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SURFACE THEORY: I. A REPLACEMENT FOR THE
YOUNG-LAPLACE-KELVIN THEORY FOR CURVED SURFACES
Alan W, Searcy
Inorganic Materials Research Division, Lawrence Radiation Laboratory,
and Department of Materials Science and Engineering,
College of Engineering, University of California,
Berkeley, California
ABSTRACT

November 1970

The.theory developéd by Young, Laplace, and Kelﬁin which assﬁﬂes
that the stability and vapor‘pressure of liquids can be related to a
pressure difference between opposite éides of a curved surface ylelds
cértain predictions that are inconsistent with the laws of thermog;
dynamics:énd experimental observations. A new theory is presentegﬂwhich
differs fram the Young-Laplace—Kelvin.theqry in assuming that surface
curvature §§1:§g_has no effect on stability or vapor pressure, but that
the number:df atoms or molecules in the surface relative to the number
in the bulk condensed phase is critical in determining the average
stability and vapor pressure.

TheIAQW'fheory yield% the familiar equations for the vapor pressure

of drops and for capillary rise, but predicts vapor pressure increases

in vapor-filled cavities and bubbles rather than the decreases predicted

by the Kelvin equation and shows that capillary rise and vapor pressures
in cepillaries are functions of the free energies of interaction of the

liquid with capillary walls.
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More than 160 years ago.Youngl and Laplace;2 each working independ—
ently of the othér, formulated a quantitative theory that relates the
degree 6f curvature at a liquid surface to a pressure change through the
surface, Thé theory was extended by Lord Kelvin, who obtained an expres-
sion for ﬁhe variétion of vapor pressures with surface curvature.3

The YoﬁngrLdplace;Kelviﬁ theory has been accepted as a basic and
central concept in surface thermodynamics by apparently all prominent
theoreticians who have beén active in surface studies over fhe past

L5

century; The theory is used to analyze such diverse phenomena as
vapor supersaturation,6 heterogeneous catalysis,7 the sintering of
solids,a'the superheating of liquids,9 thevrise of sap in trées,lo énd
hydrodyﬁamics.ll Nonetheless, I have found serious discrepancies between
the theory and both e#periment and the accepted laws of thermodynamics.
In this paper I present a theory that differs sharply from the
Young—iaplaCeQKelvin theoryvin that.it associates no pressure drop with
surface curvature, but instead, relates changes in free energy to chaﬁges
in surface area without distinction between curved and uncurved surfaces
and relates qhanges in vapor pressure to changes in the ratio of surface
area to volume. The new theory duplicates those predictions of the‘
Young-Laplace-Kelvin theofy that have beeﬁ reliably estaﬁlished but gives
" different énd more reasonable predictions for the variation of vapor
pressures in capillaries, vapor cavities, and bubbles., I conclude with

a brief discussion of the influence that theanWffheory can be expected

to have on our understanding of -surface phenomena.
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Apparent Success of the YoungrLaplace-Kelv1n Theory

The nearly wniversal acceptance of the Young-Laplace-Kelvin theory
is based pyimarily on the success of two equations, the Laplace equationl’2
and the Kelvin equation,3 in quentitatively relatiqg surface curvature v
to surfece teﬁsion ana to variations in vapcr pressure.

The Laplace equation (which should also be credited to Young) is

1 1

.where Q'is‘ﬁhe.sﬁrface tension and AP_ie the pressure drop along a normal
drawn ffom;fhe‘center of curveture thrqugh‘the.surface et a point for
'wﬁich.the princibal radii cf c&ryeture are R ana Ré.'vFor spheres of
vredius.r,bEé, (i) reduces to 20/r = AP.

When gravity acts to distort the shape of a liquid surface, Eq. (1)

is modified to

(k&) cme (10

where Ap is the difference in density between the liquid and vapcr (or a
second liquid),'g is the acceleration of gravity, and h is the height to

which the surface 1is ralsed agalnst grav1ty.12 ‘For cylindrical capil-

" laries, Eq. (la) takes the partlcular form : i
, | , v
%2,_ Apgh cos 6 (1p)

where r is the radius of theecapillafy and 6 is the contact angle, that
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is the angle between the wall and the tangent to the meniscus at the
point at which it meets the wall.
The Kelvin equation gives the variation in vapor pressure with sur-

face curvature:
RT 1n P/P° = V,0 (1/R; + 1/R,) (2)

where R is the gas constant, T»is the temperature, P is the vapor pres-
sure over a curved surface of a liquid of normal vapor pressure p° and

V2 is the molar volume of the liquid. For R; = R, this becomes

RT 1n P/P° = 2V o/r (2a)

Equation (2) follows from Eq. (1) at low enough pressures for the
perfect gas law to be obeyedewhen‘the pressure difference in the Young-
Laplace equation is assumed to be the vapor pfeesure difference that re-
sults from surface curvature. It is argued that VZAP = AG and AG =

AP = V. o (1/R; + 1/Rp) =

RT 1n P/P° for the gas, so at equilibrium v, .

RT 1n P/P°.

When Eq. (2) 1s applied to a capillary, the righf hand side is
multiplied by cos 0. | |

Qualitatively, the.Lapiace equation states that, while fluids
separated by a plane eurfece are>et equal pressures, a fluid bounded by
a convex surface, say a drop, is at a higher pressure than the fluid on.
the concave side of the surface. The Kelvin equation interprets the
pressure differenee_as a differenee in vapor pressures, so that a liquid

in the form of a drop, which has a convex surface, has a higher vapor

- pressure than it has when it is bounded by a plane surface. Thus the

_ Vapor above a concave meniscus, in a vapor-filled cavity in a liquid, or

P
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' o * o : ' - '
inside a bubble is predicted-to be lower than the vapor pressure of the.
bulk liquid.

