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Abstract

Lithium isotopes are a potential tracer of silicate weathering but the relationship between lithium isotope compositions and
weathering state still need to be established with precision. Here, we report Li concentrations and Li isotope compositions of
soils developed along a 4 million year humid-environment chronosequence in the Hawaiian Islands. Li concentrations are
variable with depth and age, ranging from 0.24 to 21.3 ppm, and significant Li depletions (up to 92%) relative to parent bas-
alts are systematically enhanced towards the surface. Our calculations show that the relative contribution from atmospheric
deposits to the Li soil budget remains small, with a maximum contribution from dust Li of 20% at the oldest site. This is
explained by the capacity of the weathering products to retain, within the profiles, the Li coming from basalt alteration,
and allows us to explore more specifically the role of alteration processes on soil Li isotope signatures. The d7Li values display
a large range between !2.5& and +13.9&. The youngest soils (0.3 ka) display the same d7Li value as fresh basalt, regardless
of depth, despite "30% Li loss by leaching, indicating that there is little Li isotope fractionation during the incipient stage of
weathering. d7Li values for the older soils (P20 ka) vary non-linearly as a function of time and can be explained by
progressive mineral transformations starting with the synthesis of metastable short-range order (nano-crystalline) minerals
and followed by their transformation into relatively inert secondary minerals. Results highlight significant Li isotope
fractionation during secondary mineral formation and in particular during Li uptake by kaolinite. Finally, we suggest that
the non-monotonous evolution of the regolith d7Li value over the last 4 Ma is consistent with climatic variations, where
congruent release of Li isotopes occurs during warmer periods.
! 2014 Elsevier Ltd. All rights reserved.

1. INTRODUCTION

Chemical weathering of silicate rocks is an important
regulator of the long-term global carbon cycle and there-

fore climate history (Walker et al., 1981; Dessert et al.,
2001; Berner, 2004). In particular, basalt weathering
accounts for about 35% of the global CO2 sink associated
with silicate weathering (Dessert et al., 2003), even though
it covers a relatively small portion of Earth’s surface. How-
ever, the key parameters and controlling factors of basalt
weathering in nature are still debated (e.g., Gislason and
Eugster, 1987; Gislason and Hans, 1987; Brady and
Gı́slason, 1997; Dessert et al., 2001, 2003).
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In this context, lithium isotopes of large rivers and
oceans have potential as a proxy for tracing the type and
intensity of silicate weathering (Huh et al., 1998, 2001;
Vigier et al., 2009; Pogge von Strandmann et al., 2010;
Misra and Froelich, 2012). Nevertheless, more work is
required to provide clear linkages between fractionation
processes occurring at the weathering profile scale with
those inferred to be operating based on aqueous samples
from large rivers. Experimental investigations have shown
that basalt dissolution is not associated with significant iso-
tope fractionation (Pistiner and Henderson, 2003;
Wimpenny et al., 2010a; Verney-Carron et al., 2011) and
that the formation of secondary phases, such as smectite
and Fe oxides, leads to preferential enrichment of 6Li into
the weathering solids (Williams and Hervig, 2005; Vigier
et al., 2008; Wimpenny et al., 2010b). The few existing stud-
ies of basaltic soils show that lithium isotopes hold great
promise for tracing terrestrial weathering processes, but
that the soil isotope signatures can be rapidly buffered by
atmospheric deposits such as dust, rain or marine aerosols
(Pistiner and Henderson, 2003; Huh et al., 2004; Kisakürek
et al., 2004; Pogge von Strandmann et al., 2012; Liu et al.,
2013). Here, we examine the processes responsible for
changes in the Li isotope composition during progressive
weathering and development of basaltic soils along a
humid-environment chronosequence in the Hawaiian
Islands. The exceptionally clear variations in lava flow ages
and relatively stable variations in climate in Hawaii
(Hotchkiss et al., 2000; Vitousek, 2004) provide a useful
natural laboratory to evaluate non-traditional isotope sys-
tems as tracers of basalt weathering and/or vegetation recy-
cling (e.g., Kennedy et al., 1998; Stewart et al., 2001;
Pistiner and Henderson, 2003; Huh et al., 2004; Wiegand
et al., 2005; Ziegler et al., 2005; Bern et al., 2010). This
study focuses on the behavior of lithium isotopes during
the initial stages of basalt weathering, and leaching through
the slow accumulation of metastable secondary minerals
and their reorganization into relatively inert secondary
crystalline phases. We assess ways in which these various
factors fractionate lithium isotopes into soil solids and the
implications for isotopic signatures in streams fed by waters
passing through the weathering profiles. Furthermore, we
assess the role of atmospheric deposition and recent climate
variations that could modify the soil isotopic signals.

2. STUDY AREA

The Hawaiian Islands are an ideal place to study the
complex patterns of soil and ecosystem development
imposed by variations in climate and lava-flow age
(Porder and Chadwick, 2009; Porder et al., 2007;
Vitousek and Chadwick, 2013). The Hawaiian chronose-
quence considered here varies in age from 0.3 to 4100 ka
and has been referred to as the “Long-Substrate Age
Gradient (LSAG)”. Detailed descriptions of the LSAG
are given in previous studies (e.g., Crews et al., 1995;
Vitousek, 2004; Vitousek et al., 1997). All sites are near
1200 m elevation, receive 2500 mm annual rainfall, and
have a mean annual temperature of 15 "C. The two youn-
gest sites (0.3 ka; Thurston (Th) and Ola’a (Ol)) are in

Keanakakoi tephra derived from phreatomagmatic erup-
tions of tholeiitic composition at the summit of Kilauea
(McPhie et al., 1990; Fiske et al., 2009), while the older sites
(P20 ka) are composed of alkali basalt, such as hawaiite,
mugearite, and their associated tephra (MacDonald et al.,
1983; Wright and Heltz, 1986; Wolfe and Morris, 1996).
The soils exhibit a general trend of increasing crystallinity
of secondary minerals with age (Chorover et al., 1999,
2004). In detail, the two youngest soils (0.3 ka) are Andisols
composed primarily of glass, olivine, clinopyroxene, feld-
spar and magnetite–ilmenite. The three intermediate-aged
soils (20, 150, and 1400 ka) are progressively more
weathered Andisols with high concentrations of short-
range-order materials, such as allophane, imogolite and
ferrihydrite, whereas the oldest soil (4100 ka) is an Oxisol
dominated by refractory secondary minerals, such as
goethite, gibbsite, and kaolinite.

