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Abstract: Regional maps of vegetation structure are necessary for delineating species habitats and 
for supporting conservation and ecological analyses. A systematic approach that can discriminate a 
wide range of meaningful and detailed vegetation classes is still lacking for neotropical savannas. 
Detailed vegetation mapping of savannas is challenged by seasonal vegetation dynamics and 
substantial heterogeneity in vegetation structure and composition, but fine spatial resolution 
imagery (<10 m) can improve map accuracy in these heterogeneous landscapes. Traditional pixel-
based classification methods have proven problematic for fine spatial resolution data due to 
increased within-class spectral variability. Geographic Object-Based Image Analysis (GEOBIA) is a 
robust alternative method to overcome these issues. We developed a systematic GEOBIA 
framework accounting for both spectral and spatial features to map Cerrado structural types at 5-m 
resolution. This two-step framework begins with image segmentation and a Random Forest land 
cover classification based on spectral information, followed by spatial contextual and topological 
rules developed in a systematic manner in a GEOBIA knowledge-based approach. Spatial rules were 
defined a priori based on descriptions of environmental characteristics of 11 different physiognomic 
types and their relationships to edaphic conditions represented by stream networks (hydrography), 
topography, and substrate. The Random Forest land cover classification resulted in 10 land cover 
classes with 84.4% overall map accuracy and was able to map 7 of the 11 vegetation classes. The 
second step resulted in mapping 13 classes with 87.6% overall accuracy, of which all 11 vegetation 
classes were identified. Our results demonstrate that 5-meter spatial resolution imagery is adequate 
for mapping land cover types of savanna structural elements. The GEOBIA framework, however, is 
essential for refining land cover categories to ecological classes (physiognomic types), leading to a 
higher number of vegetation classes while improving overall accuracy. 

Keywords: GEOBIA; land cover mapping; high spatial resolution imagery; savanna; Cerrado biome; 
vegetation types 

 

 

1. Introduction 
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Monitoring patterns and trends in tropical savannas still faces major uncertainties related to their 
definition and classification [1–4]. This uncertainty is reflected both in general land cover 
classification and maps featuring vegetation physiognomic types (e.g., life form, vegetation cover). 
For example, savannas are poorly defined in global land cover products, and variation in their 
physiognomic types is not well classified at local scales [2,5,6]. Most current technology featuring 
moderate to coarse spatial resolution (>10 m) fails to resolve the fine-scale heterogeneity of savannas. 
Major issues in their discrimination relate to growth patterns (associated with seasonality of 
contrasting dry and wet seasons) and to admixtures of life forms and land cover categories at 
operational sensor scales [7,8]. 

Savannas occupy a significant area of the tropics, covering approximately 20% of the world’s 
land surface [3,9]. Tropical savannas, for example the Argentinian Chaco, the African Miombo, and 
the Brazilian Cerrado, are often intermixed with riparian forests, swamps, and marshes [9]. They are 
composed of a herbaceous stratum in a discontinuous tree and shrub cover of varying height and 
density [2,3,10]. The Cerrado, a neotropical savanna in Brazil, is the most floristically diverse savanna 
in the world, with more than 12,000 plant species [11], including numerous endemics [12,13]. 
Moreover, the Cerrado provides critical ecosystem services such as carbon storage [14] and plays a 
major role in provision of water resources by hosting the headwaters of the three largest watersheds 
in South America. 

Land cover mapping of savannas has been conducted mostly at regional scales, using optical 
sensors available at moderate (10–500 m) to coarse (>500 m) spatial resolution, such as the Landsat 
series and Moderate Resolution Imaging Spectrometer (MODIS). Most studies focus on multi-
temporal analysis for change detection [15–18], deforestation monitoring [19–22], and land surface 
phenology [23–25]. Specific challenges to savanna land cover classification are related to: (a) high 
sensitivity to sensor resolution due to discontinuous tree canopy cover [26]; (b) high seasonal 
variation in ecosystem properties, cloud cover, and data availability [27]; and (c) smoke and haze due 
to frequent fires in the dry season [28]. 

As for other savannas, discriminating spectrally similar shrubs from trees with moderate-to-
coarse resolution imagery has proven challenging for the Brazilian Cerrado [23,29]. Sano et al. [30] 
used image segmentation and visual interpretation of Landsat to produce a map of natural and 
converted areas for the entire Cerrado region. Other Landsat-based studies have focused on local 
sites to investigate methods for mapping fractional woody cover, such as spectral unmixing [29], and 
Support Vector Machine classification of multi-year phenologic profiles based on the Tasseled Cap 
Transform [25]. Several studies took advantage of multi-temporal rather than single-date imagery to 
overcome spectral similarities in woody cover using characteristic phenological patterns 
[17,23,25,31,32]. Although these approaches are useful for broad-scale analyses, they depict coarse 
structural vegetation classes [25,33–35] and cannot resolve the structural heterogeneity essential for 
regional biodiversity and ecosystem assessments [36]. 

A critical problem in mapping Cerrado physiognomic types concerns the definition of classes. 
Most previous remote sensing studies considered a widely adopted vegetation nomenclature for the 
Cerrado physiognomies based on structural attributes and floristic composition (see Ribeiro and 
Walter [37]). Vegetation maps exhibiting the diverse structural variation in vegetation types are 
critical for representing fine-scale savanna habitat patterns. Spectrally based remote sensing analyses 
based on floristic classification systems (such as Ribeiro and Walter [37]) may not succeed in 
identifying structural differences in vegetation and may require extensive field work for species 
identification. Thus, they may not be suitable for regional scale mapping using multispectral imagery 
classification alone. Geographical characteristics related to edaphic conditions (e.g., topography, 
soils), however, can potentially help identify some physiognomic types not strictly based on species 
composition. 

Remote sensing imagery at fine (<10 m) spatial resolution can better capture the diversity in 
vegetation structure of heterogeneous and complex savanna landscapes [36,38–41]. However, 
traditional pixel-based classification methods have proven problematic for fine spatial resolution 
data due to increased within-class spectral variability, potentially leading to inconsistent results 
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[42,43]. Geographic Object-Based Image Analysis (GEOBIA) bridges remote sensing and Geographic 
Information Science by defining image objects as entities and focusing on the conceptual modeling 
of defined land cover classes at multi-scales. Thus, GEOBIA is a robust alternative approach to 
address within-class spectral variability issues in land cover classification of high spatial resolution 
imagery and heterogeneous landscapes [42]. 

GEOBIA is based on extracting information from Earth Observations using spectral, spatial, 
structural, and hierarchical properties of an image [44]. A fundamental step is to delineate objects of 
interest, which are strongly associated with image segmentation approaches that cluster relatively 
homogenous pixels into image objects. One of the significant advantages of the GEOBIA approach is 
that image objects provide not only diverse spectral information (e.g., mean values per band, 
standard deviation, mean ratios) but also additional spatial information, such as distance, 
neighborhood, and topological metrics [42,45]. The combination of spectral and spatial properties 
allows incorporation of contextual information of a given object using ontologies/semantics to create 
hierarchical conditional rules tailored to classify meaningful object definitions in a knowledge-based 
classification [42,46]. 

