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Summary

Among the most effective seismic protection devices, friction pendulum (FP),
whose conceptual basis lies in the pendulum motion and its simple analytical
description, has now gained a widespread acceptance. All the studies carried
out so far have explored almost all the remarkable features of this device. 
Among the most appealing are constant stiffness, constant oscillation period,
and recentering capability. These studies – and the authors found no 
exception – have systematically made reference to the classical gravity 
pendulum equation, whose motion occurs only in one dimension (1D), 
according to one DOF: the polar angle θ. When the presence of bi‐directional 
seismic excitation required a 2D model, authors have resorted to the vector 
combination of the response of two orthogonal 1D pendulums, which we 
refer to as ‘1.5D’ pendulum. Actually, FP is more correctly described as a 2D 
spherical pendulum, consisting of a mass moving on a sphere with friction, 
according to two DOFs: the polar angle θ and the azimuth angle ϕ. The 
relevant analytical equations of motion are presented in this paper, also 
accounting for thermo‐mechanical coupling, to model the friction‐induced 
temperature on the contact surface. The so‐developed equations have been 
the object of an ample parametric study. This has allowed to observe some – 
sometimes notable – features in the FP response, both in free oscillation 
state and under bi‐directional or tri‐directional earthquake‐like action, which 
in some cases lead to a different response with respect to what is generally 
computed – and designed – under the simplified assumptions of 1D or ‘1.5D’ 
pendulum motion. 

KEY WORDS: thermo-mechanics 3D model; friction pendulum motion 
equations; tri-directional earthquake excitation; dynamic stiffness

1 Introduction

Friction pendulum (FP) bearings are passive sliding recentering devices 
whose behavior is based on the principle of pendulum motion 1. They consist 
of a concave surface and a pad that slides on it with controlled friction. The 



pad moves only when the shear force across the isolation interface 
overcomes the static friction force and, once the motion starts, the pad 
moves along the surface, causing the supported mass to follow the surface 
geometry. The first pioneering studies were carried out on single FPs 2-4 and 
served to justify that the classical one‐dimensional (1D) pendulum equation 
could describe well the system response by using a single DOF, the polar 
angle θ. It was then ascertained that the dynamic characteristics of FP 
bearings depend on two parameters: the (constant) radius of curvature R of 
the concave surface and the friction coefficient μ of the contacting 
materials 5.

Once found that the classical 1D pendulum was able to describe the 
response of the FP with sufficient accuracy, most of the initial researches 
focused on what was considered to be the most critical parameter in 
determining the FP dynamic response: the friction coefficient μ, which was 
more difficult to control than the radius R. Constantinou et al. 6 developed a 
mathematical model for Teflon sliding pads where μ was made to depend on 
the sliding velocity and the axial pressure. This study took advantage of an 
extensive testing campaign on FPs subjected to unidirectional loading, 
presented in a work by Mokha et al. 7. Subsequently, Mokha et al. 8 carried 
out one of the few examples of tests with bi‐directional motion currently 
available in the literature. The focus of that study, rather than trying to 
identify some peculiar aspects of the FP motion in 2D, was primarily that of 
checking the validity of the previously calibrated friction models.

In later studies, many authors 9, 10 pointed out that FPs' motion is a function 
of not only the sphere radius but of the axial load as well. In those cases 
where the vertical component of the ground motion is relevant, such as in 
near‐field earthquakes with pulse‐like motions, this quantity changes and so 
does the motion. Almazan et al. 11 conducted a numerical study on FP 
bearings under multiple ground motion components with an in‐depth 
analysis of the influence of the vertical components on the FP response. In 
that study it is proved that variations in normal contact forces, large 
deformations and uplift, even though not considerably affecting the global 
system response, have to be considered in modeling and design of FP 
bearings. This is true especially for near‐field earthquakes, where the 
resulting instantaneous increase in normal force, due to overturning and 
vertical impact, makes the slider to stop from sliding and to transmit 
significantly larger shear forces to the supported columns.

A further investigation on the effect of tri‐directional ground motions on the 
force‐displacement response was conducted by Mosqueda et al. 12, 
underlining the importance of modeling FPs with two horizontal input 
components and with a variable vertical load for an accurate determination 
of the forces transmitted by the bearings to the superstructure.

