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Key Points:  16 

• Future hurricanes will alter forest composition and decrease aboveground biomass 17 

accumulation  18 

• Predicted temperature and CO2 changes will have smaller effects on forest composition 19 

than future hurricane disturbances  20 

• Predicted temperature and CO2 changes cannot compensate for the biomass loss due to 21 

intense and frequent hurricane disturbances   22 
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Abstract  23 

Hurricanes are expected to intensify throughout the 21st century, yet the impact of frequent 24 

major hurricanes on tropical ecosystems remains unknown. To investigate tropical forest damage 25 

and recovery under different hurricane regimes, we generate a suite of scenarios based on CMIP6 26 

climate projections and increased hurricane recurrence and intensity for the Luquillo Experimental 27 

Forest, Puerto Rico. We then use the Ecosystem Demography Model to predict changes in carbon 28 

stocks, forest structure and composition. Our results indicate that frequent hurricane disturbances 29 

in the future would decrease the overall aboveground biomass, decrease the dominance of late-30 

successional species, but increase the dominance of palm species. Warmer climates with increased 31 

CO2 would have little effect on the functional-type composition but increase the aboveground 32 

biomass. However, the predicted climate and CO2 fertilization effects would not compensate for 33 

the biomass loss due to more frequent severe-hurricane disturbances.  34 

Plain language summary 35 

Tropical forests are subject to hurricane disturbances. The recovery of forests from 36 

hurricane disturbances is affected by both the hurricane events and the climate conditions (such as 37 

the CO2 concentration and temperature). Climate change will lead to warmer climate conditions 38 

and higher frequency and intensity of hurricane events over tropical areas. To study the effect of 39 

climate conditions and hurricane events on tropical forests under the changing climate, we 40 

simulated the responses of a tropical forest to different climate and hurricane scenarios using a 41 

vegetation dynamics model. Our simulation results show that frequent and intense hurricane events 42 

in the future will lead to carbon loss, which will not be compensated by carbon gain resulting from 43 

a warmer and higher-CO2 climate.  44 

1 Introduction 45 

Tropical forests have long been considered carbon sinks that absorb carbon dioxide from the 46 

atmosphere and reduce the carbon concentration in the atmosphere (Lugo and Brown 1992; Lugo 47 

and Wisniewski 1992; Phillips et al. 1998; Lewis et al. 2009). However, recent studies reveal that 48 

tropical forests could also be carbon sources that release more carbon than they absorb due to 49 

anthropogenic and natural disturbances (Dialynas et al. 2016a, 2016b, 2017; Baccini et al. 2017). 50 
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Disturbances affect vegetation, and the recovery may result in a different forest structure and 51 

composition (Vandermeer et al. 2000). Such changes in structure and composition may alter the 52 

role of forests in the global carbon balance. Furthermore, those changes in structure and 53 

composition consequently affect how future disturbances impact these forests (Zhang et al. 2022c). 54 

This is particularly important given the prospect of changes in intensity and frequency of 55 

disturbances, particularly hurricanes, resulting from climate change (Wang and Eltahir 2000; 56 

Knutson et al. 2008, 2010; Bender et al. 2010; Knutson et al. 2020; McDowell et al. 2020).  57 

Climate change alters the intensity, duration, and frequency of hurricane disturbances 58 

(Emanuel 1987, 2005; Webster et al. 2005; Knutson et al. 2008, 2010; Bender et al. 2010; Knutson 59 

et al. 2020), as well as the environmental conditions that affect the forest carbon cycle (Lewis et 60 

al. 2009; Medlyn et al. 2000; Zhang et al. 2015; Feng et al. 2018). Both immediate disturbance 61 

impacts (mortality) and the subsequent effects on growth of remaining trees will affect the recovery 62 

speed and the long-term state of population, size structure, species composition, and biomass 63 

accumulation of forests. 64 

Many studies have investigated the impact of climate change on forest structure and 65 

composition (e.g., Deb et al. 2018; Longo et al. 2018; Claeys et al. 2019) and carbon and biomass 66 

productivities (e.g., Medlyn et al. 2000; Zhang et al. 2015; Feng et al. 2018). The impact of 67 

hurricane disturbances on forest recovery has also been studied for specific hurricane events (e.g., 68 

