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A protein-truncating R179X variant in RNF186
confers protection against ulcerative colitis
Manuel A. Rivas1,2, Daniel Graham1, Patrick Sulem3, Christine Stevens1, A. Nicole Desch1, Philippe Goyette4, Daniel

Gudbjartsson3,5, Ingileif Jonsdottir3,6,7, Unnur Thorsteinsdottir3,7, Frauke Degenhardt8, Sören Mucha8, Mitja I. Kurki1,2,

Dalin Li9,10, Mauro D’Amato11,12, Vito Annese13,14, Severine Vermeire15,16, Rinse K. Weersma17, Jonas Halfvarson18,

Paulina Paavola-Sakki19,20,21, Maarit Lappalainen19,20,22, Monkol Lek1,2, Beryl Cummings1,2, Taru Tukiainen1,2, Talin Haritunians9,10,

Leena Halme23, Lotta L.E. Koskinen22,24, Ashwin N. Ananthakrishnan25,26, Yang Luo27, Graham A. Heap28, Marijn C. Visschedijk17,

UK IBD Genetics Consortiumw, NIDDK IBD Genetics Consortiumz, Daniel G. MacArthur1,2, Benjamin M. Neale1,2,

Tariq Ahmad29, Carl A. Anderson27, Steven R. Brant30,31, Richard H. Duerr32,33, Mark S. Silverberg34, Judy H. Cho35,

Aarno Palotie1,2,36,37, Päivi Saavalainen38, Kimmo Kontula19,20, Martti Färkkilä19,20,21, Dermot P.B. McGovern9,10, Andre Franke8,

Kari Stefansson3,7, John D. Rioux4,39, Ramnik J. Xavier1,25 & Mark J. Daly1,2

Protein-truncating variants protective against human disease provide in vivo validation of therapeutic

targets. Here we used targeted sequencing to conduct a search for protein-truncating variants conferring

protection against inflammatory bowel disease exploiting knowledge of common variants associated

with the same disease. Through replication genotyping and imputation we found that a predicted

protein-truncating variant (rs36095412, p.R179X, genotyped in 11,148 ulcerative colitis patients and

295,446 controls, MAF¼up to 0.78%) in RNF186, a single-exon ring finger E3 ligase with strong colonic

expression, protects against ulcerative colitis (overall P¼6.89� 10� 7, odds ratio¼0.30). We further

demonstrate that the truncated protein exhibits reduced expression and altered subcellular localization,

suggesting the protective mechanism may reside in the loss of an interaction or function via

mislocalization and/or loss of an essential transmembrane domain.
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A
total of 200 loci have been unequivocally implicated in

the two common forms of inflammatory bowel diseases
(IBDs): Crohn’s disease (CD) and ulcerative colitis

(UC)1,2. For these findings, like most genome-wide association
study (GWAS) results, it has proven challenging to infer the
functional consequences of common variant associations3 beyond
cases where protein-altering variants have been directly
implicated. Protein-truncating variants (PTVs), also commonly
referred to as loss-of-function variants4 as they often result in a
non-functional or unstable gene product, are generally the
strongest acting genetic variants in medical genetics and, as one
functional copy of the gene is removed, may often provide insight
into what is achievable pharmacologically via inhibition of the
product of the gene5. Thus, identifying PTVs that are
demonstrated to lead to loss of gene function and confer
protection from disease hold particular promise for identifying
therapeutic targets6–9.

Here we conduct targeted sequencing of the exons of 759
protein-coding genes in regions harbouring common variants
associated to IBD in 917 healthy controls, 887 individuals with
UC (cases) and 1,204 individuals with CD (cases) to identify
predicted PTVs that may confer protection to disease. Through
replication genotyping and imputation of a PTV in RNF186
(p.R179X) in 11,148 UC patients and 295,446 controls we find a
significant protective association to UC. By combining RNA
allele-specific expression, protein expression and immuno-
flourescene imaging, we find that the truncated protein exhibits
reduced expression and altered subcellular localization suggesting
the protective mechanism may reside in the loss of an interaction
or function via mislocalization and/or loss of an essential
transmembrane domain.

