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ABSTRACT

‘The consequences of spheroidal deformation of nuclei on the barrier trans-
‘mission in alpha decay are c‘onsid_er-"ed. A set of coupled differential equations
is derived relating the amplitudes of the various groups of alpha particles
emitted from a nucleus described by the Bohr-Mottelson model. The cases of
the decay of ,..I,"hZZS ahd .Cm‘242 were studied numerically and from them infor-
mation regarding the probability distribution of alpha particles on the nuclear
sphero’idai s.urfgce is obtained. It is found that the one-body model of an alpha
particle in a well doeé not yield these distributions, and it'is thus concluded that
-Malpha-particle clusters' have a short mean-free path in nuclear matter. - The

228 am:l»CrnZ"]t2 may be explained qualita-

shift in the surface distributions of Th
tively in terms of the order of nucleon orbital filling.

. The overall penetration factors for the spheroidal case are compared with
those for the spherical case and the resultant enhancement due to the deforma-

tion is not nearly as lérge as that predicted by Hill and Wheeler on the basis of

a one-~dimensional approximation.,

* )
~ Present address: General Electric Research Laboratory, Schenectady, N.Y.
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Alpha Decay of Spheroidal Nuclei
John O. Rasmussen
Radiation Laboratory and Department of Chemistry
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and
Benjamin Segall*
Radiation Laboratory
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Octcber 7, 1955
INTRODUC TION

‘Recently an impressive amount of data have been afnassed demonstrating
the existence of rotational spectra in regions far removed from closed-shell
coniigufations.l The existence of such level schemes is predicted by the Bohr-
Movt:telso;n2 strong-coupling model of the nucleus in which it is assumed that the
pucleus has an appreciable spheroidal deformatijon.

In the region of heavy nuclei (A S 230) where alpha decay is generally a
.pr';)minent mode of decay the rotational bands are partiéula,rly well developed,
and some cases of alpha vemisv.sion by eve_n—'e"ven nucléi to members of the
rotational band as high as the. 8+ level have been observed, 3 Alpha decay of
‘even-even nuclei to states other than the rotational band members has been
observed only in the case of a few nuclides.

One of the most cbnspicuc;us features of the recent data involves the varia-
tion between nuclei of thé relative intensities of the various alpha groups.
Asal,ro4 has calculated ""hindrance" factors for all alpha .groups, where the

hindrance factor is -defined as the ratio of the intensity of the alpha group leading

% : o :
Present address: General Electric Research Laboratory, Schenectady, N. Y.
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to the ground state to the intensity of the alpha particles leading to the particu-
lar excited state, corrected fgr the ene rgy difference between the states. . For
the energy dependence of the decay rate he u_s‘ed Pr,estdn'ss' alpha-decay formula
(for no spin .changeé)). -Figure 1, which is due to Asaro, Summarizes the data.
It is to be expected that the occurrence of large épheroidal deformations
will have pronouﬁced effects on‘_thé process of charged-particle emission.
In contrast to the case of spherical nuclei the electrostatic field of a spheroid
is not central. The coupling resulting from the non-central nature of the field
will have a bearing on the relativé amplitudes of particles emitted with differ-
ent orbital angular momenta. It is one of the purposes of thisnofe to see whether
it is possible to explain the values and trends for the hn-'indrance factors of the
L =2 and L. = 4 waves in.the decay of even-even nucleiiin terms of the non-
central electrostatic field. |
Another cons,eqtience of the distortion of the nqdeu’s, earlier explofed by
"Hill and Wheeler, 7 is a thinning out of the potential barrier in certain direc-
tions leading to directed alpha emission in those directions. They gave an
approximate expression for the penetrability based on a one-dimensional WKB
'integfatio}i through the "thinnest" part of the barrier., It is to be noted though
that if the decay is highly directional"‘wi_th_respect to the nuclear symmetry
‘axis, it is necessary that components of the alpha waves with high L va]lue_sg
occur with iarge amplitudes. These would be the components leading to the
higher rotational states. Since these édm_ponents experience a much larger
e_ffeétive potential t?n.an thé_ S-»wav-e due to the centrifugal potential and the
-additional energy'associated with rotation of the recoil nuc.leus, orie might
expect significant deviations from the penetration formula of Hill and Whee]ler7

based on a one-dimensional WKB integration through the thinnest part of the
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barrier. In the final section of this note are calculated the total barrier pene-
trabilities for ‘C_rn242 and T.h228.

In the next section we derive the general equations governing alpha decay
to a rotational band of the daughter nucleus. In the section following this
equations for decay from an even-even nucleus are formulated in prolate
spheroidal 'cdordinates, and these equations serve as the basis for the subse-

‘quent exploratory numerical work.

