to examine it." 

The earlier natural philosophers were right to consider surface 

shape a secondary effect of capillary attraction. It is the liquid-solid 

interactions that determine whether a liquid will ri.se or fall in a 

capillary as will be demonstrated in this section of the paper. The 

important point in recognizing this fact is that it opens the way to 

analysis of more complex problems in capillarity than is possible when 
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surface curvature is viewed as the determinant rather than simply as one 

consequence of capillary phenomena. 

The correct relationships between shape and surface tension follow 

direct]y from riri.nimization of the free energy of a system at constant 

pressure, temperature, and volume (i.e., at constant n.) for the con­
l 

densed phases present, and no pressure drop across curved interfaces 

need be invoked to obtain the e_xperinientally observed shapes. 

The arguments are well known for particles in the absence of a 

significant gravitational field and only the results need be summarized 

here. The free energy for a single component or ideal solution condensed 

phase particle of fixed voiume is a minimum when the total surface free 

energy is a minimu:n.. The figure is then bounded by Gibbs-Wulff surfaces, 

which obey the relationship 

rra rrb 
-=-= 
£a ~ 

a .. i 
... ·r· 

i 

as defined for Eq. ( 7). 6 ' 8 
In the special case of an isotropic liquid, 

cr is independent of orientation and the. minimum free energy is obtained 

for spherical particles. Cavities in a condensed phase have minimum free 

energies for any: given volume when they are bounded by the same surfaces 

8 
that would bound a small crystallite of the condensed phase. 

Collins and Cooke
31 

have demonstrated that minimization of the 

gravitational and surface fre.e energies for two fluids each. held at con- . 

stant volume leads to Eq. (la) when the fluid surfaces are symmetrical 

about .the vertical axis. llie authors state that the same result can be 

I 
.I 

. I ·4,· 
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obtained for a system of more general geometry. 

Schwartz and Minor
32 

have discussed the effect of foreign surfaces 

in reducing surface free energy. 33 O'Brien, Craig and Peyton have 

derived an expression for capillary rise between two dissimilar parallel 

plates, and have obtained experimental resUlts in good accord with their 

predictions. 

Here I will give derivations for cylindrical capillaries and for 

two identical plates. For such systems it is easy to include the effect 

of the meniscus which O'Brien, Craig, and Peyton were forced to neglect. 

Because the physical arguments are somewhat different for zero contact 

angles than for finite contact angles, I will di.scuss these two cases 

separately. 

Suppose a liq_uid wets a surface with a contact angle of 0° and rises 

to an average heigb.t h at the point of tangency of its meniscus with the 

walls. The relationship between the contact angle of a meniscus and a 

wall are given by Young's eq_uation,
1 a 

sv as£ = a£v cos e, where the 

subscripts identify surface tension at the solid-vapor, solid-liq_uid, 

and liq_uid-vapor interfaces and 8 is the contact angle. Young's eq_uation, 

although originally derived from Young's ideas about surface tension, 

has been shown to be another conseq_uence of minimization of free energy 

at constant volume of the phases in contact. 
31 

When asv - as£ > a£v' a film of liq_uid completely wets the entire 

surface of the wall above the meniscus and cos 8 = l. If the liq_uid film 

were to completely cover the surface of a solid of arbitrary form but the 

liq_uid were to remain at the same level adjacent to this surface as in a 

large reservoir into which the solid surface is inserted, the free energy 

/ 
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of the system, including the solid surface and vapor phase, would be re-

duced by (asv -as£ - a£v)~ where Ar is the total area of the solid 

surface. 

