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Automatic event picking in prestack migrated gathers using a
probabilistic neural network*

Michael E. Glinsky1, Grace A. Clark2, Peter K. Z. Cheng3, K. R. Sandhya Devi4,
James H. Robinson4 and Gary E. Ford3

ABSTRACT

We describe algorithms for automating the process of picking seismic events in

prestack migrated common depth image gathers.  The approach uses supervised learning

and statistical classification algorithms along with advanced signal/image processing

algorithms.  No model assumption is made such as hyperbolic moveout.  We train a

probabilistic neural network for voxel classification using event times, subsurface points

and offsets (ground truth information) picked manually by expert interpreters.  The key to

success is using effective features that capture the important behavior of the measured

signals.  We test a variety of features calculated in a local neighborhood about the voxel

under analysis.  Feature selection algorithms are used to ensure that we use only the

features that maximize class separability.  This event picking algorithm has the potential

to reduce significantly the cycle time and cost of 3D prestack depth migration, while

making the velocity model inversion more robust.

* Preliminary results of this research were presented in 1996 at the 66th Ann. Internat.
Mtg. Soc. Expl. Geophys.
1 BHP Petroleum, Houston, Texas
2 Lawrence Livermore National Laboratory, Livermore, California
3 University of California, Davis
4 Shell E&P Technology Co., Houston, Texas
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INTRODUCTION

There is an increasing need for 3D prestack depth migration (PSDM).  It gives

both possibly better resolution and better placement of events than conventional time

migration, especially in areas of complex structure such as near salt bodies.

Unfortunately, there is a bottleneck in PSDM that determines the cycle time, cost and

quality.   This bottleneck is in the iterative process of finding the correct velocity model

for the PSDM. There are several ways to do this, but one method, travel-time

tomography, relies on the automatic or manual picking of events which are inverted to

give a correct velocity model.  In this tomographic velocity model updating process, a

primary bottleneck is the manual picking of prestack events.   The details of the travel

time inversion process are outside the scope of this paper. The velocity model inversion

method that we use in conjunction with PSDM needs prestack picks of migrated, depth

imaged gathers.  The automatic picking method described here is applied to these depth

imaged gathers, that have been migrated with a trial velocity model.  If the velocity

model is incorrect, over or under migration of the imaged events will be observed in the

migrated, depth-imaged gathers, sorted in offset-depth domain.  These events are picked

using the probabilistic neural network method described in this paper.  In practice, the

pre-stack migrated depth imaged gathers are converted back to time-offset gathers for

signal processing purposes.  This is done, using the local trial velocity model, to

minimize the effects of "depth stretching" usually seen on depth imaged gathers.  The

term CIP (Common Image Point), used frequently in this paper, refers to these pre-stack

migrated depth, image gathers, that have been converted to time-domain gathers.  The

picks are used to iteratively update the velocity model that will be used to form the next

set of prestack migrated gathers.  The number of picked events and the number of

iterations are determined by economic and business factors.  Increasing either the number

of picked events or iterations could lead to a more robust and accurate inversion.  By
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automating a significant portion of this picking process, it is the goal of this research to

enable and improve PSDM.

The conventional automatic picking of events on prestack migrated gathers is a

difficult problem because of the low signal to noise ratio.  This leads to "loop skipping"

as most conventional picking algorithms follow the noise from one local maximum to

another and skip to another other phase of the wavelet (2π  from the original).  This is

very undesirable for the velocity updating algorithms and must be corrected manually.

An example of “loop skipping” can be found in Fig. 10.

The automatic event picking technique described here uses advanced algorithms

from the areas of automatic target recognition, computer vision, and signal/image

processing.  Whenever possible, prior knowledge of the geophysics is incorporated into

the processing algorithms to ensure physical relevance and enhance the ability to obtain

meaningful results.  Supervised learning methodology is used to train a probabilistic

neural network (PNN) (Specht, 1990b) for voxel classification using manually picked

event times. The key to success is in using effective features that capture the important

behavior of the measured signals. The algorithm uses a variety of two-dimensional

features calculated in a neighborhood about the voxel under analysis.  These features are

designed to capture the character of the event for which expert pickers look.