Efforts to map fine-scale structural variation in savanna ecosystems using GEOBIA have 
obtained encouraging results compared to moderate spatial resolution data and pixel-based methods 
[26,39,41,47,48]. GEOBIA is also increasingly used for Cerrado studies due to the recent availability 
of fine (5 m) spatial resolution imagery from the RapidEye sensor at no cost for Brazilian researchers. 
Initial efforts to evaluate the utility of high spatial resolution imagery for discriminating and mapping 
Cerrado physiognomic types have demonstrated improved discrimination of structural classes and 
higher map accuracy compared to coarser resolution imagery [49–51]. Such efforts include using 
supervised object-based classification with several input object features in a GEOBIA context, such 
as in Girolamo-Neto [49] and Girolamo-Neto et al. [41]; or strict knowledge-based classification by 
defining conditional rules based on shape and brightness parameters, such as in Teixeira et al. [51]. 
However, these studies were tested at sites with limited extent (< 50,000 ha) such as Brasilia National 
Park, which does not include some major vegetation structural types known for causing 
misclassification errors (i.e., semi-deciduous versus deciduous forest [51]), or featured coarse 
vegetation classes as opposed to detailed physiognomic types. A systematic approach that can 
discriminate a wide range of meaningful and detailed vegetation classes is still lacking for the 
Cerrado biome. 

The primary goal of this study is to develop a systematic framework to discriminate detailed 
Cerrado physiognomic types in a semi-automatic manner using single-date high spatial resolution 
imagery. The rationale for mapping detailed physiognomic types at fine scales stems from the 
potential of such maps to (1) improve our understanding of species habitat requirements and 
conditions, as well as our ability to assess ecosystem services and biodiversity [36], and (2) provide 
improved inputs for fire modeling, carbon accounting [52], landscape restoration [53], and land-use 
management [54]. Our approach takes advantage of GEOBIA and semantics to combine land cover 
classes and edaphic conditional drivers in the definition of hierarchical contextual rules used to 
classify a wide range of Cerrado physiognomic types. The specific research questions we aim to 
answer with this framework are: What accuracies are achievable using spectral information alone? 
What accuracies are achievable adding spatial context information? How can the widely adopted 
Cerrado physiognomic types nomenclature be used in a remote sensing analysis? We address these 
questions using RapidEye imagery (5 m) in a two-step GEOBIA framework that begins with a 
supervised object-based land cover classification based on spectral information alone, followed by 
assignment of spectral land cover classes to more detailed physiognomic types using a novel 
hierarchical spatial and topological ruleset defined by semantics (i.e., descriptive assessment and 
knowledge). This approach takes advantage of ancillary information on hydrography, topography, 
and substrate as environmental conditional drivers in the semantic definition of hierarchical 
contextual rules. This GEOBIA framework was tested for two large study sites covering most major 
Cerrado physiognomic types. Its main advantages relate to its reproducibility across different areas 
of this heterogeneous biome, its capacity to discriminate a wide variety of physiognomic types that 
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could not be distinguished in previous studies, and its adaptability to other physiognomic types and 
to other types of optical imagery.  

2. Materials and Methods  

2.1. Study Sites 

The Cerrado has a tropical climate characterized by an October–April wet season and May–
September dry season, when rainfall can be close to zero [55]. Plant distributions across the Cerrado 
are mostly determined by topography, soil texture, nutrient content and depth, fire regime, and water 
availability [56,57]. Spatial variation in these environmental conditions results in high beta diversity 
across the biome as well as large variability of physiognomic types over relatively small distances 
[37,58].  

We chose two study sites (Figure 1) to test our classification framework and compare its accuracy 
in discriminating savanna vegetation with differing landscape composition and surface 
heterogeneity. The sites were chosen based on their ecological importance for conservation, their 
differences in composition and beta diversity, and a combination of imagery and ancillary data 
availability. 

 
Figure 1. Map (upper left corner) showing the Cerrado biome and the location of both study sites and 
their respective states, in bold. The other two maps show the RapidEye imagery used in the Taquara 
(encompassing the Brazilian Institute of Geography and Statistics-IBGE Ecological Reserve and the 
Taquara watershed) and the Western Bahia sites, with false-color composition as R: NIR (band 5), G: 
Red-edge (band 4), B: Blue (band 1). The Western Bahia site map shows a grid representing the 
acquired 16 imagery tiles. 

2.1.1. Study Site 1: Taquara Watershed 
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We initially tested our method at the Taquara site (Figure 1), a study site for which we had high-
quality orthophotos (24 cm resolution) and a greater availability of ground reference and ancillary 
data that were important for testing our ability to visually identify physiognomic types using air 
photos when collecting training data. The Taquara site (15°54’ S, 47°55’ W to 15°58’, 47°50’ W) 
comprises an area of 67.3 km2 located approximately 26 km from downtown Brasília, covering most 
of the Taquara watershed and its surroundings. This site also contains the Brazilian Institute of 
Geography and Statistics (IBGE) Ecological Reserve, a protected area created to act as a biodiversity 
control site for comparison to other Cerrado areas altered by human occupation. The IBGE Ecological 
Reserve served as one of the Cerrado sites included in the Large Scale Biosphere-Atmosphere 
Experiment in Amazonia (LBA) [59], and was the first International Long Term Ecological Research 
(ILTER) site in the Cerrado biome. 

The watershed is located in the Cenozoic bed from the Paranoa Group and terrain is relatively 
flat, with elevation in the region varying between 1040 and 1196 meters. Mean annual precipitation 
is 1426 mm and mean annual temperature is 23oC [60]. The site has considerable diversity of plants 
and soil types, representing most of the typical physiognomic types found across the Cerrado. Soils 
are mostly acidic, low fertility Oxisols (Latosols) supporting savanna ecosystems. Organic, nutrient-
rich hydromorphic soils occur locally in the area and often support forest ecosystems. Most of the site 
is covered by savanna ecosystems, but grasslands located on small hills, and gallery forests with 
surrounding wetlands following small streams are also present. Common tree species include 
Pterodon pubescens, Bowdichia virgilioides, Vochysia thyrsoidea, and Dalbergia miscolobium, while grasses 
are dominated by perennial species such as Echinolaena inflexa, Schizachyrium tenerum, Trachypogon 
spicatus, and Axonopus chrysoblepharis [61]. 