These works are among the few with a tentative to explicitly account for the 
2D behavior of the FP. However, in both of them, this was achieved through 



a simple vector combination of the independent responses of two orthogonal
1D FPs, one oscillating along x and the other along y. For the sake of 
conciseness, we will refer to these models as ‘1.5D’ models.

Starting from the mentioned studies, the authors have found that most of 
the works developed in the following period have never questioned the 
classical 1D pendulum equation approach. The combination of two 
orthogonal 1D pendulums, although being an oversimplifying assumption, 
results in a highly appealing property for a FP. In fact, when the friction 
coefficient is low, the oscillation period can be well approximated by that of 
the frictionless pendulum, which depends only on the spherical surface 
radius R and is therefore constant. Because the mass carried by a single FP 
is also constant, this implies that its stiffness remains constant during the 
oscillation. In this case, the stiffness is defined as the force along a meridian 
corresponding to a unit polar angle variation bringing the pad towards the FP
bottom at any instant. This definition is true for a 1D pendulum and is of 
course retained in the ‘1.5D’ pendulum, seen as a combination of two 
orthogonal 1D pendulums with equal and constant stiffness. However, this is 
certainly inappropriate for describing a 2D motion, where, in addition to the 
polar angle θ, one should also consider the motion of the pad along the 
azimuth angle φ. Then, as an extreme example, one may easily conceive a 
steady motion along a parallel (orbital motion). In this case, the FP becomes 
a conical pendulum, whose stiffness is of course 0, because the oscillation 
period towards the bottom is infinite. During an earthquake‐induced motion, 
the pad may actually move along meridians (where the stiffness is constant 
and well defined as in the ‘1.5D’ FP), but it may certainly move along 
parallels and along any intermediate trajectory (where the stiffness is lower).
This phenomenon is worth investigating, and is exactly the objective of this 
paper. In fact, in addition to not to be theoretically rigorous, this 
misinterpreted property of constant stiffness may lead, for example, to the 
wrong conclusion that an isolation system made of FPs under a building 
produces a perfect coincidence between center of mass and center of 
stiffness, thus preventing torsional effects to develop during earthquake 
motion.

Once the analytical model was developed, it was easily extended to include 
temperature, which represents a fundamental variable to be checked during 
the response of a FP, because it affects the friction coefficient 13-19 and 
therefore the very effectiveness of the isolation system. In this study, 
temperature is considered as an additional DOF so that, overall, the 
developed FP model includes three DOFs: θ, ϕ, and T. The inclusion of 
temperature was inspired by previous studies proving the relationship 
between temperature and friction coefficients (e.g., 17, 19, 20). However, to 
date, the findings of these theoretical and experimental studies have been 
just applied to ‘1.5D’ models. In this work, it is shown that the same 
formulations can be easily implemented in the proposed 3D model, but in a 
more rigorous manner, because temperature is included in the set of 



differential equations, giving a complete and rigorous mechanical description
of FP bearings. In this initial study, however, the friction coefficient is 
assumed as constant. Its dependence on temperature will be addressed in 
ongoing further studies.

After the studies mentioned previously, further research has produced many 
different FP variants, that is, the double and triple FPs 21, 22. Although 
technologically different, they all share the same basic concept of the 
original one, so the considerations presented in this paper, although 
developed with reference to the single FP, can be easily extended to its 
subsequent variants.

The paper concludes with a parametric study to assess the influence of 
various quantities on the FP response subjected to earthquake‐like motion. 
Particular attention is given to the estimate of the maximum displacement 
and the stiffness changes occurring during the motion. The former quantity 
is evaluated as the average over a set of 20 analyses performed with 
acceleration time histories generated from PSD spectrum. The parameters 
made to vary within their extremes are: the radius of the sphere, the friction 
coefficient, the PSD frequency content, and the presence or not of the 
vertical component of the acceleration, to simulate near‐field or far‐field 
earthquake‐like motion. It might be worth noticing that the range of values 
adopted for the friction coefficient is of theoretical interest and that the 
lowest values are seldom found in practical cases for single FPs. Finally, 
some comparisons between the overall responses of ‘1.5D’ and 2D 
pendulums are presented, to better appreciate the time history responses of 
some fundamental output quantities, such as trajectories and stiffness.

2 Two‐Dimensional Analytical Model of a Friction Pendulum

In the following, a ‘full’ 2D analytical model is developed, representing a 
point sliding with friction on a concave surface having the shape of a sphere 
with radius R.