Imbert and Portecop 2008; Heartsill Scalley 2017; Parker et al. 2018), but none of them 69 

investigated the implications of increased frequency and/or intensity of hurricanes predicted for 70 

future climate change scenarios.  71 

Here we focus on the impact of climate change and corresponding hurricane disturbances on 72 

forest structure, composition, and biomass accumulation. As different species respond differently 73 

to hurricane disturbances, species that are resistant to hurricanes likely become abundant after the 74 

disturbances (Lugo et al. 1998; Zhang et al. 2022d). Therefore, we hypothesize that frequent 75 

hurricanes in the future would alter forest species composition and increase the abundance of 76 

species that are resistant and resilient to hurricane winds, such as palms. Furthermore, both warmer 77 

air temperature and higher CO2 concentration are expected to increase tropical forest ecosystem 78 

photosynthesis (Tan et al. 2017) and biomass accumulation (Holm et al. 2019). Therefore, we 79 



Paper accepted for publication at Geophysical Research Letters 
https://doi.org/10.1029/2022GL100090 

 

4 

 

hypothesize that warmer climates with elevated CO2 concentrations accelerate the speed of 80 

biomass recovery. To test our hypotheses, we use the Ecosystem Demography model modified to 81 

consider hurricane disturbances, ED2-HuDi (Zhang et al. 2022b), to simulate the composition and 82 

biomass changes of a tropical forest after frequent hurricane disturbances in the future under 83 

different climate scenarios.  84 

2 Materials and Methods 85 

2.1 Study site 86 

The tropical forest at Bisley Experimental Watersheds (BEW) in the Luquillo Experimental 87 

Forest, Puerto Rico has been subject to three hurricane events in recent decades: hurricane Hugo 88 

in September 1989, hurricane Georges in September 1998, and hurricanes Irma and Maria in 89 

September 2017. The effect of each hurricane varied markedly. Hurricane Hugo caused extensive 90 

damage to the forest and altered forest composition and structure immediately after the hurricane 91 

and during the succession after the disturbance (Zhang et al. 2022d). Hurricane Georges had 92 

minimal impact on the forest (Ayala Silva and Twumasi 2004). Hurricane Maria, with the aid of 93 

hurricane Irma’s heavy precipitation a few days earlier, caused significant damage to forest 94 

vegetation, although not as drastic as the effects of hurricane Hugo (Zhang et al. 2022c). Between 95 

1989 and 2017, eight censuses have been conducted in more than 85 plots in the forest. The 96 

censuses recorded the species and diameter at breast height (1.3m) (DBH) for each stem with DBH 97 

≥ 2.5 cm (Zhang et al. 2020; 2022a). The latest census was conducted three months after hurricane 98 

Maria with auxiliary information on hurricane damage to each stem, and thus provided the pre-99 

Maria stem community as well. Following Zhang et al. (2022b), the species were grouped into 100 

four plant functional types (PFTs): early, mid, and late successional tropical trees and palms 101 

(hereafter Early, Mid, Late, and Palm PFTs). The Early, Mid, and Late PFTs are species that 102 

dominate the corresponding succession stages after a disturbance (Kammesheidt, 2000; Moorcroft 103 

et al. 2001; Medvigy et al. 2009; Longo et al. 2019a). The Palm PFT is newly identified as it cannot 104 

be grouped into any of the existing PFTs (Zhang et al. 2022b). 105 

2.2 Model setup 106 
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The ecosystem demography model (ED2) (Moorcroft et al. 2001; Medvigy et al. 2009; 107 

Longo et al. 2019a and 2019) describes the growth, reproduction, and mortality of each cohort, a 108 

group of trees with the same diameter size and PFT, in a plant community by simulating the 109 

transient fluxes of carbon, water, and energy. Therefore, the model describes the short-term 110 

physiological responses and long-term compositional and structural responses to changes in the 111 

environmental conditions. The ED2-HuDi model implements hurricane disturbances and the Palm 112 

PFT in the ED2 model and represents the compositional and structural responses to hurricane 113 

disturbances (Zhang et al. 2022b). The ED2-HuDi model has been calibrated for the recovery from 114 

hurricane Hugo with the census data at the study site. When compared to the nine observations, 115 

the calibrated model captures well the recovery of forest in terms of aboveground biomass (r=0.79, 116 

p=0.0199; MAE=30.8 Mg/ha), size structure (r=0.96, p=0.0002; MAE=2.8% for the proportion of 117 

stems with DBH < 10 cm), and PFT composition (r=0.96, 0.40, 0.99, and 0.67, p=0.0002, 0.3328, 118 

