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ABSTRACT OF THE DISSERTATION

Some Generalizations of Bounded-Confidence

Models of Opinion Dynamics

by

Grace Jingying Li

Doctor of Philosophy in Mathematics

University of California, Los Angeles, 2024

Professor Mason Alexander Porter, Chair

Bounded-confidence models (BCMs) are a type of model of opinion dynamics with

continuous-valued opinions. The two most popular BCMs are the Deffuant–Weisbuch (DW)

model [DNA00] and the Hegselmann–Krause (HK) model [HK02]. In a BCM, interacting

pairs of agents only influence each other if their opinions differ by less than some “confidence

bound” between them. One major challenge in the study of opinion dynamics is making

models more realistic and applicable to real-world data and situations. In this disserta-

tion, we develop and study three generalizations of BCMs. They each incorporate some

mechanism to make them more realistic, while maintaining tractability.

We first develop and study a generalization of the DW model that uses node weights

to model heterogeneous agent-activity levels. The node weights in this BCM allow us to

consider individuals in a social network that share their ideas and opinions more frequently

than others. Using numerical simulations, we systematically investigate the effects of node

weights, which we assign uniformly at random to the nodes. We demonstrate that intro-

ducing heterogeneous node weights results in longer convergence times and more opinion
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fragmentation than in an associated baseline DW model.

We then investigate BCMs in which each pair of agents has a distinct confidence bound

that changes when the pair interacts. The confidence bounds in these BCMs encode the

mutual willingness of agents to consider each other’s opinions. We demonstrate numerically

that our adaptive BCMs tend to promote consensus and yield longer convergence times than

the associated baseline BCMs. We also show that these adaptive BCMs can have neighboring

agents that converge to the same opinion but are not receptive to each other. This qualitative

behavior does not occur in the associated baseline BCMs.

Finally, we study BCMs that have multi-dimensional opinions that consist of multiple

interdependent topics. When a pair of agents interact on a topic, whether or not they

compromise their opinions depends on the differences in their opinions on all topics. Using

numerical simulations, we demonstrate for these BCMs that the choice of initial opinion

distribution has a large effect on the amount of opinion fragmentation.
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CHAPTER 1

Introduction

Humans are connected in numerous ways, and our many types of interactions with each other

influence what we believe and how we act. To model how opinions spread between people or

other agents, researchers across many disciplines have developed a variety of models of opin-

ion dynamics [CFL09, SLS17, LA18, NVT20, Noo20, GOD21, PKI22, BAP24]. However, in

part because of the difficulty of gathering empirical data on opinions, much of the research on

opinion dynamics has focused on theory and model development, with little empirical valida-

tion [CFL09, GOD21, PKI22, Vaz22]. Some researchers have examined how human opinions

change in controlled experimental settings with questionnaires [CZ15, VMG16, TFM16],

and others have examined empirical opinion dynamics using data from social-media plat-

forms [MDB20, Koz22, Koz23]. One of the many difficulties in empirically validating models

of opinion dynamics is the potential sensitivity of model outcomes to measurement errors of

real-life opinion values [CQ22]. See [Mas19] for a discussion of some challenges of validating

models in the social sciences. Even with the difficulty of validating models of opinion dynam-

ics, it is valuable to formulate and study such models. Developing mechanistic models forces

researchers to clearly define assumptions, variables, and the relationships between variables;

such models provide frameworks to explore and generate testable hypotheses about complex

social phenomena [HL15, Vaz22].

In an agent-based model (ABM) of opinion dynamics, each agent is endowed with an

opinion from some opinion space. The opinion space can be discrete or continuous, bounded

or unbounded, and one-dimensional (1D) or higher-dimensional [CFL09, SLS17, NVT20].
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Agents are placed on an underlying network that governs which agents can interact with

each other. We view the nodes in a network as representing agents. In a discrete-time ABM

of opinion dynamics, at each time step, one selects which agents are activated for interaction

and then an update rule determines if and how their opinions change. We say that an opinion

model updates ‘synchronously’ if one activates all agents at each time step. We say that

a model updates ‘asynchronously’ if one selects a subset of agents to activate at each time

step.

Bounded-confidence models (BCMs) are a popular type of ABM of opinion dynamics

with continuous-valued opinions [NVT20, BAP24]. In a BCM, interacting agents influence

each other only when their opinions are sufficiently similar. This situation is reminiscent

of the psychological idea of selective exposure, which asserts that people tend to seek in-

formation or conversations that support their existing views and avoid those that challenge

their views [CM11]. Under this assumption, an agent’s views are influenced directly only by

agents with sufficiently similar views. For example, social-media platforms have polarizing

posts, but individuals can choose whether or not to engage with such content. They are

not persuaded by everything in their social-media feeds. The two most popular BCMs of

opinion dynamics are the Deffuant–Weisbuch (DW) model [DNA00] and the Hegselmann–

Krause (HK) model [HK02]. The DW model updates asynchronously and the HK model

updates synchronously.

In Chapter 2, we provide a brief background on definitions and concepts from network

science that we use in later chapters. We also give some examples of networks on which we

study our models of opinion dynamics. In Chapter 3, we give some background on BCMs.

We introduce the DW and HK models, discuss ways to characterize opinions in BCMs, and

discuss some generalizations of the standard DW and HK models.

