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RESEARCH ARTICLE
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Abstract

Background

Cancer chemotherapy-associated febrile neutropenia (FN) is a common condition that is

deadly when bacteremia is present. Detection of bacteremia depends on culture, which

takes days, and no accurate predictive tools applicable to the initial evaluation are available.

We utilized metabolomics and transcriptomics to develop multivariable predictors of bacter-

emia among FN patients.

Methods

We classified emergency department patients with FN and no apparent infection at presen-

tation as bacteremic (cases) or not (controls), according to blood culture results. We

assessed relative metabolite abundance in plasma, and relative expression of 2,560 immu-

nology and cancer-related genes in whole blood. We used logistic regression to identify mul-

tivariable predictors of bacteremia, and report test characteristics of the derived predictors.

Results

For metabolomics, 14 bacteremic cases and 25 non-bacteremic controls were available for

analysis; for transcriptomics we had 7 and 22 respectively. A 5-predictor metabolomic

model had an area under the receiver operating characteristic curve of 0.991 (95%CI:

0.972,1.000), 100% sensitivity, and 96% specificity for identifying bacteremia. Pregneno-

lone steroids were more abundant in cases and carnitine metabolites were more abundant

in controls. A 3-predictor gene expression model had corresponding results of 0.961 (95%

CI: 0.896,1.000), 100%, and 86%. Genes involved in innate immunity were differentially

expressed.
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Conclusions

Classifiers derived from metabolomic and gene expression data hold promise as objective

and accurate predictors of bacteremia among FN patients without apparent infection at pre-

sentation, and can provide insights into the underlying biology. Our findings should be con-

sidered illustrative, but may lay the groundwork for future biomarker development.

Introduction

Bacteremia due to chemotherapy-associated febrile neutropenia (FN) is one of the most deadly

oncologic emergencies, with mortality rates of up to 50%.[1, 2] Therefore, presumptive broad-

spectrum antibiotic treatment is recommended for all FN patients within 1 hour of onset of symp-

toms, and the vast majority are admitted to the hospital.[3–6] However, fewer than 25% of FN

patients are found to have bacteremia.[1, 3, 4] Antibiotic treatment carries risks including C. diffi-
cile colitis, selection of drug-resistant strains, drug toxicity, allergic reactions, and drug-drug inter-

actions, while hospitalization confers risks of acquisition of nosocomial pathogens, exposure to

medical errors, catheter-associated infections, thromboembolism, and financial burdens.[3, 4, 7–9]

Currently, detection of bacteremia depends on culture, which rules out bacteremia only

after several days; too late to inform initial decisions regarding hospitalization and therapy.

Guidelines recommend that initial treatment decisions be based on clinical evaluation includ-

ing the Multinational Association for Supportive Care in Cancer (MASCC) score.[4, 10] How-

ever, this score was not designed to detect bacteremia, and is insufficiently accurate even for its

intended use, prediction of safe discharge, with a negative predictive value for complications

of only 83%.[11] Consequently, many clinicians do not rely on it, admitting all FN patients by

default.[5, 6] A newer score, the Clinical Index of Stable Febrile Neutropenia, is also inade-

quate, with a 9.1% rate of bacteremia in the low-risk group.[12] Similarly, PCR for bacterial

DNA, and measurement of host markers such as procalcitonin, lack sufficient sensitivity.[13–

15] Objective tests are needed to detect bacteremia during the initial evaluation, so that

patient-specific management strategies can be employed.

High throughput ‘omics’ profiling is a powerful tool for the discovery of biomarkers for var-

ious conditions, including infectious diseases.[16] Metabolomics, which provides an integrated

profile of biological status, reflecting the “net results” of genetic, transcriptomic, proteomic,

and, environmental interactions, represents a particularly powerful research tool.[17] Differ-

entially-abundant metabolites may be utilized as biomarkers to discriminate between those

with and without bacteremia.[18, 19] By integrating gene-expression data with metabolomic

data, we can identify changes in upstream regulators of the metabolites of interest, strengthen-

ing pathway analyses and facilitating deeper understanding of underlying biology.[20, 21]

The aim of this study, was to develop methods for the development of omic biomarkers

that can accurately identify bacteremia among FN patients without apparent infection. Eventu-

ally, we hope to build upon the most promising results from this project to develop a multivar-

iable biomarker that can be advanced into a test for routine clinical use, whilst informing on

underlying biology.

Methods

Study population

Between October 2015 and October 2016, we recruited patients with fever (defined as a single

oral temperature�38.3˚C or an oral temperature�38˚C sustained over a 1-hour period)[4,
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10] and FN (defined as<1000 neutrophils/μL2), from the Brigham and Women’s Hospital

emergency department (receiving emergency department for the Dana Farber Cancer Insti-

tute). All patients had detailed clinical evaluations including history, physical exam, chest X-

ray, urinalysis, and, blood and urine cultures. Information on antibiotic use in the 24 hours

prior to blood collection was also recorded. Patients presenting with focal bacterial infection

(pneumonia, skin infection, urinary tract infection, intra-abdominal infection) or evidence of

sepsis in the judgment of two investigators were excluded, as the goal of this study was to find

an indicator of bacteremia in patients without initially-detectable bacterial infection. Trained

research assistants screened for eligible patients between the hours of 7am and 11pm daily.

Once subjects were identified, they collected two blood samples (in PAXgene RNA preserva-

tion tubes and lithium heparin tubes) and clinical data. Two investigators then independently

categorized each subject, relying upon the diagnostic investigation conducted as part of rou-

tine care and the recommendations of the Infectious Diseases Society of America and the

American Society of Clinical Oncology.[4, 10, 22] The investigators placed each subject into

one of three categories: (i) No evidence of focal infection or sepsis at presentation and ulti-

mately found to have been bacteremic (cases), (ii) No evidence of focal infection or sepsis at

presentation and ultimately found not to have been bacteremic (controls), or (iii) Evidence of

focal infection or sepsis at presentation (excluded),. The Partners Health Care Human Subjects

Research Committee approved this study, and all participants provided written informed

consent.

Metabolomic and gene expression profiling

Mass spectrometry-based metabolomic profiling was performed on plasma samples by Meta-

bolon, Inc. (Durham, NC), as described previously [23, 24] Briefly, the global biochemical pro-

filing analysis was composed of four unique arms covering a broad range of the metabolome;

(i) reverse-phase chromatography positive ionization methods optimized for hydrophilic com-

pounds (LC–MS Pos Polar) and (ii) hydrophobic compounds (LC–MS Pos Lipid); (iii)

reverse-phase chromatography with negative ionization conditions (LC–MS Neg), and (iv) a

HILIC chromatography method coupled to negative (LC–MS Polar). Metabolites were anno-

tated based on an iterative process of matching on mass to charge ratio, retention time and

spectral fragmentation signature, followed by manual curation to confirm biochemical identi-

fication. Further details are provided in S1 Methods.

RNAseq could not be used in this population due to the paucity of white blood cells.

We used EdgeSeq from HTG Molecular, Inc (Tucson, AZ).[25] to quantify the expression of

2,560 genes relevant to cancer and immunology. This technology does not require an RNA

isolation step. The panel of genes was chosen by an iterative process of literature review and

key opinion leader feedback, and included 24 gene groups and pathways.[26]. Analysis was

performed as described previously [25, 26]. Briefly, the EdgeSeq assay couples quantitative

nuclease protection with next-generation sequencing. After allowing nuclease protection

probes (NPPs) to hybridize to their target RNAs, S1 nuclease is added to remove excess unhy-

bridized NPPs and RNA, leaving behind only NPPs hybridized to their target RNAs, resulting

in a stoichiometric conversion of target RNA to the NPPs and producing a 1:1 ratio of NPP to

RNA. The quantitative nuclease protection steps are automated on the EdgeSeq processor, fol-

lowed by PCR to add sequencing adaptors and tags. The labeled samples are pooled, cleaned,

and sequenced on a next-generation sequencing platform using standard protocols. The

resulting data are processed and reported by EdgeSeq parsing software. Further details are pro-

vided in S1 Methods.

Omics and bacteremia
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Quality control and data processing

Metabolomics. We used a previously published [27] QC and processing pipeline to clean

the metabolomic dataset. We excluded metabolites with zero abundance in all samples, then

imputed all remaining missing observations with half the lowest detected value for that metab-

olite. We considered metabolites with zero variance uninformative and excluded them. We

then pareto scaled and log-transformed the data.

