
UC San Diego
UC San Diego Previously Published Works

Title
Adjacent and Non‐Adjacent Word Contexts Both Predict Age of 
Acquisition of English Words: A Distributional Corpus Analysis of Child‐
Directed Speech

Permalink
https://escholarship.org/uc/item/2rf3p7ws

Journal
Cognitive Science, 44(11)

ISSN
0364-0213

Authors
Chang, Lucas M
Deák, Gedeon O

Publication Date
2020-11-01

DOI
10.1111/cogs.12899
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/2rf3p7ws
https://escholarship.org
http://www.cdlib.org/


Cognitive Science 44 (2020) e12899
© 2020 Cognitive Science Society, Inc. All rights reserved.
ISSN: 1551-6709 online
DOI: 10.1111/cogs.12899

Adjacent and Non-Adjacent Word Contexts Both Predict
Age of Acquisition of English Words: A Distributional

Corpus Analysis of Child-Directed Speech

Lucas M. Chang, Gedeon O. De�ak

University of California, San Diego

Received 21 August 2018; received in revised form 27 July 2020; accepted 4 August 2020

Abstract

Children show a remarkable degree of consistency in learning some words earlier than others.

What patterns of word usage predict variations among words in age of acquisition? We use distri-

butional analysis of a naturalistic corpus of child-directed speech to create quantitative features

representing natural variability in word contexts. We evaluate two sets of features: One set is gen-

erated from the distribution of words into frames defined by the two adjacent words. These fea-

tures primarily encode syntactic aspects of word usage. The other set is generated from non-

adjacent co-occurrences between words. These features encode complementary thematic aspects of

word usage. Regression models using these distributional features to predict age of acquisition of

656 early-acquired English words indicate that both types of features improve predictions over

simpler models based on frequency and appearance in salient or simple utterance contexts. Syntac-

tic features were stronger predictors of children’s production than comprehension, whereas the-

matic features were stronger predictors of comprehension. Overall, earlier acquisition was

predicted by features representing frames that select for nouns and verbs, and by thematic content

related to food and face-to-face play topics; later acquisition was predicted by features represent-

ing frames that select for pronouns and question words, and by content related to narratives and

object play.

Keywords: Language acquisition; Language input; Vocabulary; Word learning; Syntax;

Distributional semantics; Age of acquisition; Statistical learning

1. Introduction

Infants’ linguistic, social, and physical environment provides a wide array of features

that might support early word learning. How do the myriad cues and correlations in the
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world combine to determine which words are learned, and when? Laboratory studies have

demonstrated, at various ages and situations, influences of factors including dominance of

the word’s referent in the child’s visual field (Yu & Smith, 2012), speech–motion syn-

chrony (Gogate & Bahrick, 1998), children’s biases to attend preferentially to relevant

cues such as object shape (Landau, Smith, & Jones, 1988), discourse context (Horowitz

& Frank, 2015; Sullivan & Barner, 2016), and the distribution of exposures over time

(Childers & Tomasello, 2002; Vlach & Johnson, 2013). However, laboratory studies typi-

cally involve mapping novel nouns to novel toys during a single experimental session,

which is not representative of normal word acquisition. During typical language acquisi-

tion, early-learned words represent diverse syntactic and semantic types and are experi-

enced repeatedly over weeks or months. To understand the role of these experiences in

word learning, researchers have related the normative age of acquisition (AoA) of words

to measures of their frequency and usage patterns in infant-directed speech, as reviewed

below.

1.1. Predicting age of acquisition

Recently, large databases of infants’ vocabularies collected using the MacArthur–Bates
Communicative Development Inventory (CDI; Fenson, March man, Thal, Dale, &

Reznick, 2007) have made it easier to study the normative AoA of individual words

(Frank, Braginsky, Yurovsky, & Marchman, 2017). Infant-directed speech corpora such

as those in CHILDES (MacWhinney, 2014) make it possible to derive predictors from

real-world usage patterns. Using these data, Braginsky et al. found that normative ages of

comprehension and production in seven languages are predicted by high word frequency,

low mean length of utterance (MLU), frequent appearance in isolated or utterance-final

positions, high concreteness ratings, and high “babiness” ratings by adults—that is, rele-

vance of a word to babies (Braginsky, Yurovsky, Marchman, & Frank, 2016, 2019).

Machine-extracted prosodic features also predict age of comprehension (Frermann &

Frank, 2017). Swingley and Humphrey (2018) extended these analyses to predict individ-

ual differences. By pairing individual children’s CDIs with samples of their parents’

speech, they found that word frequency, frequency of occurrence in isolation, shorter

utterance length, and longer spoken duration predicted both comprehension and produc-

tion, and these predictors were stronger for matched mother–infant pairs than for random-

ized pairings of mothers and infants. Another study used dense data collected for a single

child, finding that word production was predicted by frequency of a word in the input

and by distinctiveness of a word’s spatial, temporal, and topic distribution (Roy, Frank,

DeCamp, Miller, & Roy, 2015).

The above factors illustrate that words can be easier or harder to learn in a few distinct

ways: Some predictors relate to the sheer number of opportunities to learn the word,

some relate to the conceptual accessibility of the word meanings for young children, and

some relate to the position of words within a linguistic context. Within the last category,

only a few simple predictors have been evaluated. These show that simplicity of the sen-

tential context, distinctiveness of contexts, and placement at utterance boundaries, all
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positively predict word learning. However, data-driven distributional representations of

word usage patterns have not been evaluated as predictors of AoA, even though distribu-

tional models have been proposed as mechanisms for infants to learn about word class

(Clair, Monaghan, & Christiansen, 2010; Monaghan, Chater, & Christiansen, 2005) and

verb semantics (Laakso & Smith, 2007), and can successfully represent semantic similar-

ity and categorical structure when trained on infant-directed speech (Huebner & Willits,

2018).