It is challenging to incorporate the complex factors that play a role in opinion dynamics

into a single tractable model [GOD21]. Researchers often choose a small number of aspects

to study and incorporate into a model of opinion dynamics [CFL09, NVT20, Noo20]. In
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this dissertation, we generalize BCMs to incorporate ideas that make them more realistic,

while maintaining tractability. In Chapters 4–6, we develop and study three generalizations

of BCMs, each of which incorporates a specific modification inspired by social interactions

in real life. The BCMs in this dissertation are simplistic, and we make no claims about their

ability to represent real-life opinion changes. However, by contributing to the mathematical

theory of models of opinion dynamics, we seek to improve understanding of how relatively

simple models can inform us about real-world scenarios. We study each of our models using

numerical simulations, and we analytically prove results for our models in Chapters 5 and 6.

In Chapter 4, we study an asynchronous BCM that uses node weights in a network

to model heterogeneous node-activity levels. The standard DW model [DNA00] updates

asynchronously with a pair of agents selected uniformly at random to activate for interaction.

Social interactions in real life are not uniformly random. In social networks, some individuals

share their ideas and opinions more frequently than others. These disparities can arise

from heterogeneous sociabilities, heterogeneous activity levels, different prevalences to share

opinions when engaging in a social-media platform, or something else. To examine the impact

of such heterogeneities on opinion dynamics, we generalize the DW model by incorporating

node weights. The node weights allow us to model agents with different probabilities of

interacting. Using numerical simulations, we systematically investigate (using a variety of

network structures and node-weight distributions) the effects of node weights, which we

assign uniformly at random to the nodes. We demonstrate that introducing heterogeneous

node weights results in longer convergence times and more opinion fragmentation than in

a baseline DW model. The node weights in our BCM allow one to consider a variety of

sociological scenarios in which agents have heterogeneous probabilities of interacting with

other agents. This chapter consists of work that was done in collaboration with Mason

Porter [LP23].

In Chapter 5, we investigate BCMs in which each pair of agents has a distinct confidence

bound that changes when the pair interacts. The quality of an interaction between indi-
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viduals can affect how much they trust each other [GAP13, LMM17, CS20]. Rather than

considering trust, our BCMs use a notion of “receptiveness”, which encodes the willingness

of an individual to consider the future opinions of other individuals. We generalize both the

DW and HK models to incorporate heterogeneous, time-dependent confidence bounds. The

confidence bounds in the resulting BCMs encode mutual receptiveness of agents, and they

change when agents interact with each other. In our adaptive-confidence BCMs, when two

nodes successfully compromise their opinions in an interaction (i.e., they have a “positive

interaction”), they become more receptive to each other. Likewise, when two nodes interact

but do not change their opinions (i.e., they have a “negative interaction”), they become less

receptive to each other. We analytically and numerically explore the limiting behaviors of

our adaptive-confidence BCMs. For a variety of networks and a wide range of values of the

parameters that control the increase and decrease of confidence bounds, we demonstrate nu-

merically that our adaptive BCMs result in fewer major opinion clusters (i.e., sets of nodes

that converge to the same opinion) and longer convergence times than the baseline (i.e.,

nonadaptive) BCMs. We also show that these adaptive BCMs can have neighboring nodes

that converge to the same opinion but are not receptive to each other. This qualitative

behavior does not occur in the associated baseline BCMs. This chapter consists of work that

was done in collaboration with Jiajie Luo and Mason Porter [LLP23].

In Chapter 6, we examine BCMs that have multi-dimensional opinions that consist of

multiple interdependent topics. In real life, people can have interdependent opinions (e.g.,

political views) on different topics [Con06]. We generalize both the DW and HK models toK-

dimensional opinions and use non-Euclidean topic-weighted opinion “discordance” functions

to determine whether or not agents are receptive to each other on a particular topic. When

a pair of agents interact on a topic, whether or not they compromise their opinions on that

topic depends on the differences in their opinions on all topics. This chapter consists of

ongoing work that is in collaboration with Weiqi Chu and Jiajie Luo. In our preliminary

numerical simulations, we demonstrate for our topic-weighted BCMs that the choice of initial
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opinion distribution has a large effect on (1) whether our models reaches a consensus state

or a fragmented state and (2) the amount of opinion fragmentation.

In Chapter 7, we summarize and discuss our contributions. In Appendices A and B, we

briefly discuss two projects that are in collaboration with researchers at Lawrence Livermore

National Laboratory. The work in Appendix A is a collaboration with Seth Davidovits. The

density variations from high-density carbon grains in ablators for inertial-confinement fusion

(ICF) affect shock propagation in a target capsule. By combining asymptotic analysis of the

linearized governing partial differential equations (building from work by Velikovich et al.

[VWL07]) with Fourier analysis, we model the effects of such grains on shock propagation.

Appendix B is about ongoing work in collaboration with Trevor Steil. We study a method

[ACL06, WGD13] based on personalized PageRank to detect overlapping communities in

undirected graphs.
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CHAPTER 2

Background on Networks

In this chapter, we briefly describe some definitions and concepts from network science

that we use in later chapters. In Section 2.1, we give some basic network definitions. In

Section 2.2, we briefly describe communities in networks. In Section 2.3, we give some

examples of networks on which we study our models of opinion dynamics.

2.1 Some network definitions

Networks consist of nodes (which represent entities) and the edges between them (which

represent ties between nodes). Networks can encode relationships between entities in a wide

variety of disciplines [New18]. In this dissertation, we focus on examining networks with

nodes that represent individuals and edges that represent social relationships. In our models

of opinion dynamics, an edge between nodes indicates that they can have a social interaction

with each other and potentially influence each other’s opinions.