2.1.2. Study Site 2: Western Bahia 

We also tested whether our method could be applied to a larger and even more heterogeneous 
site with minimal ground reference and ancillary data. This study site comprises an area of 9409 km2 
and is located on the western side (11°43’S, 45°52’W to 12°36’S, 44°59’W) of the São Francisco River 
watershed, the largest river basin entirely located in Brazilian territory (Figure 1). The Western Bahia 
site is not only naturally heterogeneous but also has considerable complexity due to historical land 
use conversion of natural savanna to pasture and row crop agriculture [18]. Elevation ranges from a 
maximum of 808 m across karstic mesas/plateaus (known as Chapadões do São Francisco) to 433 m in 
the lowest point in the São Francisco Depression, with annual precipitation ranging from 800 mm at 
lower elevations to 1600 mm at highest elevations [54,62]. The plateaus are composed of Proterozoic 
rocks from the Bambui Group and Cretaceous beds from the Urucuia Group. Diverse soils include 
deep well-drained Oxisols (Latosols) of medium texture in the highest parts of the plateau and sandy 
texture (sandy quartz) on irregular terrain, rocky soils (Lithosols) of sandy to medium texture on 
steep slopes and escarpments, and hydromorphic/organic soils across floodplains [62]. This variety 
of edaphic conditions supports diverse vegetation types mostly consisting of savanna ecosystems 
across the plateaus, wetlands and riparian vegetation along floodplains, and semi-deciduous forest 
restricted to cliffs and to the eastern part of the plateau, which is possibly due to local concentrations 
of calcium carbonate in the soil and higher moisture conditions [62]. In general, lower elevation sites 
have greater physiognomic diversity compared to the plateaus [63]. 

Common tree species within the savanna ecosystem include Anacardium occidentale and Miconia 
ferruginea, and the grass layer is dominated by annual species such as Ichnantus hoffmannseggii [64]. 
Seasonally dry tropical forests are mostly found along escarpment slopes, and are composed of 
deciduous or semideciduous tree species such as Astronium urundeuva, Piptadenia macrocarpa, Chorisia 
speciosa., Tabebuia spp., Cavanillesia arborea, and Cedrella fissilis [65]. 

2.2. Methods Overview 

The GEOBIA framework used in this study is divided into two major steps (Levels 1 and 2), in 
addition to pre and post-processing stages: (a) pre-processing; (b) land cover classification (Level 1 
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processing); (c) physiognomic types classification (Level 2 processing); (d) area estimates; and 
accuracy assessment (statistics). These procedures are shown and described in detail in Figure 2. 

 
Figure 2. Workflow of the Geographic Object-Based Image Analysis (GEOBIA) classification 
framework to map Cerrado land cover and physiognomic types. 

2.2.1. Definition of Classes 

The Cerrado physiognomic types have been defined by many authors such as Coutinho [66], 
Eiten [67], and Oliveira-Filho and Ratter [57]. The most recent vegetation terminology proposed by 
Ribeiro and Walter [37] has been widely adopted by the scientific community in Brazil. This scheme, 
however, is based on criteria such as environmental edaphic conditions and species composition that 
are not reliably detected by multispectral sensors. Thus, translating these on-the-ground Cerrado 
classification schemes to a land cover classification derived from remote sensing is a challenging task. 

The United Nations Food and Agriculture Organization’s (FAO) Land Cover Classification 
System (LCCS) is a flexible and systematic framework designed for land cover classification 
terminology at any given scale and for any data source [68]. The LCCS framework defines classes at 
different levels, starting with broad distinctions (e.g., Primarily Vegetated Areas, Primarily Non-
Vegetated Area) within a dichotomous key and then adds specific attributes through a hierarchical 
framework (e.g., life form, cover, height). Classes are then defined as a function of the intended level 
of detail (scale) for the land cover classification based on a combination of the spatial and spectral 
resolution of the imagery, which makes the LCCS appropriate for object-based classification [69]. 

To allow for standardization among Cerrado classes, we used the LCCS as a reference in the first 
classification level. The classes were defined a priori, based on a literature review of major 
physiognomic types found across the Cerrado. In accordance with the RapidEye spatial and spectral 
characteristics, the quality of the images (e.g., off-nadir viewing angles), and the recommended scale 
for mapping Cerrado physiognomic types [37], the map scale was defined as 1:25,000. We followed 
the LCCS criteria based on dominant life form, vegetation cover, and structure, as well as water 
seasonality (Figure 3). In the second classification level (Figure 3), we followed the nomenclature 
described by Ribeiro and Walter [37] for our map legend of physiognomic types (Table 1). 
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Figure 3. Land cover classes used on each classification level. Level 1 represents the Land Cover 
Classification System (LCCS) classes defined for the Cerrado biome, which is appropriate for 
mapping with multispectral imagery at fine spatial scales (< 10 m). Level 2 represents the 
corresponding physiognomic types for each LCCS class. The arrows represent the corresponding 
physiognomic type category (level 2) derived from the LCCS classification (level 1). 

Table 1. Description of the physiognomic types used in the classification. 

Ecosystems Physiognomic Types 
(English; Portuguese) Description 

Forest 

Riparian Forest; mata riparia, 
mata de galeria, mata ciliar 

Closed-canopy semi-deciduous and evergreen trees following 
rivers and streams. This class includes gallery forests with a 

variety of soil moisture regimes 

Seasonally Dry Tropical 
Forest; mata seca (semi-decidual, 
decidual, sempre-verde), floresta 

estacional 

Closed-canopy semi-deciduous, deciduous, and/or evergreen 
trees across nutrient-rich environments on interfluves. This class 

is associated with mountainous terrain, such as cliffs 

Semi-deciduous Forest; mata 
semi-decidual; cerradão; mata 

seca 

Closed-canopy semi-deciduous trees with dense layer of 
xeromorphic shrubs located across flat interfluvial terrain. This 

class contains tropical dry forest and/or sclerophyll forest, which 
can occur in different successional stages due to recent 

deforestation or fire activity 

Savanna 
Cerrado Woodland; cerrado 

denso 
Open canopy semi-deciduous trees over an open herbaceous 

layer and dense layer of xeromorphic shrubs 
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Savanna; cerrado tipico 
High density of xeromorphic shrubs over an herbaceous layer 

with scattered to medium density of trees; may contain elements 
of transition to caatinga vegetation 

Open Savanna; cerrado ralo; 
campo sujo 

Low density of xeromorphic shrubs and sub-shrubs over a closed 
herbaceous layer, which may contain scattered trees throughout 

the landscape 

Grassland 

Grassland; campo limpo, campo 
limpo com murundus Treeless herbaceous layer 

Non-natural Shrubby 
Grassland; campo sujo, campo 

sujo degradado, capoeira 

Sparse xeromorphic shrubs over an open herbaceous layer with 
strong presence of exposed soil. This class may contain degraded 

areas, such as abandoned pastures and agricultural areas 

Scrub Cerrado; campo sujo 
denso, campo cerrado, scrub 

High density of xeromorphic shrubs and sub-shrubs, with 
occasional scattered deciduous trees and no presence of 

herbaceous layer or soil. It may contain elements of transition to 
caatinga vegetation 

Wetlands 

Shrub Swamp; vereda, scrub de 
vereda 

High to low density of shrubs and sub-shrubs, usually clustered, 
over a seasonally flooded herbaceous layer 