The goal of the current study is to investigate whether, and how, distributional proper-

ties of words contribute to predicting AoA. Distributional features are derived from co-

occurrences among words or word sequences, but might reflect, to varying degrees, dif-

ferent types of information including syntactic, thematic, and taxonomic relations among

words (Huebner & Willits, 2018). Therefore, a second goal of the study is to design and

extract a set of distributional features from real-world language use that segregates infor-

mation types, so that the contributions of these types to lexical development can be eval-

uated separately. One simple way to segregate distributional features into two

complementary streams is by tracking distributional statistics at different scales. That is,

a word’s distribution can be described both in terms of adjacency relations such as transi-

tion probabilities or simple constructions across successive words, and in terms of non-
adjacent co-occurrence with other words in a wider scope. We expect this simple distinc-

tion to correlate with some higher level conceptual boundaries: Specifically, we expect

that adjacency relations will primarily capture word class and syntactic information,

whereas non-adjacent co-occurrence will primarily reflect thematic information. In the

next section, we review the strengths and limitations of existing methods of generating

distributional semantic representations of words.

1.2. Distributional word representations

General-purpose distributional lexical representations have a history of effective use in

natural language processing, and therefore serve as a starting point for the design of

developmentally relevant distributional representations. Three main approaches can be

distinguished. One family of models represents words by their distribution across large-

scale contextual units. These contexts can be defined by document boundaries in the

training corpus, as in latent semantic analysis (Dumais, 2004), or they may represent

topics inferred by a generative model, as in latent Dirichlet allocation (Blei, Ng, & Jor-

dan, 2003).

A second group of models represents words by their co-occurrence rates with other

words. This approach was introduced as the Hyperspace Analogue to Language (Lund &

Burgess, 1996), and statistical refinements such as COALS (Rohde, Gonnerman, & Plaut,

2004). Recently, new levels of performance on large datasets have been achieved by

recasting this approach as a neural network, as in Skip-gram (Mikolov, Chen, Corrado, &

Dean, 2013; Mikolov, Sutskever, Chen, Corrado, & Dean, 2013).

Finally, a third group of models learns to predict sequences of words, such that its

internal states after training can be interpreted as word representations. This group

L. M. Chang, G. O. De�ak / Cognitive Science 44 (2020) 3 of 24



includes recurrent neural networks (Elman, 1990) and their refinements such as LSTM

(Hochreiter & Schmidhuber, 1997), Gated Recurrent Unit (Chung, Gulcehre, Cho, & Ben-

gio, 2014), and Delta-RNN (Ororbia, Alexander, Mikolov, & Reitter, 2017).

Despite their successes, existing distributional models suffer from a few drawbacks.

Models that represent words as points in a vector space have trouble accounting for the

fact that pairwise word similarity is not a valid metric: Word A may be similar to word

B, and word B may be similar to word C in an unrelated way, without implying that

words A and C are at all similar (e.g., Barclay, Bransford, Franks, McCarreli, & Nitsch,

1974; Griffiths, Steyvers, & Tenenbaum, 2007; Medin & Shoben, 1988). Another poten-

tial problem is that computational models often achieve good performance by processing

vast amounts of data at arbitrary timescales and memory loads, which are unrealistic

models of human infants’ learning, and might be counterproductive for certain kinds of

learning (Elman, 1993; Newport, 1990; Phillips & Pearl, 2015).

Analyses of corpora of child-directed speech have demonstrated that children could

potentially discover linguistic regularities by tracking the distributions of words. In partic-

ular, rich information about syntax is encoded in the distribution of words into contexts

defined by the immediately adjacent words. For instance, many frequent frames, consist-
ing of pairs of flanking words for a target word, are strongly selective for nouns and

verbs, and have been proposed to form the basis for early syntactic learning (Mintz,

2003). Frames are an attractive measure for predicting AoA of specific words for several

reasons. One is that they can readily be detected in corpora of child-directed speech.

Another is that they encode information about word class and usage without requiring

advanced syntactic knowledge. Another is that frames might support word learning in

multiple ways. First, frequent frames likely facilitate word segmentation by demarcating

the boundaries of the framed word, increasing the probability that it will be further pro-

cessed. Second, frames help children infer word meaning by embedding words in familiar

and meaningful constructions (see Gleitman, 1990; Goldberg, 2003). Third, frequent

frames might facilitate production if infants acquire productive language in a construc-

tion-specific manner (Cameron-Faulkner, Lieven, & Tomasello, 2003; Tomasello, 2000).

That is, if producing a word depends not only on inferring its meaning but also on having

a construction in which it is known to occur, then the words that appear most often in

the earliest acquired productive constructions are likely to be produced first. Finally,

appearing in one or a few specific frames might be a proxy for a word’s syntactic class.

In sum, features derived from word frame co-occurrence statistics merit closer study

because frames are thought to be relevant for infant learning, they address open questions

about interactions between syntactic and lexical learning, and they can be derived exclu-

sively from the words immediately adjacent to each target word.

In contrast to adjacency relations such as frames, it has been noted that models based

on non-adjacent word-co-occurrences, such as Skip-gram, tend to be biased toward the-

matic rather than syntactic or taxonomic information (Huebner & Willits, 2018). To fur-

ther emphasize thematic information at the expense of syntax, a model based on word

co-occurrence can be trained using a sliding window that counts co-occurrences between

nearby words, but not adjacent ones. The representation modified in this way is a simple,
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associative model of coarse-grained distributional information whose input is complemen-

tary to that of frames.