We now present some standard definitions. For a review of standard network definitions,

see [New18]. The simplest type of network is an undirected graph G = (V,E), where V is a

set of nodes and E is a set of edges between those nodes. We let N = |V | denote the size

(i.e., the number of nodes) of a network. When two nodes i and j have an edge (i, j) between

them, we say that nodes i and j are adjacent. When a graph has edges from a node to itself,

we refer to those edges as self-edges; if two nodes have multiple edges between them, we

say that the graph has multi-edges. We refer to the nodes that are adjacent to a node i as
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the neighbors of node i. We refer to the set of neighbors of a node i as the neighborhood

of node i and denote it by N (i). The degree of a node i is the number of neighbors of

node i, and we denote it by deg(i). The degree distribution of a graph G is a probability

distribution that indicates the fraction of nodes with each degree. Many real-world networks

have heavy-tailed degree distributions [BB03, BC19]. A “walk” on a network is a sequence

of nodes and edges (with repeats allowed) that starts at a node, goes along an edge to an

adjacent node, and so on. A connected component of an undirected network G is a maximal

subgraph with a walk between each pair of nodes. There is a walk between any two nodes

in the same connected component. There does not exist a walk between any two nodes in

different connected components.

In social networks, individuals tend to form social connections with people that are similar

to themselves, such as people that have the same interests, have similar beliefs, or belong to

the same demographic group [MSC01]. This phenomenon is known as homophily and can

be summarized with the saying “birds of a feather flock together” [MSC01]. The opposite

scenario, in which there tend to be more connections or interactions between individuals

that are dissimilar to each other, is known as heterophily [MSC01, LVC14]. Researchers can

measure the tendency of edges in a network to be between nodes that are similar to each other

in some characteristic by calculating an “assortativity coefficient” [New03, New18, KO23].

A positive assortativity coefficient indicates “assortative mixing” and is used to measure

homophily in social networks. Many real-world social networks have assortative mixing by

node degree [New03].

In this dissertation, we study models of opinion dynamics on undirected graphs. Re-

searchers have also studied other types of networks that can incorporate more complex

information. We briefly describe some of them here. A directed graph is a graph in which

each edge has a direction [New18]. If the edge (i, j) from node i to node j exists, then it is

not necessary for the edge (j, i) in the other direction to exist. One can use directed edges

to encode directed relationships such as which way a flight travels between airports, which
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account follows another account on social media, or which way currency flows in online trans-

actions. An edge-weighted graph (typically called a “weighted” graph) uses weights on edges

to encode information such as the strength of a relationship [New04]. A node-weighted graph

has node weights that incorporate node-level information; such graphs are less commonly

studied than edge-weighted graphs [HDZ12]. In Chapter 4, we study a model of opinion

dynamics on node-weighted graphs. A signed network [Hei46, CH56, LHK10] assigns each

edge a positive or negative value to represent the nature of the relationship. For example,

in a signed social network where the nodes represent people, one might use a positive edge

to indicate friendship and a negative edge to indicate dislike for each other. A hypergraph

consists of a set of nodes and a set of hyperedges, each of which connects an arbitrary num-

ber of nodes [Bre13]. One can use hypergraphs to study polyadic group relationships. A

temporal network (which is also commonly known as a dynamic graph or an evolving graph)

is a graph that changes with time [HS12].

2.2 Communities in networks

A “community” in a network is a set of nodes that are more densely connected to each

other than to other communities in the network. Two nodes in the same community are in

some sense more closely related or similar than two nodes in different communities. There is

no single definition of what makes a “good” community in a network, and researchers have

considered a variety of ways to quantify whether a set of nodes has good community structure

and ways to detect communities in networks [FH16, CDM17]. See [FH16] for a review of

community-detection methods for networks. See [CDM17] for an overview of calculations to

quantitatively evaluate community structures in networks.

One notion of a good community is that there should be relatively more edges between

nodes in the same community than between nodes in different communities [CDM17]. A

way to quantify this is by calculating the conductance of a set of nodes [SM00, CDM17].
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The conductance of a set of nodes C in a graph G is

Φ(C) =
|∂C|

min{vol(C), 2|E| − vol(C)}
, (2.2.1)

where |∂C| is the number of edges that are between a node in C and a node not in C,

vol(C) is the number of edges that are between nodes in C, and |E| is the number of edges

in the graph. A set of nodes with smaller conductance can be considered a higher-quality

community than a set of nodes with larger conductance. In Appendix B, we investigate a

method for community detection that finds communities with small conductance values.

2.3 Some examples of networks

In this section, we describe some examples of undirected networks. In this dissertation, we

simulate our models of opinion dynamics on these networks.

2.3.1 Complete graphs

A complete graph is a graph that has an edge between each pair of nodes. An undirected

complete graph with N nodes has
(
N
2

)
= 1

2
N(N − 1) edges. When researchers study dynam-

ical systems on a complete graph, they sometimes refer to the system as a “fully-mixed” or

“well-mixed” system [DNA00]. When we study a model of opinion dynamics on a complete

graph, every pair of nodes can interact in the model. In this dissertation, we examine each

of our models of opinion dynamics on complete graphs before considering more complicated

network structures.

2.3.2 Erdős–Rényi (ER) graphs

The Erdős–Rényi (ER) random-graph models [ER59, Gil59, ER60] are some of the simplest

models for generating random graphs. There are two types of ER random-graph models:
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the G(N,m) and G(N, p) ER models.