Results
Screen sequencing. We conducted targeted sequencing of the
exons of 759 protein-coding genes in regions harbouring
common variants associated to IBD10,11 in 917 healthy controls,
887 individuals with UC (cases) and 1,204 individuals with CD
(cases) from the NIDDK IBD Genetics Consortium (North
American clinical samples of European descent). We jointly
analysed these data with sequencing data from the same genes
taken from an exome-sequencing data set of Finnish individuals:
508 with UC; 238 with CD; and 8,124 Finnish reference samples

sequenced within Sequencing Initiative Suomi (SISu) project
(www.sisuproject.fi)12. Across this targeted gene set,
we discovered 77 PTVs found in 2 or more individuals
(Supplementary Table 1), and used a Cochran–Mantel–
Haenszel (CMH) w2-test to scan for protective variants with
two strata corresponding to the two cohorts. The test for
association was run based on the phenotype (CD, UC or IBD)
indicated by the common variant association in the region13 (that
is, truncating variants in a gene associated only to CD such as at
NOD2 would be tested for CD versus control association). We
identified three putatively protective PTVs with a P value o0.05:
(1) a previously published low-frequency variant in CARD9
(c.IVS11þ 1G4C) located on the donor site of exon 11, which
disrupts splicing (P¼ 0.04)7,14; (2) a frameshift indel in ABCA7
(P¼ 0.02); and (3) a premature stop gain variant (p.R179X) in
RNF186 with signal of association (P¼ 0.02) to UC. As the
CARD9 result was a well-established protective association, and
ABCA7 contained four PTVs that in aggregate did not appear
protective (combined odds ratio (OR)¼ 0.51, P¼ 0.21), we
focused specifically on follow-up work to confirm or refute the
association of the RNF186 nonsense variant (the only PTV
detected in RNF186 in either sequence data set).

Replication. Replication genotype data obtained in 8,300 UC
patients and 21,662 controls from the United States, Canada, the
United Kingdom, Sweden, Belgium, Germany, Netherlands and
Italy provided strong support that the premature stop-gain allele,
p.R179X, confers protection against UC (P¼ 0.0028, OR¼ 0.36
(95% confidence interval (CI)¼ 0.19–0.71)). Cluster plots
from all genotyping assays were manually inspected to ensure
consistent high quality across all experimental modalities used to
assess this variant (Supplementary Figs 1 and 2).

Further evidence of replication was seen in whole-genome
sequence data followed by imputation collected by deCODE
Genetics15,16, in which a set of 1,453 Icelandic patients with UC
were compared with a very large population sample (n¼ 264,744)
and a consistent strong protection (P¼ 5.0� 10� 4, OR¼ 0.30
(95% CI¼ 0.15–0.59), imputation information of 0.99; overall
replication P¼ 8.69� 10� 6, OR¼ 0.33 (0.20–0.55)) was
observed between the truncating allele and the disease (Table 1
and Methods). Of note, this observation is advantaged by the
property that R179X has a roughly fourfold higher frequency in
Iceland (minor allele frequency (MAF)¼ 0.78%) than in other

Table 1 | Association of p.R179X in RNF186 with ulcerative colitis.

Study Data type UC Controls Control
MAF (%)

P OR

179� R179 179� R179

GWASseq Sequence (targeted) 0 1,774 6 1,828 0.33
Finland Sequence (exome) 0 1,016 23 16,223 0.14
Screen — 0 2,790 29 18,051 0.022 0
USþCanada Exome chip 4 6,354 21 12,883 0.16
UK Sequencing 2 3,854 10 7,294 0.14
Sweden Exome chip 2 1,518 45 10,813 0.41
Belgium Genotyping 0 1,696 0 1,764 0.00
Germany Genotyping 1 2,035 7 4,399 0.16
Dutch Genotyping 1 1,133 8 4,164 0.19
Italy Genotyping 0 0 2 1,914 0.10
Iceland Sequencingþ imputation 7 2,899 4,130 525,358 0.78

N cases
1,453

N controls
264,744

MAF¼0.78%

Replication 8.69� 10� 6 0.33 (0.20–0.55)
Combined (screen
þ replication)

6.89� 10� 7 0.30 (0.19–0.50)

Screenþ replication P value is computed using Mantel–Haenszel w2-test with continuity correction.
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European populations such that the Icelandic group, despite a
moderate contribution in absolute number of cases (close to 1/6),
have around half of the contribution in term of effective sample
size and power.