FORMULATION OF THE ALPHA-DECAY PROCESS

‘To formulate the problem of alpha decay in.the region external to the nuclear
surface it is necessary to take into account the electrostatic interaction b'et&een
the alpha particle and the residual nucleus. The first question to be s\.et\tled is
which degrees of freedom of the nucleus are required for an appropriate
-description of the proce‘ss. In the case of a spherical daughter nucleus it is
easy to see that it is unnecessary to consider the Coulomb interaction between
the al‘pha particle and the protons individually as this force is very much
smaller than nuclear forces. It t};us suffices to consider only the interaction
of the alpha pa_rticlé with the nucleus as a whole, and the appropriate nuclear
coordinates are those of the center of mass of the system. In the case of a
deformed nucleus the interaction between the alpha particle and the quadru=
pole field of the ﬁucleus is not small compared to the énergy characterizing
rotation. Here it is necessary to include 1n the description of the process
the rotational coordinates of the nucleus. Expressing it alternatively, it is
necessary to include in the total wave function the low-lying rotational states.
The emitted alpha particle can then be thought to induce transitions between |

the rotational s,tatés through the quadrupole component of the field.
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In general the Schrddinger equation for.the system can be reduced to a
system of coupled equations in the variable r fby exp_andi‘n’g the wave function in

terms of some complete orthogonal set of functions in the remaining variables:

Y= SREO 0.0 )
where x; is the set of variables required to describe the recoil nucleus.
Multiplication by Q_i and integration over all variébles except r reduces
the partial differential equation to a set of ordinary differential equations in r
{cf. Prestong). QY can'be"ekpanded in terms of product's" of eigenfunctions of
the residual nucleus and normalized sp;h.erical harmonichB’ m(e, g ) in the
angles of the alpha particle with respect to axes fixed in space. The set ‘
necessary to describe the decay process is limited by the constraints that the

angular momentum of the parent nucleus I1 and its space pr'oje«:t‘:ion.Mi be

conserved. The constraints are satisfied by the sumrnation1

@IIizMi = ‘X.(If 4 m Mi-'m|'1[1f LI Ml) X”if M.-m‘xim,m(e»m 2)
m. 5 .

where (If g m Mi-=rh |If JA Ii Mi) are the.ClebschaGbi‘dan coeffiéients, and

T . . .
X I (xi) is a normalized nuclear wave function for a state with angular
“f M-mic o ' '

momentum If, component Mf, and with remaining quantum numbers 7.

. The set of equations obtaiqed from (1) and (2) will contain coupling terrﬁs
the strength of which will depend on the magnitude of the electric trarisition
moments connecting the nuciear"states inyolved. The outstanding examples of
large electric moments between nuclear states are thése resulting in the "fast!
electric quadrupole transitions between members of a rotational band. Thus,
we see that the 1_ow rotational bands, both because their me mbers constitute

the low-lying nuclear states and because band members are connected by
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large matrix elements, are the appropriate nuclear states for our problem. We
shall in the following restrict ourselves to the decay to the states of one band.

. For explicit nuclear wave functions we turn to the recent work of Bohr and
I\/I(:n;t‘elsx:;vn1 in which nuclear motion is ap'g‘roximately separated into "'rotational®’
and "intrinsic parts. In the Bohr-Mottelson model of strongly deformed
nuclei the rapid individual particle motion is thought to take place in a de-
formed nuclear field (or well) which rotates nearly adiabatically. The deformed
nuclear field is taken to have axial symmetry, although there may be ca.se.s
where this is not true‘,11 The wave function for the nucleus then approximately
factors (apart from a symmetrization) into

b

T _ QIF*/ (3)
XI;M,:K,:—— T L) D (@L) 8’”7' '

where jJ (3{!) is the state of the particle structure, Si! being the coordinates

of partmles with respect to a frame of reference fixed in the nucleus, and

2%&'*‘&_ >/2. D 215 the normahzed stete of rotation (or wave function for
a Syr:gnetmcal top) havmg as arguments the Eulerian angles i" K, denotes the
projection of the angular momentum of nucleus, If, on the symmetry axis, and

is in this model an approximate constant of the motion. 7 represents all the

quantum numbers specifying the intrinsic state. The Hamiltonian of which

(3) is an eigenfunction is

Hfmcl H (7‘) + HROT(@) 4

where H ((x')) is the energy operator for the individual particles in the deformed
well and H ro Q)is the rotational energy operator which gives rise to a spectrum

of the form

= e/t 1)
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S is interpreted as a moment of i‘nertiay-a_n_d is for the irrotational fluid approxima-
tion proportional to the .square of the deformation.

To obtain the complete Hamiltonian for thev‘allpha_ decay problem in the center
‘of mass system we add to (4) the energy operator fof the alpha particle in the

region outside the short range nuclear force field:
Ha = (B°/2ma+ v, @) . (5)

: Ihe inclusion of @i; in the electrostatic energy indicates that the field at a
point in the space‘-_-'fivxed system varies as the daughter nucleus r‘otat'eq. u is
the reduced mass of the system.

A consequence qf the assumption that the nuclear well is axially symmetric
is that the nucleons within the nuicleus have an axially symmetric distributiop.
Th_i:s w,ﬂl. reflect itvs‘elf in'a corresponding symmetfy for the alpha particles on
the surface. To incorporate this symmetry into our formulation of the
problem and also to efféct a simplification of the electrostatic intéraction.
we shéll consider the description of the process in a system &f éoordina’tes
fixed in the:daughter nucleus, fi.ﬁg;—; with the: nuclear synimetfy_ axis ‘taken

fo:be the polar axis. . Weithenm:expand the wave function of the system as

' ﬂ__ Ii M v‘ | :
V= (Z, r wy (1) TK,R ;e | | .