The free energy of the system can be reduced by an additional amount 

LlGh if the liquid level rises to heigtLt h at the average point of tan­

gency with the walls. · Then 

A - A ) + Llpg(Vhh - V h' ) -h o · c m 

where Am is the area of the meniscus, ~ is the area of the capillary 

walls between the level. of the reservoir and h~ A is the area of reser­
o 

voir surface enclosed by the capillary, Vh is the volume enclosed by the 

capillary between the level of the reservoir and the line of tangency of 

the meniscus, h is the height of the centroid that a body of uniform c . ' 

density would have if it occupied the volume Vh, Vm is the volume enclosed 

by the meniscus and a plane through. the line of tangency of the meniscus 

with the walls, and h' is the height of the centroid of V • So far this 
m 

expression is perfectly general. It is valid, for example, for capil-

laries of varying cross section or pairs of plates that may be set at 

variable distances apart or tilted. Before the height at which the 

liquid column equilibrates can be calculated~ the geometry of th.e system 

of interest must be specified. 

For the particular case of a cylindrical capillary titled at an 

angle 4> from the vertical 

!Jb = a A - - A ( 
· 2n~h ) 

h £v m cos 4> o 

' ~~ i 

,._,. 
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But the meniscus in a cylindrical capillary has the form of a hemisphere 

when the capillary radius r is small compared to h and the form of half 

of an oblate spheroid for larger radii. 
34 

Neither the volume nor the 

area of the meniscus will be much changed when the capillary is tilted, 

and both g and a show negligible variation wi.th h. The centroid for 

h-0. 
half of an oblate spheroid lies on the minor axis at ,~, where c is a 

cos 't' 

constant independent of h. And at equilibrium 

-a (2TirJ + .1pg (Tir h- V ) 
~ V COS cp COS </J m 

but V = 2/3 7Tr 2b, where b is the length of the semi-axis perpendicular m 

to the plane of meniscus tangency. Accordingly, 

2a /.1pg = r(h-2b/3) (15) 

This expression is exact except for lower order corrections due to 

possible small deviations of the meniscus shape from the form of an 

oblate spheroid and to dependence of the meniscus shape on ¢. The height 

to which the liquid rises is almost independent of angle of tilt. 

For a vertical capillary a more practically useful expression can be 

obtained by rewriting Eq. (15) in terms of the height to the base of the 

meniscus h and by expressing b as a function of h and r. Now 
m m 

h - 2b/3 - hm + b/31 and according to Lord Raylei.gh,35 when the meniscus 

has the shape of an 'oblate spheroid b = Llpgh _ r 2 /2cr. So Eq. ( 15) becomes . m 

2a(Llpg = rh (1 + Llpgr2 /6cr), which is a quadratic that can be expanded to . m 
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2a /6.pg ( 16) 

Lord Rayleigh believed this·expression to be a less exact expression 

than alternate expressions that he derived, but Erikson34 recently 

demonstrated that the theoretically predicted forms of meniscuses 36 are 

more closely approximated by oblate spheroids than by approximations 

generated by Lord Rayleigh or earlier investigator~. 34 Equation ( 16), 

therefore, should be the most exact four term expression that has been 

formulated for a as a fuilct ion of r and h • 
m 

The derivation of an expression for the capill~ry depression of a 

liquid that has a contact arigle of 180° with. the capillary wall is 

similar in concept and leads to an identical expression except for a 

change in si.gn. The derivation for liquids that have intermediate con-

tact angles with the walls requires a slightly different starting point. 

Suppose a liquid that rises to height h in a capillary of radius r 

meets the wall at a contact angle 8. There is now no liquid film' above 

the point of meniscus contact. For such a system 

(a -a n)2nr + 6.pg (nr2h- v ) 
SV S;v . ·. m 

But asv - asJ/, = a 2v cos 8, and if we assume the meniscus is approxi­

mated by a spherical cap of height b and radius of curvature R 

·! i. 
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2cr cos e 
llpg 

( 17) 

The approach that has been illustrated here for cylindrical capil-

laries can, of course, be used for any shapes. For example, for rise 

or fall of a liquid between parallel vertical plates, we obtain 

2cr cos e 
llpg 

= hd- db 
4 ( 18) 

where d. is the distance of separation of the plates and where the cross 

sectional area of the volume bounded by the meniscus and a horizontal 

plane at h is assumed to be an ellipse of minor semiaxis b. 