Gene expression. We performed data processing and normalization according to Edge-

Seq manufacturer’s standards.[25, 26] Data were transferred from the Illumina MiSeq

sequencer as demultiplexed FASTQ files, with one file per original well of the 96-well sample

plate. The HTG EdgeSeq Parser was used to align the FASTQ files to the probe list to collate

the data, which were then median-normalized.[28]

Statistical analysis

Prediction. We used unsupervised principal components analysis (PCA) to assess the

ability of the metabolome and gene expression data to discriminate cases (with bacteremia)

from controls (without bacteremia). We further interrogated these plots to determine if other

clinical factors may be driving the metabolomic profiles. We then used supervised partial least

squares discriminant analysis (PLS-DA) to assess predictive accuracy for bacteremia. Next, we

attempted to identify metabolomics and genetic predictive profiles using two approaches; (i)

We used independent logistic regression models adjusting for age, sex, body mass index

(BMI), and, tumor type (solid/liquid) to identify the metabolites most strongly associated with

the presence or absence of bacteremia. Differential gene expression analysis was used for the

gene expression data. (ii) We employed least absolute shrinkage and selection (LASSO) spar-

sity-inducing logistic regression to identify more parsimonious metabolomic and genomic

predictors. We ran two logistic models; one containing all metabolites, and one containing all

genes to identify the subset of metabolites and genes retained in the models. These were then

selected as the predictors. We used the lambda that produced the minimum mean cross vali-

dated error.[29]

We then created metabolite and gene summary scores based on (i) the first principal com-

ponent of metabolites/expressed genes identified as differentially abundant in cases vs. con-

trols in the regression models; and (ii) metabolites/genes selected in the LASSO model. We

used receiver operating characteristic (ROC) curve analysis to evaluate the predictive ability of

these summary scores for bacteremia, and employed the method of DeLong to compare areas

under the ROCcurves for the different scores.[30] We determined a cutoff that maximized sen-

sitivity, and calculated specificity at this cutoff. The currently recommended approach to risk

stratification is to classify a patient as high-risk if the MASCC score is <21 or if any of the

Infectious Diseases Society of America/American Society of Clinical Oncology high risk crite-

ria are met.[3, 4] While this approach to risk stratification was not designed to detect bacter-

emia, no other method currently exists to classify these patients. Therefore, we compared the

accuracy of this classifier as a predictor of bacteremia to the accuracy of our omic predictors of

bacteremia.

Analysis of underlying biology. We explored metabolic pathways using MetaboAnalyst

(http://www.metaboanalyst.ca/), which takes both overrepresentation and pathway topology

into account, assigning more weight to metabolites that form key components or ‘hubs’ of spe-

cific pathways. For gene expression, we performed gene set enrichment analysis using the g.

GOSt tools from the g.profiler package (http://biit.cs.ut.ee/gprofiler/).

In order to combine the findgins from the metabolomics and genetic analysis, we used

IMPaLA (Integrated Molecular Pathway Level Analysis; http://impala.molgen.mpg.de/) [31]
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PLOS ONE | https://doi.org/10.1371/journal.pone.0197049 May 16, 2018 4 / 20

http://www.metaboanalyst.ca/
http://biit.cs.ut.ee/gprofiler/
http://impala.molgen.mpg.de/
https://doi.org/10.1371/journal.pone.0197049


to identify pathways that were jointly dysregulated at the level of both metabolites and gene

expression. IMPaLA performs over-representation analysis considering both genes and metab-

olites to provide a combined pathway p-value as well as a q-value that accounts for multiple

testing.

Results

Study population

Metabolomic profiling was performed for 58 subjects who were classified by two investigators

with no disagreements. Fourteen (24%) had bacteremia (cases); 25 (43%) had no evidence of

bacterial infection (controls); and, 19 (33%) had evidence of a focal infection without bacter-

emia (excluded from analysis), resulting in a total of 39 analyzed subjects (Table 1). Gene

expression data were available for only seven of the cases and 21 of the controls, due to logisti-

cal issues. A further control had gene expression profiling only. In total seven cases and 22

controls were included in the gene expression analysis.

Cases demonstrated a significantly higher maximum temperature, lower neutrophil and

lymphocyte counts, and a lower MASCC score as expected. Patients with both solid and liquid

tumors originating from a variety of organs were included. Cases were more likely to have a

liquid tumor than controls, but there was no significant difference in tumor site. Antibiotic

treatment was initiated prior to sample collection in 85% of subjects; there was no significant

difference in the proportion of cases and controls who received antibiotics (Table 1).

Metabolomics

A total of 1,296 metabolites were measured. After exclusion of metabolites that were missing

for all subjects and those with no variance across the population, 1,204 metabolites remained

for analysis. These included amino acids, carbohydrates, lipids, nucleotides, vitamins, peptides,

energy metabolites, and 163 xenobiotics. PCA based on all 1,204 metabolites revealed separa-

tion between cases and controls along the first two components which together explained 27%

of the variance in the data (Figure A in S1 File). To determine if these metabolomic profiles

were driven by other clinical factors we also interrogated the PCA plot in terms of tumor type

(liquid or solid); tumor site and antibiotic use prior to blood draw. Among the bacteremic

cases only, we also explored the bacteria type subsequently identified in the culture (Gram-

positive, Gram-negative or both). These plots indicated no clustering based on any of these

variables; and therefore provided no evidence that these factors were driving the metabolomic

profiles (Figure B in S1 File). Regression models confirmed that both PC1 (p = 8.8x10-4) and

PC2 (p = 0.024) were significantly associated with case status.

Partial least squares discriminant analysis (Fig 1) suggested that a metabolomic classifier

could distinguish between cases and controls, with R2 = 0.650, and a cross-validated Q2 of

0.410 for the first component. Interrogation of the variable importance in the projection plot

(VIP; a measure of the relative importance of each feature in the PLS-DA) identified 17α-

hydroxypregnanolone glucuronide, estrone 3-sulfate, 5α-pregnan-3, 20β-diol disulfate and

pregn steroid monosulfate (C21H3405S) as the top metabolites driving the discrimination.

Carnitines, also had high VIP scores.

Permutation testing revealed that the model was not robust (p = 0.366). Therefore, a refined

discriminatory profile was sought by identifying metabolites significantly associated with bac-

teremia using multivariable logistic regression. After adjustment for age, sex, BMI and, tumor

type (liquid or solid), a total of 177 metabolites were significant at p<0.05 and 19 were signifi-

cant at a p<0.01 (Fig 2 and Table A in S1 File). A majority of the significant metabolites were

lipids. We observed upregulation of pregnenolone steroids and downregulation of carnitine
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metabolites among bacteremia cases. The relative metabolite intensities in cases and controls

for the top eight upregulated and top eight downregulated metabolites are shown in Figure C

in S1 File. Pathway analysis identified six metabolic pathways that were enriched among these

significant metabolites: pyrimidine metabolism (p = 0.002), ascorbate and aldarate metabolism

(p = 0.003), purine metabolism (p = 0.017), sphingolipid metabolism (p = 0.018), pantothenate

metabolism (p = 0.022) and valine, leucine and isoleucine metabolism (p = 0.022).

Table 1. Baseline characteristics of the study population.

Cases (n = 14) Controls (n = 25) p-value

Sex Female 4 28.6% 13 52.0% 0.193

Male 10 71.4% 12 48.0%

Age (years) mean (SD) 55.1 (11.6) 47.0 (16.4) 0.082

BMI mean (SD) 26.4 (2.7) 25.3 (4.3) 0.310

Tmax (oF) mean (SD) 102.2 (0.8) 101.3 (0.8) 2x10-3�

Absolute Neutrophil Count mean (SD) 0.12 (0.22) 0.35 (0.31) 0.012�

Absolute Lymphocyte Count mean (SD) 0.21 (0.20) 0.56 (0.51) 0.005�

MASCC risk score mean (SD) 15.0 (4.3) 18.1 (3.8) 0.032

MASCC high risk �21 (low risk) 1 7.1% 8 32.0% 0.120

<21 (high risk) 13 92.9% 17 68.0%

ASCO high 14 100.0% 22 88.0% 0.540

low 0 0.0% 3 12.0%

IDSA high 13 92.9% 20 80.0% 0.391

low 1 7.1% 5 20.0%

Tumor type liquid 12 85.7% 11 44.0% 0.017

solid 2 14.3% 14 56.0%

Cancer typea Breast 0 0.0% 3 12.0% 0.441

Esophageal 0 0.0% 2 8.0%

Gynecological 1 7.1% 2 8.0%

Hematological 12 85.7% 10 40.0%

Lung 0 0.0% 1 4.0%

Male reproductive 0 0.0% 2 8.0%

Other 1 7.1% 4 16.0%

Skin 0 0.0% 1 4.0%

Antibiotics prior to blood drawb Yes 14 100.0% 19 76.0% 0.071

No 0 0.0% 6 24.0%

Organismc Gram-Negative 8 57.1% -

Gram-Positive 5 35.7% -

Both 1 7.1% -

Gene Expression Datad Available 7 52.9% 21 84.0% 0.033�

�Indicates a significant difference between cases and controls at a 95% confidence level

Tmax–maximum temperature

MASCC–Multinational Association for Supportive Care in Cancer

ASCO–American Society of Clinical Oncology binary classifier

IDSA–Infectious Diseases Society of America binary classifier

SD–Standard deviation
a Information on cancer type was not available for one control
b The patient received antibiotics in the 24 hours prior to blood draw
c Type of bacteria ultimately identified in the culture samples from bacteremic cases
dTranscriptomic analysis was conducted on 7 cases and 22 controls–one of these controls did not have metabolomic profiling available

https://doi.org/10.1371/journal.pone.0197049.t001
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We generated a summary score based on the first principal component of the 177 metabo-

lites, and used ROC curve analysis to explore the discriminatory ability of this score (Fig 3).