Palm Swamp; vereda 
High to low density of palm trees (most commonly Mauritia 
flexuosa), either clustered throughout a seasonally flooded 

herbaceous layer, or aligned along a water course 

Marsh; brejo, campo limpo 
umido 

Seasonally flooded herbaceous layer composed mainly of grass 
species. This class usually surrounds riparian forests and contains 

palm and shrub swamps 

2.2.2. Imagery Acquisition and Pre-Processing 

Most RapidEye imagery used in this study was acquired in the 2011 dry season, representing 
the imagery with the best quality available. The commercial RapidEye sensor, launched in 2009, 
operates in a constellation of five satellites in the same orbit, providing multispectral images with a 
spatial resolution of 6.5 meters resampled to a 5-meter grid (at the Level 3A), and a tile size of 25 km 
by 25 km. The sensor has a swath width of 77 km, daily off-nadir coverage, and radiometric resolution 
of 12 bits, scaled up to a 16-bit dynamic range. RapidEye’s spectral resolution covers the visible and 
near-infrared bands ranging from 440 to 850 nm, including a red-edge band (690 to 730 nm). The 
imagery is available through the Ministry of Environment (MMA) Geocatalog and is accessible to 
Brazilian researchers at no cost. The collection covers the entire country and is composed of varying 
off-nadir angles and temporal coverage, which is limited to inconsistent dates mostly available for 
the years 2011 through 2015, depending on the area of interest. 

Although the orthorectified Level 3A RapidEye product is provided with radiometric, 
geometric, and terrain corrections, additional corrections were made for improving consistency in 
the product. Atmospheric corrections and reflectance retrieval were performed using ACORN 4.0 
software for all individual imagery tiles. Calibration files corresponding to image spectral response, 
gain, and offset, as well as acquisition parameters, were created from the metadata provided. Water 
vapor and atmospheric visibility parameters were determined by a trial-and-error analysis of a dark 
object reflectance (e.g., pure water pixels) and following the ACORN user guide suggestions for areas 
of dry conditions. 

In total, we used 17 RapidEye imagery tiles. One tile corresponds to most of the Taquara 
watershed, covering the IBGE Ecological Reserve and its surroundings (Figure 1). After applying the 
atmospheric correction and reflectance retrieval, the image was subset to the bounding box extent of 
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the watershed to facilitate data processing. The other 16 images correspond to the Western Bahia 
study site (Figure 1). The pre-processing steps were applied to individual imagery tiles, and tiles with 
the same acquisition date were mosaicked. The individual mosaics were processed separately, at both 
classification levels, and merged together to derive statistics for the complete study site (i.e., accuracy 
assessment and landscape composition). The Taquara tile was acquired on August 11th 2013, and the 
Western Bahia tiles were acquired from June to October 2011. Details of imagery tiles, dates, and 
sensor angle-viewing characteristics are summarized in Table S1. 

2.2.3. Level 1 Classification: Major Land Cover Types 

1) Segmentation 
Our GEOBIA approach starts with segmenting the images into homogeneous image objects to 

ensure neighboring pixel similarity at an adequate scale. The segmentation was performed through 
the multi-resolution segmentation (MRS) algorithm, proposed by Baatz and Schäpe [70] and 
implemented in eCognition Developer 8.0 software. For all images, the segmentation used all five 
spectral bands of the RapidEye image, with higher weights for near-infrared (NIR) (760–850 nm), red-
edge (690–730 nm), and red (630–685 nm) bands due to their importance in discriminating vegetation 
types [23,71]. The multi-resolution algorithm implemented in eCognition uses a bottom–up merging 
approach as an optimization procedure to identify similar, homogenous, neighboring pixels and 
cluster them into a single object. eCognition accounts for a scale parameter as a level of aggregation 
of image objects and uses a stop criterion in the optimization algorithm. Thus, the scale is a crucial 
part of GEOBIA, as it defines the size of image objects as well as their level of heterogeneity. The 
multi-resolution algorithm also accounts for shape and compactness parameters. We visually 
inspected multiple combinations of scale, shape, and compactness parameters and selected a 
combination of scale = 10, shape = 0.3, and compactness = 0.7. These parameters are in accordance 
with other GEOBIA studies that use high spatial resolution imagery and have small image object 
scale [72]. 
2) Collection of training data and Random Forest model 

The training data were collected through a process of visual interpretation assisted by 
orthophotos and Google Earth images covering both study sites. We defined standard parameters for 
visual interpretation of the classes, which were assisted by ancillary data (such as other vegetation 
maps available for the sites) and one field excursion conducted in the dry season of 2018 to each site 
for confirmation of class categories in areas that were still unclear after examining the available 
resources. 

Training samples were collected in proportion to class abundance, with abundant classes having 
a higher number of training data compared to classes that were rare across the landscape (Table S2). 
All training was done at the object scale, in which each sample corresponds to an image object 
generated in the segmentation process. Spectral variables (e.g., statistics and indices), also known as 
object features in GEOBIA, were attributed to each training polygon (Table 2), including three indices: 
Normalized Difference Vegetation Index – NDVI [73], Normalized Difference Vegetation Index with 
red-edge band – NDVI-RE [71], and Normalized Difference Water Index – NDWI [74]. 

All training samples and their respective statistical attributes were used as input in the ‘random 
forest’ package in RStudio developed by Liaw and Wiener [75] based on Breiman [76]. All parameters 
were set to default on the random forest classification algorithm, which resulted in a model based on 
500 decision trees used to classify all image objects derived from the multi-resolution segmentation. 
The result of this process is the Level 1 land cover classification based on the LCCS land cover classes. 

Table 2. Summary of selected features used in the random forest model. NDVI: Normalized 
Difference Vegetation Index; NDVI-RE: Normalized Difference Vegetation Index with red-edge band; 
NDWI: Normalized Difference Water Index. 

Selected Features/ 
Statistics Description 
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Brightness 
Sum of mean values of all layers (spectral bands) divided 

by the total number of spectral bands 

Mean Value 
Mean (reflectance) value of each spectral band within an 

image object 
Standard Deviation 

Value 
Standard deviation (reflectance) value of each spectral 

band within an image object 
Customized Attributes  

NDVI (NIR–Red)/(NIR+Red) 
NDVI-RE (RedEdge–Red)/(RedEdge+Red) 

NDWI (Green–NIR)/(Green+NIR) 
 

2.2.4. Level 2 Classification: Physiognomic Types 

In accordance with our goal of classifying physiognomic types in a semi-automatic manner, we 
developed a series of spatial contextual rules for each study site in order to refine the Level 1 land 
cover map (Table 3). We combined the Level 1 LCCS classification with hydrographic data (stream 
networks and hydromorphic soils) developed by Ribeiro [77] for the Taquara site (scale 1:10,000); and 
by the Laboratory of Spatial Information Systems–LSIE at the University of Brasília (Brazil), in 
partnership with the Inter-American Institute of Commerce and Agriculture and the Brazilian 
Ministry of National Integration, for the Western Bahia site (scale 1:2,000). Slope and elevation were 
derived from the NASA Digital Elevation Model–NASADEM [78] available at a resolution of 1 arc-
sec (approximately 30 m). 