'Equation (1) correctly predicts the variation in bubble size with
the total.preséﬁfe differencerbétween.the'interior and exterior of the
bubble. Equatioh (la) corfectly predicts thé equilibrium shapes assumed
by liquid surfaces and vaﬁof—filled gavitiés'under the conbined action of

_gravity and sﬁrf&ce tension. Equation (é) cérrectly prédicts:fof drops
fhe variation of Qapor pressure with radiuslaﬁd is authorifatively
accepted as having been proved correct in ité éﬁplication-to capillaries.

The quaiifative consideration that atoms or molecules at the convex
side of anjinterface should hav¢>fewer nearést neighﬁors than those on
the concave side supports the Ydung—Laplace-Kelvin theory in the minds of
many. This qualitétive argument, however, amounts to an expectation that
0 is a fﬁnction of curvature, but the Young-Laplace-Kelvin theory assumes
that © is'independenfvof curvaturé. The éffect of,curvatﬁfe iﬁ céusing a

: pressure difference betweén_opposite sides«of.a curved interface is con-
ceived as an effect’that is important'even_when the surféce/tension o 1is

b5

itself independent of'curvature. In what foiloWs I will assume O is

independent of curvature, an assumption that is believed to be valid for

radii - * greater than abouf;10_6 cm.l3'—15

¥ The term bubble is commonly applied both to a hollow liquid sphere such
as typified by a soap bubble and to a cavity in a liquid. Here I shall
use bubble only with the first meaning and use the expression vapor-—filled
cavity to designate the second.
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Objections to the Young-Laplace-Kelvin Theory

Long after the Young-Laplace-Kelvin theory was developed, the con-
cept of fugacity as a measure of chemical potential was'inventedl6 and

17

fefinéd £nto a valuable tool of chemical thermodynamics. Thermo-
dynamisté accept as a proof of'equilibriﬁm between two phases which are
held at the same temperatufe, preSsure and gravitational field a demon-
stration that each chemical component of the two phases has the same

fugacity in both phases.17

Since the fugacity of a component is,.atvlow
pressures,:essentially identical to its partial pressure and, even at
higher preséuﬁés, rémains closely relaiéd to the partial vapor pressure,
the Kélvin equation predicts changes in fugacity with,surface curvature.
The'effect'of curvﬁﬂure on_fugaéity which is predicted by the Kelvin
equation is'difficult to reconcile with accepted theory for small
crystallites. Small crystallites are viewed as being in internal equilib-
rium if béunded by thdse’planes that give the minimﬁm total surface free
enérgy for a given volume, and the fﬁgacity‘(ér vapor pressure) for each
chemical cémponent is consideréd then to be the same for each face (and
tacitly also for the edges and corners between faces) even if the faces

that minimize the total surface free energy do not all have the same

specific surface free energies. Edges and corners bf crystallites are

believed to be rounded at elevated temperatures, and even if edges and

corners are sharp, they can be viewed as regions of small radii of

curvature. The Kelvin equation, therefore, would seem to predict higher

. vapor pressﬁres and fugacities for these regions than for the adjacent

planar regions, in contradiction of the accepted criterion for internal

equilibrium in crystallites. This particular discrepancy, of course,
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‘might beJCapable of satisfactofy’resolution in ways that do not fequire
rejection ér even modification of the Young—Laplaée—Kelvin theory.

A more serious objection to the'Yéung—LaplacefKélvinvtheory arises
if one coﬁsiders the prediction of the Kelvin eqguation for vapor filled
éavitiés. For cavities,Ifhe’Kélvin_equation appears acceptable only if
one.qf twoAdisturbing alfernativés is addptéd:

1. The lower fﬁgaéity predicted'by'the Kelvin equatioh fof.the

liquid at a cavity does not mean an increased stability near éavitiesf—

although a lowered fugacity is usually interpreted as reflecting increased

stability.

2. The presence bf vapor filled cavities makes a 1iquid more stable
than it would be in the absence of ‘the cavitiéé-—an interpfetation in
disagreément With e#perience.

A more subtle, but equéliy Seribus objectibn,'can be raised.v A
fugacity'br partial vapor pressufelis usually viewed as a measure of the
, éscaping téndency, which is_an éverage.property of "a componéent of a phase
at equilibriumfl7 No ‘conflict with this view afises in application of
the-Young—Laplaée—Kelvin theory to drops, because for drops,'thé_number
of atomé or molecules in the surface and in the bulk'are,bqth fixed for
a given liquid when theﬁradius is fixed. Bu£ in aﬁplication of the theory
to capillaries, cavities, and bubbles, the Quantity of condensed phase
that may be presumed‘tO'be ét equilibrium with thé vapor at the curved
surface ié usually nét specified. For such:systems, the'vapgr'pressure
is assumed to be fixed at the curved surféce only by the*c@fvatﬁréﬂﬁifh—
out resard to Whether the‘liquid at £he curved_surfaée is at eéuilibrium

with a iarge or small amQunt of liquidQ Such an assumption leads to

W

€
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violations of the law of conservation of energy.

Somé experimentalists; in particular Folman and Shereshevsky,l
have found vapor pressure loweriﬁgs in capillaries that differ by as much
as a factor of 80 from-predictions of the Kelvin equation. Folman and
Shereshevsky suggested thatwall interactions must influence the vapor
pressure in capillaries in an important menner that is not taken into
account by the Kelvin equation.

It seemed certain to me that the discrepancies between predictions
of the Ybung—Laplace—Kelvin theory——despite its essentially universal
acceptance--and both'experimenf and familiar thermodynémic concepts are
S0 fundaﬁental that the unaerlying premise of a pressure difference
across a curved liquid-vapor interface at equilibrium must be doubted.

In the next two sections of this paper i present and apply a theory which
makes no ﬁse of this premise.
'THE DEPENDENCE OF VAPOR PRESSURE ON VOLUME AND SURFACE AREA

A derivation of the dependence of vapor pressure on radius for drops

»givenvby Lewis'and.Randall many years ago19 is commonly presented as a

proof that the vapor pressure increase for drops is a consequence of

20,21

surface curvature. The derivation is more logically viewed, in my

opinion, as a demonstration fbr onevparticular geometry of the dependence
of vapo; pressure on the ratio of surface area to #olume. A premiée of
this paper is that the effect'of surface area on fugacity should always
be derived from the ratio of surface areas to volume without regard to
whether the surface is con.vex; concave, or planar.