The G(N,m) ER model [ER59, ER60] is an ensemble of random graphs with N nodes

and m edges. Consider an N -node undirected graph. There are
(
N
2

)
= 1

2
N(N − 1) possible

edges between pairs of nodes. One uniformly randomly chooses m of these edges to generate

a G(N,m) graph in the random-graph ensemble.

The G(N, p) ER model [SR51, Gil59] is an ensemble of random graphs with N nodes

and homogeneous, independent probability p of an edge between each pair of nodes. When

p = 1, the G(N, p) model yields a complete graph. For the G(N, p) ER model, the expected

number of edges is 1
2
N(N − 1)p and the expected mean degree is (N − 1)p [New18]. The

G(N, p) ER model has a Bernoulli degree distribution. In the limit as N → ∞, the degree

distribution approaches a Poisson degree distribution [New18]. The G(N, p) ER model is also

sometimes called the Bernoulli random-graph model, or “the” random-graph model [New18].

In this dissertation, we use G(N, p) ER networks to simulate each of our models of opinion

dynamics on networks with different edge densities.

2.3.3 Stochastic-block-model (SBM) graphs

A stochastic-block-model (SBM) [HLL83, New18] is a random-graph model that can incor-

porate specific mixing (such as assortative mixing) of groups of nodes. The simplest type of

undirected SBM network consist of blocks that are G(N, p) ER graphs (see Section 2.3.2).

SBM networks are specified by the number N of nodes, a partition of the set of nodes into

groups S1, S2, . . . Sr, and an edge-probability matrix P that specifies the probability of on

edge between any two nodes depending on their group memberships. For an undirected SBM

with r groups, P is a symmetric r × r matrix with entries in the interval [0, 1]. The entry

in the Ath row and Bth column of P is the independent probability of an edge between a

node in group A and a node in group B.

We use SBM networks to simulate our models of opinion dynamics on networks with
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underlying block structures. We consider undirected SBM networks with 2 × 2 blocks. We

partition a network into two sets of nodes. Set A has 75% of the nodes of the network, and

set B has 25% of the nodes. Our choice of partition sizes is inspired by the choices of Kureh

and Porter [KP20]. We define a symmetric edge-probability matrix

P =

PAA PAB

PAB PBB

 , (2.3.1)

where PAA and PBB are the probabilities that there is an edge between two nodes in set A

and set B, respectively, and PAB is the probability that there is an edge between a node in

set A and a node in set B.

Inspired by the choices of Kureh and Porter [KP20], we consider two types of SBM net-

works. The first SBM has a two-community structure, in which there is a larger probability of

edges within a community (see Section 2.2) than between communities. In a two-community

SBM, the probabilities PAA and PBB are larger than PAB, so edges between nodes in the

same community exist with a larger probability than edges between nodes in different com-

munities. The second SBM has a core–periphery structure, with a set of core nodes with a

large probability of edges within the set, a set of peripheral nodes with a small probability

of edges within the set, and an intermediate probability of edges between core nodes and

peripheral nodes. Our core–periphery SBMs with core set A and periphery set B satisfy

PAA > PAB > PBB. In Chapter 4, we simulate our node-weighted BCM on both two-

community and core–periphery SBMs. In Chapter 5, we simulate our BCMs with adaptive

confidence bounds on a two-community SBM.
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CHAPTER 3

Background on Bounded-Confidence Models (BCMs)

of Opinion Dynamics

The two most popular bounded-confidence models (BCMs) of opinion dynamics are the

Deffuant–Weisbuch (DW) model [DNA00] and the Hegselmann–Krause (HK) model [HK02].

In the standard DW and HK models, agent opinions take continuous values in a closed

interval on the real line. This interval represents a continuous spectrum of views about

something, such as an ideology (with the strongest views at the end points of the interval)

or strength of support for a political candidate. We describe the DW model in Section 3.1

and the HK model in Section 3.2. In Section 3.3, we discuss ways to characterize opinions

in BCMs. In Section 3.4, we discuss some generalizations of the DW and HK models.

3.1 The Deffuant–Weisbuch (DW) model

The standard DW model [DNA00] is a discrete-time asynchronous BCM. Consider a time-

independent, unweighted, undirected network G = (V,E) with no self-edges or multi-edges,

where V is a set of nodes and E is a set of edges between them. Let N = |V | denote the size

(i.e., the number of nodes) of a network. The nodes of the network represent agents with

opinions that lie in the closed interval [0, 1]. Let xi(t) denote the opinion of node i at time

t. Let x(t) ∈ RN denote the opinion vector of the system; its ith entry is xi(t). One endows

each node with an initial opinion, which one selects uniformly at random from the interval

[0, 1].
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The standard DW model has two parameters. The confidence bound c ∈ [0, 1] is a thresh-

olding parameter; when two nodes interact, they compromise their opinions by some amount

if and only if their opinions differ by less than c. The compromise parameter m ∈ (0, 0.5]

(which is also sometimes called a “convergence parameter” [DNA00] or a “cautiousness pa-

rameter” [MVP18]) parametrizes the amount that a node changes its opinion to compromise

with the opinion of a node with which it interacts.

In the standard DW model, at each discrete time, one uniformly randomly selects an

edge (i, j) ∈ E for activation. At time t, suppose that one picks edge (i, j). Then, nodes i

and j update their opinions through the following update rule:

xi(t+ 1) =


xi(t) +m(xj(t)− xi(t)) , if |xi(t)− xj(t)| < c

xi(t) , otherwise ,

xj(t+ 1) =


xj(t) +m(xi(t)− xj(t)) , if |xi(t)− xj(t)| < c

xj(t) , otherwise .

