
UC San Diego
UC San Diego Electronic Theses and Dissertations

Title
Fast and Efficient Numerical Methods in Level-Set Variational Implicit Solvent Model

Permalink
https://escholarship.org/uc/item/2rd8b3cv

Author
Zhang, Zirui

Publication Date
2012

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/2rd8b3cv
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA SAN DIEGO

Fast and Efficient Numerical Methods in Level-Set Variational Implicit
Solvent Model

A dissertation submitted in partial satisfaction of the
requirements for the degree Doctor of Philosophy

in

Mathematics

by

Zirui Zhang

Committee in charge:

Professor Li-Tien Cheng, Chair
Professor Chung Kuan Cheng
Professor Alexander Cloninger
Professor Bo Li
Professor Rayan Saab

2022

Copyright

Zirui Zhang, 2022

All rights reserved.

The Dissertation of Zirui Zhang is approved, and it is acceptable in quality

and form for publication on microfilm and electronically:

University of California San Diego

2022

iii

DEDICATION

To my family.

iv

TABLE OF CONTENTS

Dissertation Approval Page . iii

Dedication . iv

Table of Contents . v

List of Figures . vii

List of Tables . ix

Acknowledgements . x

Vita . xi

Abstract of the Dissertation . xii

Chapter 1 Introduction . 1

Chapter 2 Level Set - Variational Implicit Solvent Model . 3
2.1 Variational Implicit Solvent Model . 3
2.2 Level Set Method . 9
2.3 LS-VISM . 10
2.4 Motivation . 12

Chapter 3 Binary Level Set Method for Variational Implicit Solvent Model 14
3.1 Introduction . 14

3.1.1 Binary Level Set Method . 14
3.2 Numerical Method . 17

3.2.1 Discretization . 17
3.2.2 Algorithm and Implementation Detail . 21
3.2.3 Max-flow Formulation . 25

3.3 Numerical Results . 27
3.3.1 Surface Area of a Sphere . 27
3.3.2 One atom . 29
3.3.3 Two atoms . 31
3.3.4 Biomolecules . 33

3.4 Conclusion . 37
3.5 Proof of Propositions . 38

3.5.1 Integral formula of Surface Area . 38
3.5.2 Discretization error of Integral formula . 43

Chapter 4 Coupling Monte Carlo, Variational Implicit Solvation, and Binary
Level-Set for Simulations of Biomolecular Binding 52

4.1 Introduction . 52

v

4.2 Theory and Algorithm . 53
4.3 p53-MDM2: Simulation results and analysis . 54

4.3.1 Solvation Free Energy of p53-MDM2 . 54
4.3.2 Rigid-Body MC-VISM Simulations of the Binding of p53-MDM2 . 56

4.4 Conclusion . 59

Chapter 5 A Compact Coupling Interface Method for Elliptic Interface Problems 61
5.1 Introduction . 61
5.2 Numerical Method . 63

5.2.1 Dimension-by-dimension discretization . 64
5.2.2 Approximation of the jump condition . 66
5.2.3 Approximation of the mixed derivative . 69
5.2.4 Algorithm . 72

5.3 Numerical Results . 74
5.3.1 Example 1 . 74
5.3.2 Example 2 . 80
5.3.3 Example 3 . 83
5.3.4 Example 4 . 83

5.4 Conclusion . 85

Bibliography . 88

vi

LIST OF FIGURES

Figure 2.1. Explicit and implicit solvent model . 4

Figure 2.2. Schematic of the Variational Implicit Solvent Model 5

Figure 2.3. Schematics of the level set method . 11

Figure 3.1. Illustration of compactly supported kernel . 17

Figure 3.2. Illustration of tight and loose initial surface . 23

Figure 3.3. Illustration of a flow net whose min-cut corresponds to the minimizing
interface. 26

Figure 3.4. Convergence of surface area with different kernel functions and kernel
radii . 29

Figure 3.5. Convergence of the VISM energy of one atom . 30

Figure 3.6. Final interfaces of the two atom system with different separation . . . 32

Figure 3.7. Stable equilibrium solute–solvent interfaces of p53-MDM2 35

Figure 3.8. Stable equilibrium solute–solvent interfaces of BphC 36

Figure 3.9. Illustration of the term W (z− rθn, r). 40

Figure 3.10. Illustration of different cases in the error . 47

Figure 3.11. Estimation of |Qr,i| . 49

Figure 4.1. schematic of MC-VISM . 53

Figure 4.2. Solvation free energy (and relative components) of MDM2 and p53
along the reaction coordinate . 55

Figure 4.3. MC-VISM simulation results of binding of p53-MDM2 58

Figure 5.1. schematic for elliptic interface problem . 62

Figure 5.2. Taylor expansion at the interface . 65

Figure 5.3. Approximation of mixed derivative at xi. 70

Figure 5.4. The six interfaces (a) eight balls; (b) ellipsoid; (c) peanut; (d) donut;
(e) banana; (f) popcorn . 76

vii

Figure 5.5. Convergence results for the six surfaces. 77

Figure 5.6. The maximum condition number of the coupling matrices with banana
surface using scheme 1 and CCIM . 78

Figure 5.7. log-log plot of the maximum error in solution and gradient with banana
surface . 79

Figure 5.8. Contour of uxz at the grid point with maximum error in gradient. . 80

Figure 5.9. Scaling behavior of different solvers . 81

Figure 5.10. Convergence result for 1D63 interface . 82

Figure 5.11. Convergence result for MDM2 interface . 82

Figure 5.12. Convergence result with a(x) term . 84

Figure 5.13. Error for radii at final time . 86

Figure 5.14. Initial (inner) and final (outer) surface . 86

viii

LIST OF TABLES

Table 2.1. The VISM parameters. 9

Table 3.1. Solvation free energy and computation time for one atom with different
grid numbers. 31

Table 3.2. Solvation free energy and computation time for the two atoms system
with different separations . 33

Table 3.3. Solvation free energy (kBT) and computation time (s) for the protein
systems . 37

ix

ACKNOWLEDGEMENTS

I would like to thank my advisor and mentor Li-Tien Cheng. His support, patience,

insight and enthusiasm are inspiring. I’m also grateful to my co-advisor Bo Li for his

invaluable supervision and support. Thanks goes to Rayan Saab, Alexander Cloninger,

Chung Kuan Cheng, Randolph Bank, Sébastien Michelin for their guidance and support

in research. I would like to thank Clarisse Gravina Ricci, James Andrew McCammon,

Chao Fan, Shuang Liu for their help and contribution to the research projects. I would

like to thank NSF DMS 1913144 for partial support.

Chapter 3, in part, is a reprint of the material Zirui Zhang and Li-Tien Cheng.

“Binary Level Set Method for Variational Implicit Solvation Model” (2021). The dissertation

author was the primary investigator and author of the material.

Chapter 4, in part, is a reprint of the material Zirui Zhang, Clarisse G. Ricci,

Chao Fan, Li-Tien Cheng, Bo Li, and J. Andrew McCammon. “Coupling Monte Carlo,

Variational Implicit Solvation, and Binary Level-Set for Simulations of Biomolecular

Binding”. Journal of Chemical Theory and Computation (2021). The dissertation author

was the primary investigator and author of the material

Chapter 5, in part, is a reprint of the material Zirui Zhang and Li-Tien Cheng. “A

Compact Coupling Interface Method with Accurate Gradient Approximation for Elliptic

Interface Problems” (2021). The dissertation author was the primary investigator and

author of the material.

x

VITA

2016 B.Eng, Civil Engineering, The University of Hong Kong

2019 M.Sc., Computational Science and Engineering, University of California San
Diego

2022 Ph.D., Mathematics, University of California San Diego

xi

ABSTRACT OF THE DISSERTATION

Fast and Efficient Numerical Methods in Level-Set Variational Implicit Solvent Model

by

Zirui Zhang

Doctor of Philosophy in Mathematics

University of California San Diego, 2022

Professor Li-Tien Cheng, Chair

The level-set method (LS) is a widely-used and powerful tool for capturing moving

interfaces under complex dynamics in fields ranging from two-phase flow to image segmen-

tation. It has recently been successfully applied, in the Variational Implicit Solvent Model

(VISM), to find the “shape” of a biomolecule, the interface separating the solute atoms of

a biomolecule from the surrounding solvent. In the introduces fast and efficient numerical

methods for the application of the level-set method to VISM (LS-VISM), and can be boiled

down to two major contributions. The first of these involves the implementation and

analysis of a more discrete binary level-set method in LS-VISM that replaces traditional

continuous level-set functions with binary ones, and traditional partial differential equation

xii

solvers with discrete “flips” that minimize the free energy of the system. This results

in vast improvements in speed, with runtime decreasing from hours to seconds, which

ultimately allowed for its application in Monte Carlo simulations of the protein binding

process. The second contribution in my dissertation involves the construction and analysis

of the Compact Coupling Interface Method (CCIM), a finite difference method for elliptic

interface problems with interfacial jump conditions. This method is able to robustly

and accurately calculate values of not only the solution but its derivative as well, which

ultimately allows for the accurate handling of electrostatic contributions of the solute and

solvent in LS-VISM, which take this form as linearized Poisson-Boltzmann equations with

discontinuous dielectric constants across the interface.

xiii

Chapter 1

Introduction

We present two fast and efficient numerical methods related to the Level Set -

Variational Implicit Solvent Model (LS-VISM). The first is a binary level set method for

VISM. The second is the Compact Coupling Interface Method (CCIM) for elliptic interface

boundary value problems.

In Chapter 2, we introduce the biophysical background of the Variational Implicit

Solvent Model, which is a theoretical and computational tool to study biomolecular systems

with complex topology. Central in VISM is an effective free energy of all possible interfaces

separating solutes (e.g., proteins) from solvent (e.g., water). We briefly review the level

set method (LS), which can be used to minimize the VISM energy functional numerically

to determine the stable equilibrium interface and solvation free energies. We point out

the challenges of LS-VISM and the motivation for the two new numerical methods in this

dissertation.

In Chapter 3, we introduce the binary level set method and apply it to LS-VISM.

Instead of representing the interface as a zero level set of a continuous function, we

approximate the interface by a binary level set function that only takes values ±1 on

the solute or solvent region. An important ingredient is approximating the surface area

by convolution of an indicator function with a compactly supported kernel. We prove

the formula and analyze the discretization error. By discretizing the energy functional

1

using midpoint rule, we obtain a discrete formulation of VISM energy. The energy can

be minimized by iteratively “flipping” the binary level set function in a steepest descent

fashion. Numerical results are given to show that binary level set methods can be more

than 100 times faster in estimating the solvation energy.

In Chapter 4, we combine the fast binary level set - VISM and Monte Carlo (MC) to

study binding of biomolecule. In MC simulation of protein binding, we need to intensively

sample the energy landscape of the system, and the solvation energy needs to be evaluated

millions of time. This is only possible with our fast binary level set method, which can

obtain the energy in seconds instead of minutes compared with the classical continuous

level set method. We apply our method to the protein pair p53-MDM2. Our method

successfully capture some configurations before the final bound state of the system.

In Chapter 5, we describe and derive the Compact Coupling Interface Method

(CCIM), which is a finite different method for the elliptic interface problem with interfacial

jump conditions. Our method can calculate solution values and their derivatives up to

second-order accuracy in arbitrary ambient space dimensions. Numerical results on various

geometric shapes and on complex protein shapes in three dimensions demonstrate the

efficacy, accuracy and robustness of our method.

2

Chapter 2

Level Set - Variational Implicit
Solvent Model

2.1 Variational Implicit Solvent Model

Water is the ubiquitous solvent of life and an important player in may biomolecular

processes, including protein folding and protein binding [24, 1]. One common method to

study and capture the effect of water is the explicit solvent molecular dynamics (MD)

simulations. In these simulations, the trajectories of each individual water molecules are

computed explicitly. MD simulations are accurate but computationally expensive, as the

number of water molecules can be orders of magnitude larger than the protein.

In contrast to explicit models of water, in an implicit solvent model, water is

treated as an continuum medium, which is separated from the solute by the solute-solvent

interface. Common implicit solvent model rely on a predefined interface that only make

use of properties and coordinates of the solute atoms. For example, the solvent accessible

interface (SAS) is defined by rolling a ball over the surface of the molecule. Although

these pre-established interface can be useful in estimating the solvation energy, they fail

to capture some important behaviors that are observed in explicit simulations, such as

polymodal hydration - in which the interfaces fluctuate between different states, and

dewetting - in which water are completely excluded in the “pocket” of a biomolecule.

Instead of “guessing” where is the interface, in the Variational Implicit-Solvent

3

Model (VISM) [12, 11], an energy functional is defined over all the interfaces that enclose

the molecule. The VISM energy consists of surface energy, van der Walls interaction

energy, and electrostatic energy. The solute-solvent interface is the minimizer of the energy

functional. Therefore, the effect of different component of the energy are coupled and the

interface is the output of the theory.

Figure 2.1. Explicit and implicit solvent model. The solute region, solvent region, and
solute-solvent interface are denoted by Ωm, Ωw, and Γ

The VISM solvation free-energy functional of all possible solute-solvent interfaces Γ

is defined as follows

G[Γ] = Gsurf [Γ] +GvdW[Γ] +Gelec[Γ] (2.1)

4

Figure 2.2. Schematic view of a molecular system with implicit solvent. The atoms are
located at ri with charge Qi and LJ parameter σi and εi. An interface Γ (dashed line)
separates the solvent region Ωw from the solute region Ωm. In continuous level set method,
Γ is represented by the zero level set of a function. In the binary level set method, the
computational domain is discretized in to grid cell. φ = −1 for grid cells inside the solute
region (white) and φ = 1 for grid cells in the solvent region (grey)

5

Here, the first term is the surface surface energy

Gsurf [Γ] =

∫
Γ

γ dS (2.2)

where γ is the interfacial surface tension. In general, it’s assumed that γ(x) = γ0(1−τH(x)),

where γ0 is the constant surface tension of a planar liquid-vapor interface, τ is the curvature

correction coefficient called the Tolman length [12] and H is the mean curvature of the

interface.

The second term is the van der Waals (vdW) type interaction energy between the

solute and the solvent

GvdW[Γ] = ρw

N∑
i=1

∫
Ωw

Ui(|x− ri|)dV. (2.3)

Here ρw is the water density. Ui is the Lennard-Jones (LJ) potential for atom i

Ui(r) = 4εi

[(σi
r

)12

−
(σi
r

)6
]
, (2.4)

where εi and σi are the energy and length parameter of atom i.

We consider two different formulations of the electrostatic energy Gelec[Γ]: the

Coulomb Field Approximation (CFA) and the Poisson-Boltzmann theory. The CFA allows

for a simple analytical formula for the effective boundary force, which is used as the normal

velocity in the level set numerical optimization. However, it does not describe the effect of

ionic charges in the solvent. The PB theory is a well-established continuum description

of electrostatic interactions of biomolecules in an aqueous solvent. However, we need to

solve the PB equation with complex dielectric boundary, and the effective boundary force

depends on the jump in the gradient of the solution.

In the Coulomb Field Approximation (CFA) [35], the electrostatic energy is given

6

by

GCFA
elec [Γ] =

1

32π2ε0

(
1

εw
− 1

εm

)∫
Ωw

∣∣∣∣∣
N∑
i=1

Qi(x− ri)

|x− ri|3

∣∣∣∣∣
2

dV. (2.5)

Here the solute atoms carry partial charges Qi’s. ε0 is the vacuum permittivity. The

relative dielectric permittivities of the solute and solvent regions are denoted by εm and

εw.

Alternatively, in the Poisson-Boltzmann (PM) theory, the electrostatic energy is

given by

GPB
elec[Γ] =

1

2

N∑
i=1

QiΨreac(ri)−
1

2

∫
Ωw

M∑
j=1

qjc
∞
j Ψe−βqjψdV − β−1

∫
Ωw

M∑
j=1

c∞j (e−βqjΨ − 1)dV.

(2.6)

Here, we assume that there are M ionic species in the solvent. For the j-th ionic species,

c∞j is the bulk concentration, and qj is the charge. β−1 = kBT with kB the Boltzmann

constant and T is the absolute temperature. The first term in (2.6) is the electrostatic

potential energy corresponding to the fixed solute charges, and the other terms corresponds

to the ions in the solvent. Ψ = Ψ(x) is the electrostatic potential, Ψreac = Ψ−Ψref is the

reaction field, and

Ψref(x) =
N∑
i=1

Qi

4πε0εm|x− ri|
, (2.7)

which is the potential for the reference state, with ε0 the vacuum permittivity and εm the

dielectric coefficient of the solute region.