Because co-occurrences are derived from bottom-up distributional statistics in infant-

directed speech, they reflect the structure of naturalistic language environments more

directly than theory-based measures of grammatical class and word meaning that have

been used to predict acquisition (e.g., Braginsky, Yurovsky, Marchman, & Frank, 2016,

2019).

Thus, taken together, we expect frames and non-adjacent co-occurrences to reflect pri-

marily syntactic and thematic aspects of word meaning, respectively, and to generate a

rich set of quantitative features that jointly predict AoA better than either level of distri-

butional information alone.

1.3. Current study

The current study addresses how distributional properties of words predict AoA of

individual words. We derive quantitative features from a large corpus using two types of

information: Syntactic features are derived from distribution of words in frames, and the-
matic features are derived from non-adjacent co-occurrences between words. We first

demonstrate that these two types of features succeed in capturing different levels of struc-

ture in the lexicon, both qualitatively and by quantifying the extent to which they distin-

guish between syntactic and thematic word classes as defined by the groupings of words

on the CDI infant vocabulary checklist. Then, we evaluate how well normative AoA of

words is predicted by the two types of distributional features, using CDI production

norms as the primary measure of AoA. We also used the features to predict CDI compre-

hension norms to increase generality and comparability with previous studies. We fit

models predicting AoA using a set of simple word use metrics that have been previously

described (i.e., frequency, MLU, final frequency, solo frequency; Braginsky, Yurovsky,

Marchman, & Frank, 2016). We then investigate how these models are improved by

including the syntactic and/or thematic distributional features.

2. Methods

2.1. Corpus

The corpus was constructed by downloading all American English transcripts from

CHILDES (MacWhinney, 2014) and selecting those containing speech by primary care-

givers directed to typically developing children aged 48 months or younger. Special

codes indicating non-words were removed.1 All punctuation was removed except for

utterance boundary tokens. Dialectal, spelling, word segmentation, contractions, and tran-

scription-style variants were standardized. Whenever possible, we attempted to standard-

ize variants so that each CDI item corresponded to a single word type in the corpus.

Finally, we removed common inflections and contractions (-ing, -ed, -s, ‘ll, ‘ve, ‘m, ‘re, -
n’t), leaving word lemmas. The resulting corpus contained 1,050,868 utterances and
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4,533,900 tokens from 3,794 transcribed sessions (range: 2–8,648 tokens per recording

session).

2.2. Age of production

CDI data were obtained from Wordbank (Frank et al., 2017). American English words

and gestures (age 8–18) and words and sentences (age 16–30) were both used. For each

age, the proportion of children producing the word was calculated. We then fit a logistic

curve to the proportion, constraining the proportion to approach 1 (extrapolated). The age

at which this curve crossed .5 was considered the age of production for the word. For

model fitting, values were normalized to have zero mean and unit variance. Three items

were dropped because they consisted of family-specific names; nine were dropped

because they were phrases that could not be segmented as distinct units in the corpus;

and two were dropped because they are sex-specific body parts and were very infrequent

in the corpus. This left scores for 656 words.

2.3. Age of comprehension

Comprehension scores were calculated the same way as production scores, except that

only the shorter words and gestures form includes a comprehension checklist (see Fenson

et al., 2007). Thus, data were available for a smaller set of words and ages. In addition to

the items that were dropped from the production dataset, logistic curves could not be fit

to four words (brother, sister, mommy, daddy) because no increasing trend was present

over the range 8–18 months. This resulted in scores for 383 words.

2.4. Syntactic features

Frequent frames were defined as pairs of words (including the utterance boundary mar-

ker, so that the framed word could be in utterance-initial or -final position) that co-oc-

curred, separated by one word, at least 1,000 times in the corpus. This cutoff was chosen

to eliminate most frames involving content words specific to a theme or activity, and

those that occurred too infrequently to be familiar to most children. This yielded 439 fre-

quent frames. All other frames were collapsed into a single “other” frame, representing

rare or unknown frames. For each target word, we then constructed a vector of the num-

ber of times the word occurred in each frame. Thus, 656 words’ occurrences in 439

frames were counted, yielding a 656 9 439 matrix. Values were first normalized so that

each word’s features (i.e., frame occurrences) summed to 1, and then, these features were

scaled to have a mean of zero and variance of 1. Each row of the resulting matrix thus

consisted of a 439-dimensional representation of a word, where each dimension represents

its tendency to occur in a specific frame.

To reduce the dimensionality of this matrix into a smaller set of cohesive features, we

applied principal components analysis (PCA). This operation produces a set of abstract

features representing combinations of frames that best explain the variability in the data,

with the constraint that they are uncorrelated with each other. For instance, all frames that
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allow mainly nouns are likely to contribute to a single principal component (PC) that rep-

resents, roughly, the affinity of a word for “noun” contexts. The resulting PCs are ordered

by amount of variance explained, and by selecting the first few PCs, we obtain a low-di-

mensional set of syntactic features that capture the most divergent and systematic differ-

ences in the typical frame contexts of different words. Finally, to improve robustness of

regressions, PCs were winsorized, clipping values more extreme than 10 times the mean

absolute deviation from the median. We focus on the first 10 PCs for analysis. This pro-

cess and the process described below are summarized schematically in Fig. 1.