When this premise is adopted, two important conclusions immediately

follow: (1) Expressions similar to the Kelvin equation should describe
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tﬁe vériation of vapor pfessures with size of particies of any fixed
shape, WHether or nof the particles are bounded by curved surfaces.
(2) An iﬁcfease in the ratio of liquid-vapor or solid-vapor interfacial
area fo vélume will always imply an incréase in the vapor préssure,.even
if the sdrfdce that is formed is concave; (But én increaée in the area
of interfacé.betWeen a solidzand a'liquid'may decrease the liquid &apor.
. pressure. In capillarigs_fhe sblidfliqﬁid interactions may reducé the
vapor pressure——butvnot in- the amount predicted by the Kelvin equation—-
‘and induce conéave cufvgture for the liquid.) The Young-Laplace-Kelvin
thebry, by contraét, prédicts a Vapor préssgre decfease defined by

Eq. (2) for'eifher'a vapor-filled cavity or:a liquid_that has risen in é
capillary.v |

| An equation fér the variatiéﬁ in vapor pressuré with size for any

fixed geometrical shape can be derived from the general equation’for the

differential.of the Gibbs free eneréy G. This equation reduces at con-

stant temperature, pressure, and_gravitational field20 to

dG = odA + I u.an,, ' (3)

~ where A is the surface area, U, is the chemical potential of speéies_i,,

n, is the number of moles of that species, and 0 is explicity defined as
the Surface free énérgy per unit area and not as a surface temsion with

dimensions of force per unit length.

As noted by.Pitzér and Brewer,20 when a phase grbws by radial advance- -

ment of a curved intérface, A becomes a function of n,, and the chemical

potential'becomesla fundtioniof the relative number of atoms at the
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surface and in the bulk. Pitzer and Brewer expressed A as a function of
hi and dérived an expression valid fér the variation in vapor pressure

of a component of an ideal solution in the form of drops. Thé expression
reduces to Eq. (2), the Kelvin equation, for a one-component system.

But it is equally true thatrggx;process which causes the area of a
single component phase or ideal solution to vary with n, will cause Uy
(and therefore the vapor pressure) to display a similar dependence on
~ geometry, so the Pitzer and Brewer proof of Eq. (2) for drops can be

.generalized. We write

o] .
ag = oqA + I ygdng (3a)
where _ L
10 =(38 )
VA N
J N\,

‘is used to emphasizé thgt ui in Eq. (3) applies only for processes carried
ocut at zero surface area. But 1f the volume of any geometric figures
is increased while its shape is held constant, its area increases as

well. Then 4V = % Vidni’ where Vi is the molar volume of cgmponent i,

and

o . .ay.,
L _av _ =i : :
aa = ay = L —= dn; (L)

where % is a linear dimension and a is a constant characteristic of the

'particular figure. (1r, fdr exanmple, the figure is a rectangular box
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with edges in the ratio 1:2:3, £ can be chosen as thé length of the

shortest side and than a = 44/18.)

Combining (4) with Eq. (3) gives’

5 ,gyic |
ag = % u = dn; -

' Then

' ] ' aV.o
u. = —i‘ = u(.) + =2 .
i ani TP, & L

Since by definition of the fugacity f,
.0 _ 4 0
Wg<h; = BT In £,/f0

1

we.get

£ avo |
RT In —= = — (5)
. fl

When the vapor pressure is low, fugacities can be equated:to'pres—
sures.v If, for examplé, the figure.is,a cube of edge & and avsingie

component is present, Eq. (5) becomes

RT 1n 2= = — . (6)

 For sphereés the Kelvin equation, Eq. (2), reduces to
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RT 1n

Fuolru
il

Since Eq. (2) for spheres and Eq.v(b) for cubes are both particular cases
of Eq. (5) and differ only because of their different ratios of dA to av
(see Eq. (L)), it is apparent that surface to volume ratio, not surface
curvature is the mofe fundamental parameter in fixing the variation in
vapor pressﬁre with particle size--provided, of course, that the vapor
pressures of non—éurved par£icles,do, in fact, obey Eq. (5).

T know of no experimental proof on this point, but Defay et al. have
derived for solids an expression into which Eq. (5) is readily trans-
formed and describe it as "the form of Kelvin's equation applicable to
small érystéls."ze"Théy do not comment on the fact that in their con-
ventional derivation of Eq. (2),.the vapor pressure difference is viewed
as réflécting a pressure'drop through the curved surface, while in their
very different derivation for crysfallites, no such concept is involved.

If some crystallite surfaces have different specific surface free
energies from others, Eq..(S) can still be used. It is only necessary to
use an average'value of 0 that weights the specific surface free energies
of the varioﬁs eiposed pianes in proportion to their relative areas.

Edge aﬁd corner free energy contributions should be negligible over
essentially the same range of particle size for which variation of 0 with
area can be neglected for spheres, that is for pérticles larger than
about 10—6 em in diameter.

| When.a crystallite is bounded by its Gibbs-Wulff surfaces® -~those

that minimize the total surface free energy for the given composition,



~12- : ' UCRL-20375

volume, and crystal structure——the specific surface ffee energies of the

various surfaces oﬁey the relationship

6 o. O .

e _ B _ 1o . ' ST
2 2 2. SR S _
a a i v _

where ci; for example, is the spééific_éurface free energy for any one
of the Gibbs-Wulff surfacés and Ri is the distance from a common center
drawn nofmal to th.afc‘sﬁrfaée,22 Then Eq. (5) reduces . to

L2
RT 1n P/P~ = ¢+— (8)