To identify the most parsimonious model, we then used LASSO regression, and identified a

five-metabolite score. The AUCs of the two currently available clinical classifiers; MASCC and

MASCC plus an indicator of risk (“high-risk” classifier), were 0.624 (95%CI: 0.508–0.741) and

0.540 (95%CI: 0.486–0.594), respectively. Both metabolite scores significantly out-performed

these classifiers with AUCs of 0.969 (95%CI: 0.918–1.000) (p dif MASCC classifier = 2.3x10-8;

p dif high risk classifier <2.2x10-16) for the standard logistic score and 0.991 (95%CI: 0.972–

1.000) (p dif MASCC classifier = 8.0x10-10; p dif high risk classifier <2.2x10-16) for the LASSO

score. Furthermore, while the sensitivity of the binary MASCC and “high risk” classifiers was

high (93% and 100%, respectively), the corresponding specificities were only 32% and 8%. In

contrast, at the cutoff required to achieve 100% sensitivity, the specificity of the standard logis-

tic classifier was 88%, and the parsimonious LASSO classifier was 96% (Table 2).

Sensitivity analyses. A sensitivity analysis additionally adjusting for antibiotic use in the

24 hours prior to blood draw identified 118 significant metabolites; 112 (95%) of which were

also among the 177 identified in the original analyses. We ran a further sensitivity analysis

adjusting for the difference between absolute neutrophil and absolute leukocyte count. Again,

of the 169 metabolites that retained significance in this model, 159 (94%) were among the orig-

inal 177 metabolites., demonstrating the robustness of these findings.

Fig 1. Partial least square discriminant analysis demonstrating metabolomic differences in bacteremia cases (n = 14) and controls

(n = 25). The first two components and the corresponding percentage of the total variance in the metabolome explained by these two

components are presented.

https://doi.org/10.1371/journal.pone.0197049.g001
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Similarly, we wanted to determine whether the type of bacteria (Gram-negative or Gram-

positive) responsible for the bacteremia influenced the results. Although the numbers were too

small (n = 5 cases) for the model to converge when considering only at Gram-positive bacteria,

we identified 129 metabolites significantly associated with Gram-negative bacteria (n = 8

cases). Ninety-nine (77%) of these were also among the 177 metabolites; including many of the

most significant hits such as the carnitines and pregnenolone steroids. Furthermore, when

comparing the relative levels of these top metabolites in controls versus cases stratified by

Gram-status, both the Gram-negative and Gram positive bacteria cases were distinct from the

controls (Figure D in S1 File). This again suggests that case-control status rather than bacteria

type among the cases was the biggest driver of the differential metabolite abundance.

Gene expression profiling

Evidence of separation in the gene expression profile of cases (n = 7) and controls (n = 22) was

also suggested by a PCA model based on 2,560 mRNAs. The PLS-DA model (Fig 4) resulted in

an R2 of 0.60, but a Q2 of only 0.09, and again permutation testing indicated that this model

Fig 2. Association between metabolites and bacteremia using a multivariable logistic regression model after adjustment for age, sex, BMI and tumor type (liquid

or solid). Metabolites are colored according to their super pathway assignment and top metabolites are named; nominal significance levels of 95% and 99% are indicated

with dashed red line; the x axis represents the strength of the association and the y-axis the significance–metabolites to the right of the plot are at higher levels in cases

than controls, metabolites to the left are at higher levels among the controls.

https://doi.org/10.1371/journal.pone.0197049.g002
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was not robust (p = 0.974). Differential expression analysis identified 150 nominally significant

genes, of which three were significant at p<0.01 (Fig 5). The top genes included CTSS
(p = 0.005), FGL2 (p = 0.006), LYZ (p = 0.009), PPBP (p = 0.010), CYBB (p = 0.011) and CD86
(p = 0.011). The expression levels of the top eight over-expressed genes and the top eight

under expressed-genes in cases versus controls are shown in Figure D in S1 File. G.profiler

analysis determined that the significant genes were enriched for 24 biological terms, including

a number relating to vesicle mediated transport, and cytokines (Table B in S1 File). When

LASSO regression was employed, only three genes were retained in the model: RAD18, which

encodes a DNA repair protein, MAPKAPK3, a kinase activated in response to cellular stress

and JAG1, which has a reported role in hematopoiesis. Sensitivity analyses were not performed

on the gene-expression data due to sample size limitations.

In this subset of patients the AUC for the MASCC classifier was 0.610 (95%CI: 0.437–0.784)

and for the high-risk classifier0.546 (95% CI: 0.484–0.607). Again, the omics-based scores out-

performed these metrics. The summary score based on the 150 genes had an AUC of 0.974

(95%: 0.923–1.000) (p dif MASCC classifier = 1.21x10-4; p dif high risk classifier< 2.20x10-16),

Fig 3. Receiver operating characteristic curves showing the performance of metabolomic (logistic and LASSO) predictors compared to existing clinical

(MASCC and high-risk) classifiers. AUC–Area under the receiver operating characteristic curve. MASCC binary classifier-Multinational Association for
Supportive Care in Cancer score categorized into <21 (high risk) and�21(low risk). High risk binary classifier- defines a patient as high risk if the MASCC score is
<21 or if any of the Infectious Diseases Society of America/American Society of Clinical Oncology high risk criteria are met. Logistic score–summary score based on
the 137metabolites associated with bacteremia under a multivariable logistic regression model. LASSO score–summary score based on the sevenmetabolites
associated with bacteremia under a penalized LASSOmodel.

https://doi.org/10.1371/journal.pone.0197049.g003
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Table 2. Sensitivity and specificity of the metabolomic and gene expression classifiers compared to existing clinical predictors in terms of area under the curve, sen-

sitivity and specificity.

Classifier AUC 95%CI Sensitivity Specificity

Metabolomic Data

MASSC�21 0.624 (0.508, 0.741) 93% 32%

High Risk Classification 0.54 (0.486, 0.594) 100% 8%

Logistic Score optimal cutoff 0.969 (0.918, 1.000) 100% 88%

LASSO Score optimal cutoff 0.991 (0.972, 1.000) 100% 96%

Gene Expression Data

MASSC�21 0.61 (0.437, 0.784) 89% 36%

High Risk Classification 0.546 (0.484, 0.607) 100% 9%

Logistic Score optimal cutoff 0.974 (0.926 1.000) 100% 86%

LASSO Score optimal cutoff 0.961 (0.896, 1.000) 100% 86%

AUC–Area under the receiver operating characteristic curve

MASCC binary classifier–Multinational Association for Supportive Care in Cancer score categorized into <21 (high risk) and�21(low risk)

High risk binary classifier–defines a patient as high-risk if the MASCC score is <21 or if any of the Infectious Diseases Society of America/American Society of Clinical

Oncology high risk criteria are met

Logistic and LASSO score cutoffs were chosen to obtain 100% sensitivity

https://doi.org/10.1371/journal.pone.0197049.t002

Fig 4. Partial least square discriminant analysis demonstrating differential gene expression in bacteremia cases

(n = 9) and controls (n = 21). Gene expression profiles based on 2560 genes quantified using EdgeSeq; the first two

components and the corresponding percentage of variances in the gene expression profile explained by these two

components are presented.

https://doi.org/10.1371/journal.pone.0197049.g004
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while the AUC for a model including RAD18 (p in logistic model = 0.017), MAPKAPK3 (p in

logistic model = 0.014) and JAG1 (p in logistic model = 0.017) as predictors was 0.961 (95%CI:

0.896 1.000) (p dif MASCC classifier = 5.51x10-6; p dif high risk classifier <2.20x10-16) (Fig 6).

The binary MASCC and high-risk classifiers in this gene expression subpopulation were sensi-

tive (89% and 100%, respectively), but had low specificities (36% and 9%). In contrast, with

100% sensitivity, the specificities was 86% for both our standard logistic and LASSO genomic

classifiers (Table 2).