2.5. Thematic features

Thematic (i.e., non-adjacent) features were generated using a version of the COALS

model, based on correlations between words (Rohde et al., 2004). This model was chosen

for its simplicity and lack of domain- or task-specific assumptions, and because it repre-

sents co-occurrences between words as statistical associations, in accordance with statisti-

cal learning theories of language acquisition (Erickson & Thiessen, 2015; Romberg &

Saffran, 2010; Smith, Suanda, & Yu, 2014). Context words were defined as any word that

occurred at least 1,000 times in the corpus (this cutoff eliminated rare context words that

Fig. 1. Example computation of distributional features. Starting with an example utterance, we first standard-

ize word variants, remove inflections, and insert utterance boundary tokens. We then apply two sliding win-

dows to the input: for the syntactic features, we count the number of times each word (shaded in black)

appears in the frame defined by the two surrounding tokens (gray). For the thematic features, we count the

number of times each word (black) appears within five tokens of, but not adjacent to, each context word

(gray). The resulting matrices are then transformed as described in the text, and the top 10 principal compo-

nents of each matrix are the final features.
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were unlikely to be familiar to children). We thus identified 1422 distinct context words.

For each target word, we counted the number of times it co-occurred with each context

word, using a sliding window to count co-occurrences that were within five flanking

words but not adjacent. This resulted in a 656 9 1,422 matrix. Co-occurrence frequencies

were then normalized to represent correlations, and negative values were set to zero (be-

cause the model is only interested in finding regular associations between words). Finally,

values were square-root transformed. (As Rohde et al. [2004] note, this increases the rela-

tive weight of weak associations between words, thereby increasing sensitivity to patterns

in a limited dataset, and it puts the values on a more interpretable scale.) Each row of the

matrix thus consists of a 1,422-dimensional representation of a word, where each dimen-

sion represents its tendency to co-occur non-adjacently with a specific context word.

As above, we applied PCA to produce abstract features representing combinations of

context words that explain the most variability among target words, and PCs were win-

sorized in the same way. This produced a set of 10 thematic features that are comparable

in structure, but complementary in content, to the syntactic features.

2.6. Other metrics

Following Braginsky et al. (2016), we computed frequency, MLU, solo frequency, and

final frequency. Frequency was calculated as the logarithm of the number of times each

word appeared in the corpus. Stemming and standardization described above ensured that

this frequency represents that of the word overall and not just the specific form listed in

the CDI. MLU was calculated as the mean number of words in utterances containing each

word, where utterance boundaries were defined by the original transcription, and did not

always correspond to grammatical sentences. Solo frequency and final frequency were

calculated by taking the logarithm of the number of times each word appeared in a one-

word utterance or as the last word of an utterance, respectively, and finally taking the

residual with respect to log frequency.

2.7. Evaluation

We first evaluate the extent to which syntactic and thematic features encode distinct

information. We investigate this qualitatively by reporting the frames/context words that

contribute most to the top PCs, and the words with the highest and lowest values on each

PC. We then quantitatively evaluate the extent to which each PC distinguishes among

either syntactic or thematic word categories, as defined by the groupings on the CDI, and

confirm that the syntactic and thematic distributional features differentiate the syntactic

and thematic word groups, as hypothesized.

We then fit multiple linear regression models predicting both age of production and

age of comprehension for the target words. First, a baseline model included frequency,

MLU, solo frequency, and final frequency. Next, a full model included all features as pre-

dictors. Finally, we fit three models with, respectively, the baseline and syntactic features,

the baseline and thematic features, and the syntactic and thematic features (i.e., leaving

out one feature set at a time). Models were evaluated in terms of R2 and adjusted R2, and
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significance for each predictor set was evaluated using likelihood ratio tests between the

full model and the model without the predictors. Finally, predictive robustness of the full

model was evaluated using 10-fold cross-validation to estimate the root mean squared

error (RMSE) for predicted AoA of words not used to fit the model.

We additionally repeated the analysis with different values (increasing or decreasing

by a factor of 2) for minimum feature frequency, number of PCs, and winsorization

levels to ensure that the model results are not strongly dependent on the specific values

chosen.

3. Results

We examined the top PCs of the syntactic (adjacent) and thematic (non-adjacent) dis-

tributional features. First, we examined scree plots to validate the number of PCs selected

for each feature type (Fig. 2). These plots show the proportion of the total variance in the

raw features that is explained by each additional syntactic and thematic PC. Inspection of

the plots shows that the proportion of explained variance levels off around 5–10 PCs.

Therefore, we conduct the main analyses using the first 10 PCs (models with 5 and 20

PCs were also evaluated as part of the robustness checks).

Next, we inspected the top PCs to determine whether they qualitatively capture mainly

syntactic and thematic distinctions, respectively. Table 1 shows the words with lowest

and highest values, and the frames with lowest and highest weights, for the first 10 syn-

tactic PCs.

Examining the sets of syntactic word frames qualitatively, PC1 separates pronoun

frames from verb frames, and PC2 separates nouns from verbs. Thus, the first two PCs

encode distinctions among three major word classes. PC3 selects for modal verbs that

appear between a pronoun and a verb. PC4 distinguishes between modal verbs and

Fig. 2. Scree plots for PCA components.
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Table 1

First 10 syntactic PCs

PC

Highest

Wordsa
Lowest

Words

Highest Weight

Frames

Lowest Weight

Frames

Production

Coefficientb
Comprehension

Coefficient

1 read
hear
fix
put

you
we
they
i

you_the
can_it
to_it
gonna_it

did_do
so_can
._gotta
._could

�0.58*** �0.45

2 tights
bead
block
cheerio

hear
put
read
fix

the_.
a_.
the_in
your_.

you_the
can_it
wanna_the
to_that

�0.32* 0.30

3 you
we
they
touch

wanna
gotta
gonna
could

can_put
do_see
are_gonna
do_wanna

you_put
you_get
you_take
you_do

�0.01 0.07

4 you
wanna
gotta
have_to

what
where
why
who

do_see
do_wanna
do_think
do_want

._he

._she

._did

._do

�0.86*** �0.38

5 she
he
what
who

you
are
did
is

._was

._has

._does
there_is

can_say
do_remember
do_think
do_want

�0.34* �0.24

6 she
he
sick
stuck

you
what
where
why

is_.
was_.
he_.
they_.

the_.
._do
a_.
the_in

�0.04 �0.23

7 we
no
now
are

what
you
how
why

oh_you
._they
._i
._we

._do
know_that
._is
._did

�0.40*** �0.78***

8 under
is
in
over

don’t
what
why
draw

it_the
go_the
go_there
it_there

you_.
._do
you_like
wanna_.