The usual explanation of the equation for capillary rise for 

capillaries of uniform cross section in terms of the Young-Laplace-Kelvin 

theory is that the weigil.t of liquid above the reservoir surface is 

exactly that which can be supported by the vertical component of the sur-

face tension multiplied by the length of wall with which the meniscus is 

. t t 12 1n con ac • Such an explanation is difficult to reconcile with the 

experimental observation that in a capillary of non-uniform cross section 

the liquid level rises to the same height that it would in a capillary of 

uniform bore and a radius equal to that of the capillary at the point of 

meniscus tangency in the non-uniform capillary. 37 Obviously the weight 

of liquid in the non-uniform capillary may be very different from that 

in the uniform capillary. 
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The revised theory explains the experimental observation readily. 

An increase in heig}:l.t from h to h + dh decreases the surface energy by 

2nrcrdh and req_uires the work against gravity LlpghTir2 dh and, neglecting 

. . 
the second order correction for the meniscus, the liq_uid rises or falls 

until these q_uantities are eq_ual regardless of their relative values at 

smaller absolute values of h. 
· 2cr 

So -· =Llpgh., which is the usual first 
r 

order expression for capillary rise. It is interesting to note that the 

revised theory- predicts that a liq_uid will rise indefinitely in a tapered 

radially symmetric capillary with the dimensi.qns restriction at every­

·. ·2cr cos e . 
height h so that rh < Llpgh. or between two curved plates which are 

· 2cr · · · e 
parallel in every horizontal plane when ~ < Ll~: 

IMPLICATIONS OF THE NEW THEORY 

The new theory leads to the same expression for the dependence of 

vapor pressure on radius of drops as given by the Kelvin eq_uation, but 

shows this to be a conseq_uence of a dependence of vapor pressure on the 

ratio of surface area to volume which applies to small particl~s with 

either plane or curved surfaces. The new theory predicts vapor pressure 

increases inside bubbles and vapor filled cavities while the old pre-

dieted decreases. The new theory agrees with the old in predicting de-

creased vapor pressures for liq_uids that show concave meniscuses in 

capillaries but relates this decrease to the liq_uid-solid and liq_uid-

vapor surface areas rather than to curvature of the meniscus and asserts 

that the volume of liq_uid at eq_uilibrium '.Vith the liq_uid in the capillary 

will influence its vapor pressure. 

The new theory leads to essentially the same expressions for 

capillary rise and for shapes of fluid surfaces as .the old, but the new 

) 

i 
; 

:"') I 
' 



v 

'(I 

-31- UCRL-20375 

theory makes possible analYses of more complex systems than could be 

understood by application of the Young-Laplace-Kelvin theory. The cen-

tral concept of the Young-Laplace-Kelvin theory, that surface curvature 

is a cause of capillary phenomena rather than merely one consequence, has 

misdirected attention away from the li~uid-solid surface interactions 

that are the primary determinants of capillary behavior. O'Brien, et 

33 al. have already demonstrated that, by taking into account the dif-

ferent specific surface free energies, they can predict capillary rise 

between dissimilar plates. The simple theory presented here can easily 

be extended to predict behavior of immiscible li~uids in capillaries and 

the behavior of li~uids in pores of complex shapes. Experimental studies 

of these more complex systems will certainly be stimulated by the avail-

ability of a sound basis for their theoretical analysis. 

It would be unfortunate if the Young-Laplace-Kelvin theory is dis-

placed only in those areas for which it clearly leads to wrong conclu-

sions. Except for the special case of bubbles, for which the balance 

between the inside and outside total gas pressures an.d surface free 

energy is easily understood in conventional thermodynamic terms, the 

basic premise of a pressure drop through a curved surface is wrong. 

Surface curvature, when it occurs, is simply one conse~uence of the 

minimization of total free energy in terms of the surface area and other 

conventional thermodynamic variables. 
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Fig. 1. Schematic drawing of the apparatus for testing the Kelvin equation 
for capillaries. (See Ref. 27.) · 
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