For an isotropic liquid, all planes have identical values of 0, and

Eq. (8) is valid for spheres as well as for polyhedra.‘

For vapor-filled cavities in condensed phases, the fugacity variation

with cavity size can‘again;readily be derived from Eq. (3). The free

 energy G for a condensed phase ideal solution consisting of Lni moles of

material with m identical cavities per mole of solution is, if the hydro-

static head of fluid above the cavities can be ﬁeglected,
¢ = moA Fn, + In 1l

where Ac is the surface area of each cavity. Then -

3G s ' e
—— = -+ .
ani uiv m'OAc:I'. 11i

&
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where'Aci is AC times the fraction of surface atoms or molecules that are
component 1. But

s o _ o .
My - My = RT 1n fi/fi

So

: . o kmovci
RT 1n fi/fi = ——— (9)

L
This expression looks similar to Eq. (5), but here VCi is the volume VC
of the cavity of characteristic linear dimension £ multiplied by the
surface fraction of component i, and k = Aci,Q,/VCi which is not equal to
a of Eq. (5). The difference arises because the surface area for cavities
is not an implicit funection of n, as is the area of drops.
If cavities of various sizes and average specific surface free

energies are present in a condensed phase that is at internal equilibrium:

RT 1n f;/fg = Zom.A,  (10)
J .
where the summatioﬁ indicates that the contribution to the molar free
energy of each kind of cavity_sﬁould be added fo obtain the.effect of
cavities.on the vapor pressure. .It is im@értant to note that the sum-
mation is made for the cavities present per mole of the condensed‘phase.
This expression indicates that the vapor in (mefastable) equilibrium
with é porous conden;éd phase ié always ét a higher pressure--bofh:inside
the pores aﬂéhabove the ekterior surface-—than is the.vapor in equilib-

rium with the non-porous condensed phase. The new theory predicts that
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‘the stdbility of a system is increased when_two_cavities of volumesiVl
and V, and surface areas A and Az unite to form a single cavity of
volume V) + Vz but surface area less than Ax +‘A2. This bredicfion con-
trasté with prediétions of.the Kelviﬁ'equation. As noted earlier, the
Kelvin equation preaicts that the présence of cavities decreases.the'
fugacifyvof a liquid6 and certainly implies that squiViding a large
cavity info smaller cavities of unchanged tbtal volume butrincreaééd
total afea will lower the fﬁgacity, that is, apparently, iﬂcrease the
stability.

The Kelvin equation has been invoked to éxplain the superheating
that is reéuired for wvapor cavity formaticn during boiling.- it is argued
thatbboiling canndt occﬁrvat the normal boiling point because the pres-—
sure inside a cavity ié smaller than the pressure above a'ﬁlane surface
while an excess pressure is required in a cavity to cause ‘its expahsion.

Equation (10), however, is perfectly compatible with cbservations
of boiling and can be'interpreted in a manner consistent with analyses
applied to nucleation phenomena for other types of phase transfofmation.2L'L
For a single component system KT ln,f/fO is a measure of the exéess free
enérgyvrequired to nucleate ijvcavities of areas'Aj per mole. quer—

- heating is requiredvboth,to provide this excess free‘energy'and to:overe,
. come the hydrostatic head above the cavities. | .
For a bubble, both the inside and outside surface sress must:be

summed and

" RT 1n f./f° = 20ma, \ : (11)
L 1 1

&
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where Ai is the outside or inside surface area of the bubble multiplied
by the surface fraction of component i and m is the number of bubbles of
- that size needed to make up a mole of the con&enéed phase. The volume
of liquid in the bubble enters through the term m, s0 as always, the area
of surféce per quantity of material is the determinént of the fugacity
change.

The Kelvin equatioh predicts the same vapor pressure increase out-
side a bubble as found outside a drop of the same radius and predicts -

that the vapor pressure inside is
P_ = (P°)2/p | (12)
I Q

where PO is the outside pressure.6 Equation (12) predicts that the
(identical) inside and outside pressures for a bubble of given radius
will be increased much more than fof a drop of the same radius because
the number of atoms or molecules near the surface of a bubble relative
to the total number in the bubble will always be much larger than for a
drop of the same radius. |

Equation (12) illustrates an important inconsistency in the Young-
Laplace—Kélvin theory: Thé.Kélvin equation predicts a lower vapor pres-—
sure inside the bubble than outside. In application of the Laplaée
equation to Bubbles, it is recognized that Ehe pressure inside'musf be

‘higher than the pressure.outside.lg’25

The Laplace equation cannot give
the correct dependence of bubble radius on AP unless the difference in
the total pressure of all gases inside and outside the bubble are used in

éalculating AP. The inconsistency, then, is that when the Laplace’



R : UCRL~-20375

equation is applied to bubbleé,'AP,must be assumed to ﬁe.a total pressure
difference; but when the Laplace equation is used td derivg the Kelvin.
equation AP must be assumed to be a.&apor pressure difference. (See the
discussion associated with Eq. (2)).. If the pressures of foreign gases
are included in calculation of AP, predictibns for vapor pressure varig—

tions with drop radius are no longer correct.

The Vapor Pressure in Cépillariesv
For an analysis of the effect of capillaries on the vapor pressure,
Eq. (3) must be modified by the introduction of a term to account for the

intera'ction of the liguid with the capillary walls:

4G = o, dA, + 0p dh) Zuidni (13)

where Oos is free énérgy ﬁér unit area qfvthe iiquid—capillary wall inter-
face, Azs is the area of capillary wall in contact.vith the bulk liquid,
and.czv and Aév.are corresponding terms for the liquid=-vapor interface.
The'expression for the fugacity variation of a component of an ideal
‘solution, if the components do not selectively wet the Eapillary walls,

is then - |

RT 1n £/f) = 0, AY, _ + (1k)
1 S

t
L8 Lsi UQVA 2vi
 where the subscripts i added to the designations of areas indicate that
. the areas are those portions of the total areas that can bevassigned.to
component i and the primes indicate that the areas are areas per mole of

solution. N
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The effect of wall interactions on vapor pressure when the area of
wall in contact with ﬁhe liquid becomes large relative to the volume of
liquid is important enough and complex enough se that I will make it the
subject of a separate paper; Here i will only discuss implications of
Eq. (1k) when the liquid in the capillary is in equilibrium with a large
reservoir of the liquid.