An interesting aspect of the proposed algorithm is the use of  “proximity” features

to limit the event search space to only those events that are specified as important by the

analyst.  The proposed algorithm generally picks all possible events in a panel of

common pre-stack migrated depth image point gathers (CIP).    It is possible to search

only for those primary reflections of interest, and this can be done by exploiting the prior

knowledge provided by the expert analyst.  The algorithm uses special “proximity

features” to measure the distance of the voxel under analysis to the nearest event picked

by the analyst.   This allows the creation of a “proximity mask” that constrains the search

to only those important events picked by the analyst.  This process significantly reduces
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the confusion involved with interpreting the final picks and ensures that the final picked

CIP panels are useful.  Note that the use of the proximity features is optional.

This work is applied research, with novelty over past work (Aminzadeh, 1991;

Chu, 1994; Geerlings, 1989; Kemp, 1992; Lu, 1982, 1990; McCormack, 1993; Taner,

1988; Veezhinathan, 1990; Woodham, 1995) primarily in the creative combination of

algorithms from a variety of disciplines with some new algorithms to solve a difficult

applied problem.  A review of past work is beyond the scope of this paper and can be

found in the thesis of one of the authors (Cheng, 1999). The significant contributions of

the work are the following:  (a) the use of prestack migrated gathers rather than the

stacked data with a better signal to noise ratio, (b) the use of a two-dimensional image

processing approach, including the use of two-dimensional statistical and wavelet

features, (c) the use of the PNN for voxel classification,  (d) the use of “proximity”

features to limit the event search space to only those designated as important by the

analyst and (e) the excellent performance in picking events and in avoiding loop skips.

We will present this method in four parts:  feature definition, feature selection,

voxel classification, and the application of valley finding with constraints.  It will be

demonstrated on a 2D marine data set.  The results will be compared to those from a

commonly used correlation picker.  Four major conclusions will be drawn:  2D Gabor

wavelet features are very effective in capturing the character of events, a PNN combines

many different features into a best estimate that eliminates loop skips, proximity features

when combined with a PNN quantify where to look for events, and this algorithm has the

potential of significant time and financial savings when doing PSDM.

METHOD

As we walk through the method, we will illustrate the method by applying it to a

marine data set.  This is a 2D data set with 468 subpoints (spaced every 69 m) and 45

offsets from 260 m to 5636 m.  There are 1600 time samples with a sampling interval of
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4 ms.  The flow chart of the numerical algorithm is shown in Figure 1.   It will be useful

to follow this chart as we present the algorithm.

Feature definition

The first and most important step we make is to define a set of features to

consider.  This set needs to capture all of the character of an event used by the expert.

Care should be taken to be inclusive.  Redundant or unimportant features will be

eliminated during the feature selection.  Since the discrimination of coherent noise, such

as multiples, is best in the CIP domain and since we would like to avoid the need to resort

the data, we only consider 2D image features of this gather.

The features are normalized by subtracting from each feature the mean of the

feature values calculated over the ensemble of training voxels (defined in the next

section), and dividing this result by the ensemble standard deviation.  This normalization

makes the classifier insensitive to absolute units that can vary from feature to feature.

Gabor. -  These features (Gabor, 1946; Daugman, 1987, 1988; Clark, 1989, 1991;

Morlet, 1982a, 1982b) are derived from hierarchical multi-resolution 2D Gabor wavelet

transforms of the CIP panels.  These provide magnitude and phase information about the

events at a variety of resolutions (scales), orientations (rotational angles) and frequencies.