2.1 Lagrange equations of motion

In a spherical coordinate system, the three following Lagrangian coordinates 
describe the motion in time t of a point P (representing the pad) having 
mass m:

(1)

where r(t) = radial distance, θ(t) = polar angle, and ϕ(t) = azimuth angle 
(Figure 1).



The transformation from spherical to Cartesian (S2C) coordinates and vice 
versa (C2S) is obtained through the following matrices, respectively,

(2)

(3)

Notice that SS2C(t) = SC2S(t)T = SC2S(t)−1.

If the point is constrained to move on the surface of a sphere having 
radius R, then r(t) = R and its motion is uniquely identified by the kinematic 
vectors p(t), v(t), and a(t) describing position, velocity, and acceleration of 
the constrained point as a function of time, respectively. The kinematic 
vectors (where each dot denotes a time derivative) are as follows:

(4)

(5)

(6)

Equations 4, 5, and 6 can be conveniently rewritten in matrix notation as:

(7)



(8)

(9)

The velocity module is:

(10)

To set up the equations of motion for the system, we resort to the Lagrange 
equation, which states the following:

(11)

where the Lagrangian is given by:

(12)

with the kinetic energy and the potential energy are, respectively,

(13)

(14)

Because it is seen that V(t)/∂  i = 0, Eq. 11 becomes

(15)

As regards the first term of the left‐hand side, we have:

(16)

(17)

(18)

with the subsequent time derivatives being

(19)



(20)

(21)

For the second term of the left‐hand side in Eq. 15, we have:

(22)

(23)

(24)

For the third term of the left‐hand side in Eq. 15, we have:

(25)

(26)

(27)

Replacing the corresponding quantities in the Lagrange equation of 
motion 15, we obtain the three equations of motion:

(28)

(29)

(30)

These represent the dynamic equilibrium equations along r, θ, and φ, 
respectively. From the physical standpoint, the two latter actually represent 
the moment equilibrium equations about point O and about the z‐axis, 
respectively, as seen in Figure 1.

The non‐conservative forces acting on the mass m are the inertia forces qI(t) 
= −magS = −m[agR(t) agθ(t) agφ(t)]T due to the accelerations in the Lagrangian 
coordinates and the reactive forces at the pad‐sphere interface qF(t) = −ϕ(t) 
= [ϕR(t) ϕθ(t) ϕϕ(t)], directed orthogonal to the surface, along the meridian 
tangent, and along the parallel tangent, respectively. In order to compute 
the generalized forces Q(t) that fit into the equilibrium equations previously 
shown, the forces q(t) = qI(t) + qF(t) must be multiplied by a so‐called position
matrix R(t), as follows:

(31)



where R(t) contains the distances from the moment poles (Figure 1):

(32)

The non‐conservative generalized forces are therefore obtained as follows:

(33)

In regard to the inertia forces QI(t), the relationship between the 
accelerations in the spherical coordinate system and those in the Cartesian 
coordinate system is (notice that agz(t) has a negative sign because the z‐
axis is oriented downwards):

(34)

to obtain

(35)

so that, finally, the inertia forces are:

(36)

As for the reactive forces QF(t), it should be noted that φR(t), that is the 
support reaction offered by the sphere normally to its surface, can be 
computed at any t from Eq. 28 as a function of the current θ(t) and ϕ(t) 
satisfying the two equations of motion 29 and 30, as follows:



(37)

In case of frictional surface, the two reactions ϕθ(t) and φϕ(t) are obtained by 
multiplying the dynamic friction coefficient μd by the normal force applied by 
the moving pad on the sphere surface (−φR(t)), as follows:

(38)

(39)

Notice that, in case of frictionless surface of the sphere, ϕ(t) = ϕφ(t) = 0. Also 
for the sake of simplicity, we disregard the distinction between static and 
dynamic friction coefficients.

Replacing the expressions of the non‐conservative forces due to friction into 
the equations of motions 29 and 30, we obtain the following:

(40)

(41)

By replacing the expressions for the normal force ϕR(t) found in Eq. 37 and 
for the inertia forces due to seismic action found in Eq. 36, we finally obtain 
the equations of motion of a particle P having mass m, moving on a frictional
sphere surface with radius R, along meridians θ(t) and parallels φ(t), under 
3D ground motion excitation:

(42)



(43)

The aforementioned equations can be further simplified into the following:

(44)

(45)

where it can be seen that the mass m cancels out.