The electrostatic potential Ψ solves the boundary-value problem of the PB equation

7



−ε0εm∇ · (∇Ψ) =
∑N

i=1 Qiδri in Ωm

−ε0εw∇ · (∇Ψ) =
∑M

j=1 qjc
∞
j e
−βqjΨ in Ωw

[Ψ] = τ on Γ[
ε∂Ψ
∂n

]
= 0 on Γ

Ψ = Ψ0 on ∂Ω

(2.8)

Here, δri is the dirac delta function. ε = ε(x) is a piecewise constant function, which takes

the value εm in Ωm and εw in Ωw. We use the notation [f] for the jump of a function f

across the interface

[f](x) = lim
h→0

f(x + hn)− f(x− hn) (2.9)

And Ψ0 is the Dirichlet boundary condition often used in practice.

Ψ0(x) =
N∑
i=0

Qie
−κ|x−ri|

4πε0εw|x− ri|
, κ =

√
ε0εw∑M
j=1 c

∞
j q

2
j

(2.10)

where κ is called the inverse Debye length.

Instead of solving for the potential directly, we solve for Ψreac

−ε0εm∇ · (∇Ψreac) = 0 in Ωm

−ε0εw∇ · (∇Ψreac) =
∑M

j=1 qjc
∞
j e
−βqj(Ψreac+Ψref in Ωw

[Ψreac] = 0 on Γ[
ε∂Ψreac

∂n

]
= [ε]∂Ψref

∂n
on Γ

Ψreac = Ψ0 −Ψref on ∂Ω

(2.11)

Notice that this is still a nonlinear elliptic PDE with interface jump condition. To solve it,

8

we use Newton’s iteration, for k = 1, . . . , p



−ε0εm∇ ·
(
∇Ψ

(k+1)
reac

)
= 0 in Ωm

−ε0εw∇ ·
(
∇Ψ

(k+1)
reac

)
=
∑M

j=1 qjc
∞
j (1 + βqjΨ

(k)
reac)e−βqj(Ψ

(k)
reac+Ψref) in Ωw[

Ψ
(k+1)
reac

]
= 0 on Γ[

ε∂Ψ
(k+1)
reac

∂n

]
= [ε]∂Ψref

∂n
on Γ

Ψ
(k+1)
reac = Ψ0 −Ψref on ∂Ω

(2.12)

which is a linear elliptic PDE with interface jump condition. PDEs such as (2.12) are

called elliptic interface problems. As will be explained section 2.3 later , in order to find

the minimizer, we need accurate solution of Ψ and the gradient ∂Ψ/∂n at the interface.

We proposed a finite different method for elliptic interface problem in 5 that is second

order accurate in both the solution and the gradient at the interface.

In Table 2.1, we list the physical constants used in VISM

Table 2.1. The VISM parameters.

Parameter Symbol Value Unit
temperature T 298 K

solvent number density ρw 0.0333 Å−3

surface tension γ0 0.174 kBT/Å
2

solute dielectric constant εm 1
solvent dielectric constant εw 80

2.2 Level Set Method

The Level Set Method (LSM) [29, 28] is a widely used numerical method to capture

the dynamics of an moving interface. One advantage of the level set method is that it

can easily handle topological changes, such as merging and breaking. Some applications

includes two-phase fluid flow, crystal growth, shape optimization, image processing, etc.

9

As shown in Figure 2.3, in LSM, the evolving interface Γ = Γ(t) is represented as the zero

level set of a level set function φ = φ(x, t). The motion of the interface is described by the

partial differential equation (PDE) called the level-set equation

φt + vn|∇φ| = 0, (2.13)

where vn = vn(x) is the normal velocity of the interface. Various geometric quantities

can be obtained from the level set function, such as the unit normal vector n, the mean

curvature H, and the Gaussian Curvature K:

n =
∇φ
|∇φ|

, H =
1

2
∇ · n, K = n · adj(He(φ))n, (2.14)

where He(φ) is the Hessian matrix of the function φ, and adj(He(φ)) is the adjoint of

the Hessian. The level set function is usually assumed to be Lipschitz continuous, and

sometimes it’s chosen to be the signed distance function to the interface.

One major advantage of the level set method is that it can easily handle topological

changes, such as merging and breaking of two shapes. For example, in Figure 2.3, imagining

the whole level set function is lifted up, than we can see the zero level set will break into

two circles, and the two circles will shrink and disappear.

2.3 LS-VISM

The VISM energy functional can be minimized using LSM by evolving the the

interface in the steepest descent direction of the the VISM energy functional.

vn(x) = −δΓG[Γ] = vsurf
n (x) + vvdW

n (x) + velec
n (x) (2.15)

10

Figure 2.3. Schematics of the level set method

The force due to surface energy is given by

vsurf
n (x) = 2γ0(H(x)− τK(x)) (2.16)

where H is the mean curvature and K is the Gaussian curvature.

The force due to vdW energy is given by

vvdW
n (x) = ρw

N∑
i=1

Ui(|x− ri|) (2.17)

The force due to electrostatic energy using CFA is given by

velec,CFA
n (x) =

1

32π2ε0

(
1

εw
− 1

εm

) ∣∣∣∣∣
N∑
i=1

Qi(x− ri)

|x− ri|3

∣∣∣∣∣ (2.18)

11

The force due to electrostatic energy using PB theory is given by

velec,PB
n (x) =

ε0

2

(
1

εw
− 1

εm

)(
ε
∂Ψ

∂n

)2

+
ε0

2
(εm − εw) |(I − n⊗ n)∇Ψ|2−

β−1

M∑
j=1

c∞j (e−βqjΨ − 1)

(2.19)

where I is the identity matrix. (I − n⊗ n) is the projection matrix to the tangent plane.

Note that ε ∂Ψ/∂n and |(I −n⊗n)∇Ψ| are continuous on the interface. In order to have

accurate dielectric boundary force, we not only need accurate values of Ψ but also accurate

gradient at the interface. This motivates our work in 5, the Compact Coupling Interface

Method (CCIM).

2.4 Motivation

We point out the challenges of LS-VISM, and how the numerical methods in the

dissertation address those issues. Firstly, LS-VISM is computationally expensive, as we

need to solve a PDE to steady state to obtain the solvation energy. Hence it’s impractical

to apply VISM in some intensive sampling method, such as Monte Carlo method, where

the energy needs to be evaluated millions of times. That motivates our binary level set

method in chapter 3, which can be hundreds times faster. And the speedup allow us to

apply VISM in Monte Carlo simulation of protein binding in chapter 4.

Secondly, when we used the Poisson-Boltzmann theory to describe the electrostatic

energy, the interfacial velocity in LS-VISM depends on the jump in the derivative of the

solution to an elliptic boundary value problem with interfacial jump conditions. Thus, we

need accurate solution and gradient so that the evolving interface is accurate. In addition,

in the context of our application, the interface will have complex shapes following the

biomolecule, and the grid might be resolve all the detail of the interface. Therefore, the

finite difference scheme needs to be compact and robust. Our Compact Coupling Interface

12

Method (CCIM) can approximate the gradient accurately and the convergence result is

robust even for complex shapes.

13

Chapter 3

Binary Level Set Method for Varia-
tional Implicit Solvent Model

3.1 Introduction

In this chapter, we consider the a simpler model of surface energy, where the surface

tension is a constant γ = γ0, so the surface energy is

Gsurf [Γ] = γ0 Area(Γ) (3.1)

We also use the CFA formulation of electrostatics. Our energy has this form

G[Γ] = γ0 Area(Γ) +

∫
Ωw

U(x)dV (3.2)

The second term is a volume integral in the water region.

3.1.1 Binary Level Set Method

In the Binary Level Set Method (BLS), we approximate the interface by a binary

level set function, which is −1 in the solute region Ωm and 1 in the solvent region Ωw.

Compared with a continuous level set function, we no longer a smooth representation of

the interface. And it’s difficult to obtain accurate and convergent geometric quantities

such as the normal vector and the curvature.

14

The idea of BLS is introduced to minimize the Mumford Shah functional in image

segmentation problems. Consider a two-dimensional image u0 defined on the image domain

Ω, and suppose we want to approximate u0 by a two-phase image, which is a piecewise

constant function that takes value cm in Ωm and cw in Ωw. Here we use Ωw and Ωm as some

partition of the image Ω = Ωw ∪ Ωm, without the physical meaning of solvent and solute

region. The segmenting curve Γ can be represented as the zero level set of a continuous

level set function φ. Ωw = {x : H(φ(x)) = 1}, and similarly for Ωm. The following “energy”

is minimized

F (φ, cm, cw) = µ

∫
Ω

|∇H(φ)|dΩ + λw

∫
Ω

(u0 − cw)2H(φ)dΩ+

λm

∫
Ω

(u0 − cm)2(1−H(φ))dΩ.

(3.3)

In the level set formulation, length(Γ) =
∫

Ω
|∇H(φ)|dΩ. µ, λw, and λm are parameters

provided by the user.

Notice that energy (3.3) is similar to our VISM functional (3.2). They both includes

the length/area of the curve/surface, and integral in the inside or outside region. In image

segmentation problem, the length is an hyper-parameter that serves are a regularizing

term [14]. For an image without noise, we can even set µ = 0, as the length scale is not

important. However, in our energy functional (3.2), we need to approximate the surface

area accurately, so that the surface energy component is accurate.

To minimize the piecewise constant Mumford-Shah functional (3.3), one way is to

formulate it as a constrained optimization problem, with the constrain φ2 = 1 that forces

φ to be a binary level set function, then apply the projected Lagrangian method or the

Augmented Lagrangian method [25]. In [33], the energy is minimized directly by “flipping”

the value of the binary level set function in a steepest descent direction. This approach is

similar to our method of minimizing the VISM energy functional. However, the length of

15

the curve is approximated in an ad-hoc way:

∫
Ω

|∇H(φ)|dΩ ≈
∑
i,j

√
(H(φi+1,j)−H(φi,j))

2 + (H(φi,j+1)−H(φi,j))
2 (3.4)

Essentially the formula approximate the curve by the edges or diagonal of the grid cells of

length 1 or
√

2. And the formula do not converge to the length of the curve. Hence, it

remains to devise a formula to approximate the surface area of an interface defined by a

binary level set function.

In [34, 26], the following expression is used to approximate the interfacial area

between two region:

Pδt(Ω) =

√
π

δt

∫
Ωc
Gδt ∗ 1Ωdx, (3.5)

where

Gδt(x) =
1

4πδt
exp

(
−|x|

2

4δt

)
(3.6)

is the heat kernel. Formula (3.5) is first convolving the heat kernel Gδt with the indicator

function of Ω, then integrating in Ωc. The integral measures the amount of heat that

escapes out of Ω in a short period of time, and it’s know that as δt converge to 0, the

expression converge to the perimeter of a regular set [20].

In this work, we use the following proposition. We detailed the derivation in section

3.5.1.

Proposition 1 (Integral formula of surface area). Let Γ = ∂Ω be a compact smooth

hypersurface in Rd, K be a continuous, radially symmetric, compact kernel with unit

radius. Then for 0 < r � 1

Area(Γ) = CK,r,d

∫
x∈Ω

∫
y∈Ωc

K

(
|x− y|
r

)
dydx +O(r2), (3.7)

16

where

CK,r,d =

(
rd+1Cd

∫ 1

0

K(r)rddr

)−1

, Cd =
2π

d−1
2

(d− 1)Γ(d−1
2

)
(3.8)

Here, Γ(·) in Cd is the Gamma function.

3.2 Numerical Method

3.2.1 Discretization

Figure 3.1. Illustration of a scaled kernel centered at the center xi of a grid cell and
vanishing outside a sphere (indicated by the broken lines). Black dots represent centers
of grid cells in the solvent region Ωw and circles represent the centers of grid cells in the
solute region Ωm.

Using our integral formulation of the surface area (3.7), every term in the VISM

functional (2.1) is a volume integral and can be approximated by the midpoint rule. For

the surface area (3.7), we need to scale the kernel radius r correctly. For instance, if we

17

choose r ∼ h, then as h goes to 0, we are “zooming in” to the interface and in each kernel,

the interface will become essentially flat. The correct scaling is that r ∼
√
h and we prove

the following proposition in section 3.5.2.

Proposition 2 (Numerical approximation of surface area). If K is twice continuously

differentiable in (3.7), and r ∼
√
h, then

Area[Γ] = CK,r,d h
6
∑
xi∈Ω

∑
xj∈Ωc

|xj−xi|≤r

K

(
|xi − xj|

r

)
+O(h) (3.9)

Therefore, the surface energy has the following approximation

Gsurf [Γ] =
∑

xi∈Ωm

∑
xj∈Ωw

|xj−xi|≤r

Kij +O(h) (3.10)

where

Kij = γ0CK,r,dh
6K

(
|xi − xj|

r

)
. (3.11)

In words, we go through the grid points xi in Ωm, put a kernel centered at xi, and sum up

the part of the kernel in Ωw, as illustrated in Figure 3.1.

The volume integrals GvdW[Γ] and Gelec[Γ] can also be approximated by the midpoint

rule:

GvdW[Γ] =
∑
xi∈Ωw

(GvdW)i +O(h) (3.12)

where

(GvdW)i = ρw

N∑
j=1

Uj(|xi − rj|)h3 (3.13)

Similarly, for the electrostatic energy

Gelec[Γ] =
∑

xi∈Ωw

(Gelec)i +O(h), (3.14)

18

where

(Gelec)i =
1

32π2ε0

(
1

εw
− 1

εm

) ∣∣∣∣∣
N∑
j=1

Qj(xi − rj)
|xi − rj|3

∣∣∣∣∣
2

h3 (3.15)

Here, we can think of (GvdW)i and (Gelec)i as the contribution to the vdW and electrostatic

energy from the grid cell centered at xi when it’s filled with water.

The discrete VISM total energy is given by

Gdisc
VISM[Ωm] =

∑
xi∈Ωm

∑
xj∈Ωw

|xj−xi|<r

Kij +
∑
xi∈Ωw

(GvdW)i + (Gelec)i, (3.16)

which is determined by the configuration of the grid cells classified to be in the solute

region Ωm.

A useful quantity in our minimization algorithm is the energy change ∆Gi if the

value of φ is flipped: if xi ∈ Ωm,

∆Gi =
∑

xj∈Ωw

|xj−xi|<r

Kij −
∑

xj∈Ωm

|xj−xi|<r

Kij + (GvdW)i + (Gelec)i. (3.17)

Here, the first two terms compute the difference of the kernel in Ωw and Ωm. The

third and the forth terms are the contribution to the vdW energy and electrostatic energy

if we fill the cell with water. If xi ∈ Ωw, the change will be −∆Gi. Note that if xi is

flipped, then the ∆Gj of the neighboring grids (xj with |xj −xi| < r) needs to be updated

because of the compactness of the kernel. More specifically, suppose we flip one grid cell

et each step of our algorithm, and let ∆G
(k)
i be the energy change if φi is flipped at the

step k, then

∆G
(k+1)
j =


−∆G

(k)
j j = i

∆G
(k)
j − φiφj2Kij j 6= i, |xj − xi| < r

∆G
(k)
j otherwise

(3.18)

19

Notice that the work to perform the update is proportional to the number of grid cell

covered by the kernel.

Integration outside of computation box

For details on how to compute the integral GvdW[Γ] and Gelec[Γ] outside of the

computational box, see [8]. The idea is to partition the region outside of the computational

box Ωc, write the integral in different partition in cylindrical or spherical coordinate,

integrate analytically in two of the dimensions, and finally compute the one-dimensional

integral with composite Simpson’s rule.

Here we discuss another method that make use of parallel computing. Let Ω be a

cube of equal side in R3, centered at the origin, and S be the sphere inscribed in Ω. Then

we can write the integral in spherical coordinate

∫
Ωc

f(x)dx =

∫
Sc

1Ω(x, y, z)f(x, y, z)dxdydz

=

∫ π

0

∫ 2π

0

∫ ∞
R

1̂Ω(θ, ϕ, r)f̂(θ, ϕ, r)r2 sin θdrdθdϕ

=

∫ π

0

∫ 2π

0

∫ 1/R

0

1̂Ω(θ, ϕ,
1

ρ
)f̂(θ, ϕ,

1

ρ
)ρ−4 sin θdρdθdϕ

(3.19)

In the second equality, we change from Cartesian coordinate to Polar coordinate. In the

last equality, we perform a change of variable ρ = r−1.

We apply the mid point rule

∫
Ωc

f(x)dx ≈
∑
i,j,k

1̂Ω(θj, ϕk,
1

ρi
)f̂(θj, ϕk,

1

ρi
)ρ−4h3 +O(h) (3.20)

Note that the summand can be computed in parallel. Through experiment we

found that our implementation of this method (using OpenCL and OpenMP) achieve

desirable accuracy in shorter time compared with the method in [8].

20

3.2.2 Algorithm and Implementation Detail

In this section, we first outline our algorithm, and then we discussion some compu-

tation details of the algorithm.