Fig 5. Association between gene expression and bacteremia using a logistic regression model. Top genes are names; nominal significance

levels of 95% and 99% are indicated with dashed red line; the x axis represents the strength of the association and the y-axis the significance–

genes to the right of the plot are more highly expressed in cases than controls, genes to the left are more highly expressed among the controls.

https://doi.org/10.1371/journal.pone.0197049.g005
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Integrative analysis

When we combined the metabolomic and gene expression data into a single data set, there

were too few observations to demonstrate predictive ability, because we had both datasets for

only 28 participants. This caused the number of parameters to exceed the number of observa-

tions by too wide a margin for our models to converge on a solution. However, integrative

analysis using IMPaLA revealed that a number of the genes and metabolites independently

identified as significant in the previous analyses are involved in the same biological pathways

and processes (Table 3). Forty eight pathways were identified as being differentially perturbed

in terms of both metabolomics and gene expression (joint q-value<0.05). These included path-

ways relating to the immune system (joint q-value = 6.29x10-8) insulin regulation (including

the Insulin receptor signaling cascade; joint q-value = 6.29x10-8, IRS-related events triggered

by IGF1R;joint q-value = 4.33x10-3), the MAPK signaling pathway (joint q-value = 8.38x10-3)

Fig 6. Receiver operating characteristic curves showing the performance of gene expression based (logistic and LASSO) predictors compared to existing

clinical (MASCC and high-risk) classifiers. AUC–Area under the receiver operating characteristic curve. MASCC binary classifier–Multinational Association

for Supportive Care in Cancer score categorized into<21 (high risk) and�21(low risk). High risk binary classifier–defines a patient as high risk if the MASCC

score is<21 or if any of the Infectious Diseases Society of America/American Society of Clinical Oncology high risk criteria are met. Logistic score–summary

score based on the 153 genes associated with bacteremia under a logistic regression model. LASSO score–summary score based on the 2 genes associated with

bacteremia under a penalized LASSO model.

https://doi.org/10.1371/journal.pone.0197049.g006
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Table 3. Pathways differentially enriched at metabolomic and transcriptomic levels.

Process # Overlapping

Genes

Genetic

p-value

Genetic q-

value

# Overlapping

metabolites

Metabolomic p-

value

Metabolomic q-

value

Joint

p-value

Joint

q-value

Immune System 52 1.28E-

10

5.51E-07 5 8.39E-03 3.52E-01 3.06E-

11

6.29E-

08

Innate Immune System 37 3.36E-

08

2.90E-05 3 1.08E-01 8.46E-01 7.40E-

08

7.61E-

05

Signaling by NGF 16 1.90E-

05

3.53E-03 4 1.56E-03 2.01E-01 5.44E-

07

3.73E-

04

Cytokine Signaling in Immune system 20 3.36E-

07

1.45E-04 1 2.83E-01 1.00E+00 1.64E-

06

6.73E-

04

Signaling by EGFR 15 2.12E-

06

7.64E-04 2 6.94E-02 7.59E-01 2.47E-

06

7.25E-

04

PI3K-Akt signaling pathway—Homo

sapiens (human)

15 4.82E-

06

1.39E-03 1 6.43E-02 7.26E-01 4.95E-

06

1.27E-

03

HIF-1 signaling pathway—Homo sapiens

(human)

7 1.37E-

04

9.67E-03 3 3.73E-03 3.16E-01 7.88E-

06

1.80E-

03

Transmembrane transport of small

molecules

7 5.36E-

01

1.00E+00 15 1.20E-06 4.80E-03 9.84E-

06

1.97E-

03

Chemokine signaling pathway—Homo

sapiens (human)

11 6.61E-

06

1.72E-03 1 1.05E-01 8.26E-01 1.05E-

05

1.97E-

03

Insulin receptor signaling cascade 12 2.05E-

05

3.53E-03 2 4.11E-02 6.14E-01 1.26E-

05

2.16E-

03

Integrated Breast Cancer Pathway 6 8.33E-

05

7.26E-03 2 1.53E-02 4.04E-01 1.86E-

05

2.83E-

03

Adaptive Immune System 20 4.70E-

04

2.23E-02 4 2.82E-03 2.55E-01 1.92E-

05

2.83E-

03

NGF signaling via TRKA from the plasma

membrane

14 2.14E-

05

3.55E-03 2 7.57E-02 7.59E-01 2.32E-

05

3.18E-

03

Signal Transduction 45 3.49E-

04

1.80E-02 10 5.30E-03 3.24E-01 2.63E-

05

3.38E-

03

Signaling by Insulin receptor 12 5.19E-

05

6.77E-03 2 4.11E-02 6.14E-01 3.00E-

05

3.42E-

03

Downstream signal transduction 13 3.18E-

05

4.91E-03 2 6.33E-02 7.26E-01 2.84E-

05

3.42E-

03

DAP12 signaling 13 3.64E-

05

5.42E-03 2 6.33E-02 7.26E-01 3.22E-

05

3.49E-

03

Central carbon metabolism in cancer—

Homo sapiens (human)

6 9.07E-

05

7.26E-03 3 4.24E-02 6.14E-01 5.18E-

05

4.33E-

03

IRS-mediated signaling 11 9.00E-

05

7.26E-03 2 4.11E-02 6.14E-01 5.00E-

05

4.33E-

03

IRS-related events triggered by IGF1R 11 1.04E-

04

8.01E-03 2 4.11E-02 6.14E-01 5.70E-

05

4.33E-

03

IGF1R signaling cascade 11 1.04E-

04

8.01E-03 2 4.11E-02 6.14E-01 5.70E-

05

4.33E-

03

Signaling by Type 1 Insulin-like Growth

Factor 1 Receptor (IGF1R)

11 1.08E-

04

8.01E-03 2 4.11E-02 6.14E-01 5.89E-

05

4.33E-

03

DAP12 interactions 13 5.92E-

05

6.91E-03 2 6.33E-02 7.26E-01 5.06E-

05

4.33E-

03

Signaling by PDGF 13 6.91E-

05

7.18E-03 2 6.33E-02 7.26E-01 5.84E-

05

4.33E-

03

GPCR signaling-G alpha s PKA and ERK 12 7.06E-

05

7.18E-03 1 8.48E-02 7.59E-01 7.80E-

05

5.53E-

03

Diseases of signal transduction 12 2.05E-

05

3.53E-03 1 3.30E-01 1.00E+00 8.70E-

05

5.81E-

03

(Continued)
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and multiple pathways involved in the signaling processes necessary for cell survival, differen-

tiation and apoptosis, (such as signaling by NGF; joint q-value = 3.73x10-45, signaling by

EGFR; joint q-value = 7.25x10-4 andDAP12 signaling; joint q-value = 4.49x10-3).

Table 3. (Continued)

Process # Overlapping

Genes

Genetic

p-value

Genetic q-

value

# Overlapping

metabolites

Metabolomic p-

value

Metabolomic q-

value

Joint

p-value

Joint

q-value

Chemokine signaling pathway 9 8.44E-

05

7.26E-03 1 1.05E-01 8.26E-01 1.12E-

04

7.18E-

03

MAPK Signaling Pathway 8 5.27E-

04

2.42E-02 1 2.19E-02 4.38E-01 1.43E-

04

8.38E-

03

Pathways in cancer—Homo sapiens

(human)

14 1.18E-

04

8.55E-03 2 9.55E-02 8.26E-01 1.40E-

04

8.38E-

03

UMP Synthase Deficiency (Orotic

Aciduria)

3 1.96E-

03

5.47E-02 5 7.26E-03 3.29E-01 1.73E-

04

8.66E-

03

Pyrimidine Metabolism 3 1.96E-

03

5.47E-02 5 7.26E-03 3.29E-01 1.73E-

04

8.66E-

03

MNGIE (Mitochondrial

Neurogastrointestinal Encephalopathy)

3 1.96E-

03

5.47E-02 5 7.26E-03 3.29E-01 1.73E-

04

8.66E-

03

Dihydropyrimidinase Deficiency 3 1.96E-

03

5.47E-02 5 7.26E-03 3.29E-01 1.73E-

04

8.66E-

03

Beta Ureidopropionase Deficiency 3 1.96E-

03

5.47E-02 5 7.26E-03 3.29E-01 1.73E-

04

8.66E-

03

GPCR signaling-cholera toxin 11 1.90E-

04

1.22E-02 1 8.48E-02 7.59E-01 1.94E-

04

9.51E-

03

Ca-dependent events 1 2.82E-

01

8.54E-01 4 5.98E-05 5.40E-02 2.02E-

04

9.68E-

03

Pyrimidine nucleotides nucleosides

metabolism

3 1.94E-

02

2.20E-01 6 9.34E-04 1.49E-01 2.16E-

04

9.86E-

03

Ascorbate and aldarate metabolism—

Homo sapiens (human)