Access to imputation data in 150,000 individuals from the
Icelandic group enabled us to identify rare loss-of-function
homozygotes17. We found eight individuals homozygous for the
179X allele, the oldest reached the age of 70 (still alive) and one
of the eight died (age 62), consistent with Hardy–Weinberg
expectation (n¼ 9.1). There was no significant association of the
homozygous genotype with a decreased lifespan or fertility
(number of children). Given the lower frequency in other
populations, no homozygous individual was expected and/or
detected in the Exome Aggregation Consortium (ExAC) nor in
the remaining set of individuals in this study. Together this
indicates that having two copies with a stop gained in RNF186 is
compatible with life, reproduction and ageing—and importantly
does not highlight severe medical consequences that would be of
obvious concern in developing a therapeutic to mimic the effect
of this allele.

The combined significance across all samples tested is
P¼ 6.89� 10� 7 (OR¼ 0.30 (95% CI¼ 0.19–0.50))—considering
we advanced only one variant to follow-up study, the replication
P value of 8.7� 10� 6 is unequivocally significant and would have
been significant even if 5,000 variants were put through this
follow-up, let alone all 77 that were discovered in the sequencing
screen. No other PTV in RNF186 was discovered and tested in
our sequencing. The gene is relatively small (227 amino acids)
and R179X is by far the most common detected PTV in ExAC,
more than 10 times more common than the sum of all other
PTVs in the gene.

RNF186 is located at 1p36 a locus implicated in a UC GWAS
that identified at least two non-coding independent association
signals separated by recombination hotspots (rs4654903 and
rs3806308; r2¼ 0.001, MAF¼ 45.5% and 47%, respectively) that
did not implicate any one of the three genes (RNF186–OTUD3–
PLA2G2E) in the region18. Recently, a low-frequency coding
variant in RNF186 (rs41264113, p.A64T, MAF¼ 0.8%) was found
to confer increased risk to UC (OR¼ 1.49 (1.17–1.90))14. In the
discovery and replication component of this study p.R179X was
found to lie on the haplotype background of the non-reference
allele for rs4654903, and very little correlation was observed
with rs3806308 or the low-frequency coding variant p.A64T
(Supplementary Fig. 3). Naturally, the protective signal at
p.R179X remains unchanged when corrected for the
background allele rs4654903 on the haplotype it arose on
(Supplementary Table 2). Furthermore, we did not observe any
evidence of association to CD (P¼ 0.94; Supplementary Table 3),
consistent with the common variant associations in this region,
which are strong and specific to UC only.

Transcript and protein expression. RNF186, a single-exon pro-
tein-coding gene, encodes the ring finger E3 ligase, which loca-
lizes at the endoplasmic reticulum and regulates endoplasmic
reticulum stress-mediated apoptosis in a caspase-dependent
manner19,20. To understand the functional consequences of
p.R179X we integrated transcriptome and protein expression level
data. First, we examined the gene expression profile of RNF186
(encoded by a single transcript isoform: ENST00000375121)
across multiple tissues in the Genotype Tissue Expression (GTEx)
project and identify that its highest expression is in the transverse
colon (median reads per kilobase of transcript per million
mapped reads (RPKM)¼ 17.32, n¼ 61) with only three other
tissues having an RPKM level above 1: (i) pancreas; (ii) kidney
cortex; and (iii) the terminal ileum (Supplementary Fig. 4A)21.
RNF186 protein was observed at ‘medium’ expression levels for

tissues in the gastrointestinal tract (stomach, duodenum, small
intestine, appendix and colon) in the Human Protein Atlas22

(Supplementary Fig. 4B).