<0.0001, and 0.0707; MAE=3.5%, 6.9%, and 1.9%, and 6.9% for the proportion of Early, Mid, 119 

Late, and Palm PFTs, respectively) (Figure S1). Although the model overestimates Palm 120 

proportion and underestimates Mid proportion, nearly all estimates are within one standard 121 

deviation of the observations among the plots in the forest (Figure S1). Hence, we use this 122 

calibrated model to simulate the recovery of the BEW forest after hurricane Maria. Specifically, 123 

the initial forest condition is the pre-Maria observations, and the values of important parameters 124 

are from the optimal parameter set obtained in Zhang et al. (2022b). The uncertainty of model 125 

parameters has been discussed in detail in Zhang et al. (2022b). Here we will focus on the impact 126 

of different climate and hurricane scenarios.  127 

The climate scenarios include one current-climate scenario and several Shared 128 

Socioeconomic Pathways (SSPs) scenarios from the Coupled Model Intercomparison Project 129 

Phase 6 (CMIP6). For the current-climate scenario (SSP0 hereafter), future climate corresponds to 130 

observations between 1989 and 2017 (González, 2017) and the observations of each year are 131 

recycled randomly. We include bias-corrected climate projections for ten SSP245, nine SSP370, 132 

and ten SSP585 scenarios from ten CMIP6 models (Text S1). A higher SSP scenario is associated 133 

with higher temperature, higher CO2 concentration, and higher specific humidity, whereas the 134 

precipitation and solar radiation among SSP scenarios are not significantly different (Text S1). 135 
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The hurricane scenarios include one realization of no-hurricane scenario (FnIn), ten realizations 136 

of current-hurricane scenario (F0I0) where the frequency and intensity of future hurricanes remain 137 

unchanged from current conditions, and ten realizations of 10%, 20%, or 40% increase of intensity 138 

with 0% or 20% increase of frequency for future hurricanes (F0I10, F20I10, etc.). For example, 139 

F20I10 indicates increasing frequency by 20% and intensity by 10%. The frequency increase is 140 

reflected in the increase of the arrival rate compared to the current one which follows a Poisson 141 

distribution with arrival rate of 0.49 year-1. The intensity increase is reflected in the increase in 142 

mean wind speed compared to the current scenario, which follows a log-normal distribution with 143 

mean wind speed 2.66 m/s and standard deviation 0.63 m/s (Text S2). The climate and hurricane 144 

scenarios are listed in Table S1.  145 

3 Results and Discussion 146 

3.1 Recovery from Hurricane Maria under no-Hurricane Current-Climate Scenario 147 

To establish a baseline for the simulated forest dynamics, we first investigate the recovery 148 

of the forest after hurricane Maria between 2018 and 2100 under the no-hurricane current-climate 149 

scenario (FnIn-SSP0). Because of the wind resistant structure and composition at the time of 150 

hurricane Maria—dominated by Palm PFT and medium- and large-size stems, the forest did not 151 

experience severe damages from hurricane Maria. According to the model, the recovery of stem 152 

density would be relatively slow (Figure 1 a); the forest would not reach a pre-Maria state until 153 

year 2045. In contrast, AGB and BA could exceed the pre-disturbance level before year 2030 154 

(Figure 1 b and c) due to the biomass accumulation of a group of large Late trees (Figure S2).  155 

The predicted change in PFT composition and size structure are generally consistent with 156 

the succession theory that Early PFT increases right after a hurricane disturbance, then Mid PFT, 157 

and then Late PFT. However, the Mid PFT is predicted to decrease throughout the 80 years of 158 

simulation (Figure S3 b), possibly due to the low-competition parameterization of Mid compared 159 

to other PFTs (i.e., intermediate growth rate and intermediate mortality rate) (Zhang et al. 2022b). 160 

The coexistence of Early and Late PFTs supports the idea from previous studies that the trade-offs 161 

between growth and mortality facilitate the coexistence of early (high growth rate and high 162 

mortality rate) and late (low growth rate and low mortality rate) successional PFTs (Koven et al. 163 
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2020). Palm PFT has high growth rate in open canopies and low mortality, which facilitate its 164 

establishment after a disturbance (Zhang et al. 2022d). Palm PFT is predicted to establish and 165 

gradually increase in abundance right after the disturbance, reach the maximum 20 years after the 166 

disturbance, and be replaced by Late PFT after 20 years (Figure S3 b). The predicted increase in 167 