~ where W e W'hen r -* 00
£, m . o .

3

- B
TMM B, ') (BEH) g £8) Y, o)

and (r, 8', §') are the spheric‘al polar coordinates in the new system.
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That (7) has the proper transformation properties (i.e., represents a
state with angular momentum L and component Mi) and contains the rotational
states of the daughter nucleus can be demonstrated by transforming to space-
fixed coordinates {(r, 8, ﬁ). For this purpose, we make use of the transformation

properties of the spherical harmonics

1N 2 ' < mim .?
Yﬂ, 6,9)= % Dm,n(@)ﬂm(,w)_-%(-) DW(Q' Y/W)
and the; ClébSCh=G°rdan expansion for the-D's |

0 T, k-t . ‘ (9)
ngg;) D (@)_2 (54 M, -m{T 4T, Miom)(Eil Kom -H|TAL K,

o T el X D*‘(@,Z

TK;ﬁm = () (2§‘1}2') Z() (T2 kom T AT, K, -
XZ(‘ (LQM' -M"IVQIF —m) D4 ;K (®L \(Qw(em

—-Q,.qu Z( "Ik (5 4 Kem m| T Ty &)

XZau M-t | Te £ T, M M)RZELE D (@) Y, (69)

In the above ‘well -known propert1es of Clebsch-Gordan coefficm,énkg u,nder

m.nterchange of indices were employed. From (2) and (3), we can immediately

see that
T M; +L~T; r I ML)
Ty, ~—-Z<> (IJKgm-m[IQI; )@
KeXm; T I Kl T
. ’ Ip M , ¥ f b
and hence from (2) that l has the proper transformation properties

Kdm ;7
and generally contains a mixture of rotatlonal states of the daughter nucleus.
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To obtain the differe-n':ti'al equations for W/z g) we sﬁbstitute {6) in the com-
LM *
Ked! vn 'r

plete SchrBdinger equation, multiply by -and integrate over all

the independent variables. except r. We get

N " W) - 4puZer
[é{-»+ f(E-Eng) = 24— 2L w0

B 5 o ) - Bl i

where. E , K¢ merely determines the arbitrary zero of energy. Since the

(12)

states in general contain more than one member of a nuclear rotational band,
the nuclear rotational energy operator 1s not necessarily diagonal in the 1

representation. The matrix elements of H may be readily evaluated with

rot.

the aid of the expansion (l1l1) and the relationship

thatis,Hmt ijlf'(; 23 f f ) '.I;Kfl,"l‘_

u:m'lH;.t\n*.m)——-;z—z—S T
Y (T; ' Ketm-me| T 4 T Ke ) (T ¢ K -m{T AT )

The electrostatic interaction experienced by the alpha particle, though rather
complicated in the space-fixed sYstem', is in the body-fixed system merely the
charge on the a‘ipha particle times the electrostatic field of the stationary de-

formed nucleus. If we make the usual multipole expaﬁtisfo_n,v is given by

;ZeonPz(tm.s o)

V= (2ze%/r) + ).,

where Q, is the intrinsic quadrupole moment of the nucleus {the quadrupole

moment with respect to the nuclear symmetry axis). With the relation
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* _ |
§Yﬂ~'m(9,¢) BJ“S 6) ﬂ_,m(eﬂ) dw = CW( Lm|ew)

‘where the C(k»um |4'm) are defined and tabulated by Condon and Shortley, 12

the matrix elements of electrostatic energy can be readily evaluated.
. Equatlon (12) then becomes ' - |
oze™ _ f(f+) |
[3%1 + 5 (E-Eny- =5 2ze) - A5 Yam (™
m-m’ (15)
- “Z “, m«n( LA K w| T TR L {54 T
- 2L 08 Suw 0 CP(Ume'm) =0

>
®* e
For even-even type alpha emitters, where Ii = Kf = 0, equation (15) reduces

to a form derived earlierg’ 13

[ag% -+ %(E—ET,K;“ —2;5—{)—» (-—% )f(ﬂ'ﬁ")] W, -

2k et ST, 0 CPpoleo) =0
’01

(16)

R
- We now retgrn to the question of the approximate conservation of angular
~momentum about the symmetry axis and the related question of the axial
sfmmetry of the alpila distribution. As mentioned above, the distribution of
alpha particles on the nuclear surface is axially symmetric; that is, on the
sur’fax_ce,WJ(;lrAK # 0-only ‘Whe_:re AK = K, - Kf

the electrostatic potential has no off-diagonal ei'.ements in m. The only

It is to be noted from (15) that

mixing in of components with m # AK results from. Hrot, . Thés mixing is
probébly small in‘ the region of large-nuclea}r deformation. Such coupling is
in effect ignored by Bohr, Fr8man, énd Mottelson14 when they relate the
rotational alpha group intensities betwe'en odd :and even-even nuclei,