1 2.58E-

01

8.12E-01 5 8.12E-05 5.40E-02 2.47E-

04

1.08E-

02

Metabolism 19 8.04E-

01

1.00E+00 32 3.36E-05 4.46E-02 3.11E-

04

1.33E-

02

PLC beta mediated events 2 9.41E-

02

4.94E-01 4 3.91E-04 1.20E-01 4.12E-

04

1.73E-

02

G-protein mediated events 2 9.75E-

02

5.04E-01 4 3.91E-04 1.20E-01 4.26E-

04

1.75E-

02

Hemostasis 20 6.59E-

05

7.18E-03 1 6.17E-01 1.00E+00 4.52E-

04

1.82E-

02

Disease 15 5.10E-

04

2.37E-02 3 9.87E-02 8.26E-01 5.48E-

04

2.09E-

02

HTLV-I infection—Homo sapiens

(human)

10 5.54E-

04

2.47E-02 1 1.05E-01 8.26E-01 6.24E-

04

2.29E-

02

GPCR signaling-G alpha s Epac and ERK 10 8.33E-

04

3.30E-02 1 8.48E-02 7.59E-01 7.45E-

04

2.60E-

02

SLC-mediated transmembrane transport 4 3.82E-

01

1.00E+00 11 1.98E-04 8.75E-02 7.92E-

04

2.67E-

02

Pyrimidine catabolism 1 1.24E-

01

5.67E-01 5 9.23E-04 1.49E-01 1.15E-

03

3.54E-

02

PKB-mediated events 3 9.52E-

03

1.41E-01 2 1.53E-02 4.04E-01 1.43E-

03

4.21E-

02

Overlapping–indicates gene/metabolite are found both in the named pathway and among the set identified as significantly associated with bacteremia in this population

Enrichment p and q values are provided for the metabolites alone, the genes alone and the joint enrichment

Q-value–p-value adjusted for the false discovery rate

https://doi.org/10.1371/journal.pone.0197049.t003
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Discussion

We have demonstrated methods for discovery of a multi-omics-based predictor for detection

of bacteremia among FN patients without apparent infection. Omic profiles are increasingly

being leveraged as predictive, diagnostic and prognostic biomarkers, and can provide insight

into the underlying biology.[32, 33] Metabolomic and transcriptomic diagnostics have already

been deployed clinically. For example, real-time analysis of the metabolome is a clinical reality,

as exemplified by the iKnife, which performs instantaneous analysis of the mucosal lipidome

to phenotype colorectal cancer during surgery.[34] Similarly, transcriptomics have yielded

diagnostic tests that are approaching clinical implementation for detection of serious bacterial

infection.[35, 36] To our knowledge, this was the first study to develop multi-omic based bio-

markers of bacteremic FN; one prior study used metabolomics alone to investigate infection in

the setting of FN.[37] Our future work will apply these methods to a larger sample size, sepa-

rated into derivation and validation sets, with the goal of developing a clinically-applicable tool

for detection of bacteremia during the initial evaluation.

For detection of bacteremia, the two existing clinical predictors; MASCC and the high-risk

classifier, were sensitive but demonstrated poor specificity. In contrast, although derived from

only a small population, our metabolomic and transcriptomic predictors maintained impres-

sive specificities with 100% sensitivity. These results demonstrate that derivation of omics-

based predictors of bacteremia in the setting of FN is feasible, and justify further research in a

larger sample.

We found that pregnenolone steroids, which are cortisol precursors, were upregulated in

cases relative to controls. Prior research has linked sepsis to an overexpression of cortisol pre-

cursors despite normal cortisol levels, implying decreased activity of 3-beta-hydroxysteroid

dehydrogenase.[38] Carnitines were down-regulated in cases, which is in agreement with pre-

vious evidence for a differential abundance of carnitines in bacteremic compared to non-bac-

teremic patients.[39, 40] L-carnitine has entered clinical trials as a therapeutic agent for

patients with sepsis, and metabolomic analysis has been used to identify the subset of patients

responding.[41] Other pathways involved in amino acid metabolism were also perturbed,

which could relate to the enhanced extraction of amino acids by the liver noted in patients

with sepsis and systemic inflammatory response syndrome.[42] For example, pyrimidine

metabolism was differentially regulated, possibly due to the de novo synthesis of pyrimidines

required for successful proliferation of pathogens in blood.[43] Furthermore, the dysregulation

of the ascorbate and aldarate metabolism pathway may relate to the lower circulating levels of

ascorbate reported in patients with sepsis.[44]

A number of genes showed differential expression between cases and controls. These

included, PPBP, an antimicrobial protein with bactericidal and antifungal activity; CYBB,

which is essential for the microbicidal oxidase system of phagocytes; LYZ, which encodes a

component of the innate immune system that cleaves peptidoglycan bonds in the bacterial cell

wall;,and CD86 and FGL2 which have been associated with severity and worse outcomes in

sepsis[45, 46] These results suggest that a weaker innate immune response might predispose to

bacteremia after depletion of the adaptive immune system by chemotherapy. On a pathway

level, the differentially-expressed genes were enriched for a number biological processes

including some relating to the release of cytokines, supporting the idea of a unique immuno-

logic milieu in FN patients with bacteremia.

Integrative analysis supported the findings of the individual omics analysis, and provided

mechanistic links between the metabolites and genes independently associated with bacter-

emia. For example, MAPK signaling pathways were perturbed. MAPKs play an important role

in the cascade of cellular responses evoked by extracellular stimuli such as pro-inflammatory
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cytokines or physical stress, and they have been shown to be activated in the setting of bacterial

challenge.[47] These integrative results should be viewed with caution due to the limited sam-

ple size, which was constrained by funding. However they do provide a good indication of

potential gene-metabolite relationships, and a demonstration that in a larger sample, dysregu-

lation at multiple omic levels can be explored simultaneously to interrogate underlying

mechanisms.

Regarding limitations, we caution the reader that the sample size, particularly for the tran-

scriptomic data was limited, and we were unable to stratify by potential effect modifiers such

as sex.These results should therefore be considered illustrative, and the specific biological enti-

ties identified as differentially abundant should be considered exploratory.RNAseq could not

be used to quantify expression of the entire transcriptome, because leukocyte-poor blood has

insufficient cells for this technique. Therefore, we used EdgeSeq, which does not require an

RNA isolation step, but quantifies relative abundance of only 2,560 transcripts. However, the

genes included in the EdgeSeq panel were selected on the basis of their relevance to both can-

cer and the immune system, making them ideally suited to this study population. Because par-

ticipants had FN as an unscheduled emergency, their dietary intake prior to presenting in the

Emergency room may have influenced their metabolome, but this represents the scenario in

which a predictor of bacteremia would ultimately be utilized. However, we were able to pro-

vide evidence that prior antibiotic use was not influencing our results; nor was the type or site

of the initial tumor. Furthermore, within the limited sample size we were able to demonstrate

that the metabolomic profile appeared to be similar for Gram-negative and Gram-positive bac-

teremia,although it would be of interest to explore this further in the larger sample.

In conclusion, we generated metabolomic and transcriptomic predictors of bacteremia,

among FN patients without apparent infection at presentation. With overfitting as a caveat,

these predictors significantly outperformed currently-recommended risk-stratification tools,

with markedly improved specificity and perfect sensitivity. Interrogation of differentially-

abundant biomarkers revealed biologically-plausible roles in bacteremia within the setting of

FN. This is the first such study within a field that is in dire need of novel biomarkers and man-

agement strategies. Via further study in a larger sample with discovery and validation sets,

development of a biologically meaningful objective predictor that utilizes both clinical and

omics data is feasible, and will facilitate early diagnosis. This, in turn, will enable appropriate

aggressive treatment for patients predicted to have bacteremia, and appropriate conservative

treatment of those predicted not to have bacteremia.

Supporting information

S1 Methods. Supplementary methods.

(DOCX)

S1 File. Table A: Metabolites significantly (p�0.01) associated with bacteremia. Effect esti-
mates adjusted for age, sex, BMI and tumor type (liquid or solid). Metabolites with an X- prefix
are awaiting annotation. Table B; Biological processes and pathways enriched among 150

genes significantly associated with bacteremia. Enrichment analysis performed using the g.

GOSt tools from the g.profiler package (http://biit.cs.ut.ee/gprofiler/) p-values are Bonferonni cor-
rected. Figure A: Metabolomic PCA by Case-Control Status. Figure B: Metabolomic PCA

by Other Clinical Variables. Figure C: Relative Metabolite Intensity levels in Bacteremia

Cases and Controls for the Top Eight Upregulated and Top Eight Downregulated Metabo-

lites. Figure D: Relative Metabolite Intensity levels in Bacteremia Cases stratified by Gram

status (negative or positive) and Controls (CO) for the Top Eight Upregulated and Top

Eight Downregulated Metabolites. Figure E: Expression levels in Bacteremia Cases and

Omics and bacteremia

PLOS ONE | https://doi.org/10.1371/journal.pone.0197049 May 16, 2018 16 / 20

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0197049.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0197049.s002
http://biit.cs.ut.ee/gprofiler/
https://doi.org/10.1371/journal.pone.0197049


Controls for the Top Eight Overexpressed and Top Eight Unexpressed Genes.