The spatial rules were developed based on environmental characteristics of the vegetation 
physiognomic types described in Pereira and Furtado [61], Nou and Costa [62], and Ribeiro and 
Walter [37], in addition to personal and expert knowledge of the study sites. Specific elevation and 
slope thresholds were based on recommendations from the Brazilian Agricultural Research 
Corporation–Embrapa [79]. The same contextual and topological rules were applied for both study 
sites, except that thresholds used for elevation and slope were adapted to each site’s characteristics. 

Table 3. Spatial contextual rules used to characterize LCCS land cover classes into physiognomic 
types; rules and classes with “*” were only applied for the Taquara watershed site, and rules with 
“**” were only applied for the Western Bahia site due to the absence of these classes in the other study 
site. 

Level 1 Classes Spatial Rules Level 2 Classes 

Closed Canopy 

1. Within hydromorphic soils Riparian Forest 

2. Within steep slopes (>20%) and  
not adjacent to perennial streams and water 

(relative border to ‘streams’ = 0) ** 

Seasonally Dry Tropical 
Forest ** 

3. Adjacent to streams and water (relative 
border to ‘streams’ > 0) 

Riparian Vegetation 

4. Within high elevation (>670m) and flat terrain 
(slope < 8%) ** 

Semi-Deciduous Forest ** 

Open Canopy 

1. Within hydromorphic soils Palm Swamp 

2. Within steep slopes (>20%) ** 
Seasonally Dry Tropical 

Forest ** 
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3. All other conditions Cerrado Woodland 

Dense Shrub 
1. Within hydromorphic soils Shrub Swamp 

2. All other conditions Savanna 

Open Shrub 
1. Within hydromorphic soils Shrub Swamp 

2. All other conditions Open Savanna 

Scrub–Shrub 
1. Within hydromorphic soils ** Shrub Swamp ** 

2. All other conditions ** Scrub Cerrado ** 

Herbaceous (wet) 

1. Within hydromorphic soils Marsh 

2. Within steep slopes (>20%) ** Shade ** 

3. All other conditions Non-Natural/Barren 

Herbaceous (dry)  Grassland * 

Herbaceous  
Invasive Forbs and 

Shrubs * 

Water 

1. Isolated small objects (size < 60 pixels) not 
within hydromorphic soils ** 

Shade ** 

2. Within steep slopes (>20%) Shade ** 

2. All other conditions ** Water ** 

Shrub–Herbaceous  Semi-Natural Shrubby 
Grassland ** 

Soil, NPV ***, impervious 
surfaces (bright) 

 

Non-Natural/Barren 
Soil, NPV ***, impervious 

surfaces (dark) 
 

*** Non-photosynthetic vegetation. 

The combination of mountainous terrain (e.g., escarpments/cliffs) and fine spatial resolution 
resulted in a high presence of shadows in the Western Bahia site imagery. However, RapidEye’s 
spectral resolution does not allow us to distinguish shadows from water, a well-known source of 
confusion in remote sensing and multispectral high resolution images [35]. We therefore developed 
a “shade” mask using a topological rule in eCognition. We also used visual interpretation to create a 
“cloud” and “shade from cloud” mask, and a “water body” mask was created for the Taquara site, 
given that this class was rare and small enough (<0.01%) to not be included in the model. Because we 
were exclusively interested in natural areas, a land use mask from our database (data from [18,77]) 
was used in each study site to exclude paved roads, agricultural, and urban areas from validation. 
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2.2.5. Accuracy Assessment Procedures 

Measuring thematic map accuracy is a crucial step to determine error sources and calculate 
producer and user map accuracies. Moreover, it is a way to analyze potential weakness and strengths 
of classification methods. However, it is not a straightforward task and can include many 
uncertainties [80–84]. In traditional pixel-based classification, thematic accuracy is assessed by 
estimating the proportion of correctly classified pixels for each class. This approach assumes that 
pixels have the same size, and thus, one can estimate the proportion of area correctly classified [83]. 
However, it is recommended that image objects are used as sampling units in object-based accuracy 
assessments, instead of the traditional point-sampling from pixel-based classification [85]. Image 
objects have variable areas across the landscape in GEOBIA-derived thematic maps, leading to a 
greater impact on error estimates from large misclassified objects than small polygons. Thus, area 
count should be accounted for in accuracy assessments of GEOBIA classification [86]. 

The Random Forest algorithm generates an out-of-bag (OOB) error estimate using subsampling 
and bootstrapping, accounting for samples not used as training in the model [76]. To minimize 
inflated accuracies from the OOB error due to spatial autocorrelation, we performed additional 
independent validation for both study sites. This independent validation was done by comparing 
randomly selected polygons from our classified images (excluding training samples) to a series of 
ancillary data, including orthophotos, Google Earth imagery, and digital photographs (taken on the 
ground), when available, following recommendations from Richards [83]. Given the lack of fine-scale 
time series imagery available for the entire landscape, experts with local knowledge of the sites were 
also consulted to validate the classes that are influenced by seasonality. For instance, the natural 
seasonality of seasonally dry tropical forest and semi-deciduous forest required local knowledge 
when the time series of Google Earth imagery was not available. We performed the sampling 
selection using the original segments/objects derived from eCognition, which contain information at 
both map levels. The number of samples for each category was determined based on the final map 
(physiognomic types), but accuracy estimates were performed for both levels using the same 
polygon. We used an equal proportion of randomly selected polygons for categories that were 
sparsely represented across the landscape (≤10%), which resulted in a total of 50 polygons per class. 
For classes with high landscape abundance (i.e., non-natural/barren, open savanna, savanna for both 
sites), we performed a stratified random selection based on a total number of samples of 225 for each 
site. The classes “semi-deciduous forest” and “shrub swamp” were not accounted for in the 
validation process for the Taquara site because they each represent less than 0.5% of the landscape. 
In total, we selected 725 polygons for the Western Bahia site and 525 polygons for the Taquara study 
site. 

A common issue in estimating accuracy from thematic maps is the potential error that can be 
included in the reference data [81,82,87]. To minimize error and bias from the interpreter in the 
accuracy assessment, our validation procedures were performed by two authors trained in 
photointerpretation of the regions and with previous experience working in the Cerrado. Error 
matrices were generated for each map level using an area-weighted approach based on independent 
sampled image objects [69,86]. The traditional count-based accuracy assessment was also performed 
for comparison (Tables S5–S8). They were used to derive traditional statistical accuracy measures for 
both map levels, such as overall agreement, user’s accuracy, and producer’s accuracy. 