All soils are located on primary shield volcano surfaces,
where physical erosion and groundwater influences are min-
imal. Erosion itself is nearly non-existent on Kilauea and
Mauna Kea because the highly permeable lava flows have
not yet been extensively capped by clay-rich soils that dra-
matically slow downward water flux and re-route it laterally
(Lohse and Dietrich, 2005). On the older mountains, sam-
pling sites are on constructional surfaces that are isolated
on interfluves far from stream channels. None of the core
sites has been cleared or systematically altered by direct
human action. A fundamental assumption associated with
this work is that the soil age approximates the age of the
underlying lava flow. Although there is no definitive test
of the assumption, research performed over the past two
decades suggests it to be tractable. However it is reasonable
to assume that there is a greater divergence between lava
flow age and soil residence time as volcano age increases
(for further discussions of this point see Vitousek et al.,
1997; Hotchkiss et al., 2000; Kurtz et al., 2001; Vitousek,
2004).

3. MATERIALS AND METHODS

3.1. Sample preparation and chemical analysis

Soils were collected from hand-dug pits to about 1 m
depth except for the youngest soil; Thurston (Th) is about
40 cm deep and overlies unweathered pahoehoe lava, and
Ola’a (Ol) is about 70 cm deep and overlies a buried soil
on the "1000 year old Kulanaokuaiki tephra (Fiske et al.,
2009; Fig. 1). All samples were air dried, passed through
a 2-mm sieve, and then crushed in a shatter box equipped
with a tungsten carbide grinding container. About 0.1 g
of each sample was completely digested using concentrated,
ultrapure HCl, HClO4, HF, and HNO3. The samples were
dried, refluxed several times in 6.0 M HCl to remove fluo-
rides, and re-dissolved in 5% HNO3. Cation and trace ele-
ment concentrations were measured using a Perkin Elmer
Optima 4300DU ICP-AES and a Thermo Elemental X-7
ICP-MS, respectively at the Korea Basic Science Institute
(KBSI). Accurate quantification was achieved by external
calibration of the data relative to three USGS basalt stan-
dard powders (BCR-2, BHVO-2, and BIR-1).
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3.2. Sr and Li isotope analyses

Strontium isotope ratios (87Sr/86Sr) were measured using
a Neptune MC-ICP-MS at the KBSI. Samples were dried in
Teflon vessels and re-dissolved in 8 M HNO3. Strontium
was separated from matrix elements using an Eichrom
Sr resin following procedures described in Swoboda et al.
(2008). The 87Sr/86Sr ratios were normalized to 86Sr/88Sr =
0.1194, and the mean 87Sr/86Sr ratio of the NBS987
standard during analysis was 0.710247 ± 0.000008 (2r,
n = 24).

Detailed description of Li purification and its isotope
measurement is given in Choi et al. (2013). In short, sam-
ples were dried in Teflon vessels, and the residues were trea-
ted with concentrated HNO3, dried, and re-dissolved in a
1:4 (v/v) mixture of 6 M HNO3 and 100% methanol. Li
was separated from matrix elements using an AG
50W!X8 resin (200–400 mesh). After loading the sample,
matrix elements were eluted with 4 mL of a 1:4 (v/v) mix-
ture of 6 M HNO3 and 100% methanol before collecting
Li in 10 mL of a 1:4 (v/v) mixture of 6 M HNO3 and
100% methanol. After Li purification, the sample was dried
and re-dissolved in 5% HNO3 ("40 ppb Li). Lithium iso-
tope ratios were measured using a Neptune MC-ICP-MS
under cool-plasma condition at the KBSI. Samples were
introduced into a "800 W plasma through a quartz dual
cyclonic spray chamber, and analyzed using a blank-
standard-blank-sample-blank-standard-blank bracketing
method. Sample intensities were matched to within 10%
of the intensity of the standard. The sensitivity was
"90 V/ppm on mass 7 at a typical uptake rate of 100 lL/
min, and blank values were low ("30 mV for 7Li; 0.8%).
Prior to isotopic analysis, each sample was checked for
yield and yields were greater than 95%. The Li isotopic com-
position is reported in delta notation relative to L-SVEC,
where d7Li = [(7Li/6Li)sample/(

7Li/6Li)L-SVEC ! 1] # 1000.
The accuracy and reproducibility of the whole method
was validated using the USGS rock standards (BCR-2,

BHVO-2, and BIR-1) and seawater standards (IAPSO
and NASS-5). BCR-2 yielded 3.5 ± 0.2& (2r, n = 22),
BHVO-2 yielded 4.5 ± 0.4& (2r, n = 5), BIR-1 yielded
3.3 ± 0.6& (2r, n = 5), IAPSO yielded 30.9 ± 0.2& (2r,
n = 29), and NASS-5 yielded 30.6 ± 0.5& (2r, n = 15),
which were all in good agreement with reported values
(e.g., You and Chan, 1996; Moriguti and Nakamura,
1998; Tomascak et al., 1999; Nishio and Nakai, 2002;
Magna et al., 2004; Huang et al., 2010; Ludwing et al.,
2011).

4. RESULTS

4.1. Li concentrations

Li concentrations ([Li]) in the soils are variable with
depth and age, ranging from 0.24 to 21.3 ppm (Table 1).
At the 0.3 ka sites (Th and Ol), [Li] in the surface horizons
is 0.60 and 0.48 ppm, respectively, and increases to about
4 ppm for the deeper horizons, similar to tholeiitic basalt.
At the 20 ka site, [Li] is low at the surface (0.43 ppm; 0–
12 cm) and increases to about 4 ppm in the deeper horizons
(average of 4.4 ppm; 20–110 cm), which is similar to values
for tholeiitic basalt but much lower than that of alkali
basalt (11 ppm; Huh et al., 2004). By contrast, at the 150
and 1400 ka sites, average [Li] are 14.9 and 9.8 ppm for
all horizons (5–56 and 6–93 cm, respectively), except for
the surface horizons, which are 2.0 and 1.1 ppm, respec-
tively. The oldest 4100 ka site has average [Li] of 3.9 ppm
for the top four horizons which reach to 60 cm depth, but
from there to 105 cm the values increase to 7.7 and
9.7 ppm, relatively close to alkali basalt.