�0.29** �0.26

9 wanna
now
you
here

don’t
are
did
we

._what

._let

._how

._where

what_you
where_you
what_we
where_the

�0.24* �0.76**

10 show
give
help
scare

build
draw
is
need

._me
me_you
._mommy
you_me

we_a
gonna_a
you_a
to_a

�0.11 0.01

aSigns are arbitrary, so “highest” is chosen for the extreme that predicts lower age of production; bCoeffi-

cients are reported for the full model including baseline predictors and both sets of PCs. Significance is com-

puted with likelihood ratio tests; *p < .05; **p < .01; ***p < .001.
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question words. PC5 seems to encode the difference between you and other pronouns.

PC6 selects for adjectives, and PC7 seems to encode both question words and transition

frames where a word precedes a pronoun at the start of an utterance. PC8 selects for

location words, PC9 selects for helping verbs, and PC10 distinguishes between verbs that

take human or inanimate objects.

Similarly, Table 2 shows for the first 10 thematic PCs, the words with lowest and

highest values, and the context words with lowest and highest weights. PC1 separates

words that appear in food contexts from words that appear in narrative contexts (some of

the extreme values occur for low-frequency object words that are not semantically

related, but nonetheless associate with food-related context words). PC2 selects for the

topic of animals; PC3 and PC4 collectively distinguish between object play contexts and

talk about the past. PC5 separates object play from interpersonal play contexts. PC6 sepa-

rates greetings and communication-related contexts from body-related contexts; PC7 sepa-

rates object-describing contexts from a mix of food-related and movement-related context

words; PC8 separates dressing and bathing from vehicle/toy play contexts. PC9 selects

for colors, and PC10 seems to encode additional distinctions between animal-related and

narrative contexts. Taken together, the syntactic features reflect salient aspects of word

class, whereas the thematic features represent different topics and activities.

We next verified that the syntactic and thematic PCs quantitatively discriminated

between different syntactic and thematic groups of words, respectively. For this purpose,

we used the word categories on the CDI. We collapsed the categories into a subset that

primarily reflects syntactic distinctions, and a subset that primarily reflects thematic dis-

tinctions. The “syntactic” categories were the following categories from the CDI: quanti-

fiers, locations, helping verbs, connecting words, descriptive words, action words,

pronouns, question words, and the 11 noun categories (combined into a single set). Time

words, sounds, and games/routines were dropped because they were not syntactically

homogeneous. The “thematic” categories were the 11 noun categories taken separately:

vehicles, animals, body parts, food/drink, people, outside things, toys, furniture/rooms,

household objects, places, and clothing. For each PC, we calculated the F-statistic reflect-

ing the ratio of between-category and within-category variance for each category set.

Fig. 3 shows the F-statistics for the first 10 PCs in each feature type for both category

sets. All 10 frame features reflected syntactic categories significantly better than thematic

categories (median = 55.3 for syntactic categories, median = 8.5 for thematic categories;

Wilcoxon test, p < .001; rank-biserial correlation = 1), and 9 of 10 co-occurrence fea-

tures reflected thematic categories significantly better than syntactic categories (me-

dian = 7.8 for syntactic categories, median = 27.9 for thematic categories; Wilcoxon test,

p < .05, rank-biserial correlation = .75). This confirms that adjacent context better pre-

dicts syntactic class, whereas non-adjacent context better predicts thematic relations

within a syntactic class (nouns).

Having established that the two feature sets differentiate distinct aspects of word

semantics, we then used the distributional features to predict age of production and com-

prehension of words using linear regression models. For both production and comprehen-

sion, we evaluated a baseline model using frequency, MLU, solo frequency, and final
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Table 2

First 10 thematic PCs

PC

Highest

Wordsa
Lowest

Words

Highest Weight

Context Words

Lowest Weight

Context Words

Production

Coefficientb
Comprehension

Coefficient

1 ankle
melon
snowsuit
coke

the
he
and
was

want
yummy
spoon
wipe

and
day
vacation
plan

�0.51* �.40

2 the
who
quack
cat

you
i
eat
have

is
look
rabbit
cat

some
more
i
alright

�0.12 0.24

3 was
eat
day
were

put
it
on
up

had
um
eat
was

oops
whoa
whoops
pull

�0.06 0.64**

4 to
when
day
time

that
a
you
is

went
when
were
night

mm
that
mhm
good

�0.01 0.33

5 hi
say
you
kiss

in
the
put
of

infant’s name
hi
aw
kiss

of
we
car
truck

�0.48*** �0.36*

6 he
his
and
but

you
bye
we
wanna

has
his
hurt
still

infant’s name
later
bye
hi

�0.005 �00.48**

7 the
eat
down
jump

that
i
these
red

jump
eat
milk
down

color
pretty
wear
know

�0.65*** �0.85***

8 put
and
her
wash

it
that
car
push

pajama
clothes
dress
bath

it
noise
crash
break

�0.33** �0.65***

9 does
he
think
in

green
blue
and
red

does
pig
farmer
think

yellow
green
blue
red

�0.03 0.23

10 quack
i
it
moo

did
you
he
at

rooster
cow
moo
sheep

drive
yesterday
got
head

�0.17 �0.19

aSigns are arbitrary, so “highest” is chosen for the extreme that predicts lower age of production; bCoeffi-