3 Dynamic Stiffness of a Friction Pendulum

Having defined the full 2D equations of motions, it comes all too natural to 
compute the exact stiffness of the FP in dynamic conditions, with complete 
consideration of the interaction between the two DOFs, the polar angle θ(t) 
and the azimuth angle ϕ(t). The equations will be initially developed in large 
oscillations and then simplified to the case of small oscillations.

3.1 Large oscillations

The equation of motion relevant to the degree of freedom θ(t) obtained in 
Eq. 44 can be divided by R and rearranged in order of derivative as follows:



(46)

The third term represents the recentering force of the FP. When divided by 
the (large) displacement sinθ(t), it yields the 2D dynamic stiffness along the 
meridian during forced oscillations:

(47)

This equation is the most general expression of the FP stiffness, and as a 
matter of fact, it contains, in the first term g/R, the stiffness usually 
attributed to FP devices considered in their 1D behavior. All other terms in 
the right‐hand side of the equation contribute to the stiffness by taking into 
account, respectively, the friction component, the vertical component of the 
input acceleration, and above all, the azimuth angular velocity of the pad 
along the parallels of the sphere. This term, as it will be shown later, is the 
one that mostly contributes to modifying the stiffness during the dynamic 
motion.

It is also interesting to notice that, as opposed to the case of the 1D 
pendulum equations yielding a constant stiffness, that obtained with the 2D 
equations is a function of time and as such it changes during the motion. 
This implies, for example, that in FP‐isolated buildings, the continuous 
coincidence between center of mass and center of stiffness might not be 
guaranteed.

Finally, it is worth noticing that, for the cases of free vibrations and absence 
of friction, Eq. 47 becomes, respectively,

(48)

(49)



If we set agZ(t) = 0 in the latter equation, we find that the FP stiffness can 
actually become 0 when, at any time t, the following condition is satisfied:

(50)

This is the angular velocity that would keep the pad on a stable orbit about 
the azimuth z‐axis, thus transforming the FP into a conical pendulum. The 
velocity depends on the polar angle θ(t). The wider the conical pendulum is, 
the higher the velocity to keep its orbit stable has to be.

Finally, it should be observed that if the angular velocity is such that

(51)

then the FP stiffness can even become negative. Both of the previously 
described situations may actually occur during a 2D FP motion, even if for a 
short time.

3.2 Small oscillations

Under the hypothesis of small oscillations about the ‘bottom’ of the sphere, 
the following assumptions hold:

Therefore, the dynamic stiffness given in Eq. 47 simplifies to:

(52)

This, multiplied by θ(t), gives the recentering force of the FP.

Again, in case of free vibrations and absence of friction, the stiffness 
becomes, respectively,

(53)

(54)

3.3 Pad moving on a circle (one‐dimensional pendulum)

The equation of motion of the 1D pendulum can be found as a particular 
case of Eq. 44, where φt = const., for example 0°, along the x‐axis:



(55)

which, under the hypothesis of small oscillations, becomes

(56)

Therefore, for the case of small oscillation with friction, the stiffness is as 
follows:

(57)

This is a more general equation than that usually assumed for 1D 
pendulums, that is kθ = g/R, as it contains the contributions of the friction 
component and the vertical acceleration. However, because the friction 
coefficient is in general very low, that contribution can be neglected with 
respect to that of the first term, while the second term, if there is a vertical 
acceleration, cannot.

When considering the cases of free vibrations and absence of friction, 
Eq. 57 becomes, respectively,

(58)

(59)

Thus, the stiffness in Eq. 58, usually assumed for FP bearings, actually 
represents that of a 1D pendulum, under the hypothesis of small oscillations 
and free vibrations in absence of friction, which is certainly inappropriate to 
represent real cases.

3.4 Pad moving on two intersecting circles (‘1.5D’ pendulum)

Previously, for the sake of conciseness, we have defined as ‘1.5D’ pendulum 
the one obtained by considering the motion of two 1D pendulums oscillating 
in two orthogonal planes intersecting at the z‐axis. The two responses, which
are however independent, are then vectorially combined at any t, to obtain 
the overall motion. This gives rise to a set of two equations, which can be 
obtained as particular cases of Eq. 44, where φt = const., for example 0°, 
along the x‐axis, and 90 ° along the y‐axis:



(60)

(61)

which, under the hypothesis of small oscillations, become:

(62)

(63)

As seen, the two equations are uncoupled and are therefore integrated 
independently of each other. The respective motion amplitude is then 
obtained as

(64)

and the azimuth angle as

(65)

Therefore, for the case of small oscillations with friction, the stiffness is as 
follows:

(66)



This quite cumbersome expression considerably simplifies when considering 
the cases of free vibrations and the absence of friction, so that 
Eq. 66 becomes, respectively,

(67)

(68)

which have the appealing property of being the same as the 1D pendulum's 
seen in Eqs. 58 and 59.