(DOCX)

S1 Dataset. Gene expression data/metabolomics data and the relevant epidemiological and

clinical variables for 29 subjects.

(CSV)

S2 Dataset. Metabolomics data and the relevant epidemiological and clinical variables for

39 subjects.

(CSV)

S3 Dataset. Biochemical names of the metabolites profiled.

(CSV)

Acknowledgments

We wish to thank all the patients and medical staff involved in this study.

Author Contributions

Conceptualization: Richard M. Stone, Jeffrey M. Caterino, Gary H. Lyman, Lindsey R. Baden,

Brett E. Glotzbecker, Christopher J. Coyne, Christopher W. Baugh, Daniel J. Pallin.

Data curation: Sai-Ching J. Yeung, Sean C. Hagan.

Formal analysis: Rachel S. Kelly, Jessica Lasky-Su.

Funding acquisition: Christopher W. Baugh, Daniel J. Pallin.

Investigation: Sai-Ching J. Yeung, Richard M. Stone, Jeffrey M. Caterino, Gary H. Lyman,

Lindsey R. Baden, Brett E. Glotzbecker, Christopher J. Coyne, Christopher W. Baugh, Dan-

iel J. Pallin.

Methodology: Christopher W. Baugh, Daniel J. Pallin.

Project administration: Christopher W. Baugh, Daniel J. Pallin.

Resources: Christopher W. Baugh, Daniel J. Pallin.

Supervision: Christopher W. Baugh, Daniel J. Pallin.

Writing – original draft: Rachel S. Kelly, Jessica Lasky-Su.

Writing – review & editing: Rachel S. Kelly, Jessica Lasky-Su, Sai-Ching J. Yeung, Richard M.

Stone, Jeffrey M. Caterino, Sean C. Hagan, Gary H. Lyman, Lindsey R. Baden, Brett E.

Glotzbecker, Christopher J. Coyne, Christopher W. Baugh, Daniel J. Pallin.

References
1. Weycker D, Barron R, Kartashov A, Legg J, Lyman GH. Incidence, treatment, and consequences of

chemotherapy-induced febrile neutropenia in the inpatient and outpatient settings. Journal of oncology

pharmacy practice: official publication of the International Society of Oncology Pharmacy Practitioners.

2014; 20(3):190–8. Epub 2013/07/05. https://doi.org/10.1177/1078155213492450 PMID: 23824496.

2. Thursky KA, Worth LJ. Can mortality of cancer patients with fever and neutropenia be improved? Cur-

rent opinion in infectious diseases. 2015; 28(6):505–13. Epub 2015/09/17. https://doi.org/10.1097/

QCO.0000000000000202 PMID: 26374951.

3. Freifeld AG, Bow EJ, Sepkowitz KA, Boeckh MJ, Ito JI, Mullen CA, et al. Clinical practice guideline for

the use of antimicrobial agents in neutropenic patients with cancer: 2010 Update by the Infectious Dis-

eases Society of America. Clinical infectious diseases: an official publication of the Infectious Diseases

Omics and bacteremia

PLOS ONE | https://doi.org/10.1371/journal.pone.0197049 May 16, 2018 17 / 20

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0197049.s003
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0197049.s004
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0197049.s005
https://doi.org/10.1177/1078155213492450
http://www.ncbi.nlm.nih.gov/pubmed/23824496
https://doi.org/10.1097/QCO.0000000000000202
https://doi.org/10.1097/QCO.0000000000000202
http://www.ncbi.nlm.nih.gov/pubmed/26374951
https://doi.org/10.1371/journal.pone.0197049


Society of America. 2011; 52(4):427–31. Epub 2011/01/06. https://doi.org/10.1093/cid/ciq147 PMID:

21205990.

4. Flowers CR, Seidenfeld J, Bow EJ, Karten C, Gleason C, Hawley DK, et al. Antimicrobial prophylaxis

and outpatient management of fever and neutropenia in adults treated for malignancy: American Soci-

ety of Clinical Oncology clinical practice guideline. J Clin Oncol. 2013; 31(6):794–810. Epub 2013/01/

16. https://doi.org/10.1200/JCO.2012.45.8661 PMID: 23319691.

5. Baugh CW, Brooks GA, Reust AC, Wang TJ, Caterino JM, Baker ON, et al. Provider familiarity with spe-

cialty society guidelines for risk stratification and management of patients with febrile neutropenia. The

American journal of emergency medicine. 2016; 34(8):1704–5. Epub 2016/06/06. https://doi.org/10.

1016/j.ajem.2016.05.047 PMID: 27262602.

6. Baugh CW, Wang TJ, Caterino JM, Baker ON, Brooks GA, Reust AC, et al. Emergency Department

Management of Patients With Febrile Neutropenia: Guideline Concordant or Overly Aggressive? Aca-

demic emergency medicine: official journal of the Society for Academic Emergency Medicine. 2017; 24

(1):83–91. Epub 2016/09/10. https://doi.org/10.1111/acem.13079 PMID: 27611638.

7. Ahn J, Yu K, Stolzenberg-Solomon R, Simon KC, McCullough ML, Gallicchio L, et al. Genome-wide

association study of circulating vitamin D levels. Hum Mol Gene. 2010; 19. https://doi.org/10.1093/hmg/

ddq155 PMID: 20418485

8. Lathia N, Mittmann N, DeAngelis C, Knowles S, Cheung M, Piliotis E, et al. Evaluation of direct medical

costs of hospitalization for febrile neutropenia. Cancer. 2010; 116(3):742–8. Epub 2009/12/24. https://

doi.org/10.1002/cncr.24773 PMID: 20029970.

9. Day E, Kim S, Hughes-Davies L. Barriers to protocol-led early discharge of low-risk febrile neutropenia

patients. Clinical oncology (Royal College of Radiologists (Great Britain)). 2014; 26(8):516. Epub 2014/

06/10. https://doi.org/10.1016/j.clon.2014.05.003 PMID: 24909700.

10. Freifeld AG, Bow EJ, Sepkowitz KA, Boeckh MJ, Ito JI, Mullen CA, et al. Clinical practice guideline for

the use of antimicrobial agents in neutropenic patients with cancer: 2010 update by the infectious dis-

eases society of america. Clin Infect Dis. 2011; 52(4):e56–93. https://doi.org/10.1093/cid/cir073 PMID:

21258094.

11. Bitar RA. Utility of the Multinational Association for Supportive Care in Cancer (MASCC) Risk Index

Score as a Criterion for Nonadmission in Febrile Neutropenic Patients with Solid Tumors. The Perma-

nente journal. 2015; 19(3):37–47. Epub 2015/07/16. https://doi.org/10.7812/TPP/14-188 PMID:

26176568; PubMed Central PMCID: PMCPMC4500479.

12. Coyne CJ, Le V, Brennan JJ, Castillo EM, Shatsky RA, Ferran K, et al. Application of the MASCC and

CISNE Risk-Stratification Scores to Identify Low-Risk Febrile Neutropenic Patients in the Emergency

Department. Ann Emerg Med. 2016. https://doi.org/10.1016/j.annemergmed.2016.11.007 PMID:

28041827.

13. Yanagihara K, Kitagawa Y, Tomonaga M, Tsukasaki K, Kohno S, Seki M, et al. Evaluation of pathogen

detection from clinical samples by real-time polymerase chain reaction using a sepsis pathogen DNA

detection kit. Critical care (London, England). 2010; 14(4):R159. Epub 2010/08/25. https://doi.org/10.

1186/cc9234 PMID: 20731880; PubMed Central PMCID: PMCPMC2945143.

14. Idelevich EA, Silling G, Niederbracht Y, Penner H, Sauerland MC, Tafelski S, et al. Impact of multiplex

PCR on antimicrobial treatment in febrile neutropenia: a randomized controlled study. Medical microbi-

ology and immunology. 2015; 204(5):585–92. Epub 2015/01/13. https://doi.org/10.1007/s00430-014-

0385-7 PMID: 25573349.

15. Reers Y, Idelevich EA, Patkau H, Sauerland MC, Tafelski S, Nachtigall I, et al. Multiplex PCR assay

underreports true bloodstream infections with coagulase-negative staphylococci in hematological

patients with febrile neutropenia. Diagnostic microbiology and infectious disease. 2016; 85(4):413–5.

Epub 2016/05/26. https://doi.org/10.1016/j.diagmicrobio.2016.04.024 PMID: 27220608.

16. Pacchiarotta T, Deelder AM, Mayboroda OA. Metabolomic investigations of human infections. Bioana-

lysis. 2012; 4(8):919–25. Epub 2012/04/27. https://doi.org/10.4155/bio.12.61 PMID: 22533566.