Impact on transcript allele expression. We integrated allele-
specific expression (ASE) data for individual carriers of p.R179X
in the GTEx project. Within GTEx we identified two individual
carriers containing ASE data for p.R179X in transverse colon and
sigmoid colon. The carriers had consistent patterns of no ASE
effects (Supplementary Figs 5 and 6) suggesting that nonsense-
mediated decay does not degrade the aberrant transcripts con-
taining the truncating alleles and that additional functional fol-
low-up would be necessary to determine the molecular impact of
p.R179X on RNF186 function (ref. 5). The gene contains one
exon and is intronless, and there is prior expectation that those
genes do not undergo nonsense-mediated decay since this
presence is reported to require the presence of at least one intron.

Impact on protein allele expression. Given that R179X mes-
senger RNA was detected at levels similar to the reference allele,
we sought to quantify protein expression. Accordingly, we tran-
siently transfected 293T cells with RNF186 expression constructs
containing an epitope tag for detection by western blot with anti-
V5 antibodies. As expected, we found that the reference allele of
RNF186 was efficiently expressed at the protein level, whereas the
truncated protective allele R179X was expressed at reduced levels
and the missense risk allele A64T was expressed at higher levels
relative to the reference allele (Fig. 1). Notably, the reference allele
encodes two transmembrane domains and lacks an N-terminal
signal peptide, which supports a model in which RNF186 N and
C termini are present on the cytoplasmic side of membrane
structures. In contrast, R179X lacks the second transmembrane
domain, and must therefore position its N and C termini on
opposite sides of the membrane. Collectively, reduced expression
and altered membrane topology predict that R179X truncation
impairs RNF186 function.

Impact on cellular localization. To determine if R179X trunca-
tion alters subcellular localization, we over-expressed RNF186
and variant in 293T cells for immunofluorescence imaging. While
RNF186 localized to compact intracellular membrane structures,
R179X appeared more diffuse, with preferential plasma mem-
brane localization. To directly compare RNF186 and R179X
localization in the same cell, we cotransfected 293T cells with
Flag-tagged RNF186 and V5-tagged R179X. After staining with
anti-V5 and anti-Flag antibodies, we observed very little overlap
of RNF186 and R179X localization (Fig. 1). Importantly, these
findings suggest that mislocalization of R179X impairs RNF186
function or otherwise alters association with interacting proteins
and subsequent ubiquitination of putative substrates.

Discussion
This study strengthens the direct evidence for the involvement of
RNF186 in UC risk in which a powerful allelic series, including
common non-coding alleles and risk increasing p.A64T is
available for further experimentation. Further supporting the
medical relevance of this truncating variant, the same rare allele
of the same variant coding p.R179X has been reported in Iceland
to have a genome wide significant association with a modest
increase in serum creatinine level (effect¼ 0.13 s.d., P¼ 5.7� 10� 10)
and a modest increase in risk of chronic kidney disease16.
In the context of the few other established protective variants
in IBD, including the coding IL23R variants (p.V362I,
MAF¼ 1.27%, OR¼ 0.72 (0.63–0.83); p.G149R, MAF¼ 0.45%,
OR¼ 0.60 (0.45–.0.79)) and the splice disrupting CARD9 variant
(c.IVS11þ 1G4C, MAF¼ 0.58%, OR¼ 0.29 (0.22–0.37))7,
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R179X exerts a comparable protective effect. Because of the
strong protective effect associated with the RNF186 PTV, studies
of RNF186 inhibition and the specific action of this variant
protein should be useful in understanding the mechanism by
which protection to UC disease occurs and whether this reveals a
promising therapeutic opportunity similar to that which has been
realized from the example of PCSK9 and cardiovascular disease.

Methods
Ethics statement. All patients and control subjects provided informed consent.
Recruitment protocols and consent forms were approved by Institutional Review
Boards at each participating institutions (Protocol Title: The Broad Institute Study
of Inflammatory Bowel Disease Genetics; Protocol Number: 2013P002634).
All DNA samples and data in this study were denominalized.

Cohort descriptions. For all cohorts, UC was diagnosed according to accepted
clinical, endoscopic, radiological and histological findings.