14,15

The favored alpha decay transitions in which the odd nucleon wave
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function remains .essenti;.ﬂy unalte,red_ are an-alogo_;.l‘s. tb decay from an even-
even nucleus. From this analogy and equ.étiion (1) with m = 0 and K, é-Ki
(the favored transition) one can obtain for the relative redu_c‘éd transition
probébiliti:es,for alpha decay of a given orbital angular momentum to the
various possible rotational states
B = | (LgK.0(L4LK) 2
L1g A el | iy B A

which is the relation o6f Bohr, Fr&man, and Mottelson. 14

~THE D‘E.CAY_.EQU‘AT.'IQNS) IN -SPHER'OI?DAL COORDINATES

There are two procedures that one could follow in treating é.lpha’ dec‘a,y.-
In the first, the decay equations are integrated outwards starting with nuclear
surface bdundary‘vaiués vwhi-c:':h, may be arbri\:red at byva_ r.n_c‘>de.l devséxfibiri:g the
formation and behavior .HOf‘alpha éa,rti.cles.in ﬁﬁclear matter, 'The other
procedure is almost the reyei,’éé of the first 'and consists of staﬁyrti'ng at
infinity with experimental a‘n'dplittllfde':.sv and iﬁtegr'a_ting in'to the nuclear sur-
face. (It should be noted here that the aipha group .‘int'en‘si‘ty'measuremen,ts
do not yield 'infofma_tion regarding the relative phases.) R

In either approach it is necess'aijy to work with the equations in regions
close to the nuclear surface; for there the non‘v—(”:entral electrostatic field
is most effective in coﬁpling thé various pé'rtial waves. Since in the following
we shall assume that the nuclear s‘hrfa_ce is a prolate spheroid, ‘it is convéna
ient to use prolate spheroidal coordinates. )

- We take the foci of the spheroids to be at {x a\‘é"gﬂy.z 0; z = £ a/2) and

define the spheroidal coordinates of a point in space as
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§=(r1+ré)/a l.igioo
p=li-ra/a d<p<l o
g = tan=(y/x) 0< # < 2w

where ry and r, are the distances between the point and the two foci. a is
specified by the condition that one of the sphero{ds, E=¢, corres;ponds to the
surface of the nuclear spheroid. Asymptotically, the connection to spherical
polar coordinates is as below:

£ --> (2r/a)

N —> CcOS8 9

g=g.

We shall consider the special case of an even-even (]Ii = 0) nﬁcleus, The

wave équation in spherical coordinates in the coordinate system fixed in the

daughter hucleusais, from (16),
2
FEA-ALearvma-E]Y =0

where

= pla-<4 2 (r2)]
L®, 7= LA - o7 \7s%
Since the lowest band of an even-even nucleus is characterized by K= 0,
and since we are considering only decay to the lowest band, the alpha particle
wave function will be axially symmetric (M = 'Ki - Kf = 0). In prolate

spheroidal coordinates, (18) beéomes for axially symmetri‘c wax;é functions,
4 13, 202l A0 50 m2
Ll 55 08+ RUOR]+ Ty 51005
+ =z (E-viem) I Wi n) = 0

The rotational energy term is not exactly represented by the second term

(19)

in (19). This term is an approximation good when §2>>n2. For the deformations
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e#p_ected in actual nuclei the condition is not fulfilled near the surface

(&=1.5 fér Pu238), but near the surface the whole rotational term is negligible
compared with the p’oténtial én’ergy. Wheﬁ the terrf_: Beéomes important (near
and beyond the turﬁing point), t'he'.,a;-)proxiihate’ expréséion is accurate,

If we represent the wave furic':tion by the expansion

| ) 2 | a0 .
V(E;Yl) :Z (52") WI“) \}(e,o(c_os 'Y(, ?) - @
We obtain for the equatmn satisfied by (€£) 2

é’? F [ (£2-1)> (h-l)( a7+ i;)} W »(E)
: (21)
 dheteey > e Yo [E-Venl(sH) g, dian = 0

We wish now to obtain the potential V(£, n) with the assumption that the

charge density is uniform throughout‘the nuclear spheroid. This can easily
be accomplished by integrating the Green's function for Laplace's equation
in spheroidal -coordina_te,s16 over the nuclear volume; and we find

2

oo, (t) - Py, ) (22)

Vg, ) =

where Qo(g) and Qz(g) are Legendre functions of the second kind and equal to

1 (g 1) |
Qo(g)—zlnm_.

Q,(6) = Py nfe L - 3¢

Asymptotically, V(£, n) can be ,expressed in spherical coordinates as

V(E, 1) ——> 2&3 + Q.¢ Pz(cose) ‘. . )
. rg.,
where Qo = 1%3 )
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The above relationship between the intrinsic quadrupole moment, Q. and the
interfocal distance, 2, permits us to determiri'e'i' from experimental data.