We minimize the discrete VISM energy (3.16) in a steepest descent fashion by

iteratively “flipping” the φ value. Since we need to repeatedly find the grid cell with

the smallest negative ∆Gi, we use the min-heap data structure, which takes logarithmic

time to retrieve the smallest element. The element of the heap is the pair (∆Gi, i). The

following is the outline of the algorithm.

Algorithm 3.2.1: Binary Level Set - VISM algorithm

input : γ0, ρw, ε0, εm, εw, and atomic parameters ri, Qi, εi, and σi, for all
i = 1, . . . , N . Choose a computational box [−a, a]3 according to the
atomic coordinates and discretize the box uniformly with the
prescribed computational grid size h.

1 Initialize the kernel function and the binary level set function. Construct the
collection of interface points I

2 Compute and store (GvdW)i (3.13) and (Gelec)i (3.15) at grid cells i.
3 Compute ∆Gi (3.17) for all i ∈ I. Insert the pair (i, ∆Gi) to the heap data

structure H if ∆Gi < 0
4 while mini∈H∆Gi < 0 do
5 Extract and remove the minimum value (i,∆Gi), flip φi
6 Update ∆Gj (3.18) at the neighboring center point xj with |xj − xi| ≤ r.
7 Update I and H
8 end

As the flipping proceeds, the total energy of the system decreases monotonically. In

the end, we reach a local minimum where there is no single flipping that can decrease the

energy. However, there might be simultaneous flipping that can further reduce the energy.

In fact, the global minimum can be found by min-cut max-flow algorithm, as explained in

Appendix 3.2.3, though it’s much more time consuming.

There are different ways to carry out the flipping procedure. In Jacobi iteration,

one goes through all the grid cell and flips all the grid cells with negative ∆G together,

and then compute their updated ∆G. In a Gauss-Seidel iteration, one flips the grid cell

21

one by one [33] and update ∆G immediately. Here we are taking a flow-based approach,

aiming to find the local minimum that is close to the initial guess. From our experience,

for simple shapes, these different approaches lead to the same minimum.

Initial Guess

Because the VISM energy functional is non-convex, we may obtain local minimums

depending on the initial guess. These local minimizer corresponds to polymodal hydration

states. In MD simulations, the interface would fluctuate between those different states,

and such fluctuation affects the binding process [30] Therefore, it’s desirable to capture

different local minimizers. We usually use two types of initial surfaces called “tight” and

“loose” initial. The tight initials is the unions of spheres center at the solute atoms. In our

computation, we choose the radius of the sphere to be σi, so that the tight initial is also

the vdW surface. The loose initial is a large surface that loosely encloses all the atoms.

By marking all the grid point as solute region, we get a loose initial that is the boundary

of the computation box

Efficient Update

We implement our binary heap with some extra information to make our flipping

algorithm fast, at the expanse of extra memory use. During the flipping procedure, we

only keep elements with negative energy change and indices next to the interface, The

aims is to keep the number of elements in the heap as small as possible. As a result,

points may be inserted or deleted several times during the whole flipping procedure. Also

notice that ∆Gi can be computed in time proportional to the number of points in the

kernel, but update in constant time as in (3.18). Therefore, as the interface evolves, we

will compute and store ∆Gi whenever the i-th grid cell is first encountered, and update

its value afterwards, even though the element may not be in the heap at the current step.

At the beginning, we insert all the interface points with negative energy change into

22

Figure 3.2. Illustration of a tight initial surface (dashed line), a loose initial surface
(dash-dotted line), and a VISM relaxed surface (solid line) Γ surrounding the atoms (dots).
For loose initial, we set φ = −1 for all grid cells. The tight initial is the union of sphere of
radius σi centered at ri.

23

the heap. Suppose we first remove (∆Gi, i) and flip the sign of φi. Then we go through all

the neighboring grid points xj within the kernel, and there are a few different situations:

1. If the xj is not an interface point before the flip, but an new interface point afterward,

then we compute and store ∆Gj.

2. If the xj is an interface point before and after the flip, we update ∆Gj using (3.18).

3. If the xj is an interface point before the flip, but no longer an interface afterward,

we delete the element from the heap.

4. If the xj is not an interface point before and after the flip, nothing is performed.

Here, ∆Gj is stored whenever it is computed or updated, but only inserted into the heap

if it is negative.

Parallel Computing

We discuss the implementation of aspects of our free energy functional minimization

algorithm using parallel computing. By performing simultaneous computations, we can

significantly speed up the calculation of VISM free energy. In our work, we leverage

modern graphical processing unit (GPU) and supercomputer clusters.

Both Gelec and GvdW are volume integral in Ωw of the following form, which can be

approximated using midpoint rule,

∫
Ωw

U(R,x)dx =
∑
xi∈Ω

1Ωw(xi)U(R,xi)h
3 +O(h)

Here U depends on the position of all the atoms R, and the summation is over all n3 grid

points in the computational box. This summation is computational intensive as the n is

typically between 100 and 200. However, each summand can be evaluated independently

and in parallel. In GPU implementation, each grid point form a work-item (OpenCL) or

thread (CUDA). In an OpenMP implementation, we can use a parallel for–loop. Similar

idea is also used to handle the integration outside the computational box Ω in section

24

3.2.1.

3.2.3 Max-flow Formulation

We also note that a flow network can be constructed such that the capacity of a

graph cut corresponds to the discrete VISM energy of a binary level set function. Therefore,

min-cut max-flow algorithms can be used to find the global minimum energy.

Let M be a constant such that M +Gvdw
i +Gelec

i ≥ 0 for all xi. Such a constant

exist because (GvdW)i + (Gelec)i is always bounded below. The purpose is to make sure

that the capacity of all the edges in the flow net is non negative. Let every grid point be

a node in the graph and denoted by xi ∈ Ω. Connect the source s to xi with capacity

GvdW
i +M +Gelec

i , and connect the xi to the sink with capacity M . Then for every pair

of distinct nodes xi and xj , if |xj − xi| < r, connect them to each other with two directed

edges of capacity Kij . An illustration of the flow net is shown in Fig. 3.3. Then any graph

cut ({s,Ωm}, {t,Ωw}) has the capacity

∑
xi∈Ωm

∑
xj∈Ωw
|xj−xi|<r

Kij +
∑

xi∈Ωw

((GvdW)i + (Gelec)i +M) +
∑

xi∈Ωm

M = G[Ωm] +
∑
x∈Ω

M.
(3.21)

which has the same minimizer as the discrete VISM energy (3.16).

We briefly experimented with the Boykov’s min-cut max-flow algorithm [3] on our

discrete VISM energy. For simple test cases with one or two atoms, the results are the

same as those from our flipping algorithm. For the p53-MDM2 experiment, the global

minimum is only slightly below the minimum obtained from flipping with a tight initial.

However, min-cut max-flow algorithm is much more time consuming. Hence we didn’t

make further investigation along this line.

25

Figure 3.3. Illustration of a flow net whose min-cut corresponds to the minimizing
interface.

26

3.3 Numerical Results

In this section, we present several numerical tests, all in three dimensions. We first

test our formula of approximating surface area (3.4) using a sphere. We experiment with

different kernel functions and kernel radii. Then we test our method with different systems:

one atom, two atoms, and a pair of protein. We mainly compare the new BLS-VISM

with the previous CLS-VISM, and demonstrate that the BLS-VISM can achieve similar

accuracy as CLS-VISM but in much shorter time. For CLS-VISM calculations, the forward

Euler method is used to discretize the time derivative in the level-set equation, and a

fifth-order WENO (weighted essential-non-oscillation) scheme is used to discretize the

spacial variables. For details, the reader can refer to [35].

For comparison of speed, we only compare the time for flipping in BLS-VISM and

solving the time dependent PDE in CLS-VISM. We exclude the time for initialization,

which comprises step 1 and 2 in the algorithm, and is common in both BLS-VISM and

CLS-VISM. All the tests are performed on a 2017 iMac with 3.5 GHz Intel Core i5 and

16GB memory. We denote n the number of sub-intervals in each dimension of the cubical

computation box. So the total number of grid points is (n+ 1)3.

3.3.1 Surface Area of a Sphere

Here we apply our method to approximate the area of a sphere. Consider a sphere

of radius 0.5 in a [−1, 1]3 box. Let r = C
√
h. Here we consider 3 different kernel:

K1(r) = 1B1(0), K2(r) = sin(πr)2 and K3(r) = cos(πr) + 1 for 0 ≤ r ≤ 1. K1 is simply the

indicator function, which is discontinuous at r = 1. Both K2 and K3 are C∞ functions. The

parameter C control the size of the kernel. In Fig. 3.4, we briefly look at the performance

of different kernel and the effect of C. In both figure, We plot the relative error versus the

number of interval n in one edge of the computational box. n ranges from 20 to 200 with

increment 5. Each data point is an average of 6 spheres with random centers close to the

27

origin.

In Fig. 3.4 (L), we fix C = 3 and use different kernel function. The approximations

are all first order accuracy as the slopes of the least-square lines are close to 1. Even though

our analysis require the kernel function to go to zero smoothly at r = 1, the indicator

function still demonstrate first order accuracy, albeit with larger variance compared with

the other two kernel function.

In Fig. 3.4 (R), we use the sin-squared kernel function K2(r) and look at the effect

of different values of C. The parameter C controls the number of grid point in the kernel,

which is proportionate to the amount of work for updating the energy change (3.17) or

computing the surface area. In three dimensions, the number of grid point in the kernel is

of order O((C/
√
h)3). Therefore, a smaller value is C is preferable in terms of computation

speed. However, as shown in Fig. 3.4 (R), for C = 5, 3, 1, 0.5, 0.3 in order, the overall error

first decreases and then increases, while variance of the convergence line keep increasing.

For C = 5 or 3, the data is fitted nicely by a straight line with slope close to 1. However,

for C = 0.5 or 0.3, the data oscillate wildly as n increases. However, the overall accuracy

is still at least first order. Therefore, for demonstration of clear and stable convergence

behavior, a relatively larger value of C is preferred.

In practice, we rarely send n to infinity. Instead, we usually focus on a relatively

small range of resolution, which is limited by our computation resources and the requirement

on overall accuracy. Also the length scale is dictated by the physics of the problem at

hand. For example, in our application of BLS-VISM to protein binding simulation in

Section 3.3.4, the average radius of the atoms in a protein is around 3 Å and we only

consider the grid size around 1 Å for reasonable accuracy and computation time. Then we

would choose the parameter C based on numerical experiments with similar setting.

28

1.2 1.4 1.6 1.8 2 2.2 2.4

log(h)

-2

-1.8

-1.6

-1.4

-1.2

-1

-0.8

-0.6
lo

g
(e

rr
)

ind C=3: m = -1.01

sin
2
 C=3: m = -1.00

cos C=3: m = -1.00

1.2 1.4 1.6 1.8 2 2.2 2.4

log(h)

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

lo
g

(e
rr

)

 C=0.3: m = -1.76

 C=0.5: m = -1.82

 C=1: m = -1.03

 C=2: m = -0.98

 C=3: m = -1.00

Figure 3.4. log-log plot of the relative error versus the number of interval n in one edge
of the computational box. n ranges from 20 to 200 with increment 5. Each data point is an
average of 6 spheres with random centers. m is the slope of the line fitted by least-square.

3.3.2 One atom

We consider a single charged atom carrying a partial charge Q. The VISM free-

energy functional (2.1) is then a function of the radius R of the spherical solute region:

G(R) = 4πR2γ0 + 16πρwε

(
σ12

9R9
− σ6

3R3

)
+

Q2

8πε0R

(
1

εw
− 1

εm

)
, (3.22)

where σ and ε are the LJ parameters between the atom and a water molecule. The function

G(R) can be minimized accurately. We use Q = 1 and the VISM parameters in Table 2.1

that are close to real systems [7].

In Table 3.1, we show a comparison of the calculation speed between the CLS-VISM

and the BLS-VISM. The computation box is [−5, 5]3(unit Å) and the atom is fixed at the

origin. The numbers in the parenthesis are the relative error with respect to the exact

solution (3.22). Both method are very accurate in terms of total energy, the total error

is less than 1% with n = 50. The total energy exhibit first order convergence for BLS

and second order for CLS. The individual component might have larger relative error.

One reason is that the vdW and electrostatic energy are sensitive to the boundary, as

29

1 1.5 2 2.5

log(n)

-2.5

-2

-1.5

-1

lo
g
(e

rr
)

surf: m = -0.97

1 1.5 2 2.5

log(n)

-4

-3

-2

-1

0

lo
g
(e

rr
)

vdW: m = -1.57

1 1.5 2 2.5

log(n)

-4.5

-4

-3.5

-3

-2.5

-2

lo
g
(e

rr
)

elec: m = -1.28

1 1.5 2 2.5

log(n)

-3

-2.5

-2

-1.5

lo
g
(e

rr
)

total: m = -0.96

Figure 3.5. log-log plot of the relative error of each component versus the number of
interval n in one edge of the computational box. n ranges from 20 to 200 with increment
5. m is the slope of the line fitted by least-square

30

mentioned before. Another reason is that the energy components have different magnitudes.

In this particular example, the electrostatic is much smaller in magnitude. Hence even

though the relative error may seems large, it has insignificant impact on the error of total

energy. What’s remarkable is that the BLS-VISM is about 100 times faster while still

fairly accurate for our application.

Table 3.1. Solvation free energy (kBT) and computation time (s) for different grid
numbers. Here, cont. stands for the continuous LSM and binary for the binary LSM. The
number in the parenthesis is the relative error with respect to the exact solution (3.22)

n
Surf vdW Elec total Time

CLS BLS CLS BLS CLS BLS CLS BLS CLS BLS
253 17.0(0.9%) 17.7(5.4%) -97.1(1.9%) -96.2(-2.9%) 2.6(48.0%) 3.9(-24.3%) -77.5(0.6%) -74.6(-3.3%) 0.006 3.7
503 16.8(0.1%) 17.1(1.8%) -98.3(0.7%) -98.2(-0.8%) 4.2(17.1%) 4.6(-9.4%) -77.4(0.3%) -76.5(-0.8%) 0.043 7.1
1003 16.7(0.4%) 16.9(0.7%) -98.9(0.1%) -98.6(-0.4%) 4.9(4.0%) 4.8(-6.3%) -77.2(0.2%) -77.0(-0.2%) 0.977 103.9
2003 16.7(0.4%) 16.9(0.5%) -99.0(0.0%) -98.8(-0.2%) 5.1(0.8%) 4.8(-5.9%) -77.2(0.1%) -77.1(-0.0%) 24.055 2952.1

3.3.3 Two atoms

In this experiment, two atoms are placed at (−d/2, 0, 0) and (d/2, 0, 0) for d = 4,

6, 8 in the usual xyz coordinate system. The physical parameters are the same as those in

the previous experiment.

The computation box is [−10, 10]3 (unit Å). We choose n = 100 for BLS and

n = 50 for CLS. Because BLS is only first order accurate, a finer grid is needed to achieve

similar accuracy as the CLS. In the binary LS-VISM, we choose the kernel radius r = 3
√
h.

For both continuous and binary LS-VISM, the tight and loose initial relax to the same

final interface and energy. Notice that topological changes are handled easily as the

center-to-center distance increases.

In Fig. 3.6, we show the final interfaces from BLS and CLS for different configura-

tions. We also show the cross section of both interfaces overlaid. For the interfaces from

BLS, we render the faces of the voxels, which are the little cubes of side length h and

centered at the grid points with φ = −1. We can see that the interfaces from BLS closely

approximate those from CLS.

31

Figure 3.6. Final interfaces of d = 4, 6, 8 Å. Left: BLS-VISM. Middle: CLS-VISM.
Right: cross section of both interface at z = 0. n = 100 for BLS and n = 50 for CLS.

32

In Table 3.2, we show a comparison of the energy and speed between the BLS

and CLS, both using tight initial. Again, BLS-VISM can obtain accurate energy and it’s

hundreds times faster than than CLS-VISM.

Table 3.2. Solvation free energy (kBT) and computation time (s) for the two atoms
system. n = 100 for BLS and n = 50 for CLS.

d
Surf vdW Elec total Time

BLS CLS BLS CLS BLS CLS BLS CLS BLS CLS
4 27.0 27.8 14.1 12.2 -317.9 -314.3 -276.8 -274.2 0.7 11.4
6 32.2 33.2 10.5 9.8 -285.9 -283.1 -243.3 -240.1 0.7 20.7
8 33.3 34.6 10.1 8.8 -265.6 -262.4 -222.2 -219.0 0.8 5.7

3.3.4 Biomolecules

We apply our method to a complex biomolecular system from the Protein Data

Bank (PDB) [2]: p53-MDM2 (PDB ID 1YCR) and BphC (PDB ID 1DHY)[31]. The p53-

MDM2 system consists of more than a thousand atoms. It is a relevant pharmacological

target for anticancer therapeutics [6]. During their binding process, the binding pocket

fluctuates between dry and wet states [16]. The parameters for the atoms comes from the

force field in CHARMM36[19]. For both experiment, to generate the positions of the atom,

we start with the bounded structure from PDB, and manually pull away the protein pairs

along their center-to-center axis for a distance d. Here d = 0 corresponds to the bounded

state.