Palm abundance is consistent with previous census observations that identified an increase in seed 168 

production (Gregory and Sabat 1996) and stem abundance (Zhang et al. 2022d) after hurricane 169 

disturbances. By 2100, Late PFT would reach 69% of the total stem abundance, higher than that 170 

before the disturbance (46%). The size structure is predicted small-stem dominated right after the 171 

disturbance due to higher mortality of intermediate and large stems than small stems. Within 20 172 

years after the hurricane, the structure changes to intermediate- and large-stem dominated (Figure 173 

S3 a) due to establishment of Palm PFT (Figure S3 b). After 20 years, it changes to small-stem 174 

dominated (Figure S3 a) due to recruitment of Late PFT (Figure S3 b).  175 

The above results indicate that the no-hurricane current-climate environment will put the 176 

forest in a state that is dominated by small stems and Late PFT. This is consistent with the 177 

observations in the pre-Hugo census (1989) at the study site. At that time the forest had not 178 

experienced a hurricane disturbance for ~60 years (prior to that time the only hurricanes were San 179 

Felipe in 1928 and San Ciprián in 1932) and the dominant size and species in this long undisturbed 180 

forest were Late PFT and small stems (Zhang et al. 2022b). This further validates our model in 181 

capturing the long-term succession of the structure and composition of the forest after a hurricane 182 

disturbance. 183 
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 184 

Figure 1. Time series of the projected variables between 2018 to 2100 under the no-hurricane 

current-climate scenario (FnInSSP0). (a) The stem density (DBH ≥ 2.5 cm), (b) basal area 

(BA), (c) aboveground biomass (AGB), and the proportion of (d) small (2.5 ≤ DBH < 10 cm), 

(e) medium (10 ≤ DBH < 20 cm), and (f) large stems (DBH ≥ 20 cm) for each PFT.  

 185 

3.2 Impact of Hurricane Severity on the Recovery 186 

With hurricane disturbances in the future, the forest would take different recovery 187 

trajectories and succession dynamics and reach divergent steady states in terms of stem density, 188 

biomass accumulation (Figure S4), PFT composition and size structure (Figure S5). Recurring 189 

hurricane disturbances (all scenarios with hurricanes) will slightly decrease the stem density (-190 

5%), BA (-8%), AGB (-7%), and LAI (-5%) in the first 40 years but significantly (-21%, -20%, -191 

19%, -12%, respectively) after 40 years. The differences between the two periods are due to the 192 

differences in structure and composition that affect hurricane-induced mortality. In the first 40 193 

years, the forest is predicted to be dominated by the medium and large stems and have a high 194 

proportion of Palm PFT (Figure S5), which are resistant to hurricane disturbance, and thus the 195 

forest would be protected when a hurricane occurs. After 40 years, the size structure and PFT 196 

composition is predicted to change as the succession continues, and the forest becomes dominated 197 
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by small stems and the Palm abundance decreases (Figure S5). Such forest state would experience 198 

high mortality when a hurricane strikes, and thus the stem density, BA, AGB, and LAI are 199 

predicted to decrease significantly (Figure S4).  200 

During succession after severe hurricane (hurricanes exceeding a wind threshold, see 201 

Figure 2 for definition) disturbances, Palm is predicted to increase in stem proportion by 10% and 202 

Late to decrease by -12% (Figure S5). The proportion of medium and large stems will increase 203 

(9%; Figure S5) as Palm recruits and small trees grow big with the open canopy. The high 204 

proportion of wind-resistant large-DBH stems and Palm PFT will in turn protect the forest from 205 

further hurricane disturbances. Late will be the most dominant PFT in the forest in all hurricane 206 

scenarios at the end of 2100, but the PFT composition of the forest will change (Figure 2). With 207 

the presence of hurricanes, Early PFT would increase its proportion (0.21 for the average of 208 

hurricane-presence scenarios) compared to the no-hurricane condition (0.11), consistent with 209 

observations of early successional species having high recruitment after hurricane disturbances 210 

due to canopy opening (Brokaw 1998). However, the overall relationship between Early PFT 211 

proportion and severe hurricane frequency is not significant (Figure 2 a). Late PFT proportion has 212 

a weak negative relationship with severe hurricane frequency (p=0.07) (Figure 2 c), but this is 213 

largely due to the contrast between the no-hurricane scenario and the hurricane-presence scenarios. 214 