4.2. Li isotopes

The d7Li values span a wide range, from !2.5& for the
150 ka site to +13.9& for the 4100 ka site (Table 1). The
youngest sites (0.3 ka) show little variation in d7Li

Fig. 1. Map of the Hawaiian Islands showing the sampling locations and their substrate ages (Modified from Crews et al., 1995).
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(3.5 ± 0.5&, 2r, n = 10), in good agreement with previous
results (Pistiner and Henderson, 2003). These d7Li values
are consistent with values for Hawaiian basalt
(4.0 ± 0.9&; Tomascak et al., 1999; Chan and Frey, 2003;
Pistiner and Henderson, 2003), and more generally with
fresh MORB and OIB values (3.7 ± 2.1&; Tomascak

et al., 2008; Krienitz et al., 2012). At the 20 ka site, d7Li
ranges between !1.6& for the deeper horizons (52–
94 cm) and 2.6& for the deepest one. At the 150 ka site,
d7Li ranges from 4.2& to 5.3& in the near-surface horizons
(0–26 cm) but decreases to !2.5& at about 50 cm depth. At
the two oldest sites, d7Li is highest at the surface (7.7& and

Table 1
Elemental and isotope geochemistry of bulk soil samples (<2 mm size fraction).

Sample Age
(ka)

Average
depth (cm)

Density (q)a

(g/cm3)
K
(%)

Mg
(%)

Na
(%)

Al
(%)

Fe
(%)

Sr
(lg/g)

Li
(lg/g)

Nb
(lg/g)

d7Lib

(&)

87Sr/86Sr

T4 0–4 0.3 2 0.2 0.1 0.5 0.1 0.5 0.7 48.0 0.24 1.3 ! 0.704525
T4 4–12 8 0.4 0.2 4.2 1.0 5.3 7.8 191 2.9 10 3.7 0.703779
T4 12–22 17 1.0 0.3 6.7 1.4 6.6 8.9 288 4.1 10 3.3 0.703805
T4 22–34 28 1.0 0.3 6.5 1.3 6.7 9.1 267 4.8 11 3.1 0.703694
T4 34–37 36 1.0 0.3 5.8 1.3 7.0 9.0 274 4.3 11 3.6 0.703720
T4 37–48 43 1.0 0.3 6.2 1.41 6.8 8.7 282 4.3 9 3.4 0.703700
T4 37–48-
replicate

0.3 6.2 1.40 6.9 8.8 290 4.4 11 3.2 0.703699

OL5 0–5 0.3 3 0.2 0.2 1.1 0.2 1.5 1.7 63.5 0.60 2.4 3.9 0.704121
OL5 5–12 9 0.5 0.2 4.9 1.0 6.0 7.9 218 3.7 11 3.8 0.703868
OL5 20–28 24 1.0 0.3 8.8 1.5 9.4 12 322 5.1 12 3.4 0.703905
OL5 28–45 37 1.3 0.3 6.3 1.3 7.0 9.1 268 3.9 10 3.7 0.704114
OL5 45–62 54 1.3 0.3 6.4 1.37 7.1 9.2 299 4.4 11 3.6 0.704122
OL5 45–62-
replicate

0.3 6.0 1.27 6.9 8.9 276 3.9 10 3.6 0.704138

LA1 0–12 20 6 0.3 0.1 0.1 0.0 0.8 2.0 8.59 0.43 7.7 ! 0.706647
LA1 20–27 24 0.3 0.2 0.2 0.0 6.6 29 13.4 4.7 69 0.9 0.709703
LA1 52–94 73 0.5 0.1 0.6 0.0 13 13 4.61 4.7 52 !1.6 0.711514
LA1 94–110 102 0.6 0.0 1.7 0.00 15 11.3 4.32 4.1 59 2.6 0.706963
LA1 94–110-
replicate

0.0 1.6 0.00 15 11.3 4.26 3.9 60 2.7 0.707165

KO2 0–5 150 3 0.3 0.2 0.2 0.1 1.1 1.6 25.9 2.0 33 4.7 0.710660
KO2 5–9 7 0.5 0.7 0.2 0.1 4.1 5.6 35.1 11.0 181 4.2 0.718436
KO2 15–26 21 0.6 1.7 0.4 0.2 6.7 8.5 67.5 21.3 365 5.3 0.720718
KO2 26–45 36 0.6 0.6 0.2 0.1 12 6.0 23.8 15.4 213 !0.1 0.719695
KO2 45–56 51 0.7 0.3 0.2 0.04 16 2.6 14.6 13.4 147 !2.4 0.717783
KO2 45–56-
replicate

0.3 0.2 0.02 16 2.6 14.6 13.4 147 !2.6 0.717737

MK6 0–6 1400 3 0.3 0.1 0.2 0.1 1.2 1.3 45.2 1.1 38 7.6 0.708642
MK6 0–6-
replicate

7.8

MK6 6–18 12 0.4 0.5 0.4 0.1 14 16 143 12.9 350 4.7 0.706939
MK6 38–55 47 0.7 0.1 0.2 0.0 19 6.5 58.2 9.5 85 2.5 0.704983
MK6 55–74 65 0.8 0.0 0.1 0.0 23 4.4 50.7 8.6 47 0.6 0.704507
MK6 74–93 84 1.0 0.0 0.1 0.01 22 5.1 49.2 8.4 48 1.8 0.704516
MK6 74–93-
replicate