A variety of elliptical Gabor kernels were designed to have several different scales (with

corresponding frequencies) and a variety of orientations characteristic of the CIP panel

image and seismic wavelet (see Figure 2).  Two scales were chosen to match the mean

frequency at early time (25 Hz) and at later times (15 Hz).  The time width of the

Gaussian envelope was chosen to encompass three loops of the wavelet (16 ms and 27

ms).  The offset width was chosen to match the lateral resolution of the migration (610 m

and 1039 m).  Four different orientations were used which spanned the slope seen in both

the events and the coherent noise (0, 16, 39 and 131 ms/km). While this set of eight

Gabor kernels is not orthogonal, it does span the information content of the data.   In

Figure 3 we display the magnitude of two of these Gabor transforms of the image
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overlaid on the raw seismic traces.   Note that the event is highlighted by the one Gabor

kernel and the coherent noise by the other.  Figure 4 displays the Gabor phase for the

same data.  Notice that the events are picked by the expert at a well defined phase; that is,

at a negative peak.  The Gabor magnitude specifies where to look (with a resolution of

order the width of the seismic wavelet envelope) and the Gabor phase specifies exactly

where to pick the event with a resolution of the time digitization level.

To be more specific, the formula for the Gabor kernel is
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f is the frequency of the Gabor kernel, Tσ  is the time width, Sσ  is the offset width,

dtds /  it the orientation, t∆  is the time sampling interval, s∆  is the offset spacing, s  is

the offset, and t  is the time.

Amplitude histogram. -  These features (Jain, 1989) can also be called statistical

moments of the data in an MxN neighborhood (tile) centered about the image voxel.  We

started with mean, standard deviation, skewness and kurtosis.  This was done using two

different size tiles (40 ms by 1222 m and 68 ms by 2077 m).  The raw amplitude data was

also considered.  After feature selection (described in the next section), we chose to use

only the raw data.

Semblance. -  These features (Robinson, 1980) are calculated over the local

neighborhood and provides a useful indication of the coherence of the seismic traces in

the offset direction.   This is also the mean square stack amplitude divided by the mean

square amplitude.  We calculated this over the same two neighborhoods used to calculate

the amplitude histogram features.  Feature selection indicated that the Gabor features
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captured the same information as the semblance but with more class separability.  The

semblance features were therefore not used for classification.

Proximity. - The proximity features are defined as follows.  Let t∆  represent the

temporal sampling interval, which for our data is 4 msec.   Specify the location of the

voxel currently under analysis by ),,( xst , where t denotes the time, s  denotes the offset,

and x  denotes the subpoint.  Specify the location of the thj  analyst pick for the thi event

by ),,( ijijij xst .  The first proximity feature, T , is defined as follows:







+

∆
∆
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t

T
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where T∆  is defined as the time difference between the voxel currently under analysis to

the nearest event:

ijttT −=∆ . (6)

The natural log in equation (5) was used because it was found that when equation (6) was

used for the proximity feature, the histogram of the values of T  for events has a small

dynamic range, but the histogram of T  for backgrounds has a very large dynamic range.

This is undesirable, because it leads to poor classifier performance.  However, the

problem is avoided by scaling the feature using equation (5), because the histograms of

the event and background features using equation (5) have comparable dynamic ranges.

The second proximity feature, d , is defined as the spatial distance between the

voxel currently under analysis and the nearest analyst pick:

( ) ( )22
ijij xxssd −+−= . (7)

The third and fourth proximity features are similar to the first two proximity

features.  The difference is that the next closest analyst pick on the "other side" of the

nearest analyst pick is used.  What is meant by the "other side" is the other side of a line

through the voxel under analysis (in the x-s plane) and perpendicular to a line from the
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voxel under analysis to the nearest analyst pick.  These two features are added to allow

the PNN to interpolate between two analyst picks that bracket the voxel under analysis.

Feature selection

Feature selection is important for several reasons.  First, we wish to minimize the

effects of the “curse of dimensionality,” in the sense that the classification computational

complexity increases rapidly with the dimension of the feature vector.   Second, we wish

to use only features that add significant value to the quality of the classification results.