The value of 0, must always be positive. Otherwise subdivision of

Lv
condensed phases would lead to increased stability, a result that 1s con-

trary both to experimental observation and theoretical calculations from

23,26 If o, 1is also positive, the effect of

models of chemical bonding. s

introducing a cepillary'tUbe into a reservoir of liguid is to raise.its
Vapor pressure; if'ORé ie negative then introducing a capilléry will
lower the vapor pressure. The extent of vapor pressure 1owering depends
npon the sQlid-liquid inteffacial energy and the solid-liquid inter-
facial erea. Fof the'present discussion fhe important point is that in
Eq. (14), A’ meane area per mole of solution and when the number of
'moleculesvin the reservoir is‘large, the wvapor pressufe-variations pre-
dicted by Eq. (14) become small in comparison with.fhe prediction of the
Kelvin equation.

An experiment of Thom_éie7

6,17

which has been accepted as a confirmation
of the Kelvin equation, is faulty in assuming that the vapor pressufe
in a capillary is independenf of influence by a'large reservoir to which
the capiilaryvie eonneeted.
Thgmé attempted te measure the expected_very.small pressure dif-

ference between the vapor in equilibrium with isovaleric acid in a

capillary and the vapor in equilibrium with a plane surface of isovaleric
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acid held at the same height. Figure 1 is a scheﬁatic drawing of his
apparatus. He determiped differences in pressure betweeﬁ the chambers
of a manometer connected to a vessel (A) that contained a central capil-
léry:séétion aﬁd to a'second veésel (B) of.constant, larger diameter
from'oBéervatiOns of the deflection of a thin membrane that separated
the manometer chambers. Wide diameter chambers above and below the
capillary séction'of'veésel A permitted null feadings to be made with
surfaces.éf similar area brought to the same height in each vessel. The
light iﬁterferente.tgchnique that Thoms. employed had a-sensitivity'of
2510710 atm pressure per interference band.

If, as Thoma Believed, the liquias in his two vessels came to
equilibrium with vapors at the same . temperature, 5ut with a pressure
difference that feflected 6nly the curﬁature of the capillary meniscus,
thé law of_conservafion qf.energy would be violated. Suppose the liquid
reserVoifs were connectea, the level would then rise in the capillary.
The vapor'pressuré aifferences in vesseis A and B then should be due to
the éum of tﬁe Keivih énd:gravitational éffécts. The gravitational
effect balances in the two chémbers (see below). But if the membrane in
the manometer wére pierced; a turbine in the aperature’could be poﬁered

'by the vapor flow maintained by the Kelvin pressure difference.

‘Thomd's results must.aiéo,be questioned as experimentally faulty.
Hié témperaturé'control was too crude'td permit him to isolate fressure
variations of the magnitude predicted ﬁy the Kelvin equétion from varia—
tionSvdﬁe to fluctuatibns‘in temperature during measﬁrgment.  The pre-—
sure differences that hgvmeaéurédeere_of the‘order of 1 to 3x10-9 atm.

Yet he reﬁorts temperatures only to 0.1°C and records temperathre
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differences between his thermostat water and air of 0.5°C during measure-
ments. The temperature need only have varied by 0.01°C to cause vapor

pressure varigtions of more than 10-8 atm for isovaleric acid at the

- temperature of his experiments.

A’straightfprward anaiyéis of the thermodynamic effect of gravity
shows that tﬁere is a vapor pressure decrease as a conséquence of the
rise of a liquid in a'capilléry, and this decrease is almost exactly that
pfedicted by the Kelvin equation. This well known fact has quite
naturally been viewéd as a confirmation of the validity of the corcept
that concave liquidlsurfaces have lower vapor pressures than flat sur-
faces. But as Thgmé recognized in the désign of his experimeﬁt, the
Young-Laplécé-Kelvin theory asserts thaﬁ curvature alﬁers the vapor

pressure from that of a plane surface after any effect of gravity has

‘been corrected for. When the effect of gravity on fugacity is taken into

éccount there is no effect left to attribute to curvature of the méniscus.
The difference in fugacity that is calculated between the level of

the meniscus in a capillary and the level of the surface of a reservoir

into which the capiliary is inserted does not occur sharply across the

meniscus as conceived in the Young-Laplace-Kelvin eguation. The dif-
ference is a function'onlxuof the effect of gravity in changing the
fugacity with height and the fugacity change is a monotonic function of

height that is identical for a vapor and for the liquid with which the

. vapor is in equilibrium, whether the liquid is raised by capillafy.action

or by some other means. A comparison of the free energy changes when a
liquid‘at height zero is converted to vapor at height h by different

paths shows the correctness of these assertions.
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The ffee energy chenge when:a mole of liquid in a large reservoir
is»converted to the”equilibrium vapor at.heighf h by vaporizing the
| liquid reversiblj at heighf zero and then raising the vapor,to‘height h
is:AG, =”A¢V_+_Mgh + VAP = O,'whereva'is the free energy.df vaporiza-
tion; M is'the mass of a mole of fhe_vapor; and.g_is the acceleration of
_ gravity.QQ For a vapor at low pressure VdP = RTd 1n f so VAP = RT 1n
f /f where fh and f are the fugac1t1es at helghts h and zero. . For the
equllibrlum process, AG =0, and therefore Mgh = - RT 1n f /f . |
‘The‘freevenergy'Changﬁ when a mole of ligquid is raised reversibly
from>the reservoir up the‘capilléry\and vaporized at height h is AG, =
Mgh +‘VAP:f AGE, where AGivrepresents the free energy of vaporizétion
throﬁgh.thevcurved’meniSCUS.. If the entire reservoir is raised to
height h and allowedrtoeveporize at thaf height, the free energy change
' pef mole is AGs = Mgh + VAP‘+-AG3, where AG% is its free energy of
vaporizaﬁibﬁ:af height h. ?ut sinee the free energy content is a func-—
tion only of state, AGi = AG - AGs = 0. Now for the liquid in either
the capillary or in the elevated reservoir dp = ;'%5 dh where V, is the
iiquid volume. Then Mgah.?'VQP, that is the changezin free energy with
height cancels that with pressure, as it did for the-vaper.zo But the
overail_change must be the same as‘fervthe first process, so that
AGs = AG =-O° there is no difference betﬁeen the free eﬁergy of Vépori—
zatlon through a. curved menlecus and that through a plane surface.
There 1s.no difference .of fugacity between the. equlllbrlum llquldlgust
" under the meniscus- fz, and of the vapor just oVer it,_fv, since AGV =
0 =RT 1n fv/fQ’