cients are reported for the full model including baseline predictors and both sets of PCs. Significance is com-

puted with likelihood ratio tests; *p < .05; **p < .01; ***p < .001.
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frequency; a full model including all features; and models with only the baseline and syn-

tactic features; the baseline and thematic features; and the syntactic and thematic features,

leaving out one set of features at a time. Models were evaluated using R2, adjusted R2,

and root mean squared error (RMSE) under 10-fold cross-validation. Results are shown

in Table 3.

For both comprehension and production, the full model performed substantially better

than the baseline model (adjusted R2 = .634 vs. .493 for production, adjusted R2 = .460

vs. .242 for comprehension). Moreover, for both comprehension and production, the

Fig. 3. Frame versus co-occurrence PCs segregate syntactic and thematic information. Each feature is repre-

sented as a line connecting its F-statistic with respect to the syntactic and thematic categories on the CDI.

Downward sloping lines correspond to features that are more diagnostic of syntactic category, and upward

sloping lines correspond to features that are more diagnostic of thematic category. Labels along sides indicate

numbered PCs.

Table 3

Model evaluation for different subsets of features

Model R2 Adjusted R2 Cross-Validation RMSE

Production

Full .647 .634 2.49

Baseline .496 .493 2.85

Syntactic + Thematic .402 .383 3.35

Baseline + Thematic .570 .560 2.69

Baseline + Syntactic .603 .594 2.58

Comprehension

Full .494 .460 2.88

Baseline .242 .234 3.31

Syntactic + Thematic .366 .330 3.26

Baseline + Thematic .417 .395 3.00

Baseline + Syntactic .383 .360 3.03
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model fit was significantly degraded when any of the three features sets was removed

(likelihood ratio tests, ps < .001). For both comprehension and production, removing the

baseline features caused the biggest increase in prediction error relative to the full model.

However, the relative importance of syntactic and thematic features depended on the

AoA measure: For comprehension, prediction error was higher for the model without the-

matic features (RMSE = 3.03 months) than for the model without syntactic features

(RMSE = 3.00 months), whereas for production, prediction error was higher for the

model without syntactic features (RMSE = 2.69 months overall, 2.71 for the subset of

words that are on the comprehension form) than for the model without thematic features

(RMSE = 2.58 months overall, 2.53 months for the comprehension form subset). This

pattern suggests that syntactic features are relatively more important for production,

whereas thematic features are more important for comprehension. Finally, error was

higher for comprehension (RMSE = 2.88 months) than production (RMSE = 2.49 months

overall, 2.50 on the comprehension form subset), though it is unclear whether this is due

to weaker predictive relations or to noisier data due to the difficulty of assessing compre-

hension in infants.

Predictions of the full model of age of production and comprehension of individual

words, plotted against actual AoA values for the production corpus and the comprehen-

sion corpus, are shown in Fig. 4.

To further characterize the contributions of individual syntactic and thematic features

to the AoA values, we also report the estimated weights for each feature in the full mod-

els in Tables 1 and 2. These are visualized in Fig. 5 for production (top) and comprehen-

sion (bottom) data. Accuracy of estimation of the contribution of each individual feature

is decreased when predictors are correlated; therefore, we calculated the variance inflation

Fig. 4. Ten-fold cross-validation predicted versus actual AoA (left: production; right: comprehension) for all

words.
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factor for each feature in the full production and comprehension models (Tables S4 and

S5). VIFs ranged from 1.05 to 7.41 in the production model, and from 1.22 to 6.06 in the

comprehension model, indicating a moderate amount of multicollinearity.

Finally, to test whether our results were dependent on the specific choices for numeri-

cal parameters, we repeated all analyses with different values (increasing or decreasing

Fig. 5. Feature weights (top: production; bottom: comprehension). Distributional feature signs are chosen so

that higher feature values predict earlier production; that is, negative weights (plotted up). Therefore, for

comprehension weights, bars pointing up represent coefficients with the same sign as those for production,

whereas bars pointing down represent coefficients with opposite sign. Error bars indicate standard errors of

the coefficient estimates. SPC: syntactic principal component; TPC: thematic principal component.
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by a factor of 2) for minimum feature frequency, number of PCs, and winsorization

levels. The overall pattern of model fits was similar in all cases (Tables S1–S3). Perfor-
mance was slightly degraded by increasing the minimum feature frequency, suggesting

that less common items add noise to the PCs. Performance was also slightly degraded by

increasing the winsorization threshold, suggesting that a few extreme PC values can

obscure the information encoded in smaller differences among other words. Changing the

number of PCs had different effects depending on the model: Decreasing the number of

PCs from 10 to 5 degraded performance of all models, whereas increasing the number of

PCS from 10 to 20 improved predictions slightly for production but degraded predictions

for comprehension. However, increasing the number of PCs did not affect the pattern of

relative performance among models. Thus, models using 10 PCs avoid overfitting while

encoding most of the relevant information in the word usage distributions.