Genotyping of the Belgian cohort was performed at the Laboratory for Genetics
and Genomic Medicine of Inflammatory (www.medgeni.org) of the Université de
Montréal. Belgian patients were all recruited at the IBD unit of the University
Hospital Leuven, Belgium; control samples are all unrelated, and without family
history of IBD or other immune-related disorders.

NIDDK IBD Genetics Consortium (IBDGC) samples were recruited by the
centres included in the NIDDK IBDGC: Cedars Sinai, Johns Hopkins University,
University of Chicago and Yale, University of Montreal, University of Pittsburgh
and University of Toronto. Additional samples were obtained from the Queensland
Institute for Medical Research, Emory University and the University of Utah.
Medical history was collected with standardized NIDDK IBDGC phenotype forms.
Healthy controls are defined as those with no personal or family history of IBD.

The Prospective Registry in IBD Study at MGH (PRISM) is a referral centre-based,
prospective cohort of IBD patients. Enrollment began 1 January 2005. PRISM
research protocols were reviewed and approved by the Partners Human Research
Committee (#2004-P-001067), and all experiments adhered to the regulations of
this review board. The PRISM study data were merged with population controls of
European ancestry broadly consented for biomedical studies. These controls
included samples from the NIMH repository23, POPRES24, the 1000 Genomes
Project25 and controls ascertained for an age-related macular degeneration study26.
The Italian samples were collected at the S. Giovanni Rotondo ‘CSS’ (SGRC)
Hospital in Italy. The Dutch cohort is composed of UC cases recruited through the
Inflammatory Bowel Disease unit of the University Medical Center Groningen
(Groningen), the Academic Medical Center (Amsterdam), the Leiden University
Medical Center (Leiden) and the Radboud University Medical Center (Nijmegen),
and of healthy controls of self-declared European ancestry from volunteers at the
University Medical Center (Utrecht).

Subject ascertainment, diagnosis and validation for the UK samples are
described elsewhere and are part of the UK Inflammatory Bowel Disease Genetics
Consortium (UKIBDGC)27.

German patients were recruited either at the Department of General Internal
Medicine of the Christian-Albrechts-University Kiel, the Charité University
Hospital Berlin, through local outpatient services, or nationwide with the support
of the German Crohn and Colitis Foundation. German healthy control individuals
were obtained from the popgen biobank. Genotyping of the German cohort was
performed at the Institute for Clinical Molecular Biology.

Finnish patients were recruited from Helsinki University Hospital and
described in more detail previously28,29.

Subject ascertainment, diagnosis and validation for a subset of the Swedish
samples with UC14 and without UC30 are described elsewhere.

Icelandic population: a total of 1,453 individuals diagnosed with UC was used in
the analysis. All the cases were histologically verified, and diagnosed either by 1997
or prospectively during the period 1997–2009 at Landspitali, the National
University Hospital of Iceland.
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Figure 1 | R179X impact on protein allele expression and cellular localization. (a) Schematic diagram of the RNF186 protein with a zinc finger RING-type

and two helical transmembrane (TM1 and TM2) domains, and the A64T and R179X variants shown. (b) 293T cells were transfected with the indicated

expression constructs and analysed by western blot for expression of Rnf186 and the R179X variant. The RNF186 protein with a premature stop at

amino-acid position 179 is expressed, but at reduced levels. (c) 293T cells were transfected with the indicated expression constructs and analysed by

immunofluorescence to demonstrate altered subcellular localization of the R179X variant.
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NIDDK NHGRI targeted sequencing. Sample selection. We selected 3,008
samples (1,204 CD, 887 UC and 917 controls) for sequencing composed of
North-American samples of European descent from the NIDDK IBD Genetics
Consortium repository samples.