4 Adding a Third DOF: Temperature

This section is devoted to present how temperature can be simply included 
in the proposed 2D model as a third DOF, in addition to ϕ and θ. When the 
pad covered with a low friction material moves along the stainless steel 
concave surface, the friction between the two generates heat that, in turn, 
affects the friction coefficient and consequently the overall effectiveness of 
the isolation system. During the motion the contact surface remains the 
same for the pad, while it changes continuously for the concave surface. For 
this reason, and also because the mass of the pad is much smaller than that 
of the concave surface, the temperature increase is much higher in the 
former than in the latter. These considerations are all documented in a 
detailed manner in several past works, for example, 19, 20, and especially in 17,
where a heating theory, including the effects of the size of the moving slider 
in comparison with the amplitude of motion, was developed for general 2D 
motion and then validated by 1D experiments.

If a pure 1D model was used, the contact surface would lie along a circle, 
and heat transfer would occur along the same curved line. In general 
motions, as the 1.5D considered in 17 and the 2D derived in the model here 
proposed, the contact surface lies along the generic trajectory taken by the 
pad on the sphere, and heat transfer occurs at points that continuously 
change. Therefore, it is acknowledged that if the trajectories described by 
the 1.5D and 2D FP do not significantly differ, the modeling of temperature 
variation will not differ as well.

As for the 2D model here derived, in terms of formulation the temperature is 
included in the set of differential equations. Then, the friction coefficient can 
be easily made dependent on the temperature, according to the studies and 
formulations already available in literature and widely experimentally 
proved.

However, because this goes beyond the scope of this paper that wants to 
propose a complete 2D mechanical model that includes the temperature, 
thereafter, we will assume that the temperature in the concave surface is 
constant in the average and equal to the environmental temperature, while 



temperature in the pad varies. Also, in these first developments, we will 
assume that the friction coefficient is independent of the temperature.

The first principle of thermodynamics for a closed system, made from the 
pad only, can be written as follows:

(69)

where   is the thermal power stored in the pad,   is the thermal power 
input (0 J/s in this case),   is the thermal power output (from the pad to the

concave element, due to conduction),   is the thermal power internally 
generated by the system through friction, and   is the mechanical power (0 J/
s in this case). All quantities are expressed as energy per time unit.

The first term vanishes if the system is stationary. If it is not stationary, the 
energy stored in the pad per time unit is as follows:

(70)

where mpad is the mass of the pad and c is the specific heat of stainless steel,
equal to 420 J/kg °C.

We assume that the thermal power output occurs only because of 
conduction between the two parts (the pad and the surface) and that no 
convection exchange occurs with the external environment. The heat flow 
rate (measured in W = J/s) at the pad–surface interface Apad is as follows:

(71)

where hc is the heat transfer coefficient, which for stainless steel is 16 J/s m2 
°C.

Finally, the thermal power internally generated by the system through 
friction is given as the product of the friction force times the velocity, that is,

(72)

which can be rewritten as follows:

(73)

Then, the energy rate balance is finally written for the pad:

(74)

Notice that, for the purpose of this work, the friction coefficient has been 
assumed as independent of temperature. This allows uncoupling these 
equations from the dynamic ones. Further studies are under way to deal with
the coupled thermo‐mechanical equations of motion.

By replacing the expression for ϕr(t), Eq. 74 becomes the following:



(75)

where the mass m pertains to the load carried by the device.

The preceding equation can be divided by mpadc, to obtain:

(76)

The ‘thermal diffusivity’ α = hc/ρc is introduced, where ρ is the mass density 
of stainless steel, to obtain the equation relevant to the ‘third’ DOF of the FP:

(77)

5 Parametric Study

For assessing the effect of some basic parameters on the overall response of 
the 2D FP, an extended parametric study was conducted. The parameters 
considered are the following:

the type of earthquake excitation – bi‐directional or tri‐directional – 
accounted through agz = 0 or agz ≠ 0 to simulate far‐field or near‐field 
earthquakes;

the PSD frequency content associated to three soil types: firm (F), medium 
(M), soft (S);

the sphere radius, R = 3, 4, and 5 m; and

the friction coefficient, μd = 0.006, 0.02, and 0.06.