3. Results 

3.1. Segmentation Results 

The MRS algorithm generated a different number of image objects (Figure 4) for each mosaic or 
image tile processed, which is expected since they have different extents. The imagery tiles acquired 
in September 16th and September 13th resulted in 384,011 and 389,664 objects, respectively. The August 
and October mosaics have similar extent (4 image tiles) and resulted in 1,157,419 and 979,083 objects, 
respectively. The June mosaic contains 6 image tiles and thus resulted in a much larger number of 
objects, a total of 2,804,338. 
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Figure 4. RapidEye imagery with color composite as R: NIR (band 5), G: Red-edge (band 4), B: Blue 
(band 1); and segmentation result (image objects in black) derived from the multi-resolution 
algorithm, featuring the major land cover types: (A) wetland: marsh, riparian forest, palm grove 
swamp, and shrub swamp; (B) open canopy trees (cerrado woodland); (C) scrub–shrub (scrub 
cerrado); (D) dense shrub (savanna); (E) open shrub (open savanna); and (F) shrub–herb (semi-natural 
shrubby grassland). 

3.2. Accuracy Assessment 

The OOB error for the Taquara site was 7.8%. Given that the Random Forest classification was 
performed by mosaic for the Western Bahia site, the OOB error estimates were then generated for 
each mosaic. The September 13th image had the lowest OOB error (3.5%). The October mosaic had the 
second lowest OOB error (4.4%), followed by the September 16th imagery (6.3%), the August mosaic 
(7.0%), and the June mosaic (7.3%). 

These relatively small differences in the OOB error estimates could be due to a combination of 
reasons such as atmospheric conditions on a particular day (e.g., active fire was present in the June 
mosaic, and haze was present in the September 16th imagery), possible rain close to the imagery date, 
differences in sensor angle-viewing, and particular characteristics of the classified image (e.g., one 
specific image can have more disturbed areas and hold higher heterogeneity compared to the other). 

The mean decrease in accuracy is a percent estimate of variable importance in the random forest 
model (Figure 5). The NDVI was the most important variable in all models, except in the June mosaic, 
in which NDWI had the highest importance. This is likely due to water content available in the soil 
during early dry season (i.e., June), whereas later in the dry season, some physiognomies (i.e., grass 
and shrublands) are more impacted by water limitation. The other indices, NDVI (red-edge) and 
NDWI, also contributed significantly (>12%) in all models. Considering only the RapidEye spectral 
bands, the near-infrared (band 5) had a contribution above 13% in all models, whereas the red and 
red-edge bands had high importance (>15%) in the October and June mosaic models, respectively. 
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Figure 5. Mean decrease in accuracy showing the importance of each variable used in the random 
forest model, for each processed image. 

Additional accuracy estimates based on the independent randomly selected image objects were 
performed for the entire map and not for individual mosaics. Error matrices were developed for each 
map level (Tables 4 and 5) and were reported as area (in hectares) count of each image object, 
following best practices for object-based accuracy assessment proposed by Radoux et al. [69]. 
Statistical measures of overall agreement, as well as user’s and producer’s estimates were derived 
from the error matrices (Tables 4 and 5). For comparison, we also generated error matrices and 
statistical measures based on the regular polygon count approach (Tables S5–S8). Accuracy 
assessments for the Taquara watershed are found in the supplementary material (Tables S3–S4). 
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Table 4. Error matrix (reported in ha), overall accuracy, producer’s accuracy, and user’s accuracy for the Western Bahia Level 1 LCCS classification. The number in 
parentheses corresponds to the number of independent test samples used for validation. 

 
Closed 
Canopy 

(125) 

Dense 
Shrub 
(90) 

Herbaceous 
(Wet) 
(50) 

Open 
Canopy 

(125) 

Open 
Shrub 
(100) 

Scrub–
Shrub 
(59) 

Shrub–
Herb  
(50) 

Soil, NPV, 
Impervious 
(Bright) (30) 

Soil, NPV, 
Impervious 

(Dark)  
(46) 

Water 
(50) 

Closed Canopy 17.8 0.1 0 2.0 0 0.5 0 0 0 0 
Dense Shrub 0 15.8 0.1 0.5 2.3 0.2 0.4 0 0 0 

Herbaceous (wet) 0 0 12.6 0.2 0.5 0 0 0 0 0 
Open Canopy 0.7 1.7 0.5 13.9 0 0.3 0 0 0 0 
Open Shrub 0 1.5 1.8 0 13.9 0.3 0.6 0 0 0 
Scrub–Shrub 0.7 0 0 0 0.4 7.6 0.2 0 0 0 
Shrub–Herb 0 0 0 0 0.7 0 6.8 0.1 0 0 

Soil, NPV, Impervious (bright) 0 0 0 0 0 0 0.3 2.8 1.9 0 
Soil, NPV, Impervious (dark) 0 0 0 0 0 0 0.9 0.1 9.6 0 

Water 0 0 1 0 0 0 0 0 0 7.7 
Overall Accuracy (%) 84.4          

Producer’s Accuracy (%) 92.5% 82.4% 81.3% 83.6% 77.7% 86.1% 74.4% 95.4% 83.6% 100% 
User’s Accuracy (%) 87.3% 81.7% 94.5% 80.8% 77.1% 85.2% 89.7% 56.6% 91.0% 93.3% 
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Table 5. Error matrix (reported in ha), overall accuracy, producer’s accuracy, and user’s accuracy for the Western Bahia Level 2 classification. The number in 
parentheses corresponds to the number of independent test samples used for validation. 

 Cerrado 
Woodland 

(50) 
Marsh 

(50) 

Non - 
Natural/
Barren 

(76) 

Open 
Savanna 

(74) 

Palm 
Swamp 

(50) 

Riparian 
Forest 

(50) 
Savanna 

(75) 

Scrub 
Cerrado 

(50) 

Semi-
Deciduous 

Forest 
(50) 

Shrubby 
Grassland 

(50) 

Shrub 
Swamp 

(50) 

Tropical 
Dry 

Forest 
(50) 

Water 
(50) 

Cerrado Woodland 6.2 0 0 0 0 0.2 0.7 0.3 0.1 0 0 0 0 
Marsh 0 12.6 0 0 0.2 0 0 0 0 0 0.5 0 0 
Non-

Natural/Barren 0 0 14.3 0 0 0 0 0 0 1.2 0 0 0 
Open Savanna 0 0 0 11.7 0 0 1.3 0.3 0 0.6 0 0 0 
Palm Swamp 0.1 0.5 0 0 5.0 0.4 0 0 0 0 0.7 0 0 

Riparian Forest 0.2 0 0 0 0 5.9 0 0 0 0 0.3 0 0 
Savanna 0 0 0 1.5 0 0 15.2 0 0.3 0.4 0 0 0 

Scrub Cerrado 0 0 0 0.4 0 0 0.0 6.7 0.6 0.2 0 0 0 
Semi-Deciduous 

Forest 0.4 0 0 0 0 0 0.1 0.2 8.5 0 0 0 0 
Shrubby Grassland 0 0 0.1 0.7 0 0 0 0 0 6.8 0 0 0 