Target selection. Target exonic sequences were selected based on the coding
exons of 759 genes (2.546 Mb). Genes were selected if they were in regions
identified in the GWASs for inflammatory bowel disease in Franke et al. (CD)10

and Anderson et al. (UC)11.
Finland exome sequencing. Finnish individuals were exome sequenced as part of

SISu (www.sisuproject.fi). The SISu project consists of the following population
and case–control cohorts: 1000 Genomes Project; ADGEN (Genetic, epigenetic and
molecular identification of novel Alzheimer’s disease-related genes and pathways)
Study; The Botnia (Diabetes in Western Finland) Study; EUFAM (European Study
of Familial Dyslipidemias); The National FINRISK Study; FUSION (Finland–
United States Investigation of NIDDM Genetics) Study; Health 2000 Survey;
Inflammatory Bowel Disease Study, METSIM (METabolic Syndrome In Men)
Study; Migraine Family Study; Oulu Dyslipidemia Families; Northern Finland
Intellectual Disability (NFID); and Northern Finland Birth Cohort (NFBC). All
samples were sequenced at the Broad Institute of MIT and Harvard, Cambridge,
USA, University of Washington in St. Louis, USA and Wellcome Trust Sanger
Institute, Cambridge, UK.

Exome sequencing. To produce a harmonized good-quality call set we applied
the core variant calling workflow for exome-sequencing data that is composed of
two stages that are performed sequentially: pre-processing, from raw sequence
reads to analysis-ready reads; and variant discovery, from analysis-ready reads to
analysis-ready variants (Supplementary Methods).

Identification of Finnish samples. To obtain genetically well-matched controls for
comparison with the Finnish IBD cases we first jointly called Finnish exomes with
Swedish exomes to identify genetic Finns from other close Nordic country. Final
probability was obtained by dividing the probability of being Finnish divided by the
sum of probabilities of being Finnish or Swedish. Training samples in distance
calculations were selected for being from Finnish or Swedish cohort as appropriate
and clustering on the expected cluster (PC1o0.002 for Finnish samples and
PC1Z0 and PC2r0.01). Samples with Z99% Finnish probability (8,124 non-IBD
samples, 508 UC, 238 CD and 92 indeterminate colitis (IC)) were then subset and
principal component analysis (PCA) with the same parameters was run again to
obtain PCAs for Finnish substructure (Supplementary Figs 7 and 8 and
Supplementary Notes).

Variant annotation. Variants for the targeted and exome-sequencing data sets
were annotated using PLINK/SEQ v0.10 and RefSeq reference transcript set
downloaded from https://atgu.mgh.harvard.edu/plinkseq/resources.shtml.

Follow-up genotyping of RNF186. Sequenom. RNF186 p.R179X was assayed
using Sequenom MassARRAY iPLEX GOLD chemistry and SpectroCHIPs were
analysed in automated mode by a MassArray MALDI-TOF Compact system 2 with
a solid phase laser mass spectrometer (Bruker Daltonics Inc.). The variant was
called by real-time SpectroCaller algorithm, analysed by SpectroTyper v.4.0
software and clusters were manually reviewed for validation of genotype calls.
Reported genetic map positions for the markers were retrieved from the single-
nucleotide polymorphism (SNP) database of the National Center for Biotechnology
Information (NCBI).

Exome array. The Illumina HumanExome Beadchip array includes 247,870
markers focused on protein-altering variants selected from 412,000 exome
and genome sequences representing multiple ethnicities and complex traits.
Nonsynonymous variants had to be observed three or more times in at least two
studies, splicing and stop-altering variants two or more times in at least two studies.
Additional array content includes variants associated with complex traits in
previous GWAS, HLA tags, ancestry informative markers, markers for identity-by-
descent estimation and random synonymous SNPs. We focused on variant
exm26442, which was the only PTV in the targeted sequencing data set that was
also in the exome array and had a P value o0.05 in the screening component of the
study. Samples in the targeted sequencing data set were excluded from the exome
array analysis.

UK sequencing. The UKIBDGC sequenced low-coverage whole genomes of
1,767 UC patients from our nationwide cohort (median depth 2� ) and compared
them with 3,652 population controls from the UK10K project (median depth 7� ).
Samples were jointly called using samtools31, and subjected to two rounds of
genotype improvement using BEAGLE32. Genotype count for R179X from
exome-sequencing data in 161 additional UK UC patients with severe adverse
drug response to common IBD drugs were included.

Replication in Iceland population. The Iceland population data have been
extended following the step below15,33.

Sequencing was performed using three different types of Illumina sequencing
instruments.