4. Discussion

In this paper, we introduce a novel distributional representation of word usage in

child-directed speech. By deriving separate representations of words’ distribution over

frames and (non-adjacent) co-occurrences between words, we produce two sets of features

that capture word usage patterns at different timescales. These features primarily encode

syntactic and thematic information, respectively, which we confirm both by qualitative

inspection of the feature content and by comparing feature values across syntactic and

thematic word groups. Furthermore, the features are consistent with a simple model in

which learners track the co-occurrences of frequent items in naturalistic input.

We then examine the degree to which each feature type predicted children’s normative

AoA of English words, compared to a baseline model that includes previously identified

word usage features including MLU and three frequency-based measures (Braginsky

et al., 2016). The baseline features, especially word frequency and solo frequency, were

consistently among the strongest predictors in all models, suggesting that a word’s distri-

bution over usage contexts complements but does not supersede overall frequency and

frequency in salient contexts. Nonetheless, for both production and comprehension, both

distributional feature types predicted AoA over and above the baseline model. The syn-

tactic and thematic feature types were complementary, in that a model that includes both

feature types predicted AoA over and above either feature type alone. Together, syntactic

and thematic distributional features explained 15% more variance in production AoA than

the baseline model, and they explained 25% more variance in comprehension. These

improvements were robust both to corrections for the number of parameters and to cross-

validation.

Although comprehension and production showed similar patterns of incremental pre-

dictive utility for distributional features over and above frequency-based (baseline) fea-

tures, age of comprehension was predicted less accurately overall than age of production.

It is likely that comprehension data are inherently noisier due to limitations in parent

report accuracy (Eriksson, Westerlund, & Berglund, 2002; Feldman et al., 2000; Oliver
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et al., 2003; Tomasello & Mervis, 1994). Syntactic features were a stronger predictor for

production, whereas thematic features were a stronger predictor for comprehension. This

suggests that availability of syntactic constructions (and related cognitive resources such

as verbal working memory) might be a limiting factor in children’s acquisition of words

for production (Arnon & Clark, 2011). The relative influence of individual features was

nevertheless mostly consistent between comprehension and production (see Fig. 5).

Different types of distributional features contributed to AoA in different ways. Fre-

quency, solo frequency, and final frequency were consistently strong predictors, which

suggest that a word’s inherent salience in the input may contribute to learning rate, possi-

bly in several ways—for example, solo frequency eliminates the problem of segmentation

and suggests that the word can be meaningful without requiring the user to represent

complex relations among multiple entities (Brent & Siskind, 2001). Consistently with

this, concrete nouns and interactive social words (e.g., “hi”) are prevalent among chil-

dren’s first words, as are frozen multi-word phrases that express a discrete meaning and

segment as a unit (Bates et al., 1994; Lieven, Pine, & Barnes, 1992). Final frequency, in

contrast, suggests a role of perceptual salience and/or working memory limitations in

learning (Fernald & Mazzie, 1991).

Among the syntactic features, the strongest effects indicated that content words (nouns

and verbs) were learned earlier than pronouns, and that question words were produced

late, consistent with previous studies of vocabulary composition by word class (e.g.,

Bates et al., 1994; Caselli et al., 1995).

Among the thematic features, the strongest effects indicated that words used in food

contexts were learned earlier than words used in narrative or descriptive contexts, and

that words used in face-to-face interpersonal play were learned earlier than words used in

object play. These patterns are consistent with the limited sentence complexity of early

production, as well as the well-established developmental progression from dyadic to tri-

adic and finally displaced reference (Adamson & Bakeman, 1991; de Barbaro, Johnson,

Forster, & De�ak, 2016; Morford & Goldin-Meadow, 1997; Sachs, 1983).

The predictive utility of these different types of distributional features derived from

naturalistic caregiver speech, in addition to frequency-based features, suggests that dis-

tributional contextual information might play a role in infants’ word learning. This

identifies a gap in much of the research on word learning, which has focused more

prominently on the referential transparency of object-naming events (McGillon et al.,

2013; Medina, Snedeker, Trueswell, & Gleitman, 2011; Trueswell et al., 2016; Yu &

Smith, 2012), social cues in naming (Frank, Tenenbaum, & Fernald, 2013), and chil-

dren’s biases about word (mostly noun) meanings (De�ak, 2000; Markman, 1990). Thus

far, these explanations of word learning have been complementary, in that the relevant

factors are typically manipulated experimentally but are not assessed or estimated from

naturalistic data. Conversely, frequency and distributional data can be computed from

corpus data but not assessed experimentally in real-time learning. Furthermore, because

experimental and distributional factors have typically been evaluated independently, it

has been difficult to meaningfully compare the relative importance of each type of fac-

tor, alone or jointly. This methodological divide has obscured interactions among
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factors in word learning. However, new experimental tests of distributional factors iden-

tified in the current study and related work, in conjunction with dense recording of

social cues and visual-speech co-occurrences enabled by new technology (e.g., Smith,

Yu, Yoshida, & Fausey, 2015; Yurovsky, Smith, & Yu, 2013) should make it possible

to estimate word learning as a function of multiple relevant factors in the local embod-

ied social environment, as well as the more protracted accumulation of distributed lin-

guistic patterns.

Our bottom-up approach to deriving word features aims to be less theory-laden and

assumption-dependent than methods that attempt to characterize word syntax or meaning

directly. Moreover, by representing words based on their usage in actual child-directed

speech, we can be more confident that the features reflect distributional patterns that are

observable by infants and children. Of course, many other types of word features vary

with syntactic class—for example, nouns tend to be more concrete than other words

(Brysbaert, Warriner, & Kuperman, 2014). Words also vary in their degree of perceptual

grounding. For example, early-acquired nouns tend to refer to objects that occur fre-

quently in infants’ visual environments (Clerkin, Hart, Rehg, Yu, & Smith, 2017), and

object-naming events vary in their referential clarity (Cartmill et al., 2013). Concrete

nouns tend to be used more often in the presence of their referent compared to similarly

frequent abstract words (Bergelson & Swingley, 2013). Social cues such as caregivers’

gaze and pointing also vary in frequency across different words and constructions (Chang

& De�ak, 2019; Mason, Kirkpatrick, Schwade, & Goldstein, 2018; Murphy, 1978), and

words vary in their spatial and temporal distinctiveness (Roy et al., 2015).