(3.1.1)

When |xi(t) − xj(t)| < c, we say that nodes i and j are receptive to each other at time t.

When |xi(t)− xj(t)| ≥ c, we say that nodes i and j are unreceptive to each other.

The confidence bound c controls the amount of “open-mindedness” of the nodes to differ-

ent opinions. The extreme case c = 0 is degenerate (because no nodes update their opinions),

and the case c = 1 allows all adjacent nodes to interact with each other (making the model

a linear system). The compromise parameter controls how much a node changes its opinion

after interacting with a node it is receptive to. When m = 0.5, two interacting nodes that are

receptive to each other precisely average their opinions; when m ∈ (0, 0.5), interacting nodes

that are receptive to each other move towards each other’s opinions, but they do not adopt

the mean opinion. One can alternatively consider m ∈ (0, 1) as in Meng et al. [MVP18],

although this is an uncommon choice. When m > 0.5, nodes “overcompromise” when they

change their opinions; they overshoot the mean opinion and change which side of the mean
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opinion they are on.

3.2 The Hegselmann–Krause (HK) model

The standard HK model [Kra00, HK02] is a discrete-time synchronous BCM. The HK model

was studied initially only on complete graphs [HK02]. Since then, the HK model has also

been studied on networks (see, e.g., [For05, PFT18]). We consider the standard HK model to

be its extension to networks. For a review of the HK model and its extensions, see [BAP24].

Consider a time-independent, unweighted, undirected network G = (V,E) with no self-

edges or multi-edges, where V is a set of nodes and E is a set of edges between them. As in

the DW model, the nodes of a network represent agents with opinions that lie in the closed

interval [0, 1]. Again, let xi(t) denote the opinion of node i at time t. Let x(t) ∈ RN denote

the opinion vector of the system; its ith entry is xi(t). Each node is assigned an initial

opinion, which one selects uniformly at random from the interval [0, 1]. The confidence

bound c is the only parameter of the standard HK model. As in the DW model, c controls

the amount of “open-mindedness” of the nodes to different opinions.

At each time t, we update the opinion of each node i by calculating

xi(t+ 1) = |I(i, x(t))|−1
∑

j∈I(i,x(t))

xj(t) , (3.2.1)

where1 I(i, x(t)) = {i}∪{j | |xi(t)− xj(t)| < c and (i, j) ∈ E} ⊆ {1, 2, . . . , N}. We say that

nodes i and j are receptive to each other at time t if their opinion difference is less than the

confidence bound c (i.e., |xi(t) − xj(t)| < c). Thus, I(i, x(t)) consists of all adjacent nodes

that node i is receptive to as well as node i itself.

1In [Kra00, HK02], I(i, x(t)) = {i} ∪ {j | |xi(t)− xj(t)| ≤ c and (i, j) ∈ E}. We use a strict inequality to
be consistent with the strict inequality in the DW model.
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3.3 Characterizing opinions in BCMs

In this section, we describe how we characterize opinions in BCMs. In BCMs with the update

rules of the standard DW model (see Equation (3.1.1)) or the standard HK model (see Equa-

tion (3.2.1)), the opinions of nodes converge to steady-state values (see Section 3.3.1). When

studying BCMs, researchers often study how long it takes to reach steady-state behavior and

the steady-state opinions of nodes [MVP18, NVT20, HFQ20, PKI22]. To characterize these

steady-state opinions, researchers commonly examine steady-state opinion clusters, which

are sets of nodes that converge to the same opinion (see Section 3.3.2). The number and

sizes of the steady-state opinion clusters determine whether a system reaches opinion “con-

sensus”, “polarization”, or “fragmentation”. Researchers sometimes make different choices

for how they define consensus, polarization, and fragmentation; we discuss some possible

choices and our definitions in Section 3.3.3. In Section 3.3.4, we discuss some ways we quan-

tify opinion fragmentation. In Section 3.3.5, we discuss notions of the time required for

nodes to reach their steady-state opinions and how we approximate “convergence time” in

our numerical simulations.

3.3.1 Convergence of opinions

One can view each opinion update in a BCM as multiplying an opinion vector by a row-

stochastic matrix. Consider the following theorem, which was stated and proved by Lorenz

[Lor05].

Theorem 3.3.1 ([Lor05]). Let {A(t)}∞t=0 ∈ RN×N
≥0 be a sequence of row-stochastic matrices.

Suppose that each matrix satisfies the following properties:

(1) The diagonal entries of A(t) are positive.

(2) For each i, j ∈ {1, . . . , N}, we have that [A(t)]ij > 0 if and only if [A(t)]ji > 0.

(3) There is a constant α > 0 such that the smallest positive entry of A(t) for each t is
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larger than α.

Given times t0 and t1 with t0 < t1, let

A(t0, t1) = A(t1 − 1)× A(t1 − 2)× · · · × A(t0) . (3.3.1)

If conditions (1)–(3) are satisfied, then there exists a time t′ and pairwise-disjoint classes

I1 ∪ · · · ∪ Ip = {1, . . . , N} such that if we reindex the rows and columns of the matrices to

have the order I1, . . . , Ip, then

lim
t→∞

A(0, t) =


K1 0

. . .

0 Kp

A (0, t′) , (3.3.2)

where each Kq, with q ∈ {1, 2, . . . , p}, is a row-stochastic matrix of size |Iq| × |Iq| whose

rows are all the same.