(a) Standard TruSeq DNA library preparation method. Illumina GAIIx and/or
HiSeq 2000 sequencers (n¼ 5,582).

(b) TruSeq DNA PCR-free library preparation method. Illumina HiSeq 2500
sequencers (n¼ 2,315).

(c) TruSeq Nano DNA library preparation method. Illumina HiSeq X sequencers
(n¼ 556).

Genotyping and imputation methods and the association analysis method
in the Icelandic samples were essentially as previously described15 with some
modifications that are described here. In short, we sequenced the whole genomes
of 8,453 Icelanders using Illumina technology to a mean depth of at least
10� (median 32� ). SNPs and indels were identified and their genotypes
determined using joint calling with the Genome Analysis Toolkit HaplotypeCaller
(GATK version 3.3.0)34. Genotype calls were improved by using information about
haplotype sharing, taking advantage of the fact that all the sequenced individuals
had also been chip-typed and long range-phased. The sequence variants identified
in the 8,453 sequenced Icelanders were imputed into 150,656 Icelanders who had
been genotyped with various Illumina SNP chips and their genotypes phased using
long-range phasing35,36.

Functional consequence of R179X. Allele specific expression data for R179X
carriers. The primary and processed data used to generate the ASE analyses
presented in this manuscript are available in the following locations: all primary
sequence and clinical data files, and any other protected data, are deposited in and
available from the database of Genotypes and Phenotypes (www.ncbi.nlm.nih.gov/
gap) (phs000424.v6.p1). Tissues with at least eight reads of data are presented.

Immunofluorescence. 293T cells were plated on glass coverslips and transfected
as described above. Cells were then fixed in 4% paraformaldehyde, blocked (3%
BSA, 0.1% saponin, in PBS), and stained with primary antibodies diluted 1:250 in
blocking buffer. Primary antibodies were M2 mouse anti-Flag (Sigma F3165-1MG)
and rabbit anti-V5 (Cell Signaling Technology D3H8Q). The following secondary
antibodies were used at a 1:1,000 dilution in blocking buffer: Alexa Fluor594 goat
anti-mouse IgG (Life Technologies R37121) and Alexa Fluor488 goat anti-rabbit
IgG (Life Technologies A27034). Cells were mounted in Vectashield medium
containing 4,6-diamidino-2-phenylindole (Vector Laboratories) and imaged with a
Zeiss Axio A1 microscope equipped with � 63/1.25 objective. Image acquisition
was performed with the AxioVision (Rel.4.8) software package.

Plasmids. cDNA encoding human RNF186 was obtained from The Genetic
Perturbation Platform (GPP, Broad Institute) and cloned by Gibson assembly into
the pLX_TRC307 expression construct. Sequences encoding V5 and Flag tags were
appended to oligonucleotides for PCR amplification of RNF186.

Biochemistry. 293T cells (American Type Culture Collection) were transfected
with RNF186 expression constructs by means of Lipofectamine 2000 (Life
Technologies) as indicated by the manufacturer. One day after transfection, cells
were lysed (1% NP-40 in PBS), resolved by SDS–PAGE, and detected by western
blot. Mouse anti-V5 HRP (Sigma V2260-1VL) was diluted 1:5,000 and used in
conjunction with chemiluminescent substrate (Pierce SuperSignal West Pico).

Association analysis. Association analysis of PTVs in targeted sequencing data
and the exome-sequencing data was performed using the CMH w2test implemented
in R to screen for PTVs with evidence of protective signal of association37.
Combined (screenþ replication) association analysis was conducted with the CMH
w2test. In the replication cohort a set of 1,453 Icelandic patients with UC were
compared with a very large group representing the general population
(n¼ 264,744). Logistic regression analysis was applied to the data set to obtain
study-specific association statistics.

Data availability. Raw sequence-based counts of PTVs on which all analyses are
based are provided in Supplementary Table 1. Final VCF for the targeted
sequencing data set is available on request from NIDDK IBDGC (Phil Schumm
opschumm@uchicago.edu4 and Mark J. Daly omjdaly@atgu.mgh.harvard.edu4).
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