Unimportant or redundant features add negative or zero value and should be removed.  It

is significant that human feature analysis experts generally produce classification results

based upon a very small number of the most important attributes of a signal.  If too many

features are used, the classifier performance can actually degrade.  Statistical decision

theory tells us that the probability of correct classification is an increasing function of the

number of features provided, if the sample size is very large.  Empirical studies have

shown that the probability of correct classification is not generally a monotonically

increasing function of the number of features used.  It generally increases up to a point at

which it reaches a “knee” in the curve and begins decreasing, finally leveling off at a

value less than the value at the knee (Fukunaga, 1990; Devijver, 1982).  Clearly, our goal

is to find the number of features corresponding to the knee in the curve.   Third, an

important by-product of feature selection can sometimes be increased knowledge of the

physical processes that create the data.  By understanding which features are statistically

most important, we can often draw important conclusions about the physical reasons why

they are important, and this can lead to productive insights that aid in the system design.

To perform the feature selection and the training of the PNN classifier it is

necessary to have a training set.  We create a set of training voxels by the following

process.  First, an expert picks several event times for every offset and subpoint

combination in the data set.  Twenty equally spaced CIP panels are chosen out of the 468

CIP panels in the full data set.  Several of the expert event picks are chosen at random
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from each of the 20 panels.  Care is taken to ensure that the chosen training events are

independent by demanding a minimum separation in time and offset among the voxels.

Second, several background voxels are manually picked by an expert in each of the 20

panels.  Care is taken that these picks represent a variety of background types and are

independent.

We first use a formal feature selection algorithm  (Sequential Forward Selection)

to rank order the features according to the Bhattacharyya measure of class separability

(Young , 1986; Fukunaga, 1990).  We then choose an appropriate subset of features for

actual use by the classifier.  This saves computation and allows us to use only the most

effective features.  We use the well-known rule-of-thumb (Devivjer, 1982) for the lower

bound on the number of training samples to use - the number of independent training

samples needed per class is at least five times the number of features used in the feature

vector.  Note that this rule also implies an upper bound on the number of features that can

be used, given the number of independent training samples.  For our problem, we trained

the PNN classifier with 107 event voxels and 100 background voxels. This limits us to

using about 20 features, and in the classifier results presented, we actually used 7 features

(the raw amplitude data, the magnitude and phase of the Gabor transform using the large

scale kernel with zero slope and using the small scale kernel with zero and 16 ms/km

slope).   By reducing the number of features from 25 to 7 we saved 72% of the

computation (CPU time).  Although we sacrificed 52% of the class separability, as

measured by the Bhattacharrya distance, the performance of the overall algorithm  was

not significantly degraded.  There will be further discussion of this in the results section.

Voxel classification

PNN. - Linear classifiers, such as the Fisher Linear Discriminant (Young, 1986;

Devijver, 1982) create a linear decision surface in feature space.  In general, optimal

performance requires that the classifier has the ability to create a decision surface of
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arbitrary shape (i.e., nonlinear).  We choose to use a special neural network, known as the

PNN that has this property.

The PNN is a Bayesian statistical classifier based upon the Parzen estimator of

conditional probability density functions, pdf’s (Specht, 1990a, 1990b; Parzen, 1962).

The PNN has the desirable property that it provides the Bayes optimal pdf estimate in the

limit as the number of training samples approaches infinity.  For the two-class problem

(E=event and B=background or non-event), given input data feature vector x, it estimates

the conditional probability density function values f(x|E) and f(x|B).  These pdf values

can be used to calculate the posterior probability of E given x, P(E|x), and the posterior

probability of B given x, P(B|x).  Examples of a posterior probability image are shown in

Figure 5 and Figure 6.   Figure 5 shows the posterior probability using the seven event

features P(E|xe) .  Notice the loop skipping of a traditional correlation picker in the low

signal to noise ratio area at 3.6 s.  Figure 6 shows the quantification of proximity given

by the posterior probability using the four proximity features, P(E|xp).  Only 0.1% of the

total number of expert event picks chosen at random were used as analyst picks. This

corresponds to one pick every fourth CIP panel.   Notice the large area highlighted by this

posterior probability.  It will be necessary to rely on the event posterior probability to

more precisely locate the event, but the proximity posterior probability does indicate

where to look.