Shrub Swamp 0 1.9 0 0 0.2 0.1 0.1 0 0 0 5.0 0 0 
Tropical Dry 

Forest 0.3 0 0 0 0 0 0.4 0 0 0 0 7.1 0 
Water 0 0.6 0 0 0 0 0 0 0 0 0 0 7.7 

Overall Accuracy 
(%) 87.6             

Producer’s 
Accuracy (%) 85.8% 81.3% 99.5% 81.8% 92.4% 89.4% 85.5% 89.5% 89.4% 74.4% 77.3% 100% 100% 

User’s Accuracy 
(%) 81.7% 94.5% 92.5% 84.4% 75% 92.3% 87.5% 84.2% 92.9% 89.7% 69.2% 91.4% 93.3% 
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3.3. Landscape Composition: Area Assessments 

We estimated landscape composition (Table 6) for the total area of the Western Bahia site, as 
well as for each mosaic, based on the final (Level 2) physiognomic type map (Figure 6). The most 
abundant classes in the landscape are non-natural/barren areas, open savanna, and savanna. The 
rarest physiognomic types found are seasonally dry tropical forest, shrub swamp, and palm swamp. 
Considering the individual mosaics, the June mosaic and the September 13th image have the highest 
amount of natural vegetation, whereas the October mosaic has the highest concentration of non-
natural/barren areas. The Level 2 classification map and landscape composition of the Taquara 
watershed is found in the supplementary material (Figure S1, Table S9). 

Table 6. Estimate of landscape composition for the Western Bahia site considering the proportion of 
the mapped area of each physiognomic type, reported in percentage, with respect to the total mapped 
area (i.e., entire study site extent) and for each individual image/mosaic. 

 
Total 
(%) 

September 
13th Image 

September 
16th Image 

June 
Mosaic 

August 
Mosaic 

October 
Mosaic 

Cerrado Woodland 4.9 4.2 3.2 7.0 1.7 5.9 
Marsh 1.2 0.2 0.0 0.3 1.4 2.9 
Non-

Natural/Barren 
26.6 14.5 31.6 11.5 33.2 43.9 

Open Savanna 26.2 35.9 32.1 22.9 37.2 15.5 
Palm Swamp 0.8 0.1 0.1 0.2 0.7 2.0 

Riparian Forest 1.1 0.4 0.4 1.3 0.8 1.4 
Savanna 26.2 39.4 14.6 40.0 11.1 20.9 

Scrub Cerrado 1.9 0.0 0.0 4.4 1.2 0.0 
Semi-Deciduous 

Forest 
1.5 0.5 0.1 3.4 0.4 0.2 

Shade 0.1 0.0 0.0 0.3 0.1 0.0 
Semi-Natural 

Shrubby Grassland 
8.0 4.2 17.1 6.3 10.4 6.6 

Shrub Swamp 0.6 0.1 0.1 0.5 1.3 0.2 
Seasonally Dry 
Tropical Forest 0.6 0.2 0.4 1.5 0.1 0.0 

Water 0.3 0.5 0.3 0.2 0.3 0.3 
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Figure 6. Final map of physiognomic types (Level 2) for the Western Bahia study site, with insets A and B showing zoomed in examples of classification Levels 1 
and 2.
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4. Discussion 

Land cover mapping in the Cerrado has generally used multispectral imagery with medium to 
coarse spatial resolution and pixel-based approaches, such as in Muller et al. [17], Schwieder et al., 
[25], Ferreira et al. [29], and Reynolds et al. [88]. As demonstrated by Sano et al. [30] and Schwieder 
et al. [25], these types of imagery do not capture the fine-scale heterogeneity present within the 
savanna ecosystem gradient and thus are not appropriate to discriminate differences in vegetation 
structure, often leading to low accuracy results (such as 71% and 63%, respectively). Distinguishing 
the fine-scale heterogeneity of Cerrado physiognomic types is crucial for identifying species habitats 
and estimating plant diversity. For instance, the Hyacinth Macaw (Anodorhynchus hyacinthinus) is an 
endangered species of small population inhabiting the Cerrado that is heavily dependent on palm 
trees present in wetlands for breeding and foraging; discriminating the different structural types 
present in seasonal wetlands (i.e., palm swamp, shrub swamp, and marsh) can improve estimates 
related to their occurrence and habitat quality and availability. Given the challenges of mapping 
Cerrado physiognomic types with traditional pixel-based methods at medium to coarse spatial 
resolution, we developed a systematic GEOBIA framework using single-date high spatial resolution 
imagery accounting for a novel environmental spatial ruleset developed to identify a wide range of 
Cerrado vegetation structural types. This framework was shown to be a robust method to 
differentiate a larger number of physiognomic types at a higher accuracy than previously reported 
in several studies regarding Cerrado land cover mapping. 

Our results show an improvement in classification accuracy compared to studies using similar 
image characteristics and object-based methods to map Cerrado physiognomic types, such as in 
Girolamo-Neto et al. [41,49] and Orozco-Filho [50]. In the Level 1 LCCS classification, we mapped a 
total of 10 land cover classes (of which 7 correspond to vegetation types) and reached 82% overall 
accuracy, while others have discriminated 8 classes and reached an overall accuracy of 67.7% [41], or 
81% accuracy while considering 7 classes [50]. Girolamo-Neto [49] used the RapidEye imagery in a 
method similar to ours (i.e., segmentation + RF classifier) in the Level 1 LCCS classification, but with 
a different class legend, and reached an overall accuracy of 74.3% to classify 5 land cover classes. 
Previous studies aiming to classify Cerrado physiognomic types used vegetation taxonomy based on 
structural parameters and species composition defined either by Coutinho [66], IBGE [89], Ribeiro 
and Walter [37], or a combination of them. The disparity in map accuracy and number of 
discriminated classes between our LCCS results and previous studies suggest that nomenclatures 
considering floristic composition (used in most previous Cerrado remote sensing studies) might not 
be appropriate for multispectral imagery alone as we initially suspected. It is important to note that 
standardization of land cover classes—that are comparable across scales and appropriate to the 
imagery characteristics (e.g., spectral and spatial resolutions)—is essential to produce accurate and 
meaningful results. As in other studies aiming to standardize land cover classes for remote sensing 
applications [90,91], we used the LCCS to define appropriate Cerrado land cover classes for the 
RapidEye imagery and tested if the defined classes could be spectrally discriminated and mapped at 
high accuracy. 

Given that there is no other study using LCCS classes for the Cerrado, we cannot compare 
accuracy assessments for specific classes from our Level 1 classification with other studies. However, 
our results demonstrate that accounting for RapidEye’s spectral information alone accurately 
discriminates our defined LCCS land cover classes, distinguishing some structural variation within 
savanna (i.e., open shrubland; dense shrubland; open canopy) and grassland (i.e., herbaceous; shrub–
herbaceous) ecosystems. Despite encouraging results, single-date RapidEye spectral properties alone 
were not able to discriminate variations within forest structural elements (i.e., riparian forest versus 
semi-deciduous forest) given that most closed-canopy classes (e.g., seasonally dry tropical forest and 
sclerophyll forest) are composed of broad-leaf semi-deciduous (or deciduous, for a subtype of 
seasonally dry tropical forest) trees. It could also not differentiate some variations between terrestrial 
ecosystems and seasonal wetlands. For instance, shrublands (i.e., dense and open shrub) could not 
be distinguished from wetland shrubs (i.e., shrub swamp). Despite that, grasslands (i.e., herbaceous) 
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were distinguished from marsh (i.e., herbaceous–wet) accounting only for its spectral properties. This 
result is consistent with previous studies that demonstrated an improvement in classification 
accuracy of terrestrial and wetland ecosystems when using multispectral fine spatial resolution 
imagery [92]. 