As stated in [Lor05], Theorem 3.3.1 guarantees that the opinion of each node converges

to a limit opinion value in the standard HK and DW models. For a node i, we define its

limit opinion as lim
t→∞

xi(t), which we denote by x∗
i . In the field of dynamical systems, it is

common to refer to x∗
i as the steady-state opinion of node i. We use both the terms “limit

opinion” (in Chapters 5 and 6) and “steady-state opinion” (in Chapter 4) to refer to x∗
i .

3.3.2 Effective graphs and opinion clusters

Let G = (V,E) be a time-independent, unweighted, and undirected graph without self-edges

or multi-edges. We examine a BCM on G, and we associate to G a time-dependent “effective

graph” Geff(t), which is a subgraph of G with edges only between nodes that are receptive
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to each other at time t. That is,

Geff(t) = (V,Eeff(t)) , (3.3.3)

Eeff(t) = {(i, j) ∈ E such that |xi(t)− xj(t)| < c} .

Other researchers have referred to effective graphs as “confidence graphs” [BAP24], “com-

munication graphs” [BBC13], and “corresponding graphs” [YDH14].

We refer to the connected components of the effective graph Geff(t) as the opinion clusters

at time t. Equivalently, an opinion cluster Sr(t) is a maximal connected set of nodes in which

the pairwise differences in opinions are all strictly less than the confidence bound c. Adding

any other node to Sr(t) yields at least one pair of adjacent agents with an opinion difference

of at least c. At each time t, nodes in different opinion clusters are unreceptive to each other

and adjacent nodes in the same opinion cluster are receptive to each other. We say that

the size of an opinion cluster is the number of nodes in the opinion cluster. We define the

“diameter” D(Sr(t)) of an opinion clusters Sr(t) as the maximum difference in opinions in

that opinion cluster. That is,

D(Sr(t)) = max{|xi(t)− xj(t)| : nodes i, j ∈ Sr(t)} . (3.3.4)

If the opinions of all nodes converge to some limit opinion, then it is insightful to examine

the effective graph when all nodes have reached a limit opinion. We refer to the connected

components of this effective graph as the limit opinion clusters or the steady-state opinion

clusters. We use these two terms interchangeably. As we discussed in Section 3.3.1, for the

standard DW and HK models, the opinion of each node converges to some limit opinion,

so we can consider the limit opinion clusters. When the limit lim
t→∞

Geff(t) exists, we call it

the limit effective graph and denote it by G∗
eff . As we show in Section 5.3, the limit effective

graph exists for the standard HK model (see Theorem 5.3.4) and almost surely exists for

the standard DW model (see Theorem 5.3.7). When the limit effective graph exists for the
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standard HK and DW models, it equals the effective graph in which all nodes have attained

their limit opinion values.

In the standard DW and HK models, one can determine the limit opinion clusters in

finite time. If every pair of opinion clusters, Sa and Sb, is separated by a distance of at least

c (i.e., |xi(t) − xj(t)| ≥ c for all i ∈ Sa and all j ∈ Sb) at some time T̃ , then (because c

is fixed) no agent in Sa can influence the opinion of an agent in Sb (and vice versa) for all

t ≥ T̃ . Meanwhile, agents in each opinion cluster continue to compromise their opinions

with each other. In particular, if at some time t ≥ T̃ , the diameter of an opinion cluster (see

Equation (3.3.4)) is less than the confidence bound c, then all pairs of adjacent nodes in that

opinion cluster are receptive to each other and all nodes in that opinion cluster eventually

converge to the same limit opinion. Therefore, for the standard DW and HK models, we

observe the formation of distinct limit opinion clusters in finite time.2 We use this feature

of these standard BCMs to specify a stopping criterion for our numerical simulations (see

Section 3.3.5).

3.3.3 Opinion consensus and fragmentation

In this dissertation, we investigate which situations in our BCMs yield consensus (specifi-

cally, they result in one “major” opinion cluster, which will characterize shortly) at steady

state and which situations yield opinion fragmentation (when there are at least two distinct

major clusters) at steady state. Some researchers use the term “polarization” to refer to

the presence of exactly two opinion clusters (or of exactly two major opinion clusters) and

“fragmentation” to refer to the presence of three or more opinion clusters (or of three or

more major opinion clusters) [HK02, BGS16]. However, because we are interested in distin-

guishing between consensus states and any state that is not a consensus, we use the term

“fragmentation” for any state with at least two major opinion clusters. We then quantify

2For the same reasons, we also observe the formation of distinct limit opinion clusters in finite time for
our models in Chapters 4 and 6.
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the extent of opinion fragmentation.

In some situations, an opinion cluster has very few agents. Consider a 500-node network

in which 499 agents eventually have the same opinion, but the remaining agent (say, Agent

86, despite repeated attempts by Agent 99 and other agents to convince him) retains a

distinct opinion at steady state. In applications, it may not be appropriate to think of this

situation as opinion fragmentation. To handle such situations, we use a notion of “major

clusters” and “minor clusters” [LAZ04, Lor07]. We characterize major and minor clusters in

an ad hoc way. We define a “minor” opinion cluster in a network as an opinion cluster with at

most fmN of the agents, where N is the number of nodes of a network and fm is the fraction

of nodes we use to determine if a cluster is minor. We consider different choices of fm for our

different BCMs. For example, we take fm = 0.02 for our node-weighted BCM in Chapter 4,

and we take fm = 0.01 for our adaptive-confidence BCMs in Chapter 5. Any opinion cluster

that is not a minor cluster is a “major” cluster. We account only for the number of major

clusters when determining if a simulation reaches a consensus state (i.e., exactly one major

cluster) or a fragmented state (i.e., more than one major cluster). However, we track the

numbers and sizes of all major and minor clusters, and we use all clusters (i.e., both major

and minor clusters) to quantify opinion fragmentation.