17. Nicholson JK, Wilson ID. Opinion: understanding ’global’ systems biology: metabonomics and the con-

tinuum of metabolism. Nat Rev Drug Discov. 2003; 2(8):668–76. https://doi.org/10.1038/nrd1157

PMID: 12904817.

18. Psychogios N, Hau DD, Peng J, Guo AC, Mandal R, Bouatra S, et al. The human serum metabolome.

PloS one. 2011; 6(2):e16957. Epub 2011/03/02. https://doi.org/10.1371/journal.pone.0016957 PMID:

21359215; PubMed Central PMCID: PMC3040193.

19. Rhee EP, Gerszten RE. Metabolomics and cardiovascular biomarker discovery. Clin Chem. 2012; 58

(1):139–47. https://doi.org/10.1373/clinchem.2011.169573 PMID: 22110018.

20. Bartel J, Krumsiek J, Schramm K, Adamski J, Gieger C, Herder C, et al. The Human Blood Metabo-

lome-Transcriptome Interface. PLoS Genet. 2015; 11(6):e1005274. Epub 2015/06/19. https://doi.org/

10.1371/journal.pgen.1005274 PMID: 26086077; PubMed Central PMCID: PMCPMC4473262.

Omics and bacteremia

PLOS ONE | https://doi.org/10.1371/journal.pone.0197049 May 16, 2018 18 / 20

https://doi.org/10.1093/cid/ciq147
http://www.ncbi.nlm.nih.gov/pubmed/21205990
https://doi.org/10.1200/JCO.2012.45.8661
http://www.ncbi.nlm.nih.gov/pubmed/23319691
https://doi.org/10.1016/j.ajem.2016.05.047
https://doi.org/10.1016/j.ajem.2016.05.047
http://www.ncbi.nlm.nih.gov/pubmed/27262602
https://doi.org/10.1111/acem.13079
http://www.ncbi.nlm.nih.gov/pubmed/27611638
https://doi.org/10.1093/hmg/ddq155
https://doi.org/10.1093/hmg/ddq155
http://www.ncbi.nlm.nih.gov/pubmed/20418485
https://doi.org/10.1002/cncr.24773
https://doi.org/10.1002/cncr.24773
http://www.ncbi.nlm.nih.gov/pubmed/20029970
https://doi.org/10.1016/j.clon.2014.05.003
http://www.ncbi.nlm.nih.gov/pubmed/24909700
https://doi.org/10.1093/cid/cir073
http://www.ncbi.nlm.nih.gov/pubmed/21258094
https://doi.org/10.7812/TPP/14-188
http://www.ncbi.nlm.nih.gov/pubmed/26176568
https://doi.org/10.1016/j.annemergmed.2016.11.007
http://www.ncbi.nlm.nih.gov/pubmed/28041827
https://doi.org/10.1186/cc9234
https://doi.org/10.1186/cc9234
http://www.ncbi.nlm.nih.gov/pubmed/20731880
https://doi.org/10.1007/s00430-014-0385-7
https://doi.org/10.1007/s00430-014-0385-7
http://www.ncbi.nlm.nih.gov/pubmed/25573349
https://doi.org/10.1016/j.diagmicrobio.2016.04.024
http://www.ncbi.nlm.nih.gov/pubmed/27220608
https://doi.org/10.4155/bio.12.61
http://www.ncbi.nlm.nih.gov/pubmed/22533566
https://doi.org/10.1038/nrd1157
http://www.ncbi.nlm.nih.gov/pubmed/12904817
https://doi.org/10.1371/journal.pone.0016957
http://www.ncbi.nlm.nih.gov/pubmed/21359215
https://doi.org/10.1373/clinchem.2011.169573
http://www.ncbi.nlm.nih.gov/pubmed/22110018
https://doi.org/10.1371/journal.pgen.1005274
https://doi.org/10.1371/journal.pgen.1005274
http://www.ncbi.nlm.nih.gov/pubmed/26086077
https://doi.org/10.1371/journal.pone.0197049


21. Robles AI, Harris CC. Integration of multiple "OMIC" biomarkers: A precision medicine strategy for lung

cancer. Lung Cancer. 2017; 107:50–8. Epub 2016/06/28. https://doi.org/10.1016/j.lungcan.2016.06.

003 PMID: 27344275; PubMed Central PMCID: PMCPMC5156586.

22. Baron EJ, Miller JM, Weinstein MP, Richter SS, Gilligan PH, Thomson RB Jr., et al. A guide to utilization

of the microbiology laboratory for diagnosis of infectious diseases: 2013 recommendations by the Infec-

tious Diseases Society of America (IDSA) and the American Society for Microbiology (ASM)(a). Clinical

infectious diseases: an official publication of the Infectious Diseases Society of America. 2013; 57(4):

e22–e121. Epub 2013/07/13. https://doi.org/10.1093/cid/cit278 PMID: 23845951; PubMed Central

PMCID: PMCPMC3719886.

23. Sha W, da Costa KA, Fischer LM, Milburn MV, Lawton KA, Berger A, et al. Metabolomic profiling can

predict which humans will develop liver dysfunction when deprived of dietary choline. FASEB journal:

official publication of the Federation of American Societies for Experimental Biology. 2010; 24(8):2962–

75. https://doi.org/10.1096/fj.09-154054 PMID: 20371621; PubMed Central PMCID: PMC2909293.

24. Guo L, Milburn MV, Ryals JA, Lonergan SC, Mitchell MW, Wulff JE, et al. Plasma metabolomic profiles

enhance precision medicine for volunteers of normal health. Proceedings of the National Academy of

Sciences of the United States of America. 2015; 112(35):E4901–E10. https://doi.org/10.1073/pnas.

1508425112 PMC4568216. PMID: 26283345

25. Girard L, Rodriguez-Canales J, Behrens C, Thompson DM, Botros IW, Tang H, et al. An Expression

Signature as an Aid to the Histologic Classification of Non-Small Cell Lung Cancer. Clin Cancer Res.

2016; 22(19):4880–9. Epub 2016/06/30. https://doi.org/10.1158/1078-0432.CCR-15-2900 PMID:

27354471; PubMed Central PMCID: PMCPMC5492382.

26. HTGMolecular. HTG EdgeSeq Oncology Biomarker Panel 2017 [7/13/2017]. Available from: https://

www.htgmolecular.com/products/mrna-oncology-biomarkers

27. Blighe K, Chawes BL, Kelly RS, Mirzakhani H, McGeachie M, Litonjua AA, et al. Vitamin D prenatal pro-

gramming of childhood metabolomics profiles at age 3 y. Am J Clin Nutr. 2017; 106(4):1092–9. Epub

2017/08/25. https://doi.org/10.3945/ajcn.117.158220 PMID: 28835366; PubMed Central PMCID:

PMCPMC5611786.

28. Risso D, Ngai J, Speed TP, Dudoit S. Normalization of RNA-seq data using factor analysis of control

genes or samples. Nat Biotech. 2014; 32(9):896–902. https://doi.org/10.1038/nbt.2931 http://www.

nature.com/nbt/journal/v32/n9/abs/nbt.2931.html#supplementary-information. PMID: 25150836

29. Tibshirani R. Regression shrinkage and selection via the lasso: a retrospective. Journal of the Royal

Statistical Society: Series B (Statistical Methodology). 2011; 73(3):273–82. https://doi.org/10.1111/j.

1467-9868.2011.00771.x

30. DeLong ER, DeLong DM, Clarke-Pearson DL. Comparing the areas under two or more correlated

receiver operating characteristic curves: a nonparametric approach. Biometrics. 1988; 44(3):837–45.

PMID: 3203132.

31. Kamburov A, Cavill R, Ebbels TM, Herwig R, Keun HC. Integrated pathway-level analysis of transcrip-

tomics and metabolomics data with IMPaLA. Bioinformatics (Oxford, England). 2011; 27(20):2917–8.

Epub 2011/09/07. https://doi.org/10.1093/bioinformatics/btr499 PMID: 21893519.

32. Koen N, Du Preez I, Loots du T. Metabolomics and Personalized Medicine. Advances in protein chemis-

try and structural biology. 2016; 102:53–78. Epub 2016/02/02. https://doi.org/10.1016/bs.apcsb.2015.

09.003 PMID: 26827602.

33. van Rensburg IC, Loxton AG. Transcriptomics: the key to biomarker discovery during tuberculosis? Bio-

markers in medicine. 2015; 9(5):483–95. Epub 2015/05/20. https://doi.org/10.2217/bmm.15.16 PMID:

25985177.

34. Alexander J, Gildea L, Balog J, Speller A, McKenzie J, Muirhead L, et al. A novel methodology for in

vivo endoscopic phenotyping of colorectal cancer based on real-time analysis of the mucosal lipidome:

a prospective observational study of the iKnife. Surg Endosc. 2017; 31(3):1361–70. https://doi.org/10.