In Fig. 3.7 and 3.8, we compare the surfaces obtained from binary LSM and

continuous LSM from tight or loose initial surfaces. In both BLS-VISM and CLS-VISM,

the tight initial leads to a final state of two disjoint surfaces, which is called wetting as there

is water between the two proteins. In contrast, the loose initial results in a final state of one

connected interface, which is called dewetting, as there is no water in between. The ability

of CLS-VISM to capture the dewetting effects of complex molecules is well-established

[35, 41]. Here we demonstrate that the BLS-VISM preserve this characteristic feature of

33

CLS-VISM.

In Table 3.3, we compare the energy and speed between BLS-VISM and CLS-VISM

of the protein systems. For p53-MDM2 with either tight or loose fit, the relative error with

respect to CLS-VISM is within 1% for the surface energy, and within 5% for the vdW and

electrostatic energies. The relative error is 15% for the total energy. For BphC with either

tight or loose fit, the relative error with respect to CLS-VISM is within 3% for the surface

energy, and within 13% for the vdW and electrostatic energies. The relative error is 50%

for the total energy. As mentioned before, the vdW and electrostatic energies are singular

at the position of the atoms, and they are sensitive to the exact location of the interface.

And the more atoms there are, the faster these two components go to positive or negative

infinity as the surface get closer to the atoms. The larger relative error in the total energy

might be due to the cancellation of the large positive and negative energy components

when computing the total energy, and this effect is more severe for larger system with

more atoms. Nevertheless, due to the complex topology of the solvation interface and the

large number of atoms, such discrepancies are expected and remain reasonably accurate

when estimating solvation energy of protein systems [38].

What’s impressive is the speed at which BLS-VISM compute the solvation energy,

which is hundreds or thousands times faster then CLS-VISM. And the speedup is more

significant as the number of atoms increases. This is because the work required in each flip

of BLS does not depends on the number of atoms. But in CLS-VISM, when evolving the

interface, the work required to evaluate the normal velocity (2.15) of the interface depends

on the number of atoms. From the table, it seems that the speedup with loose initial is

less impressive than that with tight fit. That’s because in our original implementation

of CLS-VISM with the loose initial, a coarse grid is used to speed up the evolution of

the interface at the first stage. Similar idea can also be applied to BLS-VISM through a

multi-resolution or adaptive grid.

The significant speedup in computing VISM energy allow us to couple BLS-VISM

34

Figure 3.7. Stable equilibrium solute–solvent interfaces of p53-MDM2 obtained at d =
14 Å using tight and loose initials. n = 200 for BLS-VISM, n = 100 for CLS-VISM

35

Figure 3.8. Stable equilibrium solute–solvent interfaces of BphC obtained at d = 12 Å.

36

with Monte Carlo (MC) Method to simulate protein binding. In Chapter 4, the BLS-VISM

is coupled with rigid-body MC to simulate binding of the p53-MDM2 system [38]. During

the MC simulation, the VISM energy needs to be evaluated millions of times, which is

impossible with CLS-VISM. We note that in BLS-VISM with tight initial, the speed is no

longer bottlenecked by the optimization process. Instead, the initialization process will

take more time than flipping.

Table 3.3. Solvation free energy (kBT) and computation time (s) for the protein systems

system
Surf vdW Elec total Time

BLS CLS BLS CLS BLS CLS BLS CLS BLS CLS
p53MDM2 loose 992.2 995.8 -437.2 -440.2 -932.3 -895.7 -377.4 -340.2 52.1 1510.1
p53MDM2 tight 1019.4 1017.9 -473.4 -461.1 -944.9 -903.5 -398.8 -346.8 1.1 813.4

BphC loose 2089.8 2032.0 -1218.5 -1083.0 -1624.7 -1456.6 -753.3 -507.6 52.2 25589.2
BphC tight 2259.7 2215.4 -1401.4 -1240.6 -1679.8 -1528.2 -821.4 -553.3 1.2 14858.0

3.4 Conclusion

In this chapter, we introduce a fast binary level set method to minimize the VISM

free-energy functional of solute-solvent interfaces. In the binary level set method, the

interface is represented by a binary level set function that takes value ±1 on the solute

or solvent region. The key component in our formulation is the approximation of surface

area by convolution of indicator function with compactly supported kernel. The resulting

discrete VISM energy is minimized by iteratively flipping the value of the binary level set

function in a steepest descent fashion. As demonstrated by our numerical experiments,

compared with the PDE-based level set method, the binary level set approach is hundreds

times faster, and still provide fairly accurate solvation energy. It also has the ability to

capture different equilibrium solute-solvent interfaces, which is an characteristic feature of

VISM and is important in capturing polymodal hydration.

Future work include estimating the curvature of an interface and incorporating

the Poisson-Boltzmann (PB) theory of electrostatics into the binary level set framework.

37

Further performance gain might be achieved through an adaptive Cartesian grids. We

are also interested in applying our fast algorithm to simulate and study the binding and

folding of biomolecules.

Chapter 3, in part, is a reprint of the material Zirui Zhang and Li-Tien Cheng.

“Binary Level Set Method for Variational Implicit Solvation Model” (2021). The dissertation

author was the primary investigator and author of the material.

3.5 Proof of Propositions

3.5.1 Integral formula of Surface Area

Let φ be a signed distance function representing the interface Γ with φ < 0 being

the region Ω enclosed by Γ.

φ(x) =


− infy∈Ω |x− y| x ∈ Ω

infy∈Ωc |x− y| x ∈ Ωc

(3.23)

Let H denotes the one-dimensional Heaviside function, and δ is the Dirac-delta function.

We denote the θ level set of φ as Γθ = {x|φ(x) = θ} and Γ0 = Γ. Denote n = n(x) the

unit normal vector at x ∈ Γ. As a property of the sign distance function, ∇φ(x) = n.

Then consider the following expression

V (r) =

∫
Rd
H(−φ(x))

∫
Rd
H(φ(y))K

(
|x− y|
r

)
dydx

=

∫
Rd
H(−φ(x))W (x, r)dx

=

∫
{−r≤φ(x)≤0}

W (x, r)dx

(3.24)

38

where

W (x, r) =

∫
Rd
H(φ(y))K

(
|x− y|
r

)
dy

= rd
∫
B1(0)

H(φ(rŷ + x))K(|ŷ|)dŷ.
(3.25)

The integrand in V (r) is supported on {x | −r ≤ φ(x) ≤ 0} by the compactness of K. Let

θ ∈ [0, r]. Given z ∈ Γ−θ, there is a unique x ∈ Γ such that z = x − θn, as long as r is

smaller than the minimum radius of curvature. Therefore we can reparametrize Γ−θ by Γ,

By the coarea formula, we can write the volume (3.24) as integral over level sets of φ.

V (r) =

∫ r

0

∫
Γ−θ

W (x, r)dxdθ

=

∫ r

0

∫
Γ−θ

W (x, r)dxdθ

=

∫ r

0

∫
Γ

W (z− θn, r)Y (z, θ)dxdθ

= r

∫ 1

0

∫
Γ

W (z− rθn, r)Y (z, rθ)dxdθ

(3.26)

Here, Y (z, s) is the Jacobian that accounts for the change of variables made in the

reparametrization of Γ−θ by Γ In two dimension, Y (z, s) = 1−H(z)s. In three dimensions,

Y (z, s) = 1 − H(z)s + G(z)s2. H(z) is the non-averaged mean curvature. G(z)is the

Gaussian curvature. In d dimensions, Y (z, s) =
∏d−1

i=1 (1 − sκi(z)), where κi is the i-th

principal curvature of the hypersurface Γ at z [21].

We find the expansion of W (z− rθn, r) with respect to r, cf Fig. 3.9

W (z− rθn, r) = rd
∫
B1(0)

H(φ(z + r(ŷ − θn)))K(|ŷ|)dŷ

= rd(a0(z, θ) + ra1(z, θ) +O(r2)).

(3.27)

39

Figure 3.9. Illustration of the term W (z− rθn, r).

That leads to the expansion of V (r).

V (ε) =

∫ 1

0

∫
Γ0

W (z− εθn, ε)Y (z, εθ)εdAdθ

= rd+1

∫ 1

0

∫
Γ0

a0(z, θ)dAdθ + r[a1(z, θ)−H(z)θa0(z, θ)]dAdθ +O(r2)

= rd+1
(
v0 + rv1 +O(ε2)

)
(3.28)

Next, we simplifies the zeroth order term to find the constant CK,r,d. By Taylor’s

expansion,

φ(z + r(y − θn)) = φ(z) +∇φ(z) · r(y − θn) +
1

2
r(y − θn) · ∇2φ(z)r(y − θn) +O(r3)

= rn · (y − θn) +
1

2
r2(y − θn) · ∇2φ(z)(y − θn) +O(r3)

(3.29)

Together with the fact that H is homogeneous of degree 0 (i.e. H(ax) = H(x)).

H(φ(z + r(y − θn))) = H(n · (y − θn) +
1

2
r(y − θn) · ∇2φ(z)(y − θn) +O(r2)) (3.30)

40

We have

lim
r→0
H(φ(z + r(y − θn))) = H(n · (y − θn)), (3.31)

where {y | n · (y − θn) = 0} is the hyperplane passing through θn with normal vector n.

Therefore {y | n · (y − θn) ≥ 0} is the side of the hyperplane in the direction of n

a0(z, θ) = lim
r→0

W (z− rθn, r)

=

∫
B1(0)

H(n · (ŷ − θn))K(|ŷ|)dŷ

=

∫
B1(0)∩{n·(ŷ−θn)≥0}

K(|ŷ|)dŷ

=

∫
B1(0)∩{ŷd≥θ}

K(|ŷ|)dŷ

(3.32)

ŷd is the d-th coordinate of ŷ. Note a0(z, θ) = a0(θ) does not depend on z.

v0 =

∫ 1

0

∫
Γ0

a0(θ)dAdθ

=

(∫ 1

0

a0(θ)dθ

)
Area(Γ)

(3.33)

The constant can be further simplified by writing the integral in polar coordinates

r = |y| ∈ (0, 1] and x = y/|y| ∈ Sd−1

∫ 1

0

a0(θ)dθ =

∫ 1

0

∫
B1(0)

1{yd≥θ}K(|y|)dydθ

=

∫ 1

0

∫ 1

0

∫
Sd−1

1{rxd≥θ}K(r)rd−1dAdrdθ

=

∫ 1

0

∫
Sd−1

(∫ 1

0

1{rxd≥θ}dθ

)
K(r)rd−1dAdr

=

∫ 1

0

∫
Sd−1

1{xd>0}rxdK(r)rd−1dAdr

=

(∫
Sd−1∩{xd>0}

xddA

)∫ 1

0

K(r)rddr

= Cd

∫ 1

0

K(r)rddr

(3.34)

41

where

Cd =
2π

d−1
2

(d− 1)Γ(d−1
2

)
(3.35)

For d = 3, Cd = π. For d = 2, Cd = 2.

For the first order term, we use the identity that 0 = ∇(n · n) = 2∇2φ(z)n. And

without loss of generality, we can assume n = ed, and hence [∇2φ(z)]dd = 0

a1(z, θ) =
d

dr

∣∣∣
r=0

∫
B1(0)

H(φ(z + r(y − θn)))K(|y|)dy

=

∫
B1(0)

d

dr

∣∣∣
r=0
H(φ(z + r(y − θn)))K(|y|)dy

=

∫
B1(0)

δ(n · (y − θn))
1

2
(y − θn) · ∇2φ(z)(y − θn)K(|y|)dy

=
1

2

∫
B1(0)∩{yd=θ}

(y − θn) · ∇2φ(z)(y − θn)K(|y|)dy

=
1

2

∫
B1(0)∩{yd=θ}

y · ∇2φ(z)yK(|y|)dy

=
1

2

∫
B1(0)∩{yd=θ}

y · ∇2φ(z)yK(|y|)dy

=
1

2

d∑
i,j=1

∫
B1(0)∩{yd=θ}

yiyj[∇2φ(z)]ijK(|y|)dy

(3.36)

The region of integration is a spherical section of the unit ball. Suppose i 6= j, and without

loss of generality, suppose j 6= d, then the integrand is an odd function with respect to yj.

42

By symmetry of the region, the integral is 0. Therefore

a1(z, θ) =
1

2

d∑
i,j=1

∫
B1(0)∩{yd=θ}

yiyj[∇2φ(z)]ijK(|y|)dy

=
1

2

(
d∑
i=1

[∇2φ(z)]ii

)∫
B1(0)∩{yd=θ}

y2
1K(|y|)dy

=
1

2
H(z)

∫
B1(0)∩{yd=θ}

y2
1K(|y|)dy

= H(z)â1(θ)

(3.37)

Note that ∫ 1

0

θa0(θ)dθ =

∫ 1

0

∫
B1(0)∩{yd≥θ}

θK(|y|)dydθ

=

∫
B1(0)∩{yd≥0}

∫ 1

0

H(yd − θ)θK(|y|)dθdy

=

∫
B1(0)∩{yd≥0}

(∫ yd

0

θdθ

)
K(|y|)dy

=
1

2

∫
B1(0)∩{yd≥0}

yd
2K(|y|)dy

=

∫ 1

0

â1(θ)dθ

. (3.38)

Therefore

v1 =

∫
Γ0

∫ 1

0

a1(z, θ)− θH(z)a0(z, θ)dθdA = 0 (3.39)

and

Area(Γ) = CK,r,dV (r) +O(r2) (3.40)

where

CK,r,d =

(
rd+1Cd

∫ 1

0

K(r)rddr

)−1

(3.41)

3.5.2 Discretization error of Integral formula

Let Γ = ∂Ω be a smooth compact closed hypersurface contained in a cube C ⊂ Rd.

C = Ω ∪ Γ ∪ Ωc.

43

Suppose C is covered with a uniform Cartesian grid of size h, with n grid cells

in each dimension. Let ci be the grid cell centered at xi with side length h, where i is

a multi-index (i1, . . . , id), with ik ∈ {1, . . . , n}. With a slight abuse of notation, we also

denote Ω the index set containing all the index, so i ∈ Ω if xi ∈ Ω. Similarly for C and

Ωc. We also define the index set I = {i | ci ∩ Γ 6= ∅}. I contains all the “interface points”,

whose grid cells touch the interface. Ic contains all the “interior points”, whose grid cells

are completely in Ω or Ωc.

Recall the midpoint rule for numerical integration. Suppose f is twice continuously

differentiable. Let x∗ be the center of a d dimensional cube of side length h. Then the

approximation on the cube has error O(hd+2).

∫
[0,h]d

f(x)dx =

∫
[0,h]d

f(x∗) + (x− x∗) · ∇f(x∗) +O(h2)dx

= hdf(x∗) +O(hd+2)

(3.42)

If the region is not a cube but some region ω ⊂ [0, h]d, and the volume of the region

is known, then our error is O(hd+1)

∫
ω

f(x)dx =

∫
ω

f(x∗) +O(h)dx

= vol(ω)f(x∗) +O(hd+1)

(3.43)

However, if the exact volume of the region ω is unknown, then the following

approximation has error O(hd)

∫
ω

f(x)dx = hd1ω(x∗)f(x∗) +O(hd) (3.44)

44

Recall the formula of V (r)

W (x, r) =

∫
Ωc
K

(
|x− y|
r

)
dy

V (r) =

∫
Ω

W (x, r)dx

(3.45)

Let α̂i = vol(ci ∩ Ω), β̂i = vol(ci ∩ Ωc). These are the exact volume fractions of the

grid cells. We define the intermediate quantity V̂h(r), which is composite midpoint rule

approximation of V (r) using exact volume fraction.

V̂h(r) =
∑
i

∑
j

h2dα̂iβ̂iKr,ij, (3.46)

where the summation is taken over all ordered tuple of indices (i, j) ∈ C × C, and

Kr,ij = K

(
|xi − xj|

r

)
, (3.47)

To look at the error of V̂h(r), first, we approximate W (xi, r) by composite midpoint

rule with exact volume fraction. For each interface point, the error is O(hd+1). The

number of interface points in a ball of radius r is O(rd−1h1−d), Therefore, the total error

is given by

W (xi, r) =
∑
j

hdβ̂jKr,ij +O(rd−1h2) (3.48)

Next, we approximate V (r) by composite midpoint rule with exact volume fraction.