In our view, it is unlikely that distributional features exert their influence directly and

independently of other cues. Instead, they provide us with a way to identify those con-

texts and constructions that most reliably afford word learning. Future research might

then determine how those events support learning. It is likely that no single information

source dominates; rather, the current results are consistent with the possibility that multi-

ple correlated features in different modalities and in the language input conspire to distin-

guish groups of words (Bhatt, Wilk, Hill, & Rovee-Collier, 2004; Sahni, Seidenberg, &

Saffran, 2010; Yu & Ballard, 2007). Indeed, it might be the quantity of correlated fea-

tures, rather than their specific type, that is most important. Thus, it might be possible to

achieve comparable performance in predicting AoA using independent feature sets such

as distributional, acoustic, visual, and other features. As more modalities are added,

redundant predictors might converge to the same set of words that occur frequently in

distinctive, salient, and referentially transparent contexts.

It is important to note that distributional features may be proxies for other correlated

cues, so correlations between distributional features and AoA do not necessarily imply

that children learn by tracking word context distributions. We designed our features to

differentiate words by syntactic class and by thematic/activity contexts. Therefore, we

cannot determine how much our effects depend on the distributional features we mea-

sured, as opposed to the associated syntactic and semantic features, which children might

detect in other ways. However, distributional features might help to identify which syn-

tactic and semantic distinctions matter for word learning, thereby contributing to, rather
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than detracting from, theories of word learning based on these types of abstract features.

Future research might further distinguish the contributions of word distributions by com-

puting distributional features for each child based on their individual language input,

rather than combining data from many children. By focusing on the differences in distri-

butional features between children, it would be possible to eliminate any confounding

effect of word features, such as grammatical class or concreteness, that are common to

all individuals in a language community.

By measuring individual differences in exposure to words in syntactic and thematic

contexts, future work might also identify sources of individual differences in vocabulary

size and composition. Whereas individual differences in exposure to words within refer-

entially transparent and/or developmentally appropriate contexts predict variability in

children’s subsequent receptive and productive vocabulary (Bergelson & Aslin, 2017;

McGillion et al., 2013; Rowe, 2013), individual differences in word distributions might

be used to predict variations in the order of acquisition of individual words. It might

also be possible to measure the degree to which a caregiver’s speech style supports

word learning by characterizing how often they use words in contexts that are most

strongly associated with word learning. Future research could investigate whether such

data-driven measures of speech “quality” can supplement or even outperform existing

summary measures of caregivers’ speech quantity and style in predicting children’s

vocabulary outcomes (Tamis-LeMonda, Kuchirko, & Song, 2014; Weisleder & Fernald,

2013).

The current study has several limitations. Our measures of caregiver word use and

AoA data were taken from different samples of children, and it is not possible to fully

characterize the differences between these samples. In addition, the caregiver corpora

come from a biased sample of situations recorded by researchers, so it is not clear how

faithfully the corpora represent natural input to English-learning infants. Conversely, the

AoA estimates are flawed by virtue of their sole basis in parental reports, which have

documented limitations as noted above. Another limitation is that the current study treats

AoA only as a population average. It is not known whether different features increase the

probability of acquisition for all words across all children equally, or if there are individ-

ual differences in style or trajectory of acquisition. Yet, it is suggestive that interindivid-

ual variability exists in the distribution of syntactic types in children’s vocabulary (Bates

et al., 1994; Kauschke & Hofmeister, 2002). Moreover, children’s existing vocabulary

predicts which new words will be acquired subsequently (Beckage & Colunga, 2013).

Therefore, understanding AoA as a non-stationary function of different types of predictors

might enable better description and prediction of this variability.

Another limitation related to the corpora is that we did not model differences in paren-

tal word usage as a function of children’s age. Developmental changes in language input

might induce associations between AoA and specific constructions or contexts. In addi-

tion, the types of contexts that predict learning might change with age as children become

increasingly able to process complex and/or decontextualized language (Rowe, 2012,

2013). Finally, a further limitation of the generalizability of the results is that languages

other than English might not have the same degree of correspondence between syntactic
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constructions and frames defined by adjacent words. Frames might be expected to be less

informative in languages that make greater use of inflectional morphemes and non-adja-

cent dependencies such as agreement, and less use of word order. Thus, although seman-

tic and frequency predictors of AoA have been found to be largely consistent in a variety

of languages (Braginsky, Yurovsky, Marchman, & Frank, 2019; Fourtassi, Bian, & Frank,

2018), it is not known how well the distinction between adjacent and non-adjacent con-

textual information would generalize cross-linguistically.

Age of acquisition norms provide a unique opportunity to investigate how children’s

environment supports their acquisition of knowledge and competence. The current study

demonstrates strong and detailed links between words’ usage patterns and AoA. A chal-

lenge for future research is to integrate these results with studies of individual differences,

computational learning theory, and laboratory word learning studies. Under this vision,

the goal is to integrate microlevel causal, cognitive, and neural explanations for word

learning with observed developmental trajectories within natural environments. If success-

ful, we believe this would serve as a model for how to explain ontogenesis in complex

systems generally.
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