N
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The numerical identities that have in the past’led to the belief
that the Kelvin equation is proved by capillary rise are: (A) RT 1n

fh/fO = Mvgh = Mlgh, whergogv = Mg are masses of one mole of vapor or

liquid, and (B) ApghVR == where Ap is the difference in density be-

tween the fluids below'and above the meniscus, and Vl is the molar volume
of the lewer fluid. This second relationship is that obtained by mul-
tiplying both sides of the Laﬁlace equation, Eq. (la) by VR and setting
R1 = Ra.

Identity (A) showsfthe change in fugacity with height when a mole

of either a vapor or liquid is raised in a gravitational field. identity

(B) gives the relationship between gravitational and surface energies

when a liquid has risen to its equilibrium height in a capillary.

Usually the upper fluid is aif plus the vapor of the liquid below the

20V
n 29V
and RT 1n fh/fO = =

meniscus, and then ApVZ is approximetely MQ’

But if the density of the upper fluid is not negligible, as for two

nearly immiscible liquids, the‘Valuevof Ale can be much less than MZ'
' 20V

For sueh cases RT 1n fh/fo and are not eveh approximately egual.

r
The principal poihts that I have tried to stress in this discussion

of the non-applicability of the Kelvin equation in capillaries can now be

summarized. The Kelvin equation as used for capillaries assumes that any

‘vapor pressure change depends on the solid-liquid surface interaction

only through the contact angle aﬁd is independent of the volume of liguid
with which the liquidvin the capillary may be in equilibrium. These
assumptions are iﬁconsistent with the view accepted in'other aéplications
of thermodynamics, thatvfugacity, and therefore partial pressures, are

measures of an average escaping tendency of all molecules of a particular
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kind which are at equilibrium} Two capillary solid materials could meet
a li@ﬁid ﬁith the same contact angie, but &et bond it at the liquid-solid
interfaée with.different freefeheréiés. And the avérage escaping tén—
dency should.clearly be altered by charge in the numbers of atoms neaf
surfaces relative to ﬁhévnumbér in the bulk.

When afliquid rises in a capillary there is a vapor pressure de-
crease between the level of the reservoir and the capillary surface which
is often interpreted as canfirming the prediction of the Kelvin equation.
But fhisvdecrease is due purely to a monotonic,efféctvof gravity and not
to:the'abrupt drop in pressure thfoﬁgh the curved meniscﬁs which is en~-
visioned in the Young-Laplace-Kelvin theory*és"applied in other connec-
tions. Fufthermore, even the apparent agreemeﬁt‘disappears 1f the
density of the vapor phase 1s not negligible; tﬁe Kelvin equation pre-
vdicts a dependence on the difference in densities between liquid and
vapor phases, While the,gravitatiohal effect that actually»alters the
pressure depénds~on the mass Qf‘ﬁblecules_raised to height h. .(An effect
of gas pressure on vépor pressure of liquid28 in both the capillary and
feservoir should nearly cancel and can be neglécﬁed.)

FREE ENERGY MINIMIZATION AS THE DETERMINANT
OF SHAPE AND CAPILLARY RISE

Direct aﬁplication of the Lapléce eqﬁation (Eqs; (1), (la) and (1b))
has, unlike use of the Kelvin equation, apparently notuled.to predictions
‘that violate experience orrthe iaws:of thermodynamiés; Iﬁs original form,
Eq. (1), is onlj.applied in practice'to discussions of bubbles, for which
it can be shown to be a consequence of the laws of thermodynamics. |

Equation (1) is applied to drops only as a step in justifying use of the

:-li
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Kelvin equation and for calculation of a presumed compressive force due
to surface tension, whose existence so far apparently cannot be confirmed
or disprovedlby experiment.

For discussions of the shapes of drops or vapor filled cavities in

- gravitational fields, and of capillary rise or fall, the assumed

pressure'arop through curvedbsurfaces_does not enter the expression that
is actually used (see Eq. (1la)).

The problem is that the theory-of Young and Laplace has directed
attention away from the solid-liquid interfacial interaction. Their
attitude-;one thatvstill dominétes fhe literature of capillarity--is
illustrated by a passage from Laplace which was gquoted by Young,go who
obviously agreed:

"Since it has been hitherto uéual with natural philosophers, to con-—
sider the concavity and convexity of the surfaces of fluids in caﬁillary
spaces, as a secondary effect of capillary attraction only, and not as
the priﬁcipal cause of phenomena of this kind, they have not attached
much impoftance to the determination of the curvature of these surfaces.
But the theory, ﬁhich has been here advanced, having shown that all these
phenomeﬁa depend principélly on the cufvature, it becomes of consequence
to eiamine it." |

The earlier natural philosophers were right to consider surface
shape a sécondary effect of capillary attraction. It is the liquid—solid
interactions that detérmine Whether a liquid will rise or fall in a

capillary as will be'demonstréted in this section of the paper. The

important point in recognizing this fact is that it opens the way to

analysis of more complex problems in capillarity than is possible when
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surface éufvature is viewed as the determinant rather than simply as one
conseguence of capillary phenomena.

| Th§ correct rélationshibs between shape and surface tension follow
directiy:from_minimizétion of the free energy of a system at conétant
fressuie, temperature, and volume‘(i.e.,_at constant pi) for the con-
densed phases prgsent, and‘no pressure drop across curved interfaces
need be invoked to obtéin'the e;pgrimentally'dbéerved shapes.