The number of points near the interface is given by |I| = O(h1−d). Since W (xi, r) = O(rd),

the error on individual interface point is O(rdhd+1). The total error is given by

V (r) =
∑
i

hdα̂iW (xi, r) +O(h2rd) (3.49)

Plug in the estimation of W (xi, r), and recall that W (xi, r) is nonzero for points in

45

a tubular neighborhood of the interface. Let T = {i | −r ≤ φ(xi) ≤ 0}. |T | = O(r/hd).

Hence

V (r) =
∑
i

∑
j

h2dα̂iβ̂iKr,ij +O(hd(r/hd)(h2rd−1) + h2rd)

= V̂h(r) +O(h2rd)

(3.50)

We also define Vh(r), which is composite midpoint rule approximation of V (r)

without knowing the exact volume fraction.

Vh(r) =
∑
i,j

h2dαiβjKr,ij (3.51)

where αi = 1 if i ∈ Ω, and αi = 0 if i ∈ Ωc. bi = 1− ai

We analyze the difference between Vh(r) and V̂h(r)

Vh(r)− V̂h(r) =
∑
i,j

h2d(αiβj − α̂iβ̂j)Kr,ij (3.52)

by partitioning C × C into three disjoint subsets Z1,Z2 and Z3, cf Fig. 3.10.

Case 1: Z1 = Ic × Ic. Both i and j are interior points. Then α̂i = 1 if i ∈ Ω, and

0 otherwise. So α̂i = αi and β̂i = βi. On this set, the difference between the two methods

is 0.

Case 2: We define Ri(j) = 2i− j, which is the point reflection of j with respect

to i. Let φ̂i = sgn(φ(xi)) be the sign of the level set function at xi. So the condition

φ̂iφ̂j = −1 means that xi and xj are on opposite side of the interface. And define the

following two sets that are disjoint

S1 = {(i, j) | i ∈ I, j ∈ Ic, Ri(j) ∈ Ic, φ̂Ri(j)φ̂j = −1}

S2 = {(i, j) | i ∈ Ic, j ∈ I, Rj(i) ∈ Ic, φ̂Rj(i)φ̂i = −1}
(3.53)

In words, for tuples (i, j) in S1, i is an interface point, j is an interior point, the reflection

46

Figure 3.10. Illustration of different cases in the error. Squared grid points are in the
set I, their grid cell intersects with the interface Γ. (p, q) ∈ Z1. (i, j) and (k, i) are paired
and belong to Z2. (i, l) ∈ Z3

47

of j is also an interior point on the opposition side of the interface. By definition, the map

(i, j) 7→ (Ri(j), i) is a bijection between S1and S2. For case 2, Z2 = S1 ∪ S2.

Given that (i, j) ∈ Z2, we can pair up the error,

∑
(i,j)∈S1∪S2

h2d(αiβj − α̂iβ̂j)Kr,ij

=
∑

(i,j)∈S1

h2d
[
(αiβj − α̂iβ̂j) + (αkβi − α̂kβ̂i)

]
Kr,ij

(3.54)

where k = Ri(j). Because both j and k are interior points, β̂j = βj and α̂k = αk. Because

j and k are in different side, αk = 1− αj = βj. Together with the fact that αi + βi = 1

and α̂j + β̂j = 1, we have

(αiβj − α̂iβ̂j) + (αkβi − α̂kβ̂i) = αiβj − α̂iβj + βjβi − βjβ̂i = 0. (3.55)

Hence, on case 2, the difference between the two methods also is 0.

Case 3: Z3 contains all the remaining tuples, where there is no cancellation that

can be exploited, so αiβj − α̂iβ̂j = O(1). Our goal is to bound the size of Z3. Given i ∈ I,

we define the following index set:

Qr,i = {|xi − xj| ≤ r} ∩
(
{j ∈ I} ∪ {j ∈ Ic, Ri(j) ∈ I or φ̂Ri(j)φ̂j = 1}

)
(3.56)

In words, given that i is an interface point, among all the points xj that are within kernel

radius of xi, either j is also an interface point, or j is an interior point whose reflection is

an interface point or an interior point on the same side as i. Then Z3 can be written as

Z3 = {(i, j) | i ∈ I, j ∈ Qr,i} ∪ {(i, j) | j ∈ I, i ∈ Qr,j} (3.57)

We use the fact that an embedded hypersurface can be locally approximated by

48

Figure 3.11. Estimation of |Qr,i|. xi is an interface point. x∗ is the closest point to xi
on Γ. In local coordinate, Γ is the graph of the function f(z). Points in Qr,i are circled
and bounded between the quadratic functions g(z) and −g(z)

49

the graph of a quadratic function. Given xi ∈ I, we can find the closest point x∗ on the

interface Γ, so that xi = x∗−sn(x∗) for some s, and |s| ≤ d1/2h/2, which is half the length

of the diagonal of a grid cell. We can create a local coordinate where xi is the origin, and

the first d− 1 coordinate is parallel to the tangent plane of Γ at x∗. Then locally, Γ can

be parametrized as a graph (z, f(z)), z ∈ Rd−1,

f(z) = s+
1

2
(κ1(z1) + · · ·+ κd−1(zd−1)) +O(|z|3), (3.58)

where κ1, . . . , κd−1 are the principal curvatures of Γ at x∗. So f(z) will be bounded above

by some quadratic function g(z).

g(z) = |s|+O(|z|2), (3.59)

And −g(z) < f(z) < g(z). Hence, if j ∈ Qr,i, xi and xj will both be in the region between

g(z) and −g(z). Otherwise (i, j) ∈ Z2.

By the compactness of the kernel, we only need to consider z ∈ B(r), a d − 1

dimensional ball of radius r. The volume of the region under the graph is bounded by

∫
B(r)

|s|+O(z2)dz = O(hrd−1 + rd+1). (3.60)

Hence

|Qr,i| = O
(
h1−drd−1 + h−drd+1

)
(3.61)

and the size of Z3 can be bounded

|Z3| ≤ 2|I||Qr,i| = O
(
rd−1h2(1−d) + rd+1h1−2d

)
. (3.62)

50

And we obtained the error between V̂h(r) and Vh(r):

V̂h(r) = Vh(r) +O(|Z3|)h2d

= Vh(r) +O(h2rd−1 + hrd+1)

(3.63)

Hence the error between V̂h(r) and V (r) is given by:

V (r) = V̂h(r) +O(h2rd)

= Vh(r) +O(h2rd−1 + hrd+1 + h2rd)

(3.64)

Recall that CK,r,d = O(r−(d+1)), we have

Area(Γ) = CK,r,dV (r) +O(r2)

= CK,r,dVh(r) +O(h2/r2 + h+ h2/r + r2)

(3.65)

Therefore, for r ∼
√
h, we obtained a first order approximation of the surface area.

Area(Γ) = CK,r,dVh(r) +O(h) (3.66)

51

Chapter 4

Coupling Monte Carlo, Variational
Implicit Solvation, and Binary Level-
Set for Simulations of Biomolecular
Binding

4.1 Introduction

Biomolecular binding in aqueous solvent is fundamental to biological functions yet

extremely complex due to the many-body interactions spanning across multiple temporal

and spatial scales. There have been growing interest in understanding the mechanisms of

such biomolecular processes, due to particularly the rapid development in rational drug

design [1]. Water is recognized as an important player in many biomolecular activities,

including protein conformational changes and protein binding. However, and explicit

solvent MD simulation remains computationally expensive.

In this chapter, we describe our work [38] that combine the Monte Carlo (MC)

method and the fast binary level set - VISM in the previous chapter 3. The MC method

is used to simulate the diffusion of individual proteins and the formation of biomolecular

complex. The binary level set - VISM is used to estimate the solvation free energy of

the system. The simulation consists of a sequence of MC moves, which are accepted or

rejected by the Metropolis criterion. During the MC simulation, the VISM energy needs

52

to be evaluated millions of times, which is impossible with the original LS-VISM.

4.2 Theory and Algorithm

We consider two molecules A (with NA atoms) and B (with NB atoms) in an

aqueous solvent, as shown in Figure 4.1. We denote by rAi , QA
i (i = 1, . . . ,M) the solute

atomic positions and partial charges of A, and similarly for B. Let R be the positions of

all the atoms from both molecules.

Figure 4.1. schematic of MC-VISM. The parameters for the two biomolecules are
indicated by superscript A and B.

The total interaction free energy of this system is

Gtotal[R] = Gsolvation[R] +GvdW,ss[R] +Gelec,ss[R] (4.1)

The first term is the VISM solvation energy described in the previous chapter 3, but

considering the position of the atoms as variables.

Gsolvation[R] = min
Γ
GVISM[Γ,R] (4.2)

53

The second term is the solute-solute vdW interaction energy using Lennard-Johns(LJ)

potential.

GvdW,ss[R] =

NA∑
i=1

NB∑
j=1

4εij

[(
σij

|rAi − rBj |

)12

−
(

σij
|rAi − rBj |

)6
]
, (4.3)

where εij and σij are the energy and length parameters of the LJ potential atom at rAi

and rBj . The third term is the solute-solute electrostatic interaction energy using Coulomb

potential.

Gelec,ss[R] =
1

4πε0εw

NA∑
i=1

NB∑
j=1

QA
i Q

B
j

|rAi − rBj |
, (4.4)

where ε0 is the vacuum permittivity, and εw is the relative permittivity of the solvent.

We sample the configuration space using Monte Carlo Method with the Metropolis

criterion [18]. The two molecules are treated as rigid bodies, that is, the relative positions

within each molecule does not change. Therefore, the degrees of freedom is drastically

reduced, as the position of all the atoms only depends on the centers of mass and the

orientations of the two molecules. However, this might

In the simulation, we fix the molecule with a larger number of atoms (assumed to

be molecule A). Now the configuration of the system only depends on the center of mass

and orientation of molecule B. Notice that the contribution to the vdW energy (GvdW)i

(3.13) and electrostatic energy (Gelec)i (3.15) in each grid cell depends on the position of

all the atoms, so we can pre-compute the contributions from atoms in molecule A, and

these can also noticeably reduce the time to compute the solvation energy.

4.3 p53-MDM2: Simulation results and analysis

4.3.1 Solvation Free Energy of p53-MDM2

We study the solvation behavior of the p53 using Binary Level Set - VISM. We

generate an artificial dissociation pathway along the axis formed by the geometrical centers

54

Algorithm 4.2.1: MC-VISM Algorithm

input : Initial position R, physical constants, M = maximum number of
iteration

1 Compute Gtotal[R] for k=1:M do
2 Randomly rotate and translate molecule B to get new position R′.
3 Compute Gsolvation[R′] (4.2) by minimizing the VISM free-energy functional.
4 Compute Gtotal[R

′] (4.1) and ∆G = Gtotal[R
′]−Gtotal[R].

5 Generate a random number α ∈ [0, 1].
6 if exp(−∆G/kBT) < α then
7 accept the Monte Carlo move, R← R′.
8 end

9 end

Figure 4.2. Solvation free energy (and relative components) of MDM2 and p53 along
the reaction coordinate, d, obtained from tight and loose initial conditions. Highlighted in
yellow and blue are the regions for which loose and tight calculations converge producing
either desolvated or solvated states, respectively, and highlighted in green is the region where
tight and loose calculations diverge producing different solvation boundaries depending on
the initial conditions (“branching”).

55

of the two protein in the bound complex. The distance along this coordinate varied from

d = 0 (X-ray structure) to d = 24 Å, with the energy calculated every 1 Åstarting from

both the loose and tight initial surfaces. The results are shown in figure 4.3 For small

(d < 10) or large (d > 14) distance, the tight and loose initials capture similar solvation

states, and thus results in the same energy. For intermediate distance (10 < d < 14),

“branching” of the solvation free energies reveals the existence of heterogeneous solvation

states. Loose initial leads to the “wet” state, where there is water between p53 and MDM2,

and the interface Γ has two disconnected component. Tight initial leads to the “dry”

state, where there is no water between p53 and MDM2, and the interface Γ has only one

connected component that includes both p53 and MDM2. These result show that binary

level-set VISM preserves a significant feature of the original continuous level-set VISM,

that is the ability to capture different stable minima in the solvation landscape.

Our binary level-set VISM qualitatively capture the solvation behavior: the dry

and wet states in the p53-MDM2 complex have been observed in MD simulations and

the continuous level-set VISM calculations [16]. In particular, from explicit-solvent MD

simulations, [30] strong dewetting is observed in the MDM2 binding pocket when the

two proteins are apart by < 7.6 Å and dewetting fluctuations in the inter-protein region

when the proteins are apart as far as 15 Å. In addition, our binary level-set VISM

calculations provided quantitatively reasonable estimation of the solvation free energy and

its components, compared with known MD simulations results [39]. What’s impressive

with the fast binary level-set method is the speed: each data point in Figure 4.2 within

seconds of computational time.

4.3.2 Rigid-Body MC-VISM Simulations of the Binding of
p53-MDM2

We apply our algorithm to capture binding events between p53 peptide and MDM2.

The p53-MDM2 interaction is a relevant pharmacological target for anticancer therapeutics

56

[6], and an important model for studying protein-protein binding [40].

We start with different initial unbound configurations, which are generated by

pulling p53 by 15 Å away from MDM2 along the axis connected their geometric centers

in the bound complex (PDB ID 1YCR). Then we randomly rotate p53 by less than 90°.

Initial positions with steric clashes are rejected. For each initial conformation, we perform

5 trails, each consisting of 100,000 MC moves. For each random perturbation, the direction

of translation and the axis of rotation are uniformly distributed on the unit sphere. The

magnitude of the translation is uniformly distributed in [0,1]. The magnitude of rotation

is uniformly distributed between 0°and 3.72°. This maximum degree is chosen such that

with maximum rotation, the out-most atom move 1 Å. As a metric for binding, we used

the average of pairwise distances between Cα atoms near the binding site as proposed by

[40]. A large binding distance could correspond to an unbound state or to an incorrectly

bound state.

Figure 4.3 show the distribution of the many MC-VISM trajectories. The horizontal

axis is the binding distance, and the vertical axis is the total energy. The initial poses

are marked by asterisks, the final poses are marked by circles, and the intermediate poses

are colored from blue to yellow. Many simulations resulted in large binding distances

with some decrease in the binding energy, suggesting that p53 engaged in some kind

of nonspecific interactions with MDM2, as consistent with the rough energy landscapes

of binding that is expected. Some simulations, however, produced binding distances

< 12 Å that were accompanied by a sharp and favorable decrease in the binding energy,

indicating the formation of specific interactions between p53 and MDM2 (highlighted

area in Figure 4.3A). These were considered productive simulations, as they resulted in

productive (specific) interactions between p53 and MDM2.

A visual inspection of productive MC simulations reveals that they produced

essentially the same binding mode, with the N-terminal portion of the p53 peptide well

positioned for binding, while the central Y23 and the C-terminal portion are not yet buried

57

-940�------------------�

-960

o -980
E

-

>- -1000

Ill C:

'"

:§ -1020

-1040

A

Jo..
t
'!, .,J

'

f • .u?
.,, ..

.At

*.

•�.,

number of MC steps
-

............. ,

10 12 14 16 18 20 22 24 26 28

bindina distance/ A

B

Figure 4.3. (A) binding distance and total energy of samples from the trajectories of
simulations. Initial configurations are marked by red asterisks. Final configurations are
marked by red circles. Configurations are colored from blue to yellow corresponding to
the number of MC steps. Productive binding encounters with small binding distance
and small total energy are highlighted. (B) Superimposition of the final binding poses
from productive MC-VISM simulations (purple) and the X-ray complex (magenta). For
reference, the central W23 residue is displayed. The MDM2 secondary structure is colored
from the N- to the C-terminal

58

within the MDM2 binding cleft, as shown in Figure 4.3(B). We consider these poses to

be a prebound state because the energy is significantly lower than other final poses, and

the display part of the interactions observed in the native bound state (X-ray structure).

Thus, our simulation suggests that p53 is initially anchored to MDM2 by its N-terminal

end. This observation agrees with recent experimental and MD simulations [40].

The main obstacle of reaching the final binding pose in our MC-VISM simulation

is the lack of conformational flexibility. To further investigate this aspect, we used

the prebound states produced by MC-VISM as starting points for explicit solvent MD

simulations [5]. In those MD simulations, p53 quickly tucked the C-terminal tail within the

MDM2 binding pocket and reach fully bound states. Hence, we showed that the binding

poses predicted by rigid MC-VISM display interactions characteristic of a prebound state

and easily lead to the crystallographic binding pose once the proteins are allowed some

degree of conformational flexibility. This suggest that our rigid-body MC-VISM can be

used to pre-sampling the binding phase space, and the results can be refined by MD

simulation.