0.0 0.1 0.03 23 5.3 51.3 9.4 50 1.9 0.704471

KAI3 0–5 4100 3 0.3 0.1 0.3 0.0 4.0 19 114 3.8 273 13.8 0.706818
KAI3 0–5-
replicate

14.0

KAI3 16–22 19 0.9 0.1 0.1 0.0 9.1 40 152 4.6 262 6.0 0.706001
KAI3 22–34 28 0.8 0.1 0.1 0.0 8.7 30 129 3.2 194 6.5 0.705932
KAI3 34–60 47 1.1 0.0 0.1 0.0 16 18 240 4.2 116 3.2 0.705085
KAI3 60–86 73 1.2 0.0 0.3 0.0 14 12 82.7 7.7 105 2.4 0.705338
KAI3 86–105 96 1.2 0.0 0.7 0.00 16 13.4 202 10.8 105 3.8 0.704546
KAI3 86–105-
replicate

0.0 0.7 0.00 16 13.60 207 8.5 108 3.9 0.704593

The external precisions of d7Li and 87Sr/86Sr are better than 0.6& (2r) and 8 ppm (2r), respectively (see text for more details).
a Data from Pett-Ridge et al. (2007).
b Not determined.
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13.9&, respectively) and then decreases to 1.8& and 3.8&,
respectively, with depth.

5. DISCUSSION

5.1. Li mobility during basalt alteration

Intense weathering of basalt can result in redistribution
of even the most refractory elements, such as Hf, Th and Zr
(Kurtz et al., 2000). As elements are being leached the
remaining element configurations become more stable: soil
minerals evolve first to nano-crystalline gibbsite, allophane
and ferrihydrite (SRO minerals) and then to crystalline
products, such as goethite, gibbsite and kaolinite
(Vitousek et al., 1997; Chorover et al., 2004; Ziegler et al.,
2005). The relative gain (sj;w > 0) or loss (sj;w < 0) of each
major and minor element along the chronosequence can
be estimated as follows (Brimhall and Dietrich, 1987;
Chadwick et al., 1990):

sj;w ¼
Cj;w # Ci;p

Cj;p # Ci;w
! 1; ð1Þ

where C is the concentration of an element, w and p refer to
the weathered and parent materials, respectively, and i and j
refer to the immobile and mobile elements, respectively. In
this study, we use Nb as the index element because Nb most
closely approximates element immobility in Hawaiian
weathering profiles (Kurtz et al., 2000).

Fig. 2a shows that in the surface horizons, sLi decreases
from 0.3 to 4100 ka (from !51% to !92%), indicating pro-
gressive loss of Li with age. Even in the two youngest soils,
the surface is depleted in Li compared to parent basalt. Part
of this depletion could be due to dilution by Li-poor phases,
such as organic matter (OM). However, Li is normalized to
Nb (Eq. (1)), which should minimize this effect, and also we
note that the OM content of the surface horizons does not
increase linearly with age (Ziegler et al., 2005). Instead, we
think that because the complexation of Al by organic mat-
ter (in OM-Al) often occurs in the surface horizons of vol-
canic soils, the associated lack of clay mineral formation in
the surface could minimize Li retention in these horizons.
As a consequence, Li released by weathering in the surface
and/or from decomposition of OM moves deeper into the
profile before it can be captured during clay mineral synthe-
sis. Below 40 cm depth, sLi increases with depth, indicating
a significant enrichment relative to the surface horizons.
This feature is likely related to limited basalt weathering
for the two youngest soils (0.3 ka) and to clay mineral for-
mation at depth for the older soils (P20 ka). A significant
increase in the relative abundance of kaolin (primarily hal-
loysite) can account for the Li enrichment observed at the
two oldest sites (Table S1; Vitousek et al., 1997; Ziegler
et al., 2005) because kaolin minerals can contain significant
amounts of Li (Tardy et al., 1972).

Depth-integrated sLi allows us to calculate the total loss
or gain of Li and other elements over the timescale of each
profile as follows:

sint ¼
P

sh ' qh ' zhð ÞP
qh ' zhð Þ

; ð2Þ

where sh is the sj;w value of each horizon (h; Eq. (1)), zh is
horizon thickness, and qh is horizon density taken from
Pett-Ridge et al. (2007). As illustrated in Fig. 3, sint for
alkali elements (Na and K) are negative at all sites and
the older sites (P20 ka) have average sint close to !100%,
indicating that both Na and K are completely depleted after
20 ka (Vitousek et al., 1997). In contrast, sint for Li, which is
similar to sint for Na and K before 20 ka, remains signifi-
cantly elevated (between !58% and +3%) between 20 and
4100 ka relative to Na and K. This strongly suggests that
Li is less mobile than other alkali elements. Also, it is inter-
esting to note that Li is less mobile than Mg after 20 ka
even though they have similar ionic radius (Huh et al.,
1998). The high sint for Li relative to Na or K at the older
sites (P20 ka) suggests a key role of Li-rich but alkali- and
Mg-poor secondary phases (Chorover et al., 2004). The Li
enrichment at the two oldest sites (1400 and 4100 ka) can be
explained by progressive accumulation of kaolin, but other
phases may also play a role: (1) poorly- and non-crystalline
phases that are abundant at the 20, 150 and 1400 ka sites,
and (2) sesquioxides that are particularly abundant at the
20 and 4100 ka sites (Table S1; Chorover et al., 2004;
Ziegler et al., 2005). Furthermore, the 1400 ka soil contains
much more kaolin than the 150 ka soils, and more non-
crystalline phases than the 4100 ka soil (Table S1), indicat-
ing that the particularly high sLi at the 1400 ka site is due to
these mineralogical differences. Another possibility is that
the Li excess can be partly explained by a significant contri-
bution from atmospheric deposition, such as dust and
rainwater.