‘The arguménts are well known fof particiés in the absence of a
significaﬁt gravitational field and only the résults need be summarized
heref Thé ffeegnergy for a-ﬁiﬁgle component or ideal sqlution condensed

phase particle of fixed volume is a minimum when the total surface free

energy is a minimum. The figure is then bounded by Gibbs-Wulff surfaces,

,Which.obey the relationship

Za . i
L, I )

‘as defined for Eqg. (7).6’8 In the special case of an isotropic liquid,

U is independent of orientation and the minimum free_ehergy is obtained

for sphericai'particles._ Cavities in a condensed phase have minimum free
enérgies for any givén volume when they are bounded by the same surfaces
that would bound a small crystallite of the condensed phase.8

3 N |

Collins and Cooke-T have demonstrated that minimization of the

- gravitational and surface free energies'for two fluids each held aﬁ con- .
stant volume leads to Eq. (la) when the fluid surfaces are symmetricdal

- @bout the vertical axis. The authors state that the same result can be
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obtained for a system of more. general gecmetry.

Schﬁaftz and Minor32 have discussed the effect of foreign surfaces
in reducing surface free energy. O'Brien, Craig and Peyton33 have
derived an expression for capiilary rise between two dissimilar parallel
plates, and have obtained experimental results in good accord with their
predictionsr |

Here T will give derivations for cylindrical capillaries and for
two ideﬁtical plates. For such systems it is easy to include the effect
of the meniscus which O'Brien, Craig, and Peyton'were forced to neglect.
Because the physical arguments are éomewhat different for zero contact
angles than for finite contact angies, I Will_discuss'these two cases
separately.

Suppose a liquid wets a surface with a contact angle of 0° and rises
to an average height h at the point of tangency of its meniscus with the

walls. The relationship between the contact angle of a meniscus and a

‘wall are given by Young's'eqUatioh,l g _ =~0 ,=20 cos 6§, where the

sV sf v
subscripts identify surface tension at thersolid—vapor, solid-liguid,
and liqdid—vapor interfaces and 0 is the éontact angle. Young's equation,
although originally derived from Young's ideas about surface tension,
has been shown to be ancther conseQuence of minimization of free energy
31

at constant volume of the phases in contact.™™

When OS -0

N . . .
v o4 sz, a film of liquid completely wets the entire

surface of the wall above the meniscus and cos 6 = 1. If the liquid film
were to completely cover the surface of a solid of arbitrary form but the

liquid were to remain at the same level adjacent to this surface as in a

- large reservoir into which the solid surface is inserted, the free energy
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of the system, including ﬁhe solid surface and vapor phase, would be re-—
duced by (osv -0 - GRV)AT where A, 1S'the total area of the solid
surface,

Tﬁé free enérgy of the system can be reduced by an additional amount
AGh,if the liquid level riseé to heign;h.ét the: average point of tan-

, gency with the walls. Then

' AGh =g, (A ~A —1) + bpg(V.h_ - V h')
whefe'Am is the are; of the meniscus, A is the area of the cépillary
walls between the level;qf the reservoir and h, Aé is the area of reser—
vﬁir surféce enclosed'by the capillary, Vh~is the volume enclose@ by the

" capillary between fhe level of the reservoir and the line of tangency of
the meniscﬁs; h.c is the height of the centroid that a‘body of uniform
density would have if if occupied the volume V_, Vm is the volume;eﬁclosed
by the mehiscus and a plane through the line of tangency of thé meniscus
with the walls, and h' is the height of the centroid of Vm. So far this
expression is perfectly general. It is valid, for example, for capil-
laries of_varying crdsswsection or pairs of plates that may be set at
variablé-distances apart or tilted. Before the height at which the
liquid column equilibrates can be calculated, the geometry of the system
of intérest,must be specified.

For the particular case of a cylindrical capillary titled at én

angle ¢ from the vertical

o __ {, _2mn NS S \
AGh B szv(Am T cos ¢ Ao) * Aee (2 cos ¢ th')

o
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But the meniscus in a cylindrical capillary has the form of a hemisphere
when the capiliary radius r is small compared to h and the form of half
of an oblate spheroid for larger radii.Bh Neither the volume nor the
area of the meniscus will be much changed when the capillary is tilted,
and both g and 0 show negligible variation with h. The centroid for

half of an oblate spheroid lies on the minor axis at cg;°¢ where ¢ is a

constant independent of h. And at equilibrium

but Vm = 2/3 ﬂrzb, where b is the length of the semi-axis perpendicular

to the plane of meniscus tangency. Accordingly,
20/Apg = r(h-2b/3) , ' (15)

This expression isiexact except for lower order corrections due to
possible small deviations of ﬁhe meniscusishape from the form of an
oblaté spheroid and to dependence of the meniscus shape on ¢. The height -
to which the liqﬁia rises.is almost independent of angle of tilt.

For a Veftical capillary a more pracfically useful expression can be
obtained by rewriting Eq. (15) in terms of the Height to the base of the
meniscus hm and by expressing b as a function of hm and r. Now
h - 2b/3 - hm + b/?,and according to Lord Rayleigh,35 when the meniscus
has the shape of an oblate spheroid b = Apghmrz/gc. So Eq. (15) becomes‘

20(Apg = rhm(l + Apgr?/60), which is a quadratic that can be expanded to
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20/Apg = r(h + v/3 - 0.111r%/n_ + 0.0741 r*/n?) (16)

Lord»Rayleigh believed thié~expre$sion to be a iess'exact expreésion
than alternate expfessions that he derived, but Eriksonsh recently -
demonstraied that the theoreticaliyfpredicted forms of meniscuses36 are
more closely approximated byeoblate sphefoids than by approximations

~ generated by Lord Rayleigh or earlier investj.gatore;3ll Equation (16),
therefere, should be the mest exact feur term expression that has been
formulatedvfer 0 as a function of r and h .