While our binary level-set method is fast, the solvation free energy is O(h) accurate,

where h is the grid size in Å. Smaller h results in more accurate estimation of the solvation

energy, but require longer computation time. For our MC-VISM simulation of p53-MDM2,

we find that there is no visible differences between h = 0.5 Å and h = 0.67 Å. However, we

find that there are less binding events observed if we used h = 1 Å. so we choose h = 0.67

Å in our simulation.

4.4 Conclusion

We show that our binary level-set VISM can efficiently capture the heterogeneous

hydration states of the p53-MDM2 complex, and it’s fast enough to be coupled with

the rigid-body MC simulation of protein-protein interactions. Our extensive simulation

59

successfully captured some prebound states of the complex, and MD simulations starting

from those configurations quickly reach the final bound state obtained from X-ray structure.

Therefore, our method can be used as an efficient and reasonably accurate approach to

pre-sample the binding poses, and the results can be refined by MD simulations.

There are a few direction where we can improve our method. Firstly, we need to

include the Tolman correction of the surface energy and the Poisson-Boltzmann theory

of the electrostatic energy into our binary level-set VISM. Secondly, we can incorporate

water fluctuation into our model. Currently we are using the tight initial guess at every

step. While in reality, the surface fluctuation between different local minima. Thirdly, we

need relax our restriction of rigid-body MC move to allow for conformation change of the

protein, which is important in protein binding.

Chapter 4, in part, is a reprint of the material Zirui Zhang, Clarisse G. Ricci,

Chao Fan, Li-Tien Cheng, Bo Li, and J. Andrew McCammon. “Coupling Monte Carlo,

Variational Implicit Solvation, and Binary Level-Set for Simulations of Biomolecular

Binding”. Journal of Chemical Theory and Computation (2021). The dissertation author

was the primary investigator and author of the material

60

Chapter 5

A Compact Coupling Interface
Method for Elliptic Interface
Problems

5.1 Introduction

In this chapter, we introduce our Compact Coupling Interface Method (CCIM) for

the following elliptic interface problem:


−∇ · (ε∇u) + au = f in Ω \ Γ,

[u] = τ, [ε∇u · n] = σ on Γ,

u = g on ∂Ω.

(5.1)

Here Γ is an interface that separates a regular computational domain Ω ⊂ Rd into

an inside region Ω− and an outside region Ω+. See Fig.5.1. n is the outward unit normal

vector of the interface. g is the Dirichlet boundary condition. ε, f , a: Ω→ R are given

functions that might be discontinuous across Γ. τ , σ: Γ → R are given interface jump

conditions. For some function v : Ω→ R and x ∈ Γ, denote the limiting value approaching

from different side of the interface as

v+(x) = lim
x→Γ+

v(x), v−(x) = lim
x→Γ−

v(x), (5.2)

61

Figure 5.1. schematic for elliptic interface problem

and use the notation [v] for the jump of v across the interface

[v] = v+ − v−. (5.3)

The term ε∇v · n is sometime called the flux.

The elliptic interface problem arises from various physical and biological problems

such as fluid dynamics, heat conduction, electrostatics, where material interfaces or phase

boundaries are involved. The interface can be static or dynamic. In these problems,

material properties and sources may be discontinuous across the interface, which lead to

discontinuous solution or flux across the interface.

In some applications, the dynamics of the interface depends on gradient of the

solution, therefore it is important to have accurate solutions and gradient. As explained

in section 2.3, the velocity of the interface due to electrostatics depends on the jump of

the normal derivative of the electrostatic potential at the interface. The Stefan problem

[15] models the dynamic interface where one material is converted into the other. In this

context, the interface velocity depends on the jump in normal derivative of the temperature.

62

We proposed a Compact Coupling Interface Method (CCIM). Our method combines

elements of the CIM and Mayo’s approach for elliptic interface boundary value problem[27].

The jump in each dimension is obtained by differentiating the jump condition in tangential

direction. And the coupling equation involve the first-order derivative and principal

second-order derivative. Our method is second order accurate in the solution and the

gradient at the interface. The stencil is more compact, requiring a minimum of 10 grid

points in three dimension. The compactness make the method applicable to more general

situations and leads to more stable convergence results.

This chapter is organized as follows. Section 5.2 outlines the derivation and

algorithm of our CCIM method. In section 5.3, we show the convergence tests in three

dimensions on geometric surfaces and two complex protein surfaces. We also test our

method on a moving surface driven by the jump in gradient at the interface. Section 5.4

is the conclusion.

5.2 Numerical Method

In d dimensions, let Ω = [−1, 1]d and discretize the domain uniformly with mesh

size h = 2/N , where N is the number of subintervals on one edge [−1, 1] of the region

Ω. Let i = (i1, . . . , id) be the multi-index with ik = 0, 1, . . . , N for k = 1, 2, . . . , d. The

grid points are denoted as xi with xik = −1 + ikh. Let ek, k = 1, 2, . . . , d be the unit

coordinate vectors. We also write u(xi) = ui. Here we use ∆u for the Laplacian of u and

∇2u for the Hessian matrix of u. We assume that ∇2u is symmetric. We use xixi+ek to

denote the grid segment between xi and xi+ek , and assume that the interface intersect

with any grid segment at most once.

Let xi be a grid point at which we try to discretize the PDE. For notational

simplicity, we drop the argument xi and the dependency on i is implicit. We rewrite the

63

PDE (5.1) at xi as

−
d∑

k=1

∂ε

∂xk

∂u

∂xk
− ε

d∑
j=1

∂2u

∂x2
k

+ au = f (5.4)

If xi−ek , xi and xi+ek are in the same region in each coordinate direction, then we

call xi a interior point, otherwise xi is called a interface point. At interior points, standard

central differencing gives a local truncation error of O(h2) in ek direction. Our goal is to

construct finite difference schemes with O(h) local truncation error at interface points.

The over all accuracy will still be second order since the interface points belongs to a lower

dimensional set [23, 9].Next, we derive a first-order approximation for the term ∂u/∂xk

and ∂2u/∂x2
k .

5.2.1 Dimension-by-dimension discretization

Along coordinate direction ek, if the interface does not intersect the grid segment

xixi+ek , then by Taylor expansion

ui+ek − ui = h
∂u

∂xk
+
h2

2

∂2u

∂x2
k

+O(h3). (5.5)

Suppose the interface intersects the grid segment xixi+ek at x̂k. Let αk = ‖x̂k − xi‖/h and

βk = 1−αk. Suppose xi is located in Ω−. Denote u− the limit of u(x) as x approaches x̂k

from Ω−, u+ as the limit from the other side. See Fig 5.2.

By Taylor expansion at the interface x̂k, we can express ui and ui+ek as

ui = u− − αh∂u
−

∂xk
+

(αh)2

2

∂2u−

∂x2
k

+O(h3)

ui+ek = u+ + βh
∂u+

∂xk
+

(βh)2

2

∂2u+

∂x2
k

+O(h3)

(5.6)

Subtract and write the RHS in terms of jumps and quantities from Ω−:

ui+ek − ui = [u] + βh

[
∂u

∂xk

]
+ h

∂u−

∂xk
+
h2

2
β2

[
∂2u

∂x2
k

]
+
h2

2
(β2 − α2)

∂2u−

∂x2
k

+O(h3). (5.7)

64

Figure 5.2. ui and ui+ek is approximated by Taylor expansion at interface

We can approximate components of ∇u− and ∇2u− by

∂u−

∂xi
=

∂u

∂xi
+ αkh

∂2u

∂xi∂xk
+O(h2), (5.8)

∂2u−

∂xi∂xk
=

∂2u

∂xi∂xk
+O(h). (5.9)

Thus, (5.7) can be written as

ui+ek−ui = [u]+βh

[
∂u

∂xk

]
+h

(
∂u

∂xk
+ αh

∂2u

∂x2
k

)
+
h2

2
β2

[
∂2u

∂x2
k

]
+
h2

2
(β2−α2)

∂2u

∂x2
k

+O(h3).

(5.10)

We denote the set of neighboring grid point of i as

Br = {j | ‖j− i‖∞ ≤ r} (5.11)

and call r the radius of our finite difference stencil. In three dimensions, B1 contains 27

grid points forming a cube.

By the given jump condition, [u] = τ . Suppose we can approximate the jump

[∂u/∂xk] and [∂2u/∂x2
k] in terms of uj, ∂u/∂xk and ∂2u/∂x2

k , with 1 ≤ k ≤ d and j ∈ Br

65

for some stencil radius r. Then in each coordinate direction, for 1 ≤ k ≤ d, we can write

down two equations, (5.10) or (5.5), by considering the two grid segments xixi+sek for

s = ±1. In d dimensions we have 2d equations and 2d unknowns: the first-order derivatives

∂u/∂xk and principle second-order derivatives ∂2u/∂x2
k for 1 ≤ k ≤ d. This leads to a

system of linear equations of the following form:

M

 ∂u
∂xk

∂2u
∂x2k


1≤k≤d

=
1

h2
[Dk,su+ bk,s]1≤k≤d,s=±1 +O(h). (5.12)

where Dk,su = Dk,s(uj), j ∈ Br, is some linear function of neighboring u-values and bk,s is

some constant. We call (5.12) coupling equation and M coupling matrix. By inverting M ,

we attain the finite difference formula to approximate ∂u/∂xk and ∂2u/∂x2
k in terms of

u-values.

In the next section, we describe how to remove the jumps in (5.10).

5.2.2 Approximation of the jump condition

Let n be the unit normal vector at the interface, and s1, . . . , sd−1 be unit tangent

vectors. The tangent vectors can be obtained by projecting the unit coordinate vector

onto the tangent plane. We can write

[∇u] = [∇u · n]n +
d−1∑
j=1

[∇u · sj]sj. (5.13)

In the ek coordinate direction, this gives

[
∂u

∂xk

]
= [∇u · n](n · ek) +

d−1∑
j=1

[∇u · sj](sj · ek). (5.14)

66

We use the trick repeatedly in our derivation to decouple the jump

[εv] = ε+[v] + [ε]v−. (5.15)

Taking v = ∇u ·n, together with with [∇u · sk] = ∇τ · sk, the jump condition [ε∇u ·n] = σ

can be rewritten as

[
∂u

∂xk

]
=

1

ε+
(σ − [ε]∇u− · n)(n · ek) +

d−1∑
j=1

(∇τ · sn)(sn · ek). (5.16)

By (5.8), we get

[
∂u

∂xk

]
=

1

ε+

(
σ − [ε]

d∑
j=1

(
∂u

∂xj
+ αk

∂2u

∂xj∂xk

)
(n · ej)

)
(n · ek) +

d−1∑
j=1

(∇τ · sn)(sn · ek).

(5.17)

Notice that now we approximate the jump in the first-order derivative at the interface in

terms of the first-order and second-order derivatives at grid point.

To remove the jump in the principal second-order derivative [∂2u/∂x2
k], we solve

a system of linear equations. The equations are obtained by differentiating the interface

boundary condition in tangential directions. For m = 1, · · · , d− 1 and n = m, · · · , d− 1,

we get d(d− 1)/2 equations

∇[∇u · sm] · sn = ∇(∇τ · sm) · sn. (5.18)

After expansion,

sTn [∇2u]sm = sTn∇2τsm +
1

ε+
(σ − [ε]∇u− · n)sTn∇nsm − (∇τ · n)sTn∇nsm. (5.19)

By differentiating the jump in flux in tangential direction, we get another d − 1

67

equations for m = 1, · · · , d− 1,

∇[ε∇u · n] · sm = ∇σ · sm (5.20)

After expansion,

sTm[∇2u]n =
1

ε+
∇σ · sm −

[ε]

ε+
sTm∇2u−n− [ε]

ε+
sTm∇n∇u− −

d−1∑
k=1

(∇τ · sk)sTm∇nsk

− 1

(ε+)2
(∇ε+ · sm)(σ − [ε]∇u− · n)− 1

ε+
[∇ε · sm](∇u− · n).

(5.21)

Together with the PDE

[−∇ · (ε∇u) + au] = [f]. (5.22)

After expansion,

= −
[
f

ε

]
+
a+

ε+
τ +

[a
ε

]
u−

− 1

(ε+)2
(σ − [ε]∇u− · n)(∇ε+ · n)− 1

ε+

d−1∑
k=1

(∇τ · sk)(∇ε+ · sk)−
[
∇ε
ε

]
· ∇u−.

(5.23)

We arrive at a system of linear equations of where the variables are the jump in second-order

derivatives

G

[[
∂2u

∂xk∂xl

]]
1≤k≤l≤d

= L

(
u−,

(
∂u−

∂xk

)
1≤k≤d

,

(
∂2u−

∂xk∂xl

)
1≤k≤l≤d

)
+ b. (5.24)

where G is a matrix that only depends on the normal and tangent vectors, L stands for

some general linear function and b stands for some constant. In two and three dimensions,

through a direct calculation, the absolute value of the determinant of G is 1.

As an example, in two dimensions, let s = [s1, s2]T and n = [n1, n2]T , and assume

68

that ε(x) is a piecewise constant function, then the system of linear equations is given by


s2

1 s2
2 2s1s2

s1n1 s2n2 s1n2 + s2n1

1 1 0




[uxx]

[uyy]

[uxy]

 =


sT∇2τs + 1

ε+
(σ − [ε]∇u− · n) sT∇ns− (∇τ · n)sT∇ns

1
ε+
∇σ · s− [ε]

ε+
(sT∇2u−n + sT∇n∇u−)− (∇τ · s)sT∇ns

−[f
ε
] + a+

ε+
τ − [a

ε
]u−

 .
(5.25)

By Taylor’s expansion as in (5.5) (5.8), and (5.9), u− and components of ∇u− and

∇2u− can all be approximated by u and components of ∇u and ∇2u at the grid point.

Therefore, after substitution, with different L and b, (5.24) becomes

G

[[
∂2u

∂xk∂xl

]]
1≤k≤l≤d

= L

(
u,

(
∂u

∂xk

)
1≤k≤d

,

(
∂2u

∂xk∂xl

)
1≤k≤l≤d

)
+ b+O(h). (5.26)

If we could approximate the mixed derivatives ∂2u/∂xk∂xl , k 6= l in terms of

u-values and the jump in second-order derivatives, then by inverting G, the jump in

second-order derivatives can be approximated by u-values, first-order derivatives, and

principal second-order derivatives, which are the terms used in the coupling equation. By

back substitution, the mixed derivatives and thus the jump in the first-order derivative can

also be approximated by these terms. Next, we describe how to approximate the mixed

derivatives.

5.2.3 Approximation of the mixed derivative

Depending on the position of the interface with respect to the grid points, different

schemes are needed in order to approximate ∂2u
∂xk∂xl

, k 6= l. In Fig. 5.3 case 1, we use the

69

(a) case 1 (b) case 2 (c) case 3

(d) case 4 (e) case 5 (f) case 6

Figure 5.3. Approximation of mixed derivative at xi. The circles and disks are grid
points in Ω− and Ω+. The squares are grid points that are used to approximate the mixed
derivative.

70

usual central difference formula,

∂2u

∂xk∂xl
=

1

4h2
(ui+ek+el − ui−ek+el − ui+ek−el + ui−ek−el) +O(h2). (5.27)

We can also use biased differencing as in Fig. 5.3 case 2 and case 3

∂2u

∂xk∂xl
=

1

2h2
(ui+ek − ui+ek−el − ui−ek + ui−ek−el) +O(h)

=
∂2u

∂xk∂xl
(xi −

1

2
el) +O(h2),

(5.28)

∂2u

∂xk∂xl
=

1

h2
(ui − ui−ek − ui−el + ui−ek−el) +O(h)

=
∂2u

∂xk∂xl
(xi −

1

2
hek −

1

2
hel) +O(h2).

(5.29)

In case 4, we can make use of the first-order derivatives

∂2u

∂xk∂xl
=

1

2h2

(
2h

∂u

∂xk
− ui+ek−el + ui−ek−el

)
+O(h)

=
∂2u

∂xk∂xl
(xi −

1

2
hel)−

1

6
h
∂4u

∂x4
k

+O(h2).

(5.30)

In case 5, we can make use of the first-order and second-order derivatives

∂2u

∂xk∂xl
=

1

h2

(
h
∂u

∂xk
− h2

2

∂2u

∂x2
k

− ui−el − ui−ek−el
)

+O(h)

=
∂2u

∂xk∂xl
(xi −

1

2
hel)−

1

6
h
∂3u

∂x3
k

+O(h2).

(5.31)

In Fig. 5.3 case 6, when there are not enough grid points on the same side, we

can make use of information from the other side of the interface and the jump in mixed

derivative

∂2u

∂xk∂xl
=

∂2u

∂xk∂xl
(xi + hek)−

[
∂2u

∂xk∂xl

]
+O(h). (5.32)

By approximating the mixed derivatives ∂2u/∂xk∂xl , 1 ≤ k < l ≤ d in terms of

71

uN , ∂u/∂xk , ∂2u/∂x2
k and [∂2u/∂xk∂xl] , where uj, j ∈ Br for some kernel radius r, we

can write the right hand side of (5.24) in terms of uj, ∂u/∂xk and ∂2u/∂x2
k , 1 ≤ k ≤ d,

thus eliminating the mixed derivatives. Then by solving the linear system (5.24), the jump

in second derivative [∂2u/∂x2
k] can be approximated in terms of uj, ∂u/∂xk and ∂2u/∂x2

k ,

1 ≤ k ≤ d.