In this dissertation, we consider agent-based BCMs on finite networks, so finite-size effects

may affect our results. (See our discussion in Section 4.4.5.) Alternatively, one can examine

mean-field approximations as N → ∞ [BKR03, GGL12, CPP21, FBQ21, DFB23]. With

N → ∞, one can suppose that opinion clusters that scale linearly with N are significant for

determining whether there is opinion consensus or fragmentation.

3.3.4 Quantifying opinion fragmentation

Quantifying opinion fragmentation is much less straightforward than determining whether

or not there is fragmentation. Researchers have proposed a variety of notions of fragmenta-

tion and polarization [BGS16], and they have also proposed several ways to quantify such
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notions [BGS16, CW22, AWA22]. For example, for BCMs, Schawe et al. [SFH21] quantified

how close a system is to consensus by determining the fraction of nodes in the largest opinion

cluster.

In principle, a larger number of opinion clusters is one indication of more opinion frag-

mentation. However, as we show in Figure 3.1, there can be considerable variation in the

sizes (i.e., the numbers of nodes) of the opinion clusters. For example, suppose that there

are two opinion clusters. If the two opinion clusters have the same size, then one can view

the opinions in the system as more polarized than if one opinion cluster has a large majority

of the nodes and the other opinion cluster has a small minority. Additionally, although we

use only major clusters to determine if a system reaches a consensus or fragmented state, we

seek to distinguish quantitatively between the scenarios of opinion clusters (major or minor)

with similar sizes from ones with opinion clusters with a large range of sizes.

Figure 3.1: Sample trajectories of agent opinions versus time t in a single simulation of a
DW model with confidence bound c = 0.1 and compromise parameter m = 0.1. We color
the trajectory of each node by its steady-state opinion cluster. Observe that the steady-state
opinion clusters have different sizes. There is one minor cluster (in black); it consists of a
single node whose steady-state opinion is about 0.4. The opinion cluster that converges to
the largest opinion value has about twice as many nodes as the other major clusters. (This
figure originally appeared in [LP23].)
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Wang et al. [WLE17] defined an order parameter Q for BCMs. We calculate3 Q as

Q(t) =
1

N2

N∑
i=1

N∑
j=1

1|xi(t)−xj(t)|<c , (3.3.5)

where 1|xi−xj |<c is an indicator function that equals 1 when |xi − xj| < c and equals 0

otherwise. The order parameter Q indicates the fraction of pairs of nodes that are receptive

to each other. For a complete graph, the order parameter gives the number of edges in the

effective graph. In a graph that is not complete, some nodes are not adjacent to each other,

so the order parameter is more difficult to interpret. One can equivalently calculate Q(t) as

a normalized sum of the squares of the sizes of the opinion clusters. Suppose that there are

R opinion clusters (see Section 3.3.2), which we denote by Sr for r ∈ {1, . . . , R}. We refer

to the set {Sr}Rr=1 as an “opinion-cluster profile”, which is a partition of the set of nodes of

a network. Using this notation, one can calculate Q(t) as

Q(t) =
1

N2

R∑
r=1

|Sr|2 . (3.3.6)

We use the order parameter Q to investigate the behaviors of our topic-weighted BCMs in

Chapter 6.

In our investigations in Chapter 4 and Chapter 5, we quantify opinion fragmentation by

following Han et al. [HFQ20] and calculating Shannon entropy. Consider an opinion-cluster

profile {Sr}Rr=1. The fraction of agents in opinion cluster Sr is |Sr|/N . The Shannon entropy

H of the opinion-cluster profile is

H = −
R∑

r=1

|Sr|
N

ln

(
|Sr|
N

)
. (3.3.7)

Computing Shannon entropy allows us to use a scalar value to quantify the distribution

3Wang et al. [WLE17] used the inequality |xi − xj | ≤ c. However, we use a strict inequality to be
consistent with the strict inequality in the update rules in Equations (3.1.1) and (3.2.1).
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of opinion-cluster sizes, with larger entropies indicating more opinion fragmentation. The

Shannon entropy is larger when there are more opinion clusters. Additionally, for a fixed

number R of opinion clusters, the Shannon entropy is larger when the opinion clusters are

the same size than when the sizes are heterogeneous. We calculate the steady-state entropy

H(Tf ) using all steady-state opinion clusters (i.e., both major and minor clusters). When

there are sufficiently few minor clusters, we expect the number of major clusters to follow

the same trend as the Shannon entropy.

3.3.5 Convergence time

Consider a BCM where nodes quickly reach a consensus for one set of parameters and ini-

tial conditions. Suppose that it takes twice as long to reach consensus for another set of

parameters and initial conditions. Researchers are interested in differentiating between such

situations and investigating notions of “convergence time”, the time required for nodes to

reach their steady-state opinions [Lor07, NVT20, PFT22, BAP24]. In this section, we de-

scribe some theoretical work on convergence time and then discuss numerical approximations

for convergence time.