-Evaluating the integral in (21) by using (14) and -

jYz 0 R Y1 Mdw = &= 12 ¢ (2000)-1- C (_@o Q'o)+'5 51 (24)

we 'obtaln for the Schr8dinger equatien in the exterior region.

gl = (e VW= 2+ V') = O

V(8 = gy (£ 91000~ 7 + 00—y
M a? ” (25)

V- gy - £5)

V(0= %\i’@_‘f{; C‘2 (ﬁo ﬁo)[2 Q)= zges + (£ 4 Q]

\/9(4)(9" 2 Ze%a C (,00 QO) QZ(Q

ha<§a ) 35

The coupling between various L-waves results in part from the non-central
nature of the field and in parf from the nature of the spheroidal coordinate
system. The Coulomb term is contained in VO , and V((ZZE)' is significantly larger
than Vég, throughout the region of interest.

GENERAL PROCEDURE IN NUMERICAL WORK

In all of the regions that must be considered in the tfeatment of decay
through a single barrier (the "barrier' region, the "'turning=point” region, and

the '"far' region) the calculations for the present problem are 'o‘bviously more
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difficult than for the ceo‘1"resp_onding-prob‘v1em' with uncoupled waves. However, since
the coupling decreases rapidly Qith:distance.;,«, we need only give special considera-
tien to the barrier and turning-point regions (the wave functions being very nearly
-"Coulombic in the .f‘a,r' region).
In the '-"foll'l‘o‘w.i‘_ng we ’sh‘alzl' ”s'eek“ a'pprddiifnigi,,e solntidne to

w!t - V. w =V

o . ‘oo _QZWOZ v

044

wi -((Vo.-i‘-Vz)wz._:-V W+ VW, . (26)

2 o2 © _24_4

04%o + v24WZ

wy' - v(Vo + V4)w4 ='..V
which is the set of equatmns (25) m which a11 of the part1a1 waves. with L > 4
are neglected | '
- Within the barrier region the- wave func'tions”und'ergo extr emely large
var1at1ons in their magmtudes,. mak1ng direct calculatmns \V)lth (26) d1ff1cu1t
Instead we have’ preferred to work ‘with the rat1os y(g) =w 2/w and z «g» = w /wé

inasmuch as their: magnitudes vary w1th1n a small range Solntlons for y((g) and

z({§) arising from a WKButype apprommatlon are

718} =[ (K )/ (KN 2 exp { - (%, - K e}

2(6) =[ (K )/(K4)]1/2exp{ I(K4 g} -
where |
K = [V, + V5 +V,,2] 1/2
- 1/2 ' :
K, =. [V +V, 4V, 2/y+(z/y)V24] | (27)

= Vo + Vgt 1/2)V oy + (y/z)V24 1/7‘
As a result of the -'coup;ing the e_qnaﬂtions‘ (27) _thei’nselyes constituted an
extremely complicated ._z_set);of integral egn_etions, We have solved (27) by

an iterative procedure in which y{£) and z(£) are assumed over a small range of £
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and are used to calculate improved y's and z's.

This procedure, which was continued until self-consistent values were ob-:
tained, was found to converge fairly rapidly. To circumvent the difficulty
occurring where y or z goes through zero a change of dependent variable of the
type ;r = ((wz + bwo)w;1 = y.+ b with 13_ a constant, was made, Barrier region
integrations were made in this manner for both outward and inward integrations.

The solutions (27) a_re,l of course, inapplicable in the turning point region.
In this region the wave functions .do not vary radically, so that if is feasible to
work with the wa\}e equations directly in the form of (26).

Outward Integrations for Cm242.==1t was decided at first to see if the

simpler pictures of the alpha particle in nuclear matter could lead to the '
obs,ef'ved ratio of the partial waves. Cm'242 was selected as an interesting
case, as it exhibits a very large L = 4 hindrance factor. Probably the
simplest models are the one-body model in which the alpha particle is thought'
to move intact in nuclear matter for at least a few traversals of the nucleus
and the model in which alpha particles are formed uniforrhly on the surface
of the‘ nucleus. The angular distribution with reference to the nuclear
symmetry axis is then alter'ed.by the non-uniform barrier.? |

- For the individual alpha particle model wé assume that the alpha particle
is in the lowest state in a spheroidal well (of uniform depth) the depth of which
is adjusted so that the emitted alpha particle has the experimentally observed
energy. The wave equation for the interior region is separable in spheroidal
coordinates and has as its solution an "angulad part'which may be expressed
as an infinite sum of Legendre polynomials in n and a'‘radial part which is a

sum of spherical Bessel functions in §.16 .From these solutions the boundary



-18- UCRL-3040

values of the alpha particle wave function on the nuclear spheroid are ob-
tained. |

It is appropriate at this point to look into the questions of the size (in this
context, the volume) and the shape (i.e., the interfocal distance) of the nuclear
spheroid. There is some unce‘rtainty regarding the appropriate nuclear size18
to b_e used in these c<0nsiderétions. Thus, our calcu.lations weré perfdrm_ed
for two “sizes' of nuclei. One had a volume equal to that of a sphere of radius

1.20 Al/3 x 10713

cm., the other to a sphere of radius 1',35 Al/3 X 10é13 cm.
To determine the interfocal distan;:e, a, of the nuclear sphercid (hence of
the spheroidal coordinate system Qmployed) use was made of the relatioh“’?(%'é?;)
between Qo and a. . Since the intrir;s.'ic. quadrupole moment for Pu238 is not
empirically known, we used a semiempirical connect:ion8 between quadrupole

moments and energy of the first rotational state, . Ez(keV):

lo,| = 1.2z x £,"/% x107%* cm?