When considering scenarios with hurricanes, the negative relationship becomes insignificant 215 

(p=0.72). Palm PFT proportion has a significant positive relationship with severe hurricane 216 

frequency (Figure 2 d), which supports the idea that Palm will increase its abundance and 217 

dominance in forests that are subject to frequent hurricane disturbances (Gregory and Sabat 1996, 218 

Zhang et al. 2022d). With the probability of severe hurricane increasing 0.01 per year, the 219 

proportion of Palm is predicted to increase 2.48% (p=0.0016). Note that the calibrated model tends 220 

to overestimate Palm proportion (Figure S1), and thus the increase in Palm proportion with 221 

increasing severe-hurricane probability could be partially due to such overestimation. 222 
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 223 

Figure 2. The relationship between severe hurricane frequency and the proportion of (a) 

Early, (b) Mid, (c) Late, and (d) Palm PFT during 2091–2100 under the current-climate 

scenario (SSP0). The severe hurricane frequency is calculated as the probability of 

hurricanes exceeding the wind speed threshold for disturbance occurrence in the ED2 model 

(41m/s). The proportion of each PFT is the average proportion of the stem abundance during 

2091–2100. The error bars show the mean and standard deviation from the replications of 

the scenarios (see Table S1). The lines and texts are the linear regression for all scenarios 

(red) and for hurricane-presence scenarios (magenta). 

 224 

3.3 Impact of Climate on the Recovery 225 

Compared to the current-climate scenario (SSP0), SSP scenarios (SSP245, SSP370, and 226 

SSP585) (a higher SSP scenario is associated with a warmer and CO2-richer condition; Text S1) 227 

would increase AGB (11%, 13%, and 15%, respectively) and BA (10%, 12%, and 13%) under the 228 

no-hurricane scenario (FnIn) after 2060 (Figure 3). The increase in AGB and BA is because trees 229 

grow larger in DBH in higher SSP scenarios (Figure S6 a, b, and c). Larger trees mean larger 230 

crowns and thus stronger competition for understory trees. Therefore, AGB loss due to tree 231 

mortality is higher in higher SSP scenarios, which is especially significant for the Early PFT 232 
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(Figure S6 e). However, the growth effect exceeds the mortality effect, especially for the Late PFT, 233 

and thus higher SSP scenarios without further hurricane disturbances would enhance the overall 234 

biomass accumulation in the forest (Figure 3 b). A higher SSP scenario increases biomass but the 235 

differences in biomass are small among the three scenarios, suggesting that further enhancement 236 

above the SSP245 scenario was marginal.   237 

 238 

Figure 3. Time series of the simulated (a) BA and (b) AGB between 2018–2100 for each 

climate scenario under no-hurricane condition (FnIn). The three colored lines represent the 

mean from the CMIP6 models for the three climate scenarios (SSP245, SSP370, and SSP585), 

respectively. The shadings represent the 95% confidence interval of the mean. The black line 

represents the current-climate (SSP0) scenario. 

 239 

3.4 Joint Impact of Hurricane Severity and Climate on the Recovery 240 

Hurricane disturbances alone decrease biomass accumulation, while higher-SSP-scenario 241 

climates alone increase biomass accumulation. The joint effect of hurricane disturbances and 242 

higher-SSP-scenario climates is less straightforward. Figure 4 shows the recovery time (time to 243 

the pre-disturbance AGB level) and recovery state (the AGB state between 2091 and 2100) of 244 

AGB. Without hurricane disturbances (FnIn), the forest will take 5 years to recover to the pre-245 

disturbance level under the current-climate scenario (SSP0), and higher-SSP-scenario climates 246 

(SSP285+SSP370+SSP585) will decrease the recovery time to 4.07±0.17 years. With the presence 247 
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of hurricane disturbances (all hurricane-presence scenarios), the recovery time will increase to 248 

6.82±1.22 years.  249 

By 2100, the AGB without hurricane disturbance will reach 316 Mg/ha under the current-250 

climate scenario (SSP0), and the AGB will increase by 12%, 16%, and 18% under SSP245, 251 

SSP370, and SSP585 scenarios, respectively. However, biomass loss due to hurricane disturbances 252 

will reach -30% by 2100, and the higher-SSP-scenario climates cannot compensate for the biomass 253 

loss due to hurricane disturbances (Figure 4 b). With the 40% increase in hurricane intensity 254 