' The'deriﬁation of an expression for the capillery depfession,of.a
liquid fhat has a contact angle of 180° with the capillary ﬁall is
similar in concept and leads.to an identical expreséion.e%cept for.a
change in sign. The derivation for li@uids thaf have intermediatevcon—
tact angles ﬁiﬁﬁ'the walls requires a slightly differeﬁt starting point.

Suppose a liquid that rises to height h in a capillary of radius r
meets the wall at a contact angle 6. There is now no liquid film above

the point of meniscus contact. For such a system

BAGh

—ah :O:—(o’s -

= Oga)em ¢ Bs (e - )

But o, -0 , =g, cos 6, and if we assume the meniscus is approxi-
, sV sg v ) TEOEEES

mated by a spherical cap of height b and radiﬁs of curvature R B
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‘meniscus tangency ih the non-uniform capillary.
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20 cos O _ R?p . bl
Aog th == % 3% (a7)

The approach that has been illustrated here for cylindrical capil-
laries can, of course, be used for any shapes. For example, for rise

or fall of a liguid between parallel vertical plates, we obtain

20 ¢os O _ db
Log =hd -~ (18)

where d.is the distance of separation of the plates and where the crosé
sectional areavof the volume.bounded by the meniscus and a horizontal
plane at h is assuméd to be an ellipse of minor semiaxis b.

The usual explanation of fhé equation for capillary rise for
capillaries of uniform cross section in terms of the Young-Laplace-Kelvin
theory is that the wéight of liquid above the reservoir surface is
exactly that which can be supported by the vertical component of the sur-

face tension multiplied by the length of wall with which the meniscus is

in contact.;2 Such an.explanation is difficult to reconéile with the

experimental observation that in a capillary of non-uniform cross section
the liquid level rises to the same height that it would in a capillary of
uniform bore and a radius equal to that of the capillary at the point of
| 37 :

Obviously the weight
of liquid in the non-uniform capillary may be very different from that

in the uniform capillary.
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The revised theory expléins the eﬁperimental-dbservation readily.
An increase in height fr6m.h'to h + dh decreases the surface energy by
2nrgdh and requiresrthe work against gravity Apghﬂrzdh.and, neglecting
thensécond Order correction for thevmeniscﬁs, the liquid rises or falls
uﬁtil these quantities ére eqﬁal regardless of their relative.values at
sﬁaller absolﬁte values of‘h. Séiggf=Apgh, which is the usual first
order eﬁpreséion for capillary rise. It ié interesting to note that the
revised thebry predicts that a liquid will rise indefinitely in a ﬁapered
radially symmetric capi;lafy With‘the»diménsiQns_restriction at every

‘height h so that rh.< 20Ag;2 e’or'between_two curved plates which are

parallel in every"hprizontal plape when dh < ggjﬁgi—g}
IMPLICATIONS OF THE NEW THEORY

The hew theory leads to fhe same expreésion for the dependence of
vapor pressure‘on radius of drops as given by the Kelvin equation, but
shows this to bé a consequence of a depehdence of vapor pressure on the
fatio of surface area fo volume-which,applieS~tb small particles with
either plane or curved surfaces. The néw théory predicts.vapor pressure
increaseé inside bubbles ﬁnd vapor filled cavities while the oldvpre—
dicted decreasés. The new theory agrees with the oid in predicting de-
creased vafof pressuréé for liQuids that shoﬁ'concave méniscuses ip.
capillaries but relates this decrease to the liquid;solid aﬁa liqﬁid-
vapor surface areés rather than to curvatufe of the meniscus and asserts
that tﬁe volume of liquid at equilibriumVﬁith the liéuid-in the qapillary
will infiuence_its vépor pressure, h |

"The new theoryvieads to-essentially the same exprgssions forv

capillary rise ahd for shapes of fluid surfaces as the old, but the new

A |
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theory makes possible analyses of more complex systems than could be
underétood'by application of the Young-Laplace-Kelvin theory. The cen-

tral concept of the YQung—Laplace—Kelvin theory, that surface curvature

is a cause of capillary phenomena rather than merely one consequence, has

‘misdirected attention away from the liquid-solid surface interactions

that are the primary determinants of éapillary'behavior. O'Brien, et
al.33 have’already demonstrated that, by taking into account the dif-
ferent specific surface free energies, they can predict capillafy rise
between dissimilar plates. The simple theory presented here can easily
be extended to predict beﬁavior of immiscible liquids in capillaries and
the behaNior of liquids in pores of complex shapes. Experimental studies
of these more canplex systems will certainly be stimulated by the avail-
ability of a sound basis for their theoretical analysis.

It.would be unfortunate if the Young-Laplace-Kelvin theory is dis-—
placed only in ﬁhose areas-for Wﬁich it clearly leads to wrong conclu-
sions. Exéept for fhe special case of ﬁubbles, for which the balance
between the inside and oﬁtside total gas pressures and surface free
energy is easily understood in conventional thermodynamic terms, the
basic premise of a pressure drop through a curved surface 1s wrong.
Surface curvature, when it occurs, is simply one consequence of the
minimization of total free energy in terms of the surface area and other
conventional.thermodYHamic variables.
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Fi\g 1. Schematic drawing of the apparatus for testing the Kelvin equa.tlon .
~ for caplllarles (See Ref. 27.)
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LEGAL NOTICE

This report was prepared as an account of Government sponsored work.
Neither the United States, nor the Commission, nor any person acting on
behalf of the Commission:

A. Makes any warranty or representation, expressed or implied, with
respect to the accuracy, completeness, or usefulness of the informa-
tion contained in this report, or that the use of any information,
apparatus, method, or process disclosed in this report may not in-
fringe privately owned rights; or

B. Assumes any liabilities with respect to the use of, or for damages
resulting from the use of any information, apparatus, method, or
process disclosed in this report.

As used in the above, "'person acting on behalf of the Commission”
includes any employee or contractor of the Commission, or employee of
such contractor, to the extent that such employee or contractor of the
Commission, or employee of such contractor prepares, disseminates, or pro-
vides access to, any information pursuant to his employment or contract
with the Commission, or his employment with such contractor.
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