where Z is the charge. This formula is based on the experimentally known rela=
tion between intrinsic quadrupole moments (from gamma ray lifetimes and

Coulomb excitation cross sections) in the heavy rare earth region. The formula

4 238. .Subsequent to the completion of our

232 24

yields a IQO' of 17 x 10°%% ¢m? for Pu

_calculations the values of |Qo| for UZ:‘I‘8 and Th of 8 x10° cm"2 énd

9 x 10“24 ,cmz, respectively, were determined by Temmer and Heydenburg

19
on the basis of Coulomb excitatiOn'cross sections., It thus appears fha,t the
relation (28) may overestimate the intrinsic quadrupole moment by as much as
50 percent and that we have used a somewhat too large value of |Qo| for our
calculations. In view of this, the q‘uantitat'ive details of our numerical work

are subject to considerable modification, but it seems Iikely that none of our

major qualitative conclusions will be altered.
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The assumption of uniform chafge density‘may_ be opento question in that
it is expected that the protons beyond the closed shell of 82 will fill the lower
energy orbitals with maximum conc.entration in the ends of the prolate spheroid.
There is insufficient knowledge to justify any such refinement here.

- The interfocal distance, a, corresponding to Qo being used for Pu'238 is

1.35 x 10"]‘2 cm. - With this value of a, the two nuclear surfaces are prolate
sp‘heroids defined by the coordinate surfaces go = 1,41 and §0 = 1. 51.

Table I summarizes the results of these calculations. It is seen that there’
is some suppression of the L. = 4 group, but the agreement with the experi-
mental intensities is not satisfactory. We can only conclude that neither simple

picture represents the physical situation,

Dresner13 has independently drawn the same conclusion from his work,

Table I
' ) 242
Results of Out_ward Integrations for Cm
£ Boundary conditions at § Calculated values at Calculated g group
o o T : X
: £ =5.6 intensity (using
connection formula
- approximation)
Yo Zg Y ’ z a2, ag:a,
uniform 1.406 0 0 +1.-20 +0..298 1.13 0.058
surface o '
distribu- 1.514 0 - 0 +0.91 +0.230 0.68 0.035
tion ,
one-body 1.406 -0.277 +0. 025 ' +0. 83 +0.202 0.56 0.029
model o
1.514 <0,232 +0.016 +0.72 +£0.156 0.43 0.017
values needed to match , +0. 74 -0.02 0.357 4,8 x10-4

experimental intensities
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Inward Iritegrations for Cm and Thzzs.péAs mentioned earlier, one can

exploit the available experimental data directly by integrating the equations for
the various partial waves inwards to the nuclear surface and thus obtain infor-
mation about the alpha probability distribution on the nuclear surface. In the

, . . 242
following we shall restrict ourselves to the study of the two nuclides Cm and

Th228. . These nuclides are of interest in that they exhibit opposite extremes in

L ' 228
the L. = 4 hindrance factors, Crnz'42 being very strongly hindered and Th
being virtually unhindered. .The data and information pertinent to our calculations

on these two nuclides are presented in Table II

. Table II

Information Used in Inward Integration Studies

, Nucleus Aléha disintegrafion Energy of Energy of- ‘;.Réi&ﬁve -:alpha Assumed Qg

energy (including elec- 2+ state 4+ state  abundancete. of daughter

tron screening)(Mev) (Mev) (Mev) - 0% 2t 4t (10-24 cm?)
P — ,
Cm 6.252 0. 044 0. 146 73.7 26.3 0.035 +17

TH?%28 5.553  0.084  0.253 71 28 0.2 1.6

The observed intensities, of course, determine only the amplitudes of the
various L waves but not itheir phéses. The condition ﬁsed t_vo. detervmine the
possible sets of phase‘s was that the phase factors, ei‘sg, of the waves, which
are pure outgoing waves at large separations, be such as to produce an expo-
nential darr;ping of the imaginary part of the partial waves within the barrier.
With‘vthese phases one can then obtain the real part of the wave by inward inte-

gration.
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In carrying out the above procedure of integrating through the turning point
and into the barrier region we have used two different methods. The first,
which is simple but very approximate, is based on the circumstances that the
equations (26) are decoupled at the turning point in that prolate spheroidal
coordinate system in which the interfocal distance a, is given by 22 ;—"6QO/Z.
Assuming that the éoupling terms remain negligible (compared to the
remaining terms in the equation) in a small region about the turning pdint (an
assumption probably reasonable for the T.hz'28 case) one can apply the simple e
-WKB connection prescription. A transformation to the spheroidal coordinate
system appropri.ate for the barrier region of the nucleus in question‘is then /
performed. |

It is important to note that the phase determination proEééure yields. not
one but four sets of relative phases for the thfee partial waves. T.hié is most
readily seen when the coupling can be neglected, as in the ab\ove—men'tioned
approximation. If § , insures that the part increasing exponentially as § =1

L

is pure real, so will 6, + w.

b

Due to the very small rhagnitude of W, as compared to W, and W in the

case of Cm24%>_,the assumption of negligible coupling in the turning point region

in the spegri/;a/i coérdinate system is not valid. In this case we resorted to direct
numerical solutions td equaéions (26) (in spherical coordinates) 6n the UCRL.
Bush-type electromechanical differential analyzer.