Finally, substituting [∂u/∂xk], [∂2u/∂x2
k] into (5.7), we get an equation involving

only uj, ∂u/∂xk , and ∂2u/∂x2
k for 1 ≤ k ≤ d. In each dimension, we have 2 equations (by

looking forward and backward). Therefore, with 2d equations and 2d unknowns (the first

and second order derivatives), we can solve for ∂u/∂xk and ∂2u/∂x2
k in terms of u-values.

Multiple methods will be available at the same grid point. We would like the

method to be simple and accurate. For simplicity, we prefer method that only make

use of u-value, as in case 1, 2 and 3. For accuracy, we provide a heuristic criteria: for

homogeneous polynomial of degree three, the approximation on the right hand side is

exact for some nearby points xi− 1
2
hek− 1

2
hel or xi− 1

2
hel, We would like this point to be

as close to xi as possible. In this respect, we prefer case 4 to case 3. Another consideration

for accuracy is the condition number of the coupling equation. Solving a linear system

with large condition number is prone to large numerical errors. Therefore, in cases where

both case 3 (5.29) and case 4 (5.30) are available, we choose the method with a smaller

estimated condition number [17].

Though we can construct surfaces for specific grid size such that none of the above

schemes works, for smooth surfaces we can refine the grid such that the above schemes

suffice. In addition, we note that case 5 and case 6 can be removed by refining the grid,

while case 4 can not [32].

5.2.4 Algorithm

We describe our method to attain the coupling equations at an interface point in

algorithmic order. By inverting the coupling matrix, the ∂u/∂xk and ∂2u/∂x2
k , 1 ≤ k ≤ d

72

can be approximated by a linear combination of uj, j ∈ Br and some constant. These

expressions gives one row of the final linear system.

Algorithm 5.2.1: Coupling equation at interface point xi

1 for 1 ≤ k ≤ d do
2 for s = ±1 do
3 if the interface intersects xixi+sek at x̂k then
4 for 1 ≤ j ≤ d, j 6= k do
5 Approximate the mixed derivative ∂2u/∂xk∂xj in terms of uj,

j ∈ Br and [∂2u/∂xk∂xj]. If Fig.5.3 case 6 (using information
from the other side) is used, then r = 2 and the coefficient of
[∂2u/∂xk∂xj] is non-zero. Otherwise r = 1 and the term
[∂2u/∂xk∂xj] vanishes ;

6 end
7 Differentiate the jump condition and obtain a system of equations of

the jump in second derivatives (5.24). Substitute the
approximation of the mixed derivatives. Invert G, then the jumps
in second derivatives [∂2u/∂xk∂xj], 1 ≤ j ≤ d, are approximated
in terms of uj, j ∈ Br, ∂u/∂xj , ∂2u

/
∂x2

j , 1 ≤ j ≤ d.;

8 By back substitution, the mixed derivative ∂2u/∂xk∂xj and thus
[∂u/∂xk] (5.17) can be expressed in terms of uj, j ∈ Br, ∂u/∂xj ,
∂2u
/
∂x2

j , 1 ≤ j ≤ d.;

9 Substitute the expression for [∂u/∂xk] and [∂2u/∂x2
k] into (5.10).

After rearrangement, this gives one row of the coupling equations
(5.12).;

10 else
11 Taylor’s expansion (5.5) gives one row of the coupling equations

(5.12).;

12 end

13 end

14 end

To get more stable convergence results, at grid points where case 1 and 2 not

available, but case 3 and 4 are available, we use the above algorithm to obtain two coupling

equations, and choose the coupling equation with a smaller estimated condition number of

the coupling matrix. The effect of this criterion is demonstrated in section 5.3.1.

73

5.3 Numerical Results

We test our method in three dimensions with different surfaces. The first sets of

test contains six geometric surfaces. And the second set of tests consists of two complex

biomolecular surface. These two sets are compared with ICIM [32] with the same setup.

As tests in [32] does not include a(x) term, the third set of tests are the same six geometric

surfaces with a(x) term. The last test is a sphere expanding under a normal velocity given

by the derivative of the solution in normal direction. Let ue be the exact solution of (5.1),

and u be the numerical solution. For tests with a static interface, we look at the maximum

error of the solution at all grid points, denoted as ‖ue − u‖∞, and the maximum error of

the gradient at all intersection of interface and grid lines, denoted as ‖∇ue −∇u‖∞,Γ. For

the expanding sphere, we look at the maximum error and Root Mean Square Error of the

radius at all intersections of the interface and grid line. All the tests are performed on a

2017 iMac with 3.5 GHz Intel Core i5 and 16GB memory. We use AMG implemented by

the HYPRE library [13] to solve the sparse linear system to a tolerance of 10−9.

5.3.1 Example 1

We test several geometric interfaces as in [32]. The surfaces are shown in Fig.5.4.

Their level set functions are given below.

• Eight balls: φ(x, y, z) = min0≤k≤7

√
(x− xk)2 + (y − yk)2 + (z − zk)2 − 0.3,

where (xk, yk, zk) = ((−1)bk/4c × 0.5, (−1)bk/2c × 0.5, (−1)k × 0.5)

• Ellipsoid: φ(x, y, z) = 2x2 + 3y2 + 6z2 − 1.3

• Peanut: φ(x, y, z) = φ(r, θ, ψ) = r − 0.5− 0.2 sin(2θ) sin(ψ)

• Donut: φ(x, y, z) = (
√
x2 + y2 − 0.6)2 + z2 − 0.42

• Banana: φ(x, y, z) = (7x+6)4 +2401y4 +3601.5z4 +98(7x+6)2(y2 +z2)+4802y2z2−

94(7x+ 6)2 + 3822y2 − 4606z2 + 1521

74

• Popcorn:

φ(x, y, z) =
√
x2 + y2 + z2 − r0 −

11∑
k=0

exp
(
25((x− xk)2 + (y − yk)2 + (z − zk)2)

)
where

(xk, yk, zk) =
r0√

5

(
2 cos

(
2kπ

5
−
⌊
k

5

⌋)
, 2 sin

(
2kπ

5
−
⌊
k

5

⌋)
, (−1)b

k
5c
)
, 0 ≤ k ≤ 9

= r0(0, 0, (−1)k−10), 10 ≤ k ≤ 11.

The exact solution and the coefficients are given by

ue(x, y, z) =


xy + x4 + y4 + xz2 + cos(2x+ y2 + z3) if (x, y, z) ∈ Ω+

x3 + xy2 + y3 + z4 + sin(3(x2 + y2)) if (x, y, z) ∈ Ω−
(5.33)

and

ε(x, y, z) =


80 if (x, y, z) ∈ Ω+

2 if (x, y, z) ∈ Ω−
. (5.34)

The source term and the jump conditions are calculated accordingly.

Fig 5.5 shows the convergence result of the six interfaces. The convergence of the

solutions at grid points is second order, and the convergence of the gradient at the interface

is slightly below second order.

Next we demonstrate the effect of choosing the stencil for mixed derivative based

on estimated condition number. As mentioned in section 5.2.3, when both case 3 and case

4 are available to approximate the mixed derivative, we choose the method that gives a

smaller estimated condition number of the coupling matrix. We denote this scheme CCIM.

Alternatively, we can fix the order of preference. We call it scheme 1 the method that

always prefer case 4 to case 3. Fig. 5.6 and 5.7 demonstrate the effect of this decision

75

Figure 5.4. The six interfaces (a) eight balls; (b) ellipsoid; (c) peanut; (d) donut; (e)
banana; (f) popcorn

76

1.6 1.7 1.8 1.9 2 2.1 2.2

log
10

(N)

-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

lo
g

1
0
(E

rr
o
r)

(a) 8 balls

Solution: m = -2.01

Gradient: m = -1.77

1.6 1.7 1.8 1.9 2 2.1 2.2

log
10

(N)

-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

lo
g

1
0
(E

rr
o
r)

(b) peanut

Solution: m = -1.99

Gradient: m = -1.88

1.6 1.7 1.8 1.9 2 2.1 2.2

log
10

(N)

-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

lo
g

1
0
(E

rr
o
r)

(c) ellipsoid

Solution: m = -2.00

Gradient: m = -1.91

1.6 1.7 1.8 1.9 2 2.1 2.2

log
10

(N)

-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

lo
g

1
0
(E

rr
o
r)

(d) donut

Solution: m = -2.02

Gradient: m = -1.84

1.6 1.7 1.8 1.9 2 2.1 2.2

log
10

(N)

-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

lo
g

1
0
(E

rr
o
r)

(e) banana

Solution: m = -1.99

Gradient: m = -1.81

1.6 1.7 1.8 1.9 2 2.1 2.2

log
10

(N)

-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

lo
g

1
0
(E

rr
o
r)

(f) popcorn

Solution: m = -1.98

Gradient: m = -1.98

Figure 5.5. The log-log plot of the error versus N for the six surfaces. In each figure, N
ranges from 50 to 140 with the increment ∆N = 5. Circles are the maximum errors of
the solution ‖ue − u‖∞. Diamonds are the maximum errors of the gradient at interface
‖∇ue −∇u‖∞,Γ.

77

50 60 70 80 90 100 110 120 130 140

N

3.5

4

4.5

5

5.5

6

lo
g

1
0
(C

o
n

d
)

Scheme 1

CCIM

Figure 5.6. The maximum condition number of the coupling matrices with banana
surface using scheme 1 and CCIM

using the banana shape surface as an example. For different N and for both schemes, Fig.

5.6 plots the maximum condition number of all the coupling matrices, and Fig. 5.6 plots

the convergence results of these two scheme. For most of the N -values, CCIM and scheme

1 have roughly the same maximum error. We noticed that for N = 110, with scheme 1, at

the interface point that produces the maximum error in the gradient, the coupling matrix

has an exceptionally large condition number. By choosing the method with a smaller

estimated condition number, we get a more stable convergence result in the gradient. If

we prefer case 3 to case 4, then results are similar: at some grid points large condition

number leads to large error, and CCIM gives more stable convergence results.

Though we are able to get a more stable convergence result by considering the

condition number of the coupling matrices, there is a small jump for the banana interface

at N = 110. A detailed analysis of the error reveals that it was caused by relatively large

local truncation error when approximating uxz. Fig. 5.8 shows that contour plot of the

mixed derivative uxz, the grid, the surface, and the stencil for approximating the mixed

derivative. Notice that uxz change rapidly along the northeast direction. However, due to

the alignment of the surface with the grid, at xi,k, our algorithm use the 4-point stencil

78

1.6 1.7 1.8 1.9 2 2.1 2.2

log
10

(N)

-4

-3.5

-3

-2.5

-2

-1.5

-1

lo
g

1
0
(E

rr
o
r)

Scheme 1, solution

Scheme 1, gradient

CCIM, solution

CCIM, gradient

Surgical fix

Figure 5.7. log-log plot of the maximum error in solution and gradient with banana
surface

xi,k, xi−1,k, xi,k−1 and xi−1,k−1 to approximate uxz(xi,k) and has a local truncation error

0.160723. If we use the three point stencil xi,k, xi−1,k, xi−1,k+1, the local truncation error

would be 0.041853, and the coupling matrix does not have large condition number. With

this surgical fix, the final error would be in line with the rest of the data points as shown

in Fig 5.7 at N = 110, marked as “Surgical fix”. This type of outliers happens rarely and

does not affect the overall order of convergence. We apply this surgical fix only at this

specific grid point to demonstrate a possible source of large error.

In summary, though the overall order of convergence is second order no mater

which method is used to approximate the mixed derivatives, a relatively large error can be

caused by large condition number of the coupling matrix, or a large local truncation error

when approximating the mixed derivative. When different method to approximate the

mixed derivative are available, ideally we prefer the method that produces smaller local

truncation error and smaller condition number of the coupling matrix. However these

two goal might be incompatible sometimes. It’s time consuming to search through all

available methods to approximate the mixed derivative and find the one that leads a small

condition number of the coupling matrix. It’s also difficult to tell a priori which stencil

79

Figure 5.8. Contour of uxz at the grid point with maximum error in gradient.

gives smaller local truncation error. Therefore we try to find a middle ground by only

considering the condition number when both case 3 and case 4 are available.

The resulting linear system is sparse and asymmetric, and can be solved with any

“black-box” linear solvers. Fig. 5.9 shows the log-log plot for the number of iteration

versus N . We used BiCGSTAB with ILU preconditioner and Algebraic Multigrid Method

(AMG). The number of iteration grows linearly with N for BICGSTAB and sub-linearly

for AMG. Though AMG has better scaling properties, for the range of N in Fig 5.9, both

solvers take approximately the same CPU time.

5.3.2 Example 2

Next we test our method on two complex molecular surfaces and compare our CCIM

with our implementation of ICIM[32]. The solvent accessible surface describe the interface

between solute and solvent. Such interfaces are complex and important in applications.

We construct the surfaces as in [32]: from the PDB file of 1D63 [4] and MDM2 [22], we

use the PDB2PQR[10] software to assign charges and radii with AMBER force field. The

PQR file contains information of the positions pi and radii ri of the atoms. We scale the

80

1.6 1.7 1.8 1.9 2 2.1 2.2

log
10

(N)

1.4

1.5

1.6

1.7

1.8

1.9

2
lo

g
1

0
(I

te
ra

ti
o
n
)

(a) 8 balls

ILU-BiCGSTAB: m = 0.87

AMG: m = 0.54

1.6 1.7 1.8 1.9 2 2.1 2.2

log
10

(N)

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

lo
g

1
0
(I

te
ra

ti
o
n
)

(b) peanut

ILU-BiCGSTAB: m = 0.85

AMG: m = 0.56

1.6 1.7 1.8 1.9 2 2.1 2.2

log
10

(N)

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

lo
g

1
0
(I

te
ra

ti
o
n
)

(c) ellipsoid

ILU-BiCGSTAB: m = 0.86

AMG: m = 0.62

1.6 1.7 1.8 1.9 2 2.1 2.2

log
10

(N)

1.5

1.55

1.6

1.65

1.7

1.75

1.8

1.85

1.9

1.95

lo
g

1
0
(I

te
ra

ti
o
n
)

(e) donut

ILU-BiCGSTAB: m = 0.84

AMG: m = 0.49

1.6 1.7 1.8 1.9 2 2.1 2.2

log
10

(N)

1.4

1.5

1.6

1.7

1.8

1.9

2

lo
g

1
0
(I

te
ra

ti
o
n
)

(d) banana

ILU-BiCGSTAB: m = 0.83

AMG: m = 0.47

1.6 1.7 1.8 1.9 2 2.1 2.2

log
10

(N)

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

lo
g

1
0
(I

te
ra

ti
o
n
)

(f) popcorn

ILU-BiCGSTAB: m = 0.82

AMG: m = 0.61

Figure 5.9. The log-log plot of the number of iterations versus N for the six surfaces

positions and radii such that the protein fit into the unit box. Then we construct the level

set function as union of smoothed bumps:

φ(x) = c−
∑
i

χη(ri − ‖x− pi‖) (5.35)

where χη is a smoothed characteristic function

χη =
1

2

(
1 + tanh

(
x

η

))
(5.36)

The molecular surfaces 1D63 has 486 atoms, and the surface has a double-helix

shape, as shown in Fig. 5.10a. MDM2 has 1448 atoms, and the surface has a deep pocket

to which other proteins can bind, as shown in Fig 5.11a. We also implement ICIM [32]

and compare the convergence results between CCIM and ICIM in Fig. 5.10 and Fig. 5.11.

As shown in Fig 5.10 and 5.11, compared with our implementation of ICIM,

the convergence results of CCIM is very robust even for complex interfaces. There is

81

Figure 5.10. Convergence result for 1D63 interface with c = 0.25 and η = 1/30. (a) The
smooth surface of 1D63. (b) log-log plot of error by CCIM. (b) log-log plot of error by
ICIM. N ranges from 100 to 340 with the increment ∆N = 5

Figure 5.11. Convergence result for MDM2 interface with c = 0.25 and η = 1/30. (a)
The smooth surface of MDM2. (b) log-log plot of error by CCIM. (b) log-log plot of error
by ICIM. N ranges from 100 to 340 with the increment ∆N = 5

82

little fluctuation in the convergence results. In our ICIM implementation, the order

of convergence exceed second order because large error at coarse grid points skews the

fitting line to have a more negative slope. The results demonstrate the advantage of the

compactness in our CCIM formulation when dealing with complex surfaces.