Classification of the vector x is obtained by applying appropriate thresholds to the

posterior probabilities given above.  As depicted in Figure 1, the next step is to form a

binary labeled image for each of the posterior probability images P(E|xe) and P(E|xp) by

applying thresholds to them.  By thresholding the posterior probability, we classify each

voxel in the image to belong to either the class “event” or the class “background.” We

call the result a binary labeled image.   The Bayesian threshold on the posterior

probability is a function of the prior probabilities and losses assumed for the analysis.

For our application, we cannot reasonably define the losses for the problem, so we
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assume that the losses are equal.  The threshold is therefore not affected by the losses.  It

can be shown that the decision threshold for the posterior probability is just the prior

probability of the background, that is P(E|x) > P(B) to be classified an event.

For our large data set of 468 CIP panels, we can estimate the prior probability of

background P(B) to be the number of background voxels divided by the total number of

voxels.  Using this method and visual inspection of the images, we estimate P(B) = 0.7.

It is interesting to note that after classification with this threshold the fraction of voxels

classified as background is 0.85.

As part of the PNN training a smoothing parameter σ is chosen.  This parameter

determines the neighborhood of influence of a training sample to the estimate of the pdf.

The value of σ should therefore be larger than the average spacing between training

samples but less than the scale on which the pdf varies.  This behavior is shown in Figure

7.  Displayed is the probability of correct classification using the "hold-one-out" method

(Young , 1986; Devijver, 1982; Hogg, 1978) as a function of σ.  There is a broad plateau

between 0.05 (the spacing between training samples) and 1 (the scale on which the pdf

varies).  If this plateau did not exist, it would indicate that there were not enough training

samples to sample the pdf.  For the calculation of the posterior probability in Figure 5 we

use a value of σ =1.  This allows for the maximum smoothness in the estimate of the pdf

without significantly sacrificing performance.

Connected components. - We create the labeled regions from the binary labeled

image using the method of connected components (Haralick, 1992; Jain, 1989). The

connected components algorithm is a region-based segmentation technique designed for

use with binary images.  The algorithm maps the binary labeled image to an image

showing regions that are similar according to connectedness measures.  All voxels that

have the value “binary one” and are connected to each other by a path of voxels all with

the value “binary one” are given the same identifying label.  The label identifies a

potential object (event) region.  The definition of connectedness that we have used is that
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two voxels are connected if they share a face, an edge or a vertex (i.e., a voxel has 26

nearest neighbors).  Each region has a rich set of properties which can potentially be

exploited,  including shape, position, and statistical properties of values of the image

voxels corresponding to the region.   An example of the results of connected components

analysis applied to only one subpoint is shown in Figure 8.  Note that the regions or

connected components for the seismic images have a variety of shapes.  We have dubbed

them “clouds” and refer to the multiple long, approximately horizontal regions within a

given cloud as “tentacles.”  The tentacles are likely to represent different loops of the

seismic wavelet.  We show in the next section that the final event picks can be found

using a valley finding algorithm operating on the clouds.

Valley finding and constraints

We wrote a rule-based valley-finding algorithm for determining the final event

picks from the event posterior probability image P(E|xe), the proximity posterior

probability image P(E|xp) and the event region image.  We wish to find event picks

similar to those specified by a human expert.  Analysts inspect seismic images on a

workstation screen by eye and use a computer mouse to draw lines on the image showing

their judgment of where seismic horizons are located. The picks are continuous (unless

there are faults), correspond to peaks in the posterior probability of event, and form single

valued (in t) surfaces in the ),,( tsx  space.  We are also only interested in events that are

nominated by the analyst and can be tracked over a significant range of x  and s . The

following steps constrain the event picks to ones that satisfy these conditions:

(1) Find event clouds that have greater than a minimum number of voxels

[we used (10 digi in t) by (10 digi in s) by (26 digi in x) = 2600

voxels].

(2) Find the voxel with the maximum P(E|xe) in each event cloud. Use

those as first picks.
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(3) Follow the event in the both offset directions, at constant subpoint,

until the limit of the data is reached or the edge of the event cloud is

reached.  Do this by finding all local maximums of P(E|xe) in time

within the same tentacle of event cloud at the next offset.  The new

pick is the one with the minimum change in time from the previous

pick.

(4) Follow the event to the adjacent subpoints unless the limit of the data

is reached or the edge of the event cloud is reached. .  Do this by

finding all local maximums of P(E|xe) in time within the same tentacle

of event cloud at the next subpoint.  The new pick is the one with the

minimum change in time from the previous pick. Go to step 3.

(5) If an event does not contain voxels that are within the binary labeled

proximity image, reject it.

The result of applying this rule-based algorithm to only one subpoint is shown in

Figure 9 (less step 4, that is, without the proximity constraints).  When the proximity

constraints are applied only the two events (at 3.1 s and 3.3 s) that were nominated by the

analyst remain.

RESULTS

The quality of the picks on the whole 2D data set were quite encouraging.  A total

of 35 events were picked without the proximity constraints and a total of 5 with the

proximity constraints (9 events were nominated by the analyst).  No loop skips occurred

on any of the events.  This even included the event in the low signal to noise area that

caused the loop skip in the correlation picker (see Figure 10).  The event picks matched

the expert picks to within the time sampling interval (see Figure 10 and Figure 11).  Our

algorithm was not as aggressive as the expert, picking approximately 50% to 70% of the
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x-s area picked by the expert.  The aggressiveness of the algorithm could be increased by

lowering the prior probability of background P(B) to a value below 0.7.

Further tests were done on selected CIP panels by both increasing and decreasing

the number of features from the seven features used to process the whole data set.  It was

found that adding additional features did not significantly increase the probability of

correct classification, reduce the number of loop skips, increase the number of picked

events, nor increase the precision of the time picks.  Decreasing the number of features to

only one Gabor magnitude and phase had a barely noticeable effect on the same

performance measures.  Not using the Gabor phase, even if three most important Gabor

magnitudes were used, caused a significant degradation in every performance measure.

Since this algorithm was implemented in interpreted MATLAB code using

Macintosh 5300c Powerbook, it took 15 ms/voxel/feature.  We anticipate that compiling

an equivalent algorithm on an Ultra Sparc workstation should reduce the time to 150

µs/voxel/feature.  The time to process an OCS block (70 m subpoint spacing, 1600 time

samples and 45 offsets) would be 18 days on an Ultra Sparc.

CONCLUSIONS

Several conclusions can be drawn from this work.  The first is that a small number

of 2D Gabor features capture the character of an event.  The second is that the

probabilistic neural network combines many different features of the data into one best

estimate that has very good properties for locating and tracking an event.  The probability

of correct classification during training is between 89% and 96% (95% confidence

limits).  When the posterior probability is used in a rather crude rule-based tracking

algorithm no loop skipping occurred.  The third conclusion is that the proximity posterior

probability image is a good way to quantify where to look for event.  In practice, this

could be used to nominate events by picking the stack.  The fourth and most important

conclusion is that implementation of this algorithm would reduce the cost and cycle time
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of 3D prestack migration while improving the robustness.  Estimates indicate that the cost

of picking 4 OCS blocks would be reduced from $75,000 (manual picking) to $6,000

(with our algorithm) and the cycle time from 12 weeks to 1 week (assuming use of a

multi-processor computer such as an SP2).  The robustness of the inversion would be

increased since more events could be picked without additional processing.  Note that we

had to do work to reduce the number of picked events from 35 to 5.