Table III summarizes the results for the integrétions through the furning’
point. The values of y(g1) and z(gl) contained théfein sei-&ed as initial‘value.s
for the integrations in the barrier region by the mer‘thod described in the pre-
ceding section. There are two additional phaée choic'es fof Cm242 which be -
cause of the small magnitude of Wy in the turning point region lead to éssentially

the same results as the two listed sets.
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Table III. -

Initial Values for the Barrier Integrations -

: ) e 228 y ‘
(gl 5.6) "Th™"" (§1 = 6.0)
,Case I Case Il - Case I Case II CaseIIl Cas.e v
y(&) 0.74  _0.77 0.93 0.94 - -0.94 - =0.93
i(gl) -0.022 0.025 0.18 -0.23 . 0. 22 -0.17

~While the several sets of ;.r(gl)) and'z(ﬁl) Qalues léad to thg obseryed inten-
sity and prope_'r behavior of the .imaginary part, all but one for each nucleus
are physically'unlikely. Unless the distribution of alpha particles on the
nuclear surface is ,re,strictved to a nérrow band about the equator, we would
expect that in the turning point region the distribution will be at least some-
what peaked at the poles because df the io‘we‘r barrier in those vdirect.ions. On
the basié of these considerations we can seiéct the physically most plausible
set, and in Figs. 2 and 3 arve shown the results of the integrations for .theée
‘cases in the two nuclei. (Cases:I)

The other choices.of phéses listed in Tabie H_I(wereballéo studied. Case II
for »,ThZZS exhibits a somewhﬁt pathological behaviOJ;' in that y and z increase
drasticrally in the integration inwards. Thus, t'his. choice of phasés is unlikely.
to represent the physical situdtion. | | |

In F1g 4 we have plotted the surface d1str1but10ns for all the above

cases. It is to be noted that the |¢|

are symmetrlc about the equator,
surface _

since only even L ,values enter in the decay to the lowest band of an even-
even nucleus. In each case the distributions are givlen for the two sizes of
nuclei. The results do not differ much with the variation in volume considered

here,
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As expected, all but the two physically probable sets of initial values at

2
surface

'

51 lead to |¢i narrowly restricted about the equatoi- of the épheroids,

Granting that cases I probably represent the ph‘ysically s.i:g.nificant cases for

both Th228 and Cm242 we can observe that there is a éhift in the surf#ce dié=

tribution from a broad peak about the poles in Th228 to one more concentrated

in the regions midway bétween poles and the equator in the case of Cm'242;

That the shift in surface distribution is gr;adual'can be inferred fr'dm the con-

tinuous growth of the hindrance factor in going from Th228 to Cm242., (Cf. Fig. 1.)
It was suggested in a preliminary rep_ort8 on the couple.d alpha decayv

problem that for nuclei of great.er atomic number and deformation than Crn242

the continuation of the intensity trend might show a reversal of the decreasing

behavior of the I. = 4 group. The increasing L = 4 group of these heaviest

nuclei would bear a phase relationship with respect to the L. = 0 group which

was the opposite of that of the lower mass alpha emitters. Subsequent to

this speculation the study3- of alpha emitters Cf246 and szs4 actually showed

the increase in abundance of the L. = 4 group. The discussion of the

preliminary report8 also suggested speculatively that the intensity of the

L = 2 group might begin to decrease foriheaviér, nuclei, and this also was

found sdibsequently for californium and fermium isotopes. The idealized

model on which these guesses were based considered a sharp angular

alpha distribution of a delta function nature. The qualitative success of the

guesses certainly does not imply any detailed validity of the delta funct:_’lon

. picture. Indeed, it seems most probable that the alpha angu‘lar dist’ributj.oins‘,

particularly in the turning point region, are fairly broad. Our numerical results

cannot really answer the question, as we have not included higher partial waves than

L = 4, but the hindrance factors for higher groups are uniformly very large. The
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more groups that are included in the integrations, the more detailed can be the
information on the alpha distribution at the nuclear surface. Sharply peaked
functions are unlikely due to the high rotational kinetic energy associated with

them.

Total Barrier Penetration.--It is of interest to see how the occurrence of

a spheroidal deformation affects the total decay cdnstant, Let us define a
generalized penetration factor P as
S
P= Se0
: 2
fsg Jwl™ds

n

T 2as

where 5., is a surface at a large distance from the nucleus and S  is the
nuclear surface. "y is the complete wave function, which asymptotically goes
over into a pure outgoing wave. . For the case of a spherical nucleus the

penetration factor obtained using first order- WKB wave functions is

NS

e "R :
Pe= [BAV(R), - 91 2 exp (/0 T VERIVEET ar}

where R is the nuclear radius and R is the classical turning point.