5.3.3 Example 3

We also test our problem with the same exact solution (5.33) and coefficients (5.34),

but with an a(x, y, z) term, which is not handled in the ICIM formulation.

a(x, y, z) =


2 sin(x) if (x, y, z) ∈ Ω−

80 cos(z) if (x, y, z) ∈ Ω+

(5.37)

As shown in Fig.5.12, the convergence result is almost identical to those without

the a(x, y, z) term. Therefore the convergence result mainly depends on the alignment of

the surface with the grid line.

5.3.4 Example 4

In this example, we look at the evolution of an interface driven by the jump in the

normal derivative of the solution. Suppose the surface Γ is evolved with normal velocity

vn = [∇u ·n]. We use the forward Euler method for first-order accurate time discretization,

Godunov scheme for the Hamiltonian, and the Fast Marching Method [28] to extend vn to

the whole computational domain.

Consider the radially symmetric functions

ue(x) =


1

1+‖x‖2 x ∈ Ω−

− 1
1+‖x‖2 x ∈ Ω+

(5.38)

83

1.6 1.7 1.8 1.9 2 2.1 2.2

log
10

(N)

-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

lo
g

1
0
(E

rr
o
r)

(a) 8 balls

Solution: m = -2.01

Gradient: m = -1.77

1.6 1.7 1.8 1.9 2 2.1 2.2

log
10

(N)

-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5
lo

g
1
0
(E

rr
o
r)

(b) peanut

Solution: m = -1.99

Gradient: m = -1.88

1.6 1.7 1.8 1.9 2 2.1 2.2

log
10

(N)

-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

lo
g

1
0
(E

rr
o
r)

(c) ellipsoid

Solution: m = -2.00

Gradient: m = -1.91

1.6 1.7 1.8 1.9 2 2.1 2.2

log
10

(N)

-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

lo
g

1
0
(E

rr
o
r)

(d) donut

Solution: m = -2.03

Gradient: m = -1.84

1.6 1.7 1.8 1.9 2 2.1 2.2

log
10

(N)

-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

lo
g

1
0
(E

rr
o
r)

(e) banana

Solution: m = -1.99

Gradient: m = -1.81

1.6 1.7 1.8 1.9 2 2.1 2.2

log
10

(N)

-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5
lo

g
1
0
(E

rr
o
r)

(f) popcorn

Solution: m = -1.98

Gradient: m = -1.98

Figure 5.12. The log-log plot error with a(x) term versus N for the six surfaces. In each
figure, N ranges from 50 to 140 with the increment ∆N = 5.

84

and

a(x) =


2 sin(‖x‖) x ∈ Ω−

80 cos(‖x‖) x ∈ Ω+

. (5.39)

The coefficient ε is the same as (5.34). The source term and the jump conditions are

calculated accordingly. If the surface is a sphere of radius r, by symmetry, the normal

velocity is uniform over the sphere and is given by

vn(r) = [∇u · n] =
4r

(1 + r2)2
. (5.40)

Let the initial surface be a sphere of radius 0.5, then the motion of the surface is described

by the ODE

dr

dt
= vn(r), r(0) = 0.5 (5.41)

which can be computed with high accuracy. The result is a sphere expanding at varying

speeding.

In Fig. 5.13, we look at the maximum error and the Root Mean Squared Error

(RMSE) of radius calculated at final time t = 0.1 for different N . The exact radius at

final time should be 0.629428. The results are second order accurate. In Fig. 5.14, we plot

the initial and final surface for N = 20. The shape is well-preserved. Without accurate

gradient approximation, the surface might become distorted or oscillatory.

5.4 Conclusion

In this chapter, we introduced a Compact Coupling Interface Method to solve

an elliptic interface problem in any dimension. Our method combines elements from

Coupling Interface Method (CIM) and Mayo’s approach to Poisson’s equation on irregular

regions. Standard central difference schemes are used at interior grid points. At interface

grid point, coupling equations of the first-order derivatives and principal second-order

85

1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2

log
10

(N)

-5.2

-5

-4.8

-4.6

-4.4

-4.2

-4

-3.8

-3.6

-3.4

-3.2

lo
g

1
0
(E

rr
o
r)

Max: m = -2.01

RMSE: m = -2.26

Figure 5.13. Error for radii at final time

Figure 5.14. Initial (inner) and final (outer) surface

86

derivatives are derived in an dimension-splitting approach and by differentiating the jump

condition. Our method obtains second order accurate solution at the grid points and

second order accurate gradient at the interface. The accurate approximation for the

gradient is important in applications where the dynamics of the surface is driven by the

jump in the solution gradient at the interface. Our method has a more compact finite

difference stencil compared with CIM and is applicable to complex interfaces. We test our

method in three dimensions with complex interfaces, including two protein surfaces, and

demonstrate that the solution and the gradient at the interface are uniformly second-order

accurate, and the convergence results are very stable. We also test our method with a

dynamic surface whose normal velocity is given by the jump in gradient at the interface

and obtained second order accurate interface at the final time.

Chapter 5, in part, is a reprint of the material Zirui Zhang and Li-Tien Cheng. “A

Compact Coupling Interface Method with Accurate Gradient Approximation for Elliptic

Interface Problems” (2021).The dissertation author was the primary investigator and

author of the material.

87

Bibliography

[1] Riccardo Baron and J. Andrew McCammon. “Molecular Recognition and Ligand
Association”. Annual Review of Physical Chemistry 64.1 (2013), pp. 151–175.

[2] Helen M. Berman, John Westbrook, Zukang Feng, Gary Gilliland, T. N. Bhat, Helge
Weissig, Ilya N. Shindyalov, and Philip E. Bourne. “The Protein Data Bank”. Nucleic
Acids Research 28.1 (2000), pp. 235–242.

[3] Y. Boykov and V. Kolmogorov. “An experimental comparison of min-cut/max-
flow algorithms for energy minimization in vision”. IEEE Transactions on Pattern
Analysis and Machine Intelligence 26.9 (2004), pp. 1124–1137.

[4] David G. Brown, Mark R. Sanderson, Elspeth Garman, and Stephen Neidle. “Crystal
structure of a berenil-d(CGCAAATTTGCG) complex: An example of drug-DNA
recognition based on sequence-dependent structural features”. Journal of Molecular
Biology 226.2 (1992), pp. 481–490.

[5] Hai-Feng; Luo Chen Ray. “Binding Induced Folding in p53-MDM2 Complex”. Journal
of the American Chemical Society 129.10 (2007), pp. 2930–2937.

[6] Patrick Chène. “Inhibiting the p53-MDM2 interaction: an important target for cancer
therapy”. Nature Reviews. Cancer 3.2 (2003), pp. 102–109.

[7] Li-Tien Cheng, Joachim Dzubiella, J. Andrew McCammon, and Bo Li. “Application
of the level-set method to the implicit solvation of nonpolar molecules”. The Journal
of Chemical Physics 127.8 (2007), p. 084503.

[8] Li-Tien Cheng, Bo Li, and Zhongming Wang. “Level-set minimization of potential
controlled Hadwiger valuations for molecular solvation”. Journal of Computational
Physics 229.22 (2010), pp. 8497–8510.

[9] I-Liang Chern and Yu-Chen Shu. “A coupling interface method for elliptic interface
problems”. Journal of Computational Physics 225.2 (2007), pp. 2138–2174.

[10] Todd J. Dolinsky, Jens E. Nielsen, J. Andrew McCammon, and Nathan A. Baker.
“PDB2PQR: an automated pipeline for the setup of Poisson–Boltzmann electrostatics
calculations”. Nucleic Acids Research 32 (suppl 2 2004), W665–W667.

88

[11] J. Dzubiella, J. M. J. Swanson, and J. A. McCammon. “Coupling Hydrophobicity,
Dispersion, and Electrostatics in Continuum Solvent Models”. Physical Review
Letters 96.8 (2006), p. 087802.

[12] J. Dzubiella, J. M. J. Swanson, and J. A. McCammon. “Coupling nonpolar and
polar solvation free energies in implicit solvent models”. The Journal of Chemical
Physics 124.8 (2006), p. 084905.

[13] Robert D. Falgout and Ulrike Meier Yang. “hypre: A Library of High Performance
Preconditioners”. Computational Science — ICCS 2002. Ed. by Peter M. A. Sloot,
Alfons G. Hoekstra, C. J. Kenneth Tan, and Jack J. Dongarra. Lecture Notes in
Computer Science. Berlin, Heidelberg: Springer, 2002, pp. 632–641.

[14] Frederic Gibou and Ronald Fedkiw. “A Fast Hybrid k-Means Level Set Algorithm
For Segmentation”. 4th Annual Hawaii International Conference on Statistics and
Mathematics (2005), p. 11.

[15] Frederic Gibou, Ronald P. Fedkiw, Li-Tien Cheng, and Myungjoo Kang. “A Second-
Order-Accurate Symmetric Discretization of the Poisson Equation on Irregular
Domains”. Journal of Computational Physics 176.1 (2002), pp. 205–227.

[16] Zuojun Guo, Bo Li, Joachim Dzubiella, Li-Tien Cheng, J. Andrew McCammon,
and Jianwei Che. “Heterogeneous Hydration of p53/MDM2 Complex”. Journal of
Chemical Theory and Computation 10.3 (2014), pp. 1302–1313.

[17] William W. Hager. “Condition Estimates”. SIAM Journal on Scientific and Statistical
Computing 5.2 (1984), pp. 311–316.

[18] W. K. Hastings. “Monte Carlo Sampling Methods Using Markov Chains and Their
Applications”. Biometrika 57.1 (1970), pp. 97–109.

[19] Jing Huang, Sarah Rauscher, Grzegorz Nawrocki, Ting Ran, Michael Feig, Bert L.
de Groot, Helmut Grubmüller, and Alexander D. MacKerell. “CHARMM36m: an
improved force field for folded and intrinsically disordered proteins”. Nature Methods
14.1 (2017), pp. 71–73.

[20] Michele Miranda Jr, Diego Pallara, Fabio Paronetto, and Marc Preunkert. “Short-
time heat flow and functions of bounded variation in RN” (), p. 22.

[21] Catherine Kublik, Nicolay M. Tanushev, and Richard Tsai. “An implicit interface
boundary integral method for Poisson’s equation on arbitrary domains”. Journal of
Computational Physics 247 (2013), pp. 279–311.

[22] P. H. Kussie, S. Gorina, V. Marechal, B. Elenbaas, J. Moreau, A. J. Levine, and N. P.
Pavletich. “Structure of the MDM2 oncoprotein bound to the p53 tumor suppressor
transactivation domain”. Science (New York, N.Y.) 274.5289 (1996), pp. 948–953.

89

[23] Randall J. LeVeque and Zhilin Li. “The Immersed Interface Method for Elliptic
Equations with Discontinuous Coefficients and Singular Sources”. SIAM Journal on
Numerical Analysis 31.4 (1994), pp. 1019–1044.

[24] Yaakov Levy and José N. Onuchic. “Water Mediation in Protein Folding and
Molecular Recognition”. Annual Review of Biophysics and Biomolecular Structure
35.1 (2006), pp. 389–415.

[25] J. Lie, M. Lysaker, and Xue-Cheng Tai. “A binary level set model and some ap-
plications to Mumford-Shah image segmentation”. IEEE Transactions on Image
Processing 15.5 (2006), pp. 1171–1181.

[26] Selim Esedoglu Lu and Felix Otto. “Threshold Dynamics for Networks with Arbitrary
Surface Tensions”. Communications on Pure and Applied Mathematics 68.5 (2015),
pp. 808–864.

[27] A. Mayo. “The Fast Solution of Poisson’s and the Biharmonic Equations on Irregular
Regions”. SIAM Journal on Numerical Analysis 21.2 (1984), pp. 285–299.

[28] Stanley Osher and Ronald Fedkiw. Level Set Methods and Dynamic Implicit Surfaces.
Applied Mathematical Sciences. New York: Springer-Verlag, 2003.

[29] Stanley Osher and James A Sethian. “Fronts propagating with curvature-dependent
speed: Algorithms based on Hamilton-Jacobi formulations”. Journal of Computa-
tional Physics 79.1 (1988), pp. 12–49.

[30] Clarisse G. Ricci and J. Andrew McCammon. “Heterogeneous Solvation in Distinctive
Protein–Protein Interfaces Revealed by Molecular Dynamics Simulations”. The
Journal of Physical Chemistry B 122.49 (2018), pp. 11695–11701.

[31] Toshiya Senda, Kazuyuki Sugiyama, Hiroki Narita, Takeshi Yamamoto, Kazuhide
Kimbara, Masao Fukuda, Mitsuo Sato, Keiji Yano, and Yukio Mitsui. “Three-
dimensional Structures of Free Form and Two Substrate Complexes of an Extradiol
Ring-cleavage Type Dioxygenase, the BphC Enzyme fromPseudomonassp. Strain
KKS102”. Journal of Molecular Biology 255.5 (1996), pp. 735–752.

[32] Yu-Chen Shu, I-Liang Chern, and Chien C. Chang. “Accurate gradient approximation
for complex interface problems in 3D by an improved coupling interface method”.
Journal of Computational Physics 275 (2014), pp. 642–661.

[33] Bing Song and Tony Chan. “A Fast Algorithm for Level Set Based Optimization”.
CAM-UCLA 68 (2002), pp. 02–68.

[34] Dong Wang, Haohan Li, Xiaoyu Wei, and Xiao-Ping Wang. “An efficient iterative
thresholding method for image segmentation”. Journal of Computational Physics
350 (2017), pp. 657–667.

90

[35] Zhongming Wang, Jianwei Che, Li-Tien Cheng, Joachim Dzubiella, Bo Li, and J. An-
drew McCammon. “Level-Set Variational Implicit-Solvent Modeling of Biomolecules
with the Coulomb-Field Approximation”. Journal of Chemical Theory and Compu-
tation 8.2 (2012), pp. 386–397.

[36] Zirui Zhang and Li-Tien Cheng. “A Compact Coupling Interface Method with
Accurate Gradient Approximation for Elliptic Interface Problems” (2021).

[37] Zirui Zhang and Li-Tien Cheng. “Binary Level Set Method for Variational Implicit
Solvation Model” (2021).

[38] Zirui Zhang, Clarisse G. Ricci, Chao Fan, Li-Tien Cheng, Bo Li, and J. Andrew
McCammon. “Coupling Monte Carlo, Variational Implicit Solvation, and Binary
Level-Set for Simulations of Biomolecular Binding”. Journal of Chemical Theory
and Computation (2021).

[39] Haizhen Zhong and Heather A. Carlson. “Computational studies and peptidomimetic
design for the human p53-MDM2 complex”. Proteins: Structure, Function, and
Bioinformatics 58.1 (2004), pp. 222–234.

[40] Guangfeng Zhou, George A. Pantelopulos, Sudipto Mukherjee, and Vincent A. Voelz.
“Bridging Microscopic and Macroscopic Mechanisms of p53-MDM2 Binding with
Kinetic Network Models”. Biophysical Journal 113.4 (2017), pp. 785–793.

[41] Shenggao Zhou, Li-Tien Cheng, Joachim Dzubiella, Bo Li, and J. Andrew McCam-
mon. “Variational Implicit Solvation with Poisson–Boltzmann Theory”. Journal of
Chemical Theory and Computation 10.4 (2014), pp. 1454–1467.

91

	Dissertation Approval Page
	Dedication
	Table of Contents
	List of Figures
	List of Tables
	Acknowledgements
	Vita
	Abstract of the Dissertation
	Introduction
	Level Set - Variational Implicit Solvent Model
	Variational Implicit Solvent Model
	Level Set Method
	LS-VISM
	Motivation

	Binary Level Set Method for Variational Implicit Solvent Model
	Introduction
	Binary Level Set Method

	Numerical Method
	Discretization
	Algorithm and Implementation Detail
	Max-flow Formulation

	Numerical Results
	Surface Area of a Sphere
	One atom
	Two atoms
	Biomolecules

	Conclusion
	Proof of Propositions
	Integral formula of Surface Area
	Discretization error of Integral formula

	Coupling Monte Carlo, Variational Implicit Solvation, and Binary Level-Set for Simulations of Biomolecular Binding
	Introduction
	Theory and Algorithm
	p53-MDM2: Simulation results and analysis
	Solvation Free Energy of p53-MDM2
	Rigid-Body MC-VISM Simulations of the Binding of p53-MDM2

	Conclusion

	A Compact Coupling Interface Method for Elliptic Interface Problems
	Introduction
	Numerical Method
	Dimension-by-dimension discretization
	Approximation of the jump condition
	Approximation of the mixed derivative
	Algorithm

	Numerical Results
	Example 1
	Example 2
	Example 3
	Example 4

	Conclusion

	Bibliography