The results of some selected cases are presented either as time histories – 
when it is important to focus on certain features of the FP response – or as 
trajectories and maximum displacements in the horizontal plan – when a 
comparison between 1.5D and 2D FPs is needed.

Then, the results of the whole parametric study – deriving from the 
combination of all parameters listed previously – are presented as the 
average of the maximum displacement obtained over 20 analyses, under the
acceleration time histories generated from the corresponding PSD function. 
The intensity of the PGA was kept constant and equal to 0.35 g, while the 



parameters of the PSD function pertaining to firm, medium, and soft soil 
types are those given by Der Kiureghian and Neuenhofer 23.

The first case study presented in detail is that of a tri‐directional earthquake 
excitation in soil type F, whose components in the x, y, and z directions are 
shown in Figure 2. Under this input acceleration, the response of four 2D FPs 
is analyzed, that is, (a) R = 5 m and μd = 0.006, (b) R = 5 m and μd = 0.06, 
(c) R = 3 and μd = 0.006, and (d) R = 3 m and μd = 0.02.

Figure 3 (a–d) reports the trajectory of the 2D FPs in the xyz space derived 
from Eq. 44 and 45 under the hypothesis of large oscillations.



Then the trajectory of the same 2D FPs – a–d – is compared with that of the 
corresponding 1.5D FPs in the xy plan (Figure 4), still under the hypothesis of
large oscillations, according to Eqs. 60-61, 64, and 65.



First, as expected, with the same earthquake and FP's geometry, see solid 
lines for cases a–b and c–d, respectively, the maximum displacement is 
substantially affected by the friction coefficient: it reduces about five times 
when increasing the friction coefficient from 0.006 to 0.06 for R = 5 m and 
about two times when increasing the friction coefficient from 0.006 to 0.02 
for R = 3 m. Also, looking at the magnitude of the maximum displacement, it 
may be worth noticing that the pad moves over R/4, usually assumed as 
design limit for single FPs (cases a and c). These should be regarded as pure 
theoretical cases, reported just for the purpose of the parametric study.

Then, from the comparison between the trajectories of the 1.5D and 2D FPs, 
the difference in the response of the two models is shown to be significant: 
in fact, in all four cases shown in Figure 4, the 1.5D FPs underestimate the 



maximum displacement of the pad, with a difference that varies from about 
5% for case c (R = 3 m, μd = 0.006) up to 20% for case b (R = 5 m, μd = 0.06).

Figure 5 shows κ time histories of the four 2D FPs, where κ = kθ,2D/kθ,1D is the 
ratio of the actual stiffness of the 2D FPs, Eq. 47, to the stiffness of the 
corresponding 1D FPs as currently evaluated, Eq. 67.

As already pointed out, the proposed formulation allows the stiffness of the 
FP to be expressed as function of time so to evaluate how it changes in 
response to the input acceleration and accounting for the actual position and
velocity of the pad on the sphere.

The curves in the plots of Figure 5 show the FPs' stiffness variation and allow 
deriving the force acting on the pad once its position θ is known.

Overall, these curves show how κ fluctuates around 1, with a remarkable 
variation in the range <1, as especially evident in case b.

The second case study is that of a bi‐directional earthquake excitation, 
simulating a far‐field earthquake, in soil type S, whose components in 
the x and y directions are shown in Figure 6. The response of four 2D FPs is 
presented, and then a comparison with the performance of the 
corresponding 1.5D FPs is discussed. The FPs considered for these analyses 
are as follows: (e) R = 4 m and μd = 0.006, (f) R = 4 m and μd = 0.02, (g) R = 5 
m and μd = 0.02, and (h) R = 5 m and μd = 0.06.



Figure 7 shows the comparison between the 2D and 1.5D FPs in the xy plan. 
For the cases under consideration, there is still a variation in the maximum 
displacement when increasing the friction coefficient for the same FP and in 
response to the same earthquake, even if not so noticeable as for the case of
soil F: the difference is around 18% and 25% when comparing plots a–b and 
c–d of Figure 7, respectively.