1007/s00464-016-5121-5 PMID: 27501728; PubMed Central PMCID: PMCPMC5315709.

35. Kaforou M, Herberg JA, Wright VJ, Coin LJM, Levin M. Diagnosis of Bacterial Infection Using a 2-Tran-

script Host RNA Signature in Febrile Infants 60 Days or Younger. JAMA. 2017; 317(15):1577–8. https://

doi.org/10.1001/jama.2017.1365 PMID: 28418473.

36. Herberg JA, Kaforou M, Wright VJ, Shailes H, Eleftherohorinou H, Hoggart CJ, et al. Diagnostic Test

Accuracy of a 2-Transcript Host RNA Signature for Discriminating Bacterial vs Viral Infection in Febrile

Children. JAMA. 2016; 316(8):835–45. https://doi.org/10.1001/jama.2016.11236 PMID: 27552617.

37. Richter ME, Neugebauer S, Engelmann F, Hagel S, Ludewig K, La Rosée P, et al. Biomarker candi-

dates for the detection of an infectious etiology of febrile neutropenia. Infection. 2016; 44(2):175–86.

https://doi.org/10.1007/s15010-015-0830-6 PMID: 26275448

Omics and bacteremia

PLOS ONE | https://doi.org/10.1371/journal.pone.0197049 May 16, 2018 19 / 20

https://doi.org/10.1016/j.lungcan.2016.06.003
https://doi.org/10.1016/j.lungcan.2016.06.003
http://www.ncbi.nlm.nih.gov/pubmed/27344275
https://doi.org/10.1093/cid/cit278
http://www.ncbi.nlm.nih.gov/pubmed/23845951
https://doi.org/10.1096/fj.09-154054
http://www.ncbi.nlm.nih.gov/pubmed/20371621
https://doi.org/10.1073/pnas.1508425112
https://doi.org/10.1073/pnas.1508425112
http://www.ncbi.nlm.nih.gov/pubmed/26283345
https://doi.org/10.1158/1078-0432.CCR-15-2900
http://www.ncbi.nlm.nih.gov/pubmed/27354471
https://www.htgmolecular.com/products/mrna-oncology-biomarkers
https://www.htgmolecular.com/products/mrna-oncology-biomarkers
https://doi.org/10.3945/ajcn.117.158220
http://www.ncbi.nlm.nih.gov/pubmed/28835366
https://doi.org/10.1038/nbt.2931
http://www.nature.com/nbt/journal/v32/n9/abs/nbt.2931.html#supplementary-information
http://www.nature.com/nbt/journal/v32/n9/abs/nbt.2931.html#supplementary-information
http://www.ncbi.nlm.nih.gov/pubmed/25150836
https://doi.org/10.1111/j.1467-9868.2011.00771.x
https://doi.org/10.1111/j.1467-9868.2011.00771.x
http://www.ncbi.nlm.nih.gov/pubmed/3203132
https://doi.org/10.1093/bioinformatics/btr499
http://www.ncbi.nlm.nih.gov/pubmed/21893519
https://doi.org/10.1016/bs.apcsb.2015.09.003
https://doi.org/10.1016/bs.apcsb.2015.09.003
http://www.ncbi.nlm.nih.gov/pubmed/26827602
https://doi.org/10.2217/bmm.15.16
http://www.ncbi.nlm.nih.gov/pubmed/25985177
https://doi.org/10.1007/s00464-016-5121-5
https://doi.org/10.1007/s00464-016-5121-5
http://www.ncbi.nlm.nih.gov/pubmed/27501728
https://doi.org/10.1001/jama.2017.1365
https://doi.org/10.1001/jama.2017.1365
http://www.ncbi.nlm.nih.gov/pubmed/28418473
https://doi.org/10.1001/jama.2016.11236
http://www.ncbi.nlm.nih.gov/pubmed/27552617
https://doi.org/10.1007/s15010-015-0830-6
http://www.ncbi.nlm.nih.gov/pubmed/26275448
https://doi.org/10.1371/journal.pone.0197049


38. Khashana A, Ojaniemi M, Leskinen M, Saarela T, Hallman M. Term neonates with infection and shock

display high cortisol precursors despite low levels of normal cortisol. Acta paediatrica (Oslo, Norway:

1992). 2016; 105(2):154–8. Epub 2015/11/06. https://doi.org/10.1111/apa.13257 PMID: 26537554.

39. Nanni G, Pittiruti M, Giovannini I, Boldrini G, Ronconi P, Castagneto M. Plasma carnitine levels and uri-

nary carnitine excretion during sepsis. JPEN Journal of parenteral and enteral nutrition. 1985; 9(4):483–

90. Epub 1985/07/01. https://doi.org/10.1177/0148607185009004483 PMID: 3928925.

40. Famularo G, de Simone C, Trinchieri V, Mosca L. Carnitines and Its Congeners: A Metabolic Pathway

to the Regulation of Immune Response and Inflammation. Annals of the New York Academy of Sci-

ences. 2004; 1033(1):132–8. https://doi.org/10.1196/annals.1320.012 PMID: 15591010

41. Leite HP, de Lima LFP. Metabolic resuscitation in sepsis: a necessary step beyond the hemodynamic?

Journal of Thoracic Disease. 2016; 8(7):E552–E7. https://doi.org/10.21037/jtd.2016.05.37

PMC4958886. PMID: 27501325

42. Druml W, Heinzel G, Kleinberger G. Amino acid kinetics in patients with sepsis. Am J Clin Nutr. 2001;

73(5):908–13. Epub 2001/05/03. https://doi.org/10.1093/ajcn/73.5.908 PMID: 11333844.

43. Samant S, Lee H, Ghassemi M, Chen J, Cook JL, Mankin AS, et al. Nucleotide Biosynthesis Is Critical

for Growth of Bacteria in Human Blood. PLoS Pathogens. 2008; 4(2):e37. https://doi.org/10.1371/

journal.ppat.0040037 PMC2242838. PMID: 18282099

44. Wilson JX. Mechanism of action of vitamin C in sepsis: Ascorbate modulates redox signaling in endo-

thelium. BioFactors (Oxford, England). 2009; 35(1):5–13. https://doi.org/10.1002/biof.7 PMC2767105.

PMID: 19319840

45. Nolan A, Kobayashi H, Naveed B, Kelly A, Hoshino Y, Hoshino S, et al. Differential role for CD80 and

CD86 in the regulation of the innate immune response in murine polymicrobial sepsis. PLoS One. 2009;

4(8):e6600. Epub 2009/08/13. https://doi.org/10.1371/journal.pone.0006600 PMID: 19672303;

PubMed Central PMCID: PMCPMC2719911.

46. Cazalis M-A, Lepape A, Venet F, Frager F, Mougin B, Vallin H, et al. Early and dynamic changes in

gene expression in septic shock patients: a genome-wide approach. Intensive Care Medicine Experi-

mental. 2014; 2:20. https://doi.org/10.1186/s40635-014-0020-3 PMC4512996. PMID: 26215705

47. Hotson AN, Hardy JW, Hale MB, Contag CH, Nolan GP. The T cell STAT signaling network is repro-

grammed within hours of bacteremia via secondary signals. Journal of immunology (Baltimore, Md:

1950). 2009; 182(12):7558–68. Epub 2009/06/06. https://doi.org/10.4049/jimmunol.0803666 PMID:

19494279; PubMed Central PMCID: PMCPMC4136495.

Omics and bacteremia

PLOS ONE | https://doi.org/10.1371/journal.pone.0197049 May 16, 2018 20 / 20

https://doi.org/10.1111/apa.13257
http://www.ncbi.nlm.nih.gov/pubmed/26537554
https://doi.org/10.1177/0148607185009004483
http://www.ncbi.nlm.nih.gov/pubmed/3928925
https://doi.org/10.1196/annals.1320.012
http://www.ncbi.nlm.nih.gov/pubmed/15591010
https://doi.org/10.21037/jtd.2016.05.37
http://www.ncbi.nlm.nih.gov/pubmed/27501325
https://doi.org/10.1093/ajcn/73.5.908
http://www.ncbi.nlm.nih.gov/pubmed/11333844
https://doi.org/10.1371/journal.ppat.0040037
https://doi.org/10.1371/journal.ppat.0040037
http://www.ncbi.nlm.nih.gov/pubmed/18282099
https://doi.org/10.1002/biof.7
http://www.ncbi.nlm.nih.gov/pubmed/19319840
https://doi.org/10.1371/journal.pone.0006600
http://www.ncbi.nlm.nih.gov/pubmed/19672303
https://doi.org/10.1186/s40635-014-0020-3
http://www.ncbi.nlm.nih.gov/pubmed/26215705
https://doi.org/10.4049/jimmunol.0803666
http://www.ncbi.nlm.nih.gov/pubmed/19494279
https://doi.org/10.1371/journal.pone.0197049