Defining environmental contextual rules in addition to using spectral properties proved an 
effective strategy in discriminating within-class variations across ecosystems as confirmed by high 
accuracy results for those classes. Other works also accounted for such classes but frequently merged 
similar physiognomic types into one class for higher accuracy estimates. For instance, our classes 
“marsh”, “palm swamp”, and “shrub swamp”, if merged, would be equivalent to the class 
“floodplains with palm trees” in Girolamo-Neto [41], and “veredas” in Orozco-Filho [50]. The same 
is true for our classes “riparian forest”, “seasonally dry tropical forest”, and “semi-deciduous forest”, 
which are equivalent, if merged, to the class “forest” in Orozco-Filho [50]. It is known that map 
accuracy tends to decrease as a function of the number of classes [93]; however, our GEOBIA 
approach showed an inverse pattern, which is a major contribution of this study. Applying our 
environmental spatial ruleset to the Level 1 LCCS map resulted in a thematic map (Level 2 
classification) with a larger number of classes and a higher overall agreement accuracy. Despite the 
fact that two classes of the Level 1 LCCS map were merged in the physiognomic types map (both 
“soil, NPV, impervious” classes became “non-natural/barren”), four new classes were added to the 
Level 2 map and the overall accuracy improved by around 3%. Considering both user’s and 
producer’s estimates for the physiognomic types classification (Table 5), the highest accuracies (>80%) 
are among the classes non-natural/barren, marsh, seasonally dry tropical forest, riparian forest, 
savanna, and open savanna. In general, all classes representing savanna and forest ecosystems 
resulted in a high (>80%) producer’s accuracy. 

Most studies aiming to test methodological approaches to map Cerrado physiognomic types 
were developed for one study area, usually of small extent (<50,000 ha) and not covering some major 
physiognomic types, such as in Ferreira et al. [29], Teixeira et al. [51], and Girolamo-Neto [41,49], 
which can be problematic for making portability assumptions to other Cerrado areas. Exceptions 
include studies from Schwieder et al. [25], who tested methods for three study sites of similar 
vegetation composition, and Silva and Sano [94] that considered four small test sites of different 
composition to map three major vegetation classes (i.e., savanna, forest, grasslands). To bring a higher 
level of confidence in testing the portability of our GEOBIA framework to other regions within the 
core area of the Cerrado, our method was tested for two study sites: a control site with larger 
availability of datasets (i.e., the Taquara site), and another covering a larger extent (>900,000 ha) and 
supporting different composition and heterogeneity levels, covering a total of 11 major physiognomic 
types that are present across the Cerrado. The high accuracy results for both study sites indicate that 
this framework should be portable to other areas in the core Cerrado region. However, further 
analysis is necessary to adjust it for areas of transition to other biomes where unique local flora 
composes additional physiognomic types (e.g., carrasco, capão). In addition, we suggest future studies 
to explore adapting this framework to similar ecosystems in other continents, such as the African and 
Australian savannas. 

Despite its robust ability to classify a wide range of physiognomic types, our method was not 
able to differentiate classes of similar structure for which edaphic conditional drivers were not 
available in our dataset. This is the case for classes that would be separable from each other with 
detailed information about soil types and/or species composition. For instance, seasonally dry 
tropical forest located in areas of flat terrain (plateaus/mesas) could not be differentiated from 
sclerophyll forest, which co-occurs in the same terrain type, so they were combined into a single semi-
deciduous forest class. We could only identify seasonally dry tropical forests within steep slopes, 
which could be discriminated using a fine-scale Digital Elevation Model. Additionally, transitional 
enclaves of denser caatinga vegetation (a deciduous xerophyte type) were also not possible to 
differentiate from savanna. Similarly, a rocky savanna type (cerrado rupestre), which is present in 
the Western Bahia region and structurally similar to open savanna, could not be discriminated. 
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Recent advances in remote sensing, such as imaging spectroscopy and Light Detection and 
Ranging (LiDAR), are improving vegetation studies in savannas [95–97]. They have great potential 
to overcome gaps and uncertainties related to savanna patterns and processes, such as species 
discrimination [98–100] and plant community composition [95], as well as major drivers and impacts 
on woody structure [97,101]. A potential solution for overcoming remaining issues related to Cerrado 
structure and floristic composition would be the availability of a detailed (< 1:10,000) soil types map 
or a combination of LiDAR and hyperspectral imagery. Moreover, publicly available multispectral 
imagery, such as the Sentinel-2 MSI sensor, are also promising to improve discrimination of Cerrado 
physiognomic types due to their combination of fine spatial and spectral properties, free availability, 
and larger areal coverage allowing for regional scale analysis. 

5. Conclusions 

The semi-automatic method proposed here combines image spectral properties (mean 
reflectance, standard deviation) with standard spectral indices (e.g., NDVI, NDWI) in a Random 
Forest land cover classification, and uses a novel spatial contextual ruleset to classify land cover 
categories into physiognomic types in a systematic manner. Our study demonstrates that high spatial 
resolution imagery is appropriate for discriminating Cerrado land cover classes. The Random Forest 
algorithm was effective in mapping structural differences within savanna ecosystems, in addition to 
distinguishing wetlands from terrestrial ecosystems. A combination of ancillary data and spatial 
rules, however, allowed characterizing physiognomic types while increasing the number of classes 
and improving map accuracy. Despite the demonstrated success of our method, caveats include high 
computational costs for processing a large volume of data, lack of automated methods to determine 
MRS initial parameters (scale, shape, and compactness), and low temporal availability for RapidEye 
data available at no cost for monitoring purposes and for improving discrimination of classes. 

Detailed maps differentiating physiognomic types are essential for conservation strategies, and 
a consistent classification method is currently lacking in the Cerrado. To the best of our knowledge, 
our study is the first to propose a systematic method to map Cerrado physiognomic types resulting 
in a high accuracy assessment and a large number of classes for areas of different heterogeneity. Thus, 
we conclude that the proposed framework is effective to accurately map physiognomic types across 
the Cerrado biome at fine spatial scales. Given the availability of RapidEye data for the entire 
Brazilian Cerrado, application of our framework could improve region-wide mapping in support of 
conservation and ecological analysis. 
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corresponds to the number of independent testing samples used for validation; Table S6. Error matrix (reported 
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Level 2 classification. The number in parentheses corresponds to the number of independent testing samples 
used for validation; Table S7. Error matrix (reported as count of polygons), overall accuracy, producer’s 
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