As for the estimate of the maximum displacement derived with the 1.5D and 
2D formulations, still under the large oscillations hypothesis, in all analyzed 
cases, the 1.5D FP considerably overestimates the maximum displacement 
of the pad, with a difference that varies from about 6% for cases e–g up to 
15% for case h.

Figure 8 shows κ time history for e–h 2D FPs, calculated with the same 
method adopted for the previous case study: the curves, which lay in the κ < 
1 area of the plots, show how the stiffness changes at each time step and 
clearly prove that, for the analyzed cases, the 1D FP formulation currently 
adopted fails in assuming a constant stiffness for the FP throughout the 
motion.



It may be worth underlining that the two case studies here presented aim at 
showing the response of different typologies of FPs to two random 
earthquakes. To have a statistical estimate of the results derived with the 
1.5D and 2D models, a wider parametric study was developed over 20 near‐
field and far‐field earthquakes, for three different types of soil and three 
different values of FP's radius and friction coefficient. These results are 
shown at the end of this section.

The results of the whole parametric study are summarized in Figure 9. The 
comparison between the 1.5D and 2D FPs is made in terms of maximum 
displacements of the pad on the surface during the 20‐s stationary motion. 
The values reported in both plots represent the mean, over 20 earthquakes, 
of the ratio of the maximum displacement of the 1.5D FP to that of the 2D 
FP. The mean of the ratio has been computed as a second‐order 
approximation under the hypothesis (verified on the same samples) of 
noncorrelation of the maxima:

(78)



The first plot, which refers to the case of near‐field earthquakes, shows that 
the 1.5D FP waves around an underestimate of 10% up to an overestimate of
10%. This error tends to reduce as the friction coefficient increases, so that 
for a friction coefficient equal to 0.06, the results are fairly comparable for all
types of soil and for all radii.

The second plot, representative of the case of far‐field earthquakes, 
demonstrates that the 1.5D FP regularly overestimates the maximum 
displacement. This error tends to increase as the friction coefficient reduces, 
but still when μd = 0.02, the maximum displacement is overestimated by an 
amount going up to 30% as the radius increases from 3 to 5 m, for soft and 
medium soil. For high values of the friction coefficient, 0.06 in this study, the 
results are only slightly overestimated, regardless of the soil type and the 
radius.

It might be worth noticing that the results of the two case studies, 
Figures 4 and 7, confirm the outcomes of the parametric analysis 
summarized in Figure 9, for both cases of near‐field and far‐field 
earthquakes.

The aforementioned comparisons, owing to the formulation itself, do not 
account for possible uplift of the pad. Sarlis and Constantinou 20 propose a 
valuable description of these effects, but still under uniaxial earthquakes 
excitation. Given the importance of accounting for this phenomenon, 
especially for the analysis of near‐field earthquakes, the authors intend to 
develop this topic, starting from the model and formulations proposed in this 
paper.

These results, along with the remarks about the time‐dependent formulation 
for the stiffness, should be regarded as a first insight of a more 
comprehensive interpretation of FPs' mechanics to be extended to the 
analysis of double and triple FPs, so to allow a more accurate and reliable 
estimate of the stiffness center location.

6 Conclusions



An analytical thermo‐mechanics 3D model for FP bearings is proposed. The 
equations describing the complete motion of a pad on a sphere with friction 
for the general case of three‐directional seismic excitation are derived along 
with the equation expressing the variation of pad's temperature during the 
motion. A wide parametric study is conducted, and the comparison between 
the proposed 2D model and the so‐defined ‘1.5D’ model, which resorts to the
vector combination of the response of two orthogonal 1D pendulums, is 
discussed. The study shows that, when higher commonly used vlaues of 
friction are considered, the 1.5D model currently in use for single‐FP isolators
predicts displacement demands with an error of 10% or less by comparison 
with the more accurate 2D model. As friction is reduced for both cases of 
near‐field and far‐field earthquakes, the error in predicting the maximum 
displacement increases, overall leading to an underestimation of as much as 
30% in the case of exceptionally low values of friction (e.g., 0.006 in this 
study). The proposed model also allows deriving a time‐dependent 
formulation for the stiffness, as opposed to the constant value currently 
assumed. The results of the parametric study prove that the assumption of 
constant stiffness is not reliable and can lead to a wrong estimate of the 
stiffness center location in FP‐base‐isolated structures. Further comparative 
studies are being developed regarding the temperature variation induced by 
friction. Finally, extensions of the presented analytical formulation to double 
and triple FPs are under way.
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