5.2. Quantifying the relative role of alteration and
atmospheric deposition in the Li budget

Previous work has shown that with age basalt weather-
ing becomes relatively less important to the soil budget of
some specific elements like Sr and atmospheric inputs
become more important (Kurtz et al., 2001; Chadwick
et al., 2009). For the Hawaiian Islands Long Substrate
Age Gradient (LSAG; Crews et al., 1995), the roles of bio-
geochemical cycling and of Asian dust accretion in deter-
mining the fate of specific elements have been evaluated
using Ca, Nd, Si, and Sr isotopes (Kennedy et al., 1998;
Kurtz et al., 2001; Wiegand et al., 2005; Ziegler et al.,
2005; Chadwick et al., 2009). In particular, Sr and Nd iso-
topes allow quantitative estimation of Asian dust and rain-
water contribution. For example, Chadwick et al. (2009)
indicated that basalt weathering clearly controls Sr isotopic
composition at the two youngest sites (0.3 ka), and that
atmospheric deposits become significant for Sr at the
20 ka site and are particularly abundant at the 150 ka site.
Rainwater also provides a significant part of the labile Sr
utilized by ecosystems, while dust minerals, in particular
quartz, weather slowly, leading to a small influence. At
the oldest site, a refractory secondary mineral with a Fe,
Ti spinel-structure containing alkaline earth elements could
protect basaltic Sr. It appears that basalt-derived Sr con-
tributes more than expected due to this “chemical” protec-
tion whereas dust contributes less because it has been
eroded from the surface (Chadwick et al., 2009). Kurtz
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et al. (2001) also reported similar results to Chadwick et al.
(2009) but with a difference at the 150 ka site, where a

mixture of basalt weathering and dust input controls Nd
isotopes.

Fig. 2d shows that, except for the two youngest sites, the
87Sr/86Sr ratios are significantly higher than that of parent
basalt, indicating a significant contribution from rainwater
and/or dust. This effect is particularly clear at the 150 ka
site, which exhibits the most radiogenic 87Sr/86Sr ratio of
"0.72 for the near-surface horizons ("20 cm). However,
there is no correlation between d7Li and 87Sr/86Sr (not
shown). These horizons do not exhibit d7Li signatures that
are closer to rainwater (d7Li = 14.3&; Pistiner and
Henderson, 2003) or to dust (d7Li = 1.7&; upper continen-
tal crust (UCC); Teng et al., 2009). Also, if the dust input
was significantly enhanced with age, there should be nega-
tive correlation between content of quartz + mica and
d7Li because quartz and mica are uniquely associated with
continental dust in Hawaii (Rex et al., 1969; Jackson et al.,
1971; Porder et al., 2007). However, from reported mineral-
ogical composition (Table S1; Ziegler et al., 2005), there is
no correlation between them, suggesting that the dust input
is not a primary control of Li isotopic compositions in the
Hawaiian soils.
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Fig. 2. The elemental gain (sj;w > 0) or loss (sj;w < 0), and isotope compositions versus depth. (a and c) sLi and sSr are calculated using Eq. (1).
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The Li contribution from Asian dust can be estimated
more precisely for each profile because the elemental com-
position of the dust in Hawaii has remained relatively
invariant during the past 4100 ka (Kyte et al., 1993) as
follows:

Lidust ¼ CLi
dust ' F dust ' t; ð3Þ

where CLi
dust is the average Li concentration in upper conti-

nental crust (24 ppm; Rudnick and Gao, 2003), F dust is the
average long-term dust deposition rate for Hawaii (30 mg/
cm2/ka for the younger soils (<20 ka) and 125 mg/cm2/ka
for the older soils (P20 ka); Kurtz et al., 2001), and t is
the age of the soil site. The mass of dust-derived Li ranges
between 0.22 lg/cm2 at the 0.3 ka sites and 12 mg/cm2 at
the 4100 ka site (Table 2). Assuming that the Li concentra-
tion of dust is close to that of loess (29.8 ppm; Teng et al.,
2004), it would lead to slightly higher values, ranging from
0.27 lg/cm2 at the 0.3 ka sites to 15 mg/cm2 at the 4100 ka
site.

Similarly, the atmospheric Li input linked to rainwater
can be calculated as follows:

Lirainwater ¼ CLi
rainwater 'MAP ' t; ð4Þ

where CLi
rainwater is the Li concentration in filtered Hawaiian

rain (0.075 ng/cm3; Pistiner and Henderson, 2003) and
MAP is the Mean Annual Precipitation (2500 mm/yr).
The calculated mass of rainwater-derived Li ranges from
5.6 ng/cm2 at the 0.3 ka sites to 77 lg/cm2 at the 4100 ka
site (Table 2). Instead, the unfiltered rainwater Li concen-
tration (1.01 ng/cm3; Pistiner and Henderson, 2003) pro-
vides a maximum estimate, which ranges from 76 ng/cm2

at the 0.3 ka sites to 1.0 mg/cm2 at the 4100 ka site. The
rainwater Li input is systematically lower than the dust Li
input with the ratio of rainwater Li to dust Li ranging from

2.1% for the two youngest sites to 0.5% for the other sites
(P20 ka).

Since the sites exhibit minimal physical erosion, the
overall weathering thickness should be directly linked to
their age (e.g., Pett-Ridge et al., 2007). In this context, the
quantity of Li released from the parent basalt can be esti-
mated as follows:

Libasalt ¼ CLi
basalt ' zt ' Sc ' qbasalt; ð5Þ

where CLi
basalt is the Li concentration in basalt (5.6 ppm in

tholeiitic basalt for the two youngest sites and 11 ppm in
alkali basalt for the older sites; Chan and Frey, 2003;
Huh et al., 2004), zt is the total regolith thickness (m),
qbasalt is the average density of basalt including void and
infilled vesiculated tephra (1.25 g/cm3; Huh et al., 2004),
and Sc is the collapse factor (Table 2). Total regolith thick-
ness is difficult to determine even in cases where a backhoe
or drill is available because of local variability related to
void spaces and hydrological permeability (Goodfellow
et al., 2013). We do however have several observations that
allow us to make rough estimates as follows: 0.3 ka = 0.4
(Th) and 0.6 (Ol) m, 20 ka = 2 m, 150 ka = 4 m,
1400 ka = 22 m, and 4100 ka = 40 m (Table 2). Results
show that the mass of Li released from the parent basalt
ranges between 0.21 mg/cm2 at the 0.3 ka site (Th) and
89 mg/cm2 at the 4100 ka site (Table 2; Fig. 6a). Eqs. (3)–
(5) allow us to calculate the total Li in the regolith, which
is the sum of Li released from the parent basalt, with Li
added from dust and rainwater along the course of the reg-
olith development as follows:

Litotal ¼ Libasalt þ Lidust þ Lirainwater; ð6Þ

Litotal in the regolith increases continuously with age,
ranging from 0.21 mg/cm2 for the 0.3 ka site (Th) to
102 mg/cm2 at the 4100 ka site (Table 2; Fig. 6a). The

Table 2
Summary of results for Li mass-balance calculation.