Although these results are quite encouraging, there are still some issues to be

explored.  The robustness is better than standard correlation based pickers but

improvements could still be made.  The method also includes the element of the “black

box” PNN.  It would be difficult for a user to modify the algorithm if a problem occurred

with a particular dataset.  A possible solution would be to include additional training

samples from the dataset where the problem occurred.  A final issue is the computer

execution time.  Although our estimates indicate that this algorithm would only take 25%

of the computer time needed to do a velocity update in the PSDM process, the operational

implementation needs to be done to prove this.  These issues lay the groundwork for

future research.
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FIGURE CAPTIONS

Fig.1.  Flow chart of PNN based event picking algorithm.

Fig.2.  Gabor kernels and tile used to form event features.  Shown (top in red) is the

smaller of the two tiles used to calculate the histogram features (40 ms by 1222

m).  Underneath it are real parts of the Gabor kernels.  From top to bottom: small

scale with 0 ms/km and 39 ms/km slope, and large scale with 0 ms/km and 39

ms/km slope.  Blue is positive and red is negative.

Fig.3.  Gabor magnitude feature images.  Seismic amplitude data is shown as the vertical

traces.  The magnitude of the Gabor transform is shown as an image behind the

seismic data.  White is zero and the maximum value is red.  There is an arbitrary

time origin.  (a) Large scale Gabor kernel with 0 ms/km slope (b) Large scale

Gabor kernel with 39 ms/km slope.

Fig.4.  Gabor phase feature image.  Seismic amplitude data is shown as the vertical

traces.  The phase of the Gabor transform is shown as an image behind the

seismic data.  Red is -π  phase, white is 0 phase and blue is π  phase.  Large scale

Gabor kernel with 0 ms/km slope is used.  Human edited correlation picks are

shown as blue circles.

Fig. 5.  Event posterior probability image of a CIP panel.  Seismic amplitude data is

shown as the vertical traces. P(E|xe) is shown as an image behind the seismic

data.  White is 0 probability and red is a probability of 1.  Large scale Gabor

kernel with 0 ms/km slope is used.  Human edited correlation picks are shown as

blue circles.  Unedited correlation picks in a low signal to noise area shown as

green circles demonstrate loop skipping.  Time origin is arbitrary.

Fig. 6.  Proximity posterior probability image of a CIP panel.  Same panel and time origin

as Figure 5.  Seismic amplitude data is shown as the vertical traces. P(E|xp) is

shown as an image behind the seismic data.  White is 0 probability and red is a

probability of 1.
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Fig. 7. Tuning curve for event PNN.  Shown is the probability of correct classification

P(CC) as filled in circles.  The error bars indicate 95% confidence limits.  The

probability of detection P(E|E), or that an event will be classified as an event is

shown as the dashed line with open circles.  The probability that a background

voxel will be classified as background P(B|B) is shown as the solid line with open

squares.  The abscissa is the dimensionless smoothing parameter.

Fig. 8.  Event region image of a CIP panel.  Same panel and time origin as Figure 5.

Seismic amplitude data is shown as the vertical traces.  Background is white, each

event region is a different color.

Fig. 9.  Event image of a CIP panel.  Same panel and time origin as Figure 5.  Seismic

amplitude data is shown as the vertical traces.  Event picks are shown as thin red

lines.  Proximity constraint is not applied.  When proximity constraint is applied

only the two events at 3.1 s and 3.3 s remain.

Fig. 10.  Event picks compared to expert and correlation picks on a CIP panel.  Same

panel and time origin as Figure 5.  Seismic amplitude data is shown as the vertical

traces. Human edited correlation picks are shown as blue circles.  Unedited

correlation picks in a low signal to noise area shown as green circles demonstrate

loop skipping.  The PNN event picks are shown as the red and the blue lines.  The

threshold P(B) had to be lowered to 0.3 from 0.7 in order to make the blue line

picks.

Fig. 11.  Event picks compared to expert picks on a common offset panel.  Seismic

amplitude data is shown as the vertical traces.  Time origin is arbitrary.  The PNN

event picks are shown as red lines.  Human edited correlation picks are shown as

blue circles.
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