T.P.
With y and z known as functions of £, 'it is a siniple matter to compute
the penetrability for the spheroids taken in the above calculations. .Table IV

o , 228
represents the results of the penetration factor calculations for the.Th

and Cm24_2 with the nuclear volumes in all cases equal to those for;épherical
nuclei with radii R = 1.20 x 10"1?7’A1/3 cm. The inward integration results,
Cases I, are used.

In the last column of Table IV are the values predicted by the Hill-

'Wheeler7 one-dimensional WKB formula for penetration factor, evaluated
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through the thinnest part of the barrier. - While both the Hill-Wheeler formula
and the present work lead to largér ‘pene.trabilities than in the case of the
spherical nucleus (as would be expeci;ed)), 'th‘e oneédimensional‘.formula'pre==
dicts a much larger increase than the detailed treatment and a much larger

228. This last fact is rather difficult to

increase for Cm242 than for Th
regoncile with the success of the old correlations of decay rate data with

spherical barrier formulas. The much lower enhancement of penetrability

which the present numerical work finds does much to remove the above

difficulty.
Table IV
Barrier Penetration Factors
Alpha Lo PC Th PDT In(PDI/PCY Ln (PD/PC)
emitter (spherical) (spheroidal a Hill-Wheeler
case I) l-dimensional WKB
(this work) (this work) formula
Th?%® 74473 ~72.58 2.15 4.98
cm®*? 72,79 ~70. 39 2. 40 6.77

It appears then that the one—dimensioﬁal formula dees not give a good
estimate for the alpha decay problem. The alpha decay ’proéess is not able
nearly to take full adf_rantage of the much thinner barrier in the vicinity 6f;.the
poles. The reason for the failure of the oﬁe -dimensional estimate rﬁay be
expressed qua’litativély as follows: if the alpha wé.ve ,fu_nc‘itio‘n~wevr.e to be
sharply channeled along the mo.stvfa.worable pe.r'xetravtion trajectory,' thé total
‘wave function would contain high angular momenta c_:bmponents vwith large

amplitudes. = The increased centrifugal barrier and higher nuclear rotational
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energy associated with the wave function wbuld produce a dissipation of the wave
function along the trajectory much larger than the one-dimensional WKB inte-
gral indicates. The wave function adjusts -itseif to a compromise involving
moderate angular conc.ent.r.ation of the wav'e;function_along the favorable pene-
tration trajectory.

One can also note from Column 3 of Table IV that the spheroidal shape
enhances the penetration factor of Th228 almost as much as that of Cm242
despite the fact that Crn242 has appreciably larger 'd.efo_rrna‘tion. This is easily
understood when we consider that the distribution of alpha particles on the

' 228

nuclear surface is peaked about the axis in the case of the Th. while the

peak for the Cm242 is closer to the equator.

S CONCLUSIONS

From the ni’l‘merAical work we are able to gain sofne 'i'nformation on alpha
particle formation in nucleai‘ matter., . Both from failﬁré of the one -body model
to yield the proper ratio of intensities in _t:he.Cm242 case and from the shift
of the peaks of the su.rfa_ce,._density with rﬁaség we can con:clude that the one-
body model does not adequately r'epresen-t,_the physicél éituation, That is,
the alpha particle has a transitéry existence in the nucleus and it does not
move intact for times of the or‘aer of a period. We must envision the alpha
clusters as continually fo_rminé and d.is solving with short mean free paths.

Aléo thé picture of alpha particles being 'distrib.utea uniformly on the
nuclear surfé.ce does not appear to refpresen’c the physical state of affairs‘.'

-We might think of the situation in the following Qay: the alpha clusters
that have any appreciable probability of forming and penetrating thevbarrier

are those which are made up of the most loosely bound neutrons and protons.
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"The distribution of these clusters will then reflect the distribution of the most
loosely bound nucleons. If, as we expect, case I is the one that corresponds
to the correct picture, we would conclude that the outer nucleons tend to con-
centrate near the poles in-’Z[‘.h228 and nearer to the equator in Cm242. Ina
prolate spheroidal well of appreciable eccentricity, the states concentrated
near the poles are expected to be filled first. 21 These are the states with
Bohr -Mottelson quantum numbers Q = + 1/2 (all other states have nodes at the
poles). One might suppose that orbitals with large probability densities at the

" poles are filled around A = 230 and that subsequent nucleon pairs tend to fill

states with density distributions shifted toward the equator."
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Fig. 1. Hindrance factors of alpha groups in even-
even nuclei (defining the ground-state

transition as unhindered) from Asaro.
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Fig. 2, Results of an inward numerical integration
of the alpha wavé eciuation for Cm242 in \
prolate spheroidal coordinates (Case I).
Boundary conditions at £ = 5.6 are based
on experimental alpha group intensities.
y goes over asymptotically into the ratio
of wave amplitudes of § = 2and § = 0
groups, and z, into the ratio of the § = 4

to the § = 0 groups.



®

o

)

ALPHA WAVE FUNCTION RATIOS
+ »

(o]

-33-

Fig. 3.

Results of an inward numerical
integration of the alpha wave
equation for Th228 in prolate
spheroidal coordinates (Case I).
Boundary conditions at § = 6 are

based on experimental alpha group

intensities.
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