Dittmer [Dit01] proved that the opinions in the standard HK model on a complete graph

converge in finite time. Researchers sometimes use the term “termination time” to refer to

the maximum time that is required across all sets of initial opinions for all nodes to reach

their steady-state opinions [EBN13, PFT22]. For the standard HK model on a complete

graph, the termination time is finite. Bhattacharyya et al. [BBC13] studied an HK model on

complete graphs with nodes that have multidimensional opinions (with the Euclidan norm

for opinion distance) and proved lower and upper bounds on the termination time that are,

respectively, polynomial in the number of nodes and polynomial in both the number of

nodes and the opinion dimension. Etesami et al. [EBN13] proved for the multidimensional

HK model on complete graphs that when a condition on the number of single-node opinion

clusters is satisfied, the termination time has an upper bound that is polynomial in the
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number of nodes. Hegselmann and Krause [HK19] also considered the multidimensional HK

model on complete graphs and proved conditions that give geometrically fast convergence

to consensus. Parasnis et al. [PFT22] showed that the nodes in the standard HK model can

take arbitrarily long to reach their steady-state opinions (i.e., the termination time is infinite)

for graphs that are not complete. They examined and proved bounds on the ε-convergence

time, which is the time required for all nodes to be within ε of their steady-state opinions.

The stochastic updates of the DW model and its variants make it challenging to study

the convergence time in those models. (It is easier to study convergence in the HK model.)

Zhang and Chen [ZC15] derived upper bounds on the convergence rate for a synchronous

and asymmetric variant of the DW model. In their model, every node interacts with (and

is potentially influenced by) one other node at each time step. Their model is asymmetric

because when a node i selects node j for interaction, j need not select i for interaction.

Chen et al. [CSM20] examined a variant of the model by Zhang and Chen [ZC15] that has

heterogeneous confidence bounds. They proved an upper bound on the convergence rate for

this model when the compromise parameter m ∈ [1/2, 1).

In this dissertation (see Chapters 4–6), we examine the convergence times of our BCMs

using numerical simulations. For our numerical simulations, we need a stopping criterion,

as it can potentially take arbitrarily long for nodes to reach their steady-state opinions in

a BCM simulation. Our stopping criterion also gives us a proxy to compare how long it

takes nodes in different simulations to converge to their steady-state opinions. In numerical

investigations of BCMs, researchers commonly consider how many time steps it takes for a

simulation to stop.

Our stopping criterion checks that the diameter (see Equation (3.3.4)) for each opinion

cluster (see Section 3.3.2) is less than some tolerance. That is,

max{|xi(t)− xj(t)| such that i, j ∈ Sr(t) for some r} < tolerance . (3.3.8)

23



We refer to the time Tf at which we reach our stopping criterion as the “convergence time”

of our simulations. This choice of stopping criterion is inspired by Meng et al. [MVP18].

Because of computational limitations, we set different tolerance values for our investigations

of our different BCMs. As we discussed in Section 3.3.2, for the standard DW and HK

models, by choosing a tolerance value that is less than the confidence bound c, we can

determine the steady-state opinion clusters at our numerical convergence time. We choose

tolerance values (specifically, values of 0.01 or 0.02 for our DW models and 1× 10−6 for our

HK models) that are considerably smaller than the confidence bounds c in our simulations.

By doing so, we aim to obtain a numerical convergence time that gives a good sense of how

long it takes for nodes to converge to their limit opinions.

Other researchers have made different choices to numerically examine convergence of

BCMs. For example, researchers sometimes consider the magnitude of opinion changes over

a certain number of time steps. Schawe [SFH21] numerically simulated the standard HK

model and calculated the total opinion change for all nodes in a pair of consecutive time

steps. They calculated

∆ =
N∑
i=1

|xi(t− 1)− xi(t)|

and stopped a simulation if ∆ is less than their tolerance value. Ŝırbu et al. [SPG19] and

Kan et al. [KFP23] simulated variants of the DW model and stopped their simulations if

the sum of the changes in node opinions over a certain number of consecutive time steps is

smaller than a tolerance value.

3.4 Some generalizations of BCMs

There has been much research on the standard DW and HK models and their generalizations.

See [Lor07, NVT20, Noo20, BAP24] for reviews.

The DW model was first studied on complete graphs and a square-lattice graph (i.e.,
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graphs where the nodes are arranged in a grid pattern on a square) [DNA00]. The HK model

was studied initially only on a complete graph [HK02]. Since then, to explore the effects of

network structure on BCM dynamics, many researchers have examined DW models [MVP18]

and HK models [For05, SFH21] on various time-independent graphs. Researchers have also

examined BCMs on hypergraphs [HKB22, CP23] and on networks that coevolve with agent

opinions [SLL14, KFP23].

Though relatively uncommon, some studies have considered initial agent opinions that

arise from distributions other than uniform distributions, yielding initial conditions that

differ from those in the standard DW and HK models. Several researchers [Jac06, Sha13,

CTS13, Sob15, HKB22] used numerical simulations to examine the effect of nonuniform

initial-opinion distributions on DW models. Kou et al. [KZP12] numerically investigated dif-

ferent initial-opinion distributions for their HK model with heterogeneous confidence bounds.

Shang [Sha13] considered the DW model with an opinion space R on an infinite 1D lattice

graph and derived a critical confidence bound, above which nodes almost surely reach a

consensus at the mean of the initial opinions for any set of initial opinions. Gómez-Serrano

et al. [GGL12] proved sufficient conditions on the initial-opinion distribution and confidence

bound for a mean-field limit of the DW model to reach a consensus with all nodes converg-

ing to the same opinion. Hickok et al. [HKB22] developed a DW model on hypergraphs and

proved sufficient conditions on the hypergraph and initial opinion distribution for nodes to

almost surely reach a consensus. They also proved that a phase transition in the convergence

time occurs when the variance of the initial opinion distribution equals the confidence bound

of the model. Yang et al. [YDH14] proