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ABSTRACT 
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The consequences of spheroidal deformation of nuclei on the barrier trans­

mission in alpha decay are considered. A set of coupled differ·ential equations 

is derived relating the amplitudes of the various groups of alpha particles 

emitted from a nucleus described by the Bohr -Mot tel son model. The cases of 

the decay o{ Th
228 

and Cm
242 

were studied numericaUy and from them infor-

mation regarding the probability distribution of alpha particles on the _nuclear 

spheroidal surface is obtained. It is found ,tha_t the one:"'body model of an ~lpha 

particle in a well does not yield ,these distributions, and it is thus concluded that 

• 11alpha.:-particle clusters"11 have a .short mean-free path in nuclear matter .. The 

shift inthe surface distributions .of Th228 and Ctn
242 

may be explained qualita-

tively in terms of the order of nucleon orbital filling. 

The overa_ll penetration factors for the spheroidal case are compared with 

those for the spherical case and the resultant enhancement due to the deforma= 

tion is not nearly as large as that predicted by Hill a_nd Wheeler on the basis of 

a one -dime ns:ional approximation. 

* Present address: General Electric Research .Laboratory, Schenectady~ N.Y. 
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INTRODUCT!ION 
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Recently an imp.ressive amount of data have been amassed demonstrating 

the existence of rotational spectra in regions far removed from closed~shell 

configurations. 
1 

The existence of such level schemes is predicted by the Bohr­

Mottelson2 strong-coupling model of the nucleus in which it is assumed that the 

nucleus has an appreciable spheroidal deform.atton. 

In the region of heavy nuclei (A> 230) where alpha decay is generally a 

prominent mode of decay the rotational bands are particularly wen developed, 

and some cases of a1pha emission by even-even nuclei to members of the 

rotational band as high as the 8+ level have been observed. 
3 

Alpha decay of 

even-even nuclei to states other than the rotational band members ha.s been 

observed only in the case of a few nuclides. 

One of the most conspicuous features of the recent data involves the varia-

tion between nuclei of the relativ·e intensities of the various alpha groups. 

4 . . 
Asaro has calculated "hindrance" factors for all alpha groups, where the 

hindrance factor is defined as the ratio of the intensity of the allpha group leading 

* Present address: General Electric Research Laboratory, Schenectady, N.Y. 
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to the ground state to the intensity of the alpha particles leading to the particu= 

lar excited state, corrected for 'the energy difference bet:we{m the state.s .. For , 

. 5 
the energy dependence of the decay rate he used Preston's alpha .. decay formula 

(for no spin change 
6

}. Figure 1, which is due to Asaro, summarizes the data. 

It is to be expected that the occurrence of large spheroidal deformations 

will have pronounced <;!:ffects on the process .of charged-particle emission . 

. :n:n contrast to the case of spherical nuclei. the electrostatic field of a spheroid 

is not central. The coupling resulting from the non-centra! nature of the field 

will have a bearing on the relative amplitudes of particles emitted with differ-

ent orbital angular momenta. .It is one of_ the purposes of this:note to see whether 

it is possible to ex:plain the values and trends for the hindrance factors of the 

L = 2 and L = ·1: waves in the decay of even-even nuclei in terms of the non~ 

central electrostatic field. 

Another consequence of the distortion of the nqdeus, earlier explored by 

. Hill and Wheeler, 
7 

is a thinning out of the potential barrier in certain direc= 

tions leading to directed alpha emission in those directions. They gave an 

app.roximate expression for the penetrability based on a one-dimensional WKB 

integration through the "thinnest" part of the .barrier. It is to be noted though 

that if the decay is highly directionalwithrespect to the nuclear symmetry 

axis, it is necessa,ry that components of the alpha waves with hlgh L values 
8 

occur with large amplitudes·. These would be the components leading to the 

higher rotational states. Since these components experience a much larger 

effective potential than the S-wave due to the centrifugal potential and the 
. ' 

·additional energy associated with rotation of the recoil nucleus, one might 

' expect significant deviations from .the penetratli.on formula of Hill and Wheeler 7 

based on a one-dimensional WKB integration through the thinnest part of the 
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barrier. In the final section ofthis note are calculated the total barrier pene~ 

trabilities _for Gm 
242 

and Th
228

. 

]n the next .section we derive the general equations governing alpha decay 

to a rotational band of the daughter nucleus. In the section following this 

equations for decay from an even~even nucleu.s are formulated in prolate 

spheroidal coordinates, and these equations serve as the basis for the subse ... 

quent exploratory numerical work. 

FORMULATION OF THE ALPHA-DECAY PROCESS 

To formulate the problem of alpha decay incthe region external to the nu.clear 

surface it is necessary to take into account the electrostatic interaction between 

the alpha particle and the residual nucleus. The first question to be set,tled is 

which degrees of freedom of the nucleus are required for an appropriate 

description of the process. In the case of a spherical daughter nucleus it is 

easy to see that it is un,necessary to consider the Coulomb interaction between 

the alpha particle and the protons individually as this force is very much 

smaller than nuclear forces. It tlfus suffices to consider only the interaction 

of the alpha particle with the nucleus as a whole,, and the appropriate nuclear 

coordinates are those of the center of mass of the system. In the case of a 

deformed nucleus the interaction between the alpha particle and the quadru~ 

pole field of the nucleus is not small compared to the ene:r gy characterizing 

rotation. Here .it is necessary to include in the description of the process 

the rotational coordinates of the nucleus. Expressing it alternatively, it is 

necessary to include in the total wave function the low~lying rotational states. 

The emitted alpha particle can then be thought to induce transitions between 

the rotational s,tates through the quadrupole component of the field. 
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In general the Schr(jdinger equation for the system can be reduced to a 

system of coupled equations in the variable r 'by expandihg the wave function in 

terms of some complete orthogonal se,t of functions .in the remaining variables: 

~-
'¥ = R (r}!J (x., e, ~) y. y y 1 

where x. i$ the set of variables required to describe the recoil nucleus . 
. 1 

(1) 

Multiplication by r2* and integration over all variables except r reduces 
y 

the partial differential equation to a set of ordinary differential equations in r 

(cf. Preston9 ). Q can be expanded in terms of products of eigenfunctions of 
y 

the residual nucleus and normalized spherical harmonics Y£, m(e, ¢ } in the 

angles of the alpha particle with respect to axes fh{ed in space.. The set 

necessary to describe the decay process is limited by the constraints that the 

angular momentum of the parent nucleus '1
1 

and its space projection 

d Th . . f" db h . 10 
conserve . e constra1nts are satls 1e y t e summation 

M. be 
1 

~ I· M· ~ 'T Y 1 1 = L(Ifi m M.-mjl££ I. M.) "~ 1 M- (x.)Jn (9,¢) 
If ,e m 1 . 1 1 1\ f i m 1 XJ, m 

where (If£ m Mi-m II££ Ii M1) are the Clebsch .. Gordan coefficients, and 

X7

1 
.(x~ is a normalized nuclear wave function for a state with· angular 

· f M.-m ••·, ·· · ·. · 
1·· ' i' 

momentum If' component Mf' and with remaining quantum numbers 'T· 

. The set of equations obtained from (1) and (2) will contain coupling terms 

the strength of which will depend on the magnit~de of the electric transition 

moments connecting the nuclear states involved. The outstanding examples of 

large electric moments between nuclear states are those resulting in the "fastD' 

electric quadrupole transitions between members of a rotational band. Thus, 

we see that the low rotational bands, both because their members constitute 

the low-lying nuclear states and because band members are connected by 
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large matrix elements, are the appropriate nuclear states for our problem. We 

shall in the following restrict ourselves to the decay to the states of one band. 

For explicit nuclear wave functions we turn to the recent work of Bohr and 

Mottelson
1 

in which nuclear motion is ap~roximately separated into 11rotational" 

and "intrinsic" parts. In the Bohr-Mottelson model of strongly deformed 

nuclei the :rapid individual particle motion is thought to take place in a de= 

formed nuclear field {or well} which rotates nearly adiabatically. The deformed 

nuclear field is taken to have axial symmetry, although there may be cases 

where this is not true. 
11 

The wave function for the nucleus then approximately 

factors (apart from a symmetrization) into 

where ~..,rxp is the state of the particle structure, ;q being the coordinates 

of particles with respect to a frame of reference fixed in the nucleus, and 

(
.;lf.r +I )Y2.. DIF (@,.)is the normalized state of rotation (or wave function for 
~ 1f'"L. 1'1-r KF · 

a symmetrical top} having as arguments the Eulerian angles {8) i. Kf denotes the 

projection of the angular momentum of nucleus, If' on the symmetry axis, and 

is in this model an app:rox:ima te constant of the motion. 1 represents an the 

quantum numbers specifying the intrinsic state. The Hamiltonian of which 

(3) is an eigenfunction is 

H nv.d.- H, Cx;') + H ,.6/ ®i) 
where Hprx:p is the energy operator for the individual particles in the deformed 

well and H CQJ is the rotational energy operator which gives :rise to a specttru.m roL 

of the form 
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- . . t3 is interpreted as a moment ,of i.nertia, and is for the :i.rrotational Huid approxima-

tion proportional to the. square of .the deformation. 

To obtain t~e complete Hamiltonian for the alpha decay problem in the center 

of mass system we add to (4) the energy operator for the alpha particle in the 

region outside the short range nuclear force field: 

H . 2 . - Cl. 
= (n /2JJ.~.Ll + v 1 (r ; \:/·} a e . ll. 

{5} 

. The inclus~on of G) i in the electrostatic energy indicates that the field at a 

point in the space·-fixed system varies as the daughter nucleus rotates,. JJ. is 

the reduced mass of the system. · 

A consequence of the assumption that the nuclear weU is axially symmetric 

is that the nucleons within the nucleus have an axially symmetric distribution. 

This will reflect itself in a corresponding symmetry for the alpha particles on 

the surface. To incorporate this symmetry into our formulation of the 

problem and also to effect a. simplification of the electrostatic interaction 

We shall CWJSider the description of the :process in.:a system of COOrdinates 

fixed ih .theo:dauigh.ter nucleus, -L~·n \vi th the nuclear syrr1metry axis taken 

1o~:be the .polar axis .. We :tneri1exparidthe -yvave function of the system. a.s 

where 

-I r 

ur ikr 
•r - e £, m 

wihen r """"oo 

and (r, 9', ~·) are the spherical polar coordinates lin the new system. 
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That P} has the proper transformation properties (i.e., represents a 

state with angular momentum I. and component M.} and- contains the rotational 
1 1 

states of the daughter nucleus can be demonstrated by trans.forming to space-

fixed coordinates (r, .9, ¢). For this purpose, we make use of the transformation 

properties of the spherical harmonics 

and the Cl~bsch-Gordan expansion for the D•s 

interchange of indices were employed •. From (2) and {3}, we can immediately 

s.ee that 

T. ri M, <' ~Tr;-Ti - . · ;h 1, M' (H} 

Kt~ m j r = .c:::.., (-) (Ii J K;"~-m -1111 Ii ~ !; ~) 'r. . 
I.,: I· M· / I+KFJ) 1"* 

T. I t , 
and hence from (2~ that ;; has the proper transformation properties 

K M'~ 
) . 

and generally contains a mixture of rot~.tiona1 states of the daughter nut leus. 
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To obtain the differert~ial equations for w;_e,!i;> we shbstitute (6) in the com­

plete Schrt:Sdinger equation, multiply by T. r, Mi ,'*" and integrate over all 

Ktl~,_; T 
the independent variables except ro We get 

{12) 

2/L_ ~ . (n' 'I H ' 11 \ . ·. ·2fo ~· ' ~/JJ' 'l Q,Ze.,.l ~ 0 - 't\~ ~ w,_~ ~ ('r} xI m 'tot. x) "'J . ._ . ~i;;;. wllfl(vi{X~ M V-:- -:;: ~~:: 
where E~, Kf merely determines .the arbitrary zero of energy. Since the 

states in ·general contain more than one member of a nuclear rotational band, 

the nuclear rotational energy operator is not necessarily diagonal in the T 
representation. The matrix elements of Hroto may be readily evaluated with 

the aid of the expansion (ll) and the relationship 

complicated in the space -fixed system, is in the body-fixed system mer e1y the 

charge on the alpha particle times the electrostatic field of the stationary de-

formed nucleus o If we make the usual inultipole expan~:s:to,n,V is given by 

2 .· 
V = (2Ze2/r) + 2e Q 0 P2(oo.s 9'). + 

0 0 
•• 

· · 2r3 . 

where Q
0 

is the intrinsic quadrupole moment of the nucleus (the quadrupole 

moment with respect to the nuclear symmetrY, ~:leis )o With the relation 
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where the C{k)Um I£ 1m) are defined and tabulated by Condon and Shortley, 
12 

the matrix elements of electrostatic energy can be readily evaluated. 

to a form d.erived earlier 
8

• 13 

[ da ?d:__(E-E _ 2Ze•) _ (..E:.. + ~)i(Jtl)] w/J (r) 
d~2. + fii. . r~l<f r ~ t* J( (16~ 

Oce2 ~ . C c2>((J OIJ.'o) rJ ~ w~, (r) ~ 
i' 

=0 
We now return to the question of the approximate conservation of angular 

momentum about the symmetry axis and the related question of the axial 

symmetry of the alpha distribution. As me.ntioned above, the distribution of 

alpha particles on the nuClear surface is axially symmetric; that is, on the 

surface w£, AK i 0-only where 6K = Ki- Ki. It is to be noted from (15} that 

the electrostatic potential has no off-diagonal elements in m. The only 

mixing in of components with m i 6K results from Hrot.. This mixing is 

probably small in the region of large nucle4-r deformation. Such coupHng is 

in effect ignored by Bohr, Frtlman, and Mottelson
14 

when they relate the 

rotational alpha group intensities between odd ·and even..,even nu.clei. 

The favored alpha decay t:ransitions
14

• 15 in which the odd nucleon wave 
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function remains essentially unalte.red are analogou-s to decay from an even= 

even nucleus. F.rom this analogy and equation (H) with m = 0 and Kf = Ki 

(the favore.d transition) one can obtain for the relative reduced transition 

probabilit~e.s for alpha decay of a given orbital angular momentum to the 

various possible rotational states 

B ii = 
.f 

·. ' 14 
which is the relation 6f Bohr, Frljman, and_ Mottelson. 

THE DECAY EQUATIONS IN SPHEROIDAL COORDINATES . . . ; - . 

There are two procedures that one could follow .in treating alpha decay. 

In the first, the decay equations are integrated outwards starting with nuclear 

surface boundary values whiCh. may be arrived at by a model describing the 

formation and beha,vior .of alpha particles in nuclear matter. The other 

procedure is almost the reverse of the first and consists of starting at 

infinity with experimental amplitudes a.nd integrating in to the' nuclear sur= 

face. {It should be noted here that the alpha group intensity measurements 

do not yield information regarding the relative phase~.) 

lp either approach it is necess-ary to work with the equations in regions 

close to the nuclear surface, for the.re the non-central electrostatic field 

is most effective in coupling the various partial waves. Since :in the following 

we shall assume that the nuclear surface is a prolate spheroid, it is conven-

ient to use prolate spheroidal coordinates. 

- We take the foci of the spheroids to be at ~,x \~ 'y = 0; z = .t a/2» and 

define the spheroidal coordinates of a point in space as 
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£ = (rl + rz)/a 

iJ> = (q- rz)/a 

¢ = tan - 1(y /x~ 

l:S,£S,oo 

-1 ~ r) ~ 1 

0 ·~ ¢ ~ 21T 

where r 1 and r 2 are the distances between the point and the two foci. 

(17) 

a is 

specified by the condition that one of the spheroids, £ = £
0

, corresponds to the 

surface of the nuclear spheroid. Asymptotically, the connection to spherical 

polar coordinates is as below: 

£ ~ (2r/a) 

.T)~ cos 9 

We shall consider the special case of an even-even (Ii = 0) nucleus. The 

wave equation in spherical coordinates in the coordinate system fixed in the 

(18) 

where 

L (~) ~) = 
Since the lowest band of an even-even nucleus is characterized by K = 0, 

and since we are considering only decay to the lowest band, the alpha particle 

wave function will be axially symmetric '{M = Ki - Kf = 0). In prolate 

spheroidal coordinates, (18~ becomes for axially symmetric wave functions, 

{ 4 [~ (fl )'d' ~(1 nl-):2.]+ JL((l.-1) d (. 1\~ 
a.2.( ~).-~1.) a! s -I q + 5tl -,t . d'r{ ':3 ({~ -~1) ~~ 1-~ J ;;~ 

+ ~ (E-V(() Y())} ljl([;rd =- 0 
The rotational energy term is not exactly represented by the second term 

in {19). This term is an approximation good when £2
>>T)

2
. For the deformations 
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expected in actual nuclei the condition is not fulfilled near the surface 

(~= 1. 5 for Pu 
238

), but near the surface the whole rotational term is negligible 

compared with the potential energy. When the term becomes important (near 

and beyond the turning point), the approximate expression is accurate. 

If we represent the wave function by the expansion 
I 

"f(~.rt) = L (fil. -IF 2 w, w to ( cosc·~ j 9') 
l ' ' J 

we obtain for the equation satisfied by w_g(s) _ . 2. 

~ [ I ) ( J1. a. )]. 

(20) 

d ~l + (f2-t)2 - .Q (1+1 1 2~ I + 4 'S w.Q (s) 
- 2. ,_ -- ( 21) 

t- 2~e~~~-r) ~ w1.<D f (o[E -V(t~>](S'-~'~;.d{d~ = 0 
We wish_now to obtain the potential V(£, TJ) with the assumption that the 

charge density is uniform throughoutthe nuclear spheroid. This can easily 

be accomplished by integrating the Green's function for Laplace's equation 

. h .d 1 d" 16 h 1 1 d f" d 1n sp ero1 a coor 1nate.s over t e nuc ear vo ume; an we 1n 

(22) 

where Q
0

(£) and a 2 (£) are Legendre functions of the seco.nd kind and equal to 

Q (£)=.!.in(£ + l) 
0 2 (£ -·"11 

Q ( (: ) - p ( (: )1 1 ( £ + 1} - ~ 
2 '=> - 2 '=> 2 n(£ - 1) 2"' 

Asymptotically, V(£, TJ) can be expressed in spherical coordinates as 

' 2 2 
V(s, ,) -~-___ -31>) 2zre + Q0e~-f-~(cose) + •.. 

- za. 2 
where Q

0 
= fO . 

r--
(23) 
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The above relationship between the intrinsic quadrupole moment, Q
0

, and the 

interfocal distance, ~; permits us to determine ~ from experimental data. 

Evaluating the integral in (21) by using (14) and 

we obtain for the Schrtldinger equation in the exterior region. 

L ('' V) ~ (u<~> ,,(4)) 
cJ ~z. "'!! - Vo + 1 y.Jl. - 7-~1 Vd' + VJJl 

where 

The coupling between various L-waves results in part from the non-central 

nature of the field and in part from the nature of the spheroidal coordinate 

system. The Coulomb term is contained in V 0 , and J{j, is significanUy larger 

(4) 
than V££ I throughout the region Of interest. 

GENERAL PROCEDURE .I~ NUMERICAL WORK 

Ip all of the regions that must be consi.dered in the treatment of decay 

through a single barrier (the "barrier" region, the "turning-point'' region, and 

the nfar'' region). the calculations for the present problem are obviously more 



UCRL~3040 

difficult than for the corresponding problem with uncoupled waves. However, since 

the coupling ,decreases rapidly with.distance; we need only give special considera= 

tion to the barrier and turning ... point regions (the )Vave functions b(:ling very nearly 

·Coulotnbic in the Jar region). 
17 

In the folldwing we shall seek approxi~~t.e solutions· to 

w
0
11 

- V W = V 2 w 2 + V 4W,4 
.0 0 0 0 . 0 ; . 

' (26} 

w" 4 

which is· the set of equations (25) in which all of the partial vyaves with L > 4 

are neglected . 

. Within the barrier region the wave Junc'tions undergo extre.mely large 
•,,: 

variations in their magnitudes, maki~g direct calculations with (26} difficult. 
. . ' ., . 

Instead we· have·prefe;.re<:I to ':Work 'with ther.ados y(sf = w2/w
0 
and~ «s> = w4/w

0 

inasmuch a.s their magll:itu,des var'y within a small range. Solutions for y{·s» and 
... •'. . -

z(s) arising from a .WK:B::.type approximation are 

y(s) =[ ·(K
0

)/(K2 )]
1
/

2 
exp { -J (K2 -l~0 )ds} . 

. 1/2 . 
z(s) =[ (Ko)/(K4H exp C-J(K4.~ Ko.)ds} 

where 

Ko = [V o + V o2 Y + V o4 z] V2 . 

K2 =. [V o + V 2 + Vo2/y + (z/y)V 24]1/2 
. ~ . 

·,·, ''· 
. . 1/2 

K 4 = [V 
0 

+ V 4 + (1/z)V 
04 

+ (y/z)V 24 ] · 
._I, 

As a result of the 'coupfin~ the e~quations (27) themselves cons.tituted an 

extremely complicated set of integral equations. We {lave solved. 
, . . • J';, 

(27} by 

an iterative procedure in which y{.;) and z(s) are assumed over a small range o.f £ 
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and are used to calculate improved y's and z's~ 

This procedure, which was continued until self-consistent values were ob-

tained, was found to converge fairly rapidly. To circumvent the difficulty 

occurring where y or z goes through zero a change of dependent variable of the 

- -1 type y = ~w2 + bw )w = y + b with b a constant, was made. Barrier region 
0 0 - . 

integrations were made in this manner for both outwa:rd and inward integrations. 

The solutions (27} are, of course, inapplicable in the turning point region. 

In this region the wave functions do not vary radically, so that it is feasible to 

work with the wave equations directly in the form of (26}. 

Outward Integrations for Cm
242

.--It was decided at first to see if the 

simpler pictures of the alpha particle in nuclear matter could lead to the 

observed ratio of the partial waves. Cm
242 

was selected as an interesting 

case, as it exhibits a very large L = 4 hindrance factor. Probably the 

simplest models are the one-body model in which the alpha particle is thought 

to move intact in nuclear rna tter for at least a few traversals of the nucleus 

and the model in which alpha particles are formed uniformly on the surface 

of the nucleus. The angular distribution with reference to th.e nuclear 

symmetry axis is then altered by the non-uniform barrier., 

For the individual alpha particle model we assume that the alpha particle 

is in the lowest state in a spheroidal well (of uniform depth) the depth of which 

is adjusted so that the emitted alpha particle has the experimentally observed 

energy~ The wave equation for the interior region is separable in spheroidal 

coordinates and has as its solu~ion an "angular' part''which may be expressed 

as an infinite sum of Legendre polynomials in Tl and a 11radiai'part which is a 

sum of spherical Bessel functions in£. 
16 

.From these solutions the boundary 
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values of the alpha particle wave function on the .nuclear sph~.r,,0id are ob-

taine.d. 

It is appropriate at this point to look into the questions of the siz.e {in th:i.s 

context, the volume) and the shape (L e., the interfocal distance} of the nuclear 

spheroid. Th . . . d' h . t . 1 . 18 
ere 1s some unc erta1nty regar 1ng t e approprta e nuc ear s1ze 

to be used in these considerations. Thus, our calculations were performed 

for two 11 sizes' 1 of nuclei. One had a volume equal to that of a sphere of radius 

1/3 -13 . 1/3 ~13 1. 20 A x 10 ern., the other to a sphere of radlUs 1. 35 A x 10 ern. 

Tb determine the interfocal distance, a, of the nuclear spheroid (hence of 
., ·.;']-. 

the spheroidal coordinate system employed) use was made of the relation '(23~ 

between Q and a·~ . Since the intrinsic quadrupole marne nt for Pu 
238 

is not 
0 

empirically known, we used a serniernpirical connection 
8 

between quadrupole 

moments and energy of the first rotational state,. E 2(kev}: 

I I --1/2 -24 2 
0

0 
.= 1. 2Z x E 2 xJO ern 

where Z .is the charge. This formula is based on the experimentally known reJa ... 

tion between intrinsic quadrupole moments (from gamma ray lifetimes and 

Coulomb excitation cross sections) in the heavy rare earth region. The formula 

yields a ja I of 17 x 10-
24 

crn
2 

.for Pu
238

• Subsequent to the completion of our 
0 . 

. I 238 232 · -24 2 
calc ulattons the values of I Q

0 
for U and Th of 8 x 10 ern and 

9 x 10-
24 

crn
2

, respectively, were determined by Tern.mer and H~ydenburg19 

on the basis of Coulomb excitation cross sections. It thus appears that the 

relation {28) may overestimate the intrinsic quadrupole moment by as much as 

50 percent and that we have used a somewhat too large value of I Q
0 
I for our 

calculations. In view of this, the quantitative details of our numerical work 

are subject to considerable modification, but it seems likely that none of our 

major qualitative conclusions will be alter.ed. 
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The assumption of uniform charge density may be open to question in that 

it is expected that the protons beyond the closed shell of 82 will fill the lower 

energy orbitals with maximum concentration in the ends of the prolate spheroid. 

There is insufficient knowledge to justify any such refinement here. 

The interfocal distance, a, corresponding to Q being us.ed for Pu
238 

is 
- 0 

-12 l. 35 x 10 ern. With this value of a, the two nuclear surfaces are prolate 

spheroids defined by the coordinate surfaces £ = 1. 41· and £ = L 51. 
0 0 

Table I summarizes the results of these .calculations. It is seen that there· 

is some suppression of the L = 4 group, but the agreern.ent with the experi-

mental intensities is not satisfactory. We can only conclude that neither simple 

picture represents the physical situation. 

Dresner
13 

has independently drawn the same conclusion from his work. 

Table I 

Results of Outward Integrations for Crn
242 

Boundary conditions at£ 
. 0 

Calculated values at 
s = 5. 6 

Calculated a. group 
intensity {uSing 
connection formula 
approximation} 

----------------------------~--------------------~--------------------- --~~ 
~ Yo zo z a.2:ao a4:ao 

I 

uniform 1. 406 0 0 + 1-.-20 +0.298 L l3 0.058 
surface 
distribu- l. 514 0 0 +0. 91 +0.230 0.68 0.035 
tion 

one-body 1. 406 -0.277 +0.025 +0.83 +0.202 0.56 0.029 
model 

1. 514 -'0. 232 +0.016 +0.72 +o. 15 6 0.43 0.017 

values needed to match +0 .. 74 ~0.02 0.357 4.8xl0=4 
experimental intensities 
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.Inward Integrations for Cm 
242 

and Th
228

.,.,-As mentioned earlier, one .can 

exploit the available experimental data directly by integrating the equations for 

the various partial waves inwards to the nuclear surface and thus obtain infor-

matio.n about the alpha probability d;istribution on the nuclear surface. In the 

following we shall restrict our selves to the. study of the two nuclides Cm 
242 

and 

Th
228 

.. These nuclides are of interest in that they exhibit opposite extremes in 

the L = 4 hindrance factors, Cm
242 

being very strongly hind~red and Th
228 

being virtually unhindered •.. The data and information pertinent to our calculations 

on these two nuclides are presented in Table ](I. 

. Table II 

Information Used in Inward Integration Studies 

Nucleus Alpha disintegration Energy of. Energy of'· ,·_Reiati:v.e alpha Assumed Q 0 
energy (including elec- 2+ state 4+ state ··abundance to of daughter 
tron sc reening)(Mev) (Mev} (Mev) 0~ 2+ . 4+ {10~24 cm2) 

Cm 
242 

6.252 0.044 0.146 73.7 26.3 0.035 +17 

Th228 5.553 0.084 0.253 71 28 0.2 +11.6 

The observed intensities, of course, determine only the amplitudes of the 

various L waves but not their phases. The condition u:sed to determine the 

. i6 
possible sets of phases was that the phase factors, e Pn of the waves, which 

are pure outgoing waves at large separations, be such as to produce an expo-

nential damping of the imaginary part of the partial waves within the barrier. 

With these phases one can then obtain the real part of the wave by inward inte-

gration. 
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In carrying out the above procedure of integrating through the turning point 

and into the barrier region we have used two different methods. The first, 

which is simple but very approximate, is based on the circumstances that the 

equations (26) are decoupled at the turning point in that prolate spheroidal 

coordinate system in which the interfocal distance ~ is given by a 
2 = 6Q

0
/Z. 

Assuming that the coupling terms remain negligible (compared to the 

remaining terms in the equation) in a small region about the turning point (an 

assumption probably reasonable .for the Th
228 

case) one can apply the simple 

WKB connection prescription. A transformation to the spheroidal coordinate 

system appropriate for the barrier region of the nucleus in question is then 

performed. 

It is important to note that the phase determination pro'~edure yields. not 

one but four sets of relative phases for the three partial waves. This is most 

readily seen when the coupling can be neglected, as in the above-mentioned 

approximation. If 6£ insures that the part increasing exponentially as s -~> l 

is pure real, so will 5£ +'II'. 