(F0I40), the forest will be at a very low AGB state (208 Mg/ha), and warmer climates further 255 

decrease the biomass accumulation (193, 205, and 205 Mg/ha under SSP245, SSP370, and 256 

SSP585, respectively). This is because higher-SSP-scenario climates enhance the recruitment of 257 

small Late trees in the short term (Figure S7 a and g), which decreases the proportion of large 258 

stems (Figure S7 d) and the proportion of wind-resistant palm PFT (Figure S7 h) and thus puts the 259 

forest into a state that is vulnerable to hurricane disturbances. These results reveal that higher-SSP 260 

scenarios would not always enhance AGB accumulation, especially under severe hurricane 261 

conditions. 262 
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 263 

Figure 4. (a) Recovery time and (b) recovery state of the forest for each hurricane and climate 

scenarios, and (c) the relationship between recovery state and severe hurricane frequency 

for each climate scenario. The recovery time in (a) is the time to pre-disturbance AGB level 

and the recovery state in (b) and (c) is the average AGB between 2091 and 2100. The bars 

and error bars in (a) show the mean value and the 95% confidence interval, respectively, 

from the replications of the scenario. The boxplots in (b) show the outliers, minimum and 

maximum, 25% and 75%, and the median and mean from the replications of the scenario. 

The error bars in (c) show the mean and standard deviation from the replications of the 

scenarios. The lines and texts in (c) show the linear regression for all scenarios (red) and for 

hurricane-presence scenarios (magenta). 

 264 

The biomass accumulation at the end of the 21st century would decrease with increasing 265 

severe hurricane frequency under SSP370 and SSP585 scenarios, but this relationship does not 266 
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exist under SSP0 and is only marginal (p=0.0910) under SSP245 (Figure 4 c). Every 0.01 increase 267 

in the probability of severe hurricane occurrence each year will lead to  8.31 Mg/ha (p=0.0910), 268 

11.78 Mg/ha (p=0.0102), and 12.88 Mg/ha (p=0.0173) AGB loss under the SSP245, SSP370, and 269 

SSP585 scenarios, respectively. This result further suggests that a climate with higher temperature 270 

and CO2 concentration would exacerbate the AGB loss from hurricane disturbances in the future. 271 

 272 

4 Conclusions  273 

Disturbances and extreme climates shift forest structure and composition (Levine et al. 274 

2016; Longo et al. 2018; Esquivel-Muelbert et al. 2019). Hurricane disturbances, among others 275 

(e.g., fires, windstorms, insects), damage trees and cause gaps in the forest canopy, allowing 276 

secondary succession (Zhang et al. 2022c). Hurricanes are becoming more frequent and intense 277 

under the changing climate; the recovery from the impact of a single hurricane has been studied 278 

(Heartsill Scalley 2017; Parker et al. 2018), but the impact of frequent hurricanes remains 279 

unknown, especially in the context of a changing climate. This study shows that hurricane 280 

disturbances and climate conditions could play a significant role in determining the recovery 281 

pathway of a tropical forest, including AGB and the PFT composition. With a high frequency of 282 

hurricanes, the forest will not have enough time to reach a steady state before it is again disturbed 283 

by a hurricane. Stronger hurricane disturbances favor the dominance of the Palm PFT in terms of 284 

stem proportion, as Palm has low hurricane-induced mortality and high recruitment rate when the 285 

canopy is open. More frequent and more intense hurricanes will lead to a lower level of AGB by 286 

2100. Higher-SSP-scenario (warmer and higher CO2 concentration) climates will increase the 287 

AGB accumulation when hurricane disturbance is absent but exacerbate the AGB loss from intense 288 

and frequent hurricane disturbances. Although this study focused on hurricane impacts on one 289 

particular tropical forest, the results presented here provide insights on the PFT recovery of tropical 290 

forests to frequent and intense disturbances. For example, our results indicate that frequent and 291 

intense disturbances alter the PFT composition and biomass accumulation, and such changes are 292 

strongly dominated by PFT resistance and resilience to disturbances. Since PFTs categorization 293 

and the disturbance impacts on PFTs could be site specific, cautions must be paid when 294 



Paper accepted for publication at Geophysical Research Letters 
https://doi.org/10.1029/2022GL100090 

 

15 

 

extrapolating the results regarding dominant PFT and AGB changes to other regions. As the 295 

hurricane-disturbance module in this study is based on limited observation data, future works 296 

should revisit the module if more data on hurricane impacts are available. 297 

 298 
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