Age (ka) Regolith thicknessa

(m)
Collapse factor
(Sc)

b
sint_Li

c

(%)
Lipresent

d

(mg/cm2)
Litotal

e Liloss
f

(mg/cm2)Libasalt

(mg/cm2)
Lidust

(mg/cm2)
Lirainwater

(mg/cm2)

0.3 (Th) 0.4 0.6 !20 0.17 0.21 0.000 0.000 0.04 ± 0.00
0.3 (Ol) 0.6 0.8 !24 0.23 0.35 0.000 0.000 0.12 ± 0.00
20 2 0.4 !58 0.37 1.1 0.067 ± 0.021 0.003 ± 0.007 0.76 ± 0.03
150 4 1.3 !49 3.7 7.4 0.50 ± 0.15 0.02 ± 0.05 4.3 ± 0.2
1400 22 0.6 3 19 19 4.7 ± 1.4 0.19 ± 0.46 4.7 ± 1.9
4100 40 1.6 !48 46 89 14 ± 4 0.56 ± 1.4 58 ± 6

Two standard deviation (2r) is propagated using the range of Li concentration for each end-member.
Li concentration in dust is assumed to be either UCC ([Li] = 24 ppm; Rudnick and Gao, 2003) or loess ([Li] = 29.8 ppm; Teng et al., 2004).
Li concentration in Hawaiian rainwater is assumed to be either [Li] = 75 # 10!6 (filtered) or 1014 # 10!6 (unfiltered) ppm (Pistiner and
Henderson, 2003).

a Informed estimates (see text for more details).
b Collapse factor is the ratio of the present Nb inventory in the regolith (Nbregolith) to the total Nb coming from the parent basalt (Nbbasalt).
c Depth-integrated s value in the regolith (see text for more details).
d Lipresent is the depth-integrated Li based on measured Li concentration, regolith thickness and density (see text for more details).
e The 0.3 ka regoliths are developed in tholeiitic tephra ([Li] = 5.6 ppm; Chan and Frey, 2003, and [Nb] = 11 ppm; Pett-Ridge et al., 2007),

while the others are developed on hawaiites ([Li] = 11 ppm; Huh et al., 2004, and [Nb] = 63 ppm; Pett-Ridge et al., 2007).
f Liloss = Litotal ! Lipresent (see text for more details).
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relative contribution of each source is shown in Fig. 4,
where the parent basalt provided between 80% and 100%
of Litotal, rainwater a maximum of 0.8% (at 1400 ka), and
dust becomes significant from 20 and 150 ka ("6%) and
reaches at maximum 20% of Litotal at 1400 ka.

It is possible to compare Litotal corresponding to the reg-
olith residence time, to the Li currently present in the rego-
lith, Lipresent (i.e., depth-integrated Li mass per unit area).

The difference between these two parameters allows the Li
released, Liloss, by the profile to the waters to be evaluated
as follows:

Lipresent ¼
X

h

qh ' zh ' CLi
h

! "
ð7Þ

Lilossð%Þ ¼ Lipresent=ðLibasalt þ Lidust þ LirainwaterÞ ! 1
# $

# 100

ð8Þ

where CLi
h is the Li concentration in the each soil horizon.

At each site, Lipresent represents the depth-integrated Li,
and is systematically lower than Litotal (Table 2; Fig. 6a),
highlighting a significant Li loss at all the sites. This loss
is likely due to weathering, dissolution, and leaching by soil
waters. These results are in good agreement with depth-
integrated s values (Fig. 3). We thus confirm that all the
sites have lost some Li, between 19% at the 0.3 (Th) and
1400 ka sites, and 67% at the 20 ka site.

5.3. Impact of atmospheric deposition on Li isotopes

The same approach can be applied to quantify the
impact of dust and rainwater on d7Li values. Indeed, dust
and rainwater have different Li isotope compositions rela-
tive to basalt, and therefore, even small amounts of these
two end-members may affect the soil Li isotope composi-
tion. Based on our previous estimates of Lidust and Lirain

(Table 2), we can quantify how the d7Li value of the total
Li, d7Litotal, has varied with age as follows:

d7Litotal¼
d7Libasalt 'Libasaltþd7Lidust 'Lidustþd7Lirainwater 'Lirainwater

LibasaltþLidustþLirainwater

% &
;

ð9Þ
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Fig. 4. Fraction of each end-member (basalt, dust, and rainwater)
relative to the total Li (%) versus age. Error bars represent 2r,
propagated using the range of Li concentrations for each end-
member (see text for more details).
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where d7Libasalt = 4.0& (Hawaiian basalts; Tomascak et al.,
1999; Chan and Frey, 2003; Pistiner and Henderson, 2003),
d7Lidust = 1.7& (UCC; Teng et al., 2009), and
d7Lirainwater = 31& (seawater; Millot et al., 2007). Table 3
summarizes results and Fig. 6b shows that, despite signifi-
cant contribution from dust to the older sites, the d7Li value
of Litotal has remained constant, close to d7Li of the basalt
("4&) over 4100 ka. This suggests a negligible influence of
atmospheric deposits (both dust and rainwater) on the Li
isotope composition of regolith. The result is significantly
different from previous results showing that there is a signif-
icant influence of atmospheric deposits in Hawaii (Pistiner
and Henderson, 2003; Huh et al., 2004), or in other basaltic
environments (Kisakürek et al., 2004; Pogge von
Strandmann et al., 2012; Liu et al., 2013). The correlation
between d7Li value and molar Nb/Li exhibited by the
Hawaiian soils studied here supports these calculations
(Fig. 5). Indeed, except for the two youngest sites that have

Li isotope composition similar to the parent rocks, none of
the soil samples can be explained by a simple mixing
between a basalt and dust or rainwater end-members. By
comparison, the Hawaiian soils sampled along a climose-
quence studied by Huh et al. (2004) exhibit a distinctly dif-
ferent trend, compatible with a significant contribution
from marine aerosols (Fig. 5). However, their site M, devel-
oped at the same elevation and under the same precipita-
tion rate as the chronosequence ones, displays essentially
a weathering trend, mainly controlled by basalt alteration
(Fig. 5). The contrast between the Kohala climosequence
and the LSAG chronosequence suggests that our estima-
tions of the Li mass balance for our sites are reasonable.
In addition, simple calculations also show that the high
d7Li value measured in some of the soil horizons cannot
be explained by the mixing of atmospherically derived Li
with basalt-derived Li. Indeed, we estimate that rainwater
Li always represents less than 1% of the total Li. Few rain-
water d7Li values have been published, but taking into
account a d7Li value of 14.3& as reported in Pistiner and
Henderson (2003) for a filtered Hawaiian rain, or a d7Li
value of 31& in case of a seawater-like signature (Millot
et al., 2007), such a flux would induce a shift of only
0.3&. Even using the reported maximum d7Li value of
95.6& reported for polluted rainwater (Millot et al.,
2010) would cause a small shift (0.9&) of the soil d7Li
value. In the same way, assuming that all the dust at the
oldest site has remained in the profile without being weath-
ered, with a d7Li value of 1.7& (UCC; Teng et al., 2009),
this would represent a maximum increase of 0.6& of the
soil d7Li value.

The small isotope shift induced by atmospheric addi-
tions is nowhere near as significant for Li as it is for some
other ions such as Sr, and this is best explained by the
strong preservation of basaltic Li through its incorporation
into secondary clay minerals. This mechanism allows us to
use this chronosequence to study the fate of Li along the
time history of weathering, through the synthesis of meta-
stable SRO minerals, and their transformation into rela-
tively inert secondary minerals.
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basalt, and Li added from dust and rainwater. The present Li (in
red) represents the depth-integrated Li based on measured Li
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each profile. See text for corresponding mass balance calculations.
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Table 3
Summary of results for d7Li mass-balance calculations.

Age (ka) d7Lipresent
a (&) d7Litotal

b (&) d7Liloss
b (&)

0.3 (Th) 3.3 4.0 ± 0.0 6.8 ± 0.0
0.3 (Ol) 3.6 4.0 ± 0.0 4.7 ± 0.0
20 1.6 3.9 ± 0.1 5.0 ± 0.2
150 !2.0 3.9 ± 0.1 9.0 ± 0.2
1400 1.8 3.7 ± 0.5 11.3 ± 1.4
4100 3.8 3.8 ± 0.3 3.8 ± 0.6

Two standard deviation (2r) is propagated using uncertainties on
the Li flux for each end-member.
d7Libasalt = 4.0& (Hawaiian basalt; Tomascak et al., 1999; Chan
and Frey, 2003; Pistiner and Henderson, 2003).
d7Lidust = 1.7& (upper continental crust; Teng et al., 2009).
d7Lirainwater = 31& (seawater; Millot et al., 2007).

a Depth-integrated d7Li value in the regolith (see text for more
details).

b Calculated using the results in Table 2 and standard isotope
mass-balance equation (see text for more details).
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5.4. Controls of Li isotope fractionation during basalt
alteration

As shown in Fig. 5, the negative d7Li values at the 20
and 150 ka sites are not explained by a simple source mix-
ing. These values are therefore the consequence of signifi-
cant Li isotope fractionation during weathering and
associated secondary mineral formation processes.
Although basalt dissolution is not expected to induce signif-
icant isotope fractionation (e.g., Pistiner and Henderson,
2003; Wimpenny et al., 2010a; Verney-Carron et al.,
2011), formation of Fe oxides and clays at low temperature
may result in large Li isotope fractionations, preferentially
incorporating light Li (6Li) into the solid phase (e.g.,
Williams and Hervig, 2005; Vigier et al., 2008; Wimpenny
et al., 2010b). In more detail, depth-integrated d7Li,
d7Lipresent, calculated using Eq. (2), highlights significant
temporal variations (Fig. 6; Table 3). As shown in
Fig. 6a, Lipresent also increases with age as the Li released
from the parent basalt and added from atmospheric depos-
its also increases. The isotope composition of the Li
released into waters by each regolith, d7Liloss , can then be
calculated as follows:

d7Liloss ¼ d7Liwater

¼ d7Litotal ' Litotal ! d7Lipresent ' Lipresent

Liloss

% &
; ð10Þ

d7Liwater is also quite variable as a function of time, rang-
ing from 3.8& at the 4100 ka site to 11.3& at the 1400 ka
site (Table 3).

Overall, the temporal evolution of Li and Li isotopes
can be described in four main stages: (1) At the two youn-
gest sites, d7Lipresent is close to d7Li of the parent rock,
despite "30% Li loss by leaching, indicating that during
the initial stage of basalt dissolution Li loss is not associ-
ated with significant Li isotope fractionation, in good
agreement with experimental and other field studies
(Pistiner and Henderson, 2003; Huh et al., 2004;
Wimpenny et al., 2010a; Verney-Carron et al., 2011;
Pogge von Strandmann et al., 2012; Liu et al., 2013). (2)
The larger Li losses at the 20 ka and 150 ka sites
(sint = !58% and !49%, respectively; Fig. 3; Table 2) are
associated with lower d7Lipresent values. In Fig. 5, samples
from the 20 and 150 ka sites define a single negative trend
towards low d7Li values that can be interpreted as a prefer-
ential enrichment in 6Li associated with Li incorporation
into secondary phases. This process can also explain the
smaller Li loss compared to other alkali elements at these
sites (Fig. 3) because Li released by basalt dissolution is
partially retained in secondary phases. From the mineralog-
ical composition (Table S1; Ziegler et al., 2005), the 20 and
150 ka sites are distinct from the other sites because they
both contain greater amounts of chemically active non-
crystalline phases, such as allophane, imogolite and ferrihy-
drite. Our results therefore suggest that the formation of
these phases plays a key role in the Li isotope compositions
in these soils. (3) At 1400 ka, there is an increase of water
d7Li (Fig. 6b), related to a significant increase of depth-
integrated sLi (Fig. 3). This feature is consistent with a

significant incorporation of Li into kaolinite, which is
known to contain high Li levels (Tardy et al., 1972). As
shown in Fig. 2a, kaolinite-rich horizons in this soil
(P40 cm; Table S1) are also rich in Li (compared to two
youngest soils), supporting this statement. These horizons
display d7Li values that are slightly lower than the basalt
value and the corresponding water d7Li value is estimated
to be high (Fig. 6). This suggests a significant isotope frac-
tionation during kaolinite formation, favoring the preferen-
tial incorporation of 6Li into the solid. (4) Water d7Li then
decreases between 1400 and 4100 ka and is associated with
a significant loss of Li (Figs. 3 and 6). Kaolin-rich horizons
at depth have clearly lost their Li since the abundance of
kaolin minerals does not change from 1400 to 4100 ka
(Table S1) but sLi significantly decreases (Fig. 2a). This sig-
nificant loss of Li can also be seen from a bulk point of view
in Fig. 3. It has almost no influence on the isotope signal at
the depths where kaolin predominates (Fig. 2b), strongly
suggesting no isotope fractionation during this Li release.
This also explains well the decrease of water d7Li between
the two oldest profiles exhibited in Fig. 6b.

It is interesting to note that the most elevated d7Li, mea-
sured in the upper layers (<30 cm) of the two oldest sites,
are associated with high Nb/Li ratios (Fig. 5), and cannot
be explained by atmospheric deposition, as described in
the previous section. Furthermore, it cannot be simply
related to secondary phase formation that would rather
retain Li in the regolith. Such elevated d7Li values
(>10&) are particularly unusual in silicate soils. Huh
et al. (2004) have also measured high d7Li in some samples
of the Hawaiian climosequence, but they were clearly con-
trolled by marine aerosols. The upper horizons of the 1400
and 4100 ka sites are enriched in organic matter (Table S1),
but as a first approximation, we can rule out a key role of
vegetation because of low Li levels in plants and the lack of
associated isotope fractionation (Lemarchand et al., 2010).
Since the surface soil horizons have lost some Li compared
to younger soils (Fig. 2a), these heavy signatures have to be
in the most resistant phases. As a first approximation, it
seems possible that there has been Li isotope exchange with
rainwater or with percolating soil solutions because that
would explain inheritance of the heavy isotope signature
without having to add significant amounts of Li to the soil
budget. However, the remaining minerals at the surface of
these old soils are particularly inert (Chorover et al.,
2004) and therefore it would be surprising if rainwater
exchange could strongly affect the Li isotope composition
of these horizons. Another possibility would be a preferen-
tial release of 6Li, either by isotope fractionation during
clay alteration or by the preferential dissolution of low
d7Li phases, leaving behind some secondary products,
which did not fractionate Li isotopes when they formed.
More detailed and experimental investigations are required
to better understand these particularly heavy signatures in
the surface horizons on the two oldest soils.

Although we show that non-linear evolution of the soil
d7Li with age can be related to the mineralogical evolution
of these soils, it is also interesting to note that the regolith
d7Li value co-varies with a global climate proxy (d18O of
benthic forams; Lisiecki and Raymo, 2005). Indeed, current
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conditions on these sites are reasonably comparable, with
MAP = 2500 mm and T = 16 "C on average, but if young
sites have passed their entire life under interglacial condi-
tions, the older sites have spent time in significantly different
climate conditions (Hotchkiss et al., 2000). The 20, 150, and
1400 ka sites spent at most 40% of their histories under con-
ditions similar to the modern interglacial, whereas the oldest
4100 ka site experienced the full range of Quaternary climate
variation, plus warmer and wetter conditions in the Pliocene.
Although this would need to be investigated with more data,
the co-variation between d7Li and d18O indicates a possible
control of climatic conditions on the soil d7Li, and therefore
on the water d7Li values (Fig. 7). The soil d7Li is close to the
value of the parent basalt at periods of time characterized by
low d18O value, i.e., when global temperature was higher.
This is consistent with more congruent release of Li isotopes
during periods of more intensive weathering of the basaltic
rocks, due to temperature increase. In contrast with conti-
nental record, the marine d7Li record (e.g., Hall et al.,
2005; Hathorne and James, 2006; Misra and Froelich,
2012) cannot be used to reconstruct rapid weathering
changes because of the long residence time of lithium in the
ocean (>1 Ma). As a consequence, any short-term change
of d7Li in the foraminifera can only be attributed to change
of isotope fractionation during foraminifera growth and not
due to change of sources or sinks.

6. CONCLUSIONS

The Hawaiian Islands LSAG chronosequence allows us
to examine the processes responsible for changes in the Li
isotope composition during progressive weathering and
basaltic soil formation. We determine a small contribution
from atmospheric deposits to the Li soil budget for all the
sites, which frees us to explore the details of silicate mineral
alteration processes on soil Li isotope signatures. The youn-
gest soils (0.3 ka) at the Thurston (Th) and Ola’a (Ol) sites
have the similar d7Li value as fresh basalt, indicating that
basalt dissolution does not result in significant Li isotope

fractionation during a period of 300 years. Older soils
(P20 ka) display more variable d7Li values compatible with
the known mineralogical and crystallographical evolution
of these profiles. In particular, the Li uptake by non-crystal-
line phases, such as allophane, imogolite and ferrihydrite,
and then by kaolinite play a key role. Finally, we suggest
that the non-linear evolution of the bulk soil d7Li value
as a function of time is consistent with a more congruent
release of Li isotopes during warmer periods.
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