Due to the very small magnitude of w 
4 

as compared to w 2 and w 
0 

in the 

case of Cm24~_the assumption of negligible coupl-ing in the turning point region 
r 

/ 

in the spe~ial coordinate system is not valid. In this case we resorted to direct 

numerical solutions to equations (26) (in spherical coordinates} on the UCRL 

Bush-type electromechanical differential analyzer. 
20 

Table .HI summarizes the results for the integrations through the turning 

point. The values of y(£1) and z(£1) contained thereinse:r.v:ed as initial·values 

for the integrations in the barrier region by the method described in the pre­

ceding section. There are two additional phase choices for Cm
242 

which be= 

cause of the small magnitude of w 4 in the turning point region lead to essentially 

the same results as the two listed sets. 
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Table III .. 

Initial Values for the Barrier Integrations 

242 . 
Cm ( £ "1-:- = 5. 6) Th228 (£1: 6. 0) , 

Case I Case II Case l Case II Case .III Case IV 

y(£1) 0. 74 -0.77 0.93 0.94 -0.94 -0.93 

z(£1> -o. 022 0.025 0. 18 -0. 23 0. 22 -0. 17 

While the several sets of y(£1} and z(£
1

) values lead to the observed inten­

sity and proper behavior of the imaginary part, all but one for each nu~leus 

are physically'unlikely. Unless the distribution of alpha particles on the 

nuclear s.urface is restricted to a narrow band about the equator, we would 

expect that in the turning point region the distribution will be at least some-

what peaked at the poles because of the lower barrier in those directions. On 

the basis of these considerations we can select the physically most plausible 

set, and in Figs. 2 and 3 are shown the results of the integrations for these 

cases in the two nuclei. {Cases- I) 

The other choices of phases listed in Table IH were also studied. Case II 

for Th
228 

exhibits a somewhat pathological behavior in that y and z increase 

drastically in the integration inward.s. Thus, this choice of phases is unlikely 

to represent the physical situation. 

In Fig. 4 we have plotted the surface distributions for all the above 
2 . . 

cases. It is to be noted that the lt~J I f are symmetric about the equator, sur ace 

since only even L values enter in the decay to the lowest band of an even-

even nucleus. In each case the distributions are given for the two sizes of 

nuclei. The results do not differ much with the variation in volume considered 

here. 
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As expected, all but the two physic"l'lly p:r:obable sets of initial values at 
2 . .. ' . . . 

~-1 lead to !lJ1 j f narrowly restricted about the equator of the spheroids. sur ace 

Granting that cases I probably represent the physically significant cases for 

both Th
228 

and Cm 
242 

we can observe that there is a shift in the surface dis= 

tribution from a broad peak about the poles in Th
228 

to one more concentrated 

in the regions midway between poles and the equator in the case of Cm
242

. 

That the shift in surface distribution is gradual can be inferred from the con­

tinuous growth of the hindrance factor in going from Th
228 

to Cm
242

. (Cf. Fig. l.} 

It t d . 1" . 8 h 1 d 1 h d was sugges e 1n a pre 1m1nary report on t e coupe a p a ecay 

problem that for nuclei of greater atomic number and deformation than Cm 242 

the continuation of the intensity trend might show a reversal of the decreasing 

behavior of the L = 4 group. The increasing L = 4 group of these heaviest 

nuclei would bear a phase relationship with respect to the L = 0 group which 

was the opposite of that of the lower mass alpha emitters. Subsequent to 

3 . 246 254 
this speculation the study of alpha em1tters Cf and Fm actually showed 

the increase in abundance of the L = 4 group. The discussion of the 

preliminary report8 als'o suggested speculatively that the intensity of the 

L = 2 glioup might begin to decrease fo.rlheavH~;r:1 nuclei, and this also was 
' 

found sdbsequently for californium and fermium isotopes. The idealized 

model on which these guesses were based considered a sharp angular 

alpha distribution of a delta function nature. The qualitative success of the 

guesses certainly does not imply any deta.iled validity of the delta function 

picture. Indeed, it seems most probable that the alpha angular distributions, 

particularly in the turning point region, are fairly broad. Our numerical results 

cannot really answer the question, as we have not included higher partial waves than 

L = 4, but the hindrance factors for higher groups are uniformly very lar.ge. The 
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more groups that are included in the integrations, the more detailed can be the 

information on the alpha distribution at the nuclear surface. Sharply peaked 

functions are unlikely due to the high rotational kinetic energy associated with 

them. 

Total Barrier Penetration.- -It is of interest to see how the occurrence of 

a spheroidal deformation affects the total decay constant, Let us define a 

generalized penetration factor P as 

P= 
f SmJ LjJ 12dS 

2 
f s' I lJJ I dS 

n 

where soo is a surface at a large distance from the nucleus and sn is the 

nuclear surface. · LjJ is the complete wave function, which asymptotically goes 

ove.r into a pure outgoing wave .. For the case of a spherical nucleus the 

penetration factor obtained using first order WKB wave functions is 

'r. 

PC= [~/(v(R)n- E)] 1/2 exp{~/~JR:T .. Pv2rn{V(r}-E) dr} 

where Rn is 'the nuclear radius and RT. p. is the classical turning point. 

Withy and z known as functions of £, ·it is a simple matter to compute 

the penetrability for the spheroids taken in the above calculations .. ,Table IV 

228 
represents the results of the penetration factor calculations for the .Th 

and Cm
242 

with the nuclear volumes in all c(lses equal to those for.spherical 

nuclei with radii R = 1. 20 x 10-13 A1/ 3 ern. The inward integration results, 

Cases I, are used. ,':. 

In the last column of Table IV are the values predicted by the llill­

Wheeler 
7 

on,e-dimensional WKB formula for penetration factor, evaluated 
~ .. , 
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through the thinnest part of the barrier •. While both the Hill-Wheeler formula 

and the present work lead to larger penetrabilities than in the case of the 

spherical nucleus (as would be expected~, the one-dimensional formula pre-

diets a much larger increase than the detailed treatment and a fuuch larger 

. 242 228 
Increase for Cm than for Th . This last fact is rather difficult to 

!'e~oncile with the success of the old correlations of decay rate data with 

spherical barrier formulas. The much lower enhancement of penetrability 

which the present numerical workJinds does much to remove the above 

difficulty. 

Alpha 
emitter 

Th228 

c:m242 

Ln Pc 
(spherical) 

-74~73 

-72.79 

Table IV 

Barrier Penetration Factors 

LnPnJ 
(spheroidal 

case I~ 
(this work) 

-72.58 

-70.39 

Ln{PD1/P C} 

(this work~ 

2. 15 

2.40 

Ln (Pn7Pc) 
Hilt.,. Wheeler 

!-dimensional WKB 
formula 

4.98 

6.77 

][t appears then that the one-dimensional formula does not give a good 

estimate for the alpha decay problem. The alpha decay process is not able 

nearly to take full advantage of the much thinner barrier in the vicinity o:fi the 

poles. The reason for the failure of the one-dimensional estimate may be 

expressed qualitatively as follows: if the alpha wave Juncttion were to be 

sharply channeled along the most favorable penetration trajectory, the total 

wave function would contain high angular momenta components with large 

amplitudes. The increased centrifugal barrier and: higher nuclear rotational 
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energy associated with the wave function would produce a dis,sipqtion of the wave 

function along the trajectory much larger than the one ~dime,nsional WKB inte-

gral indicates. The wave function adjusts it!)elf to a compromise involving 

moderate angular concentration of Jhe wave function along the favorable pene-

tration trajectory. 

One can also note from Column 3 of Table IV that the spheroidal shape 

228 242 
enhances the penetration factor of Th almost as much as that of Cm 

. 242 . 
despite the fact that Cm has appreciably larger deformation. This is easily 

understood when we consider that the distribution of alpha particles on the 

nuclear surface is peaked about the axis in the case of the Th
228 

while the 

peak for the Crn 
242 

is closer to the equator. 

.· ·~ CONCLUSIONS 

From the numerical work we are able to gain so~e .information on alpha 

particle formation in nuclear matter. Both from failure of the one -body model 

to yield the proper ratio of intensities in the Crn
242 

case and from the shift 

of the peaks of the surface density with mass, we can conclude that the one-

body model does not adequately representthe physical situation. That is, 

the alpha particle has a transitory existence in the nucleus and it does not 

move intact for times of the order of a period. We must envision the alpha 

clusters as continually forming and dis solving with short me an free paths. 

Also the picture of alpha particles being distributed uniformly on the 

nuclear surface does not appear to represent the physical state of affairs .. 

We might think of the situation in the following way: the alpha clusters 

that have any appreciable probability of forming and penetrating the barrier 

are those which are made up of the most loosely bound neutrons and protons. 
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The distribution of these clusters will then reflect the distribution of the most 

loa sely bound nucleons. _If, as we expect, case I is the one that corre spends 

to the correct picture, we viould conclude that the outer nucleons tend to con-

th 1 . Th228 d h . C 242 In centrate near e po es 1n . an nearer to t e equator 1n m a 

prolate spheroidal well of appreciable eccentricity, the states cone ent rated 

near the poles are expected to be filled first. 
21 

These are the states with 

Bohr=Mottelson quantum numbers n = ± 1/2 (all other states have nodes at the 

poles). One might suppose that orbitals with large probability densities at the 

poles are filled around A = 230 and that subsequent nucleon pairs tend to fill 

states with density distributions shifted toward the equator. 
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Fig. 2. Results of an inward numerical integration 

f h 1 h ~ . f c 242 . o t e a p a wave equahon or m 1n 

prolate spheroidal coordinates (Case I). 

Boundary conditions at s = 5. 6 are based 

on experimental alpha group intensities. 

y goes over asymptotically into the ratio 

of wave amplitudes of £ = 2 and £ = 0 

groups, and z, into the ratio of the £ = 4 

to the £ :z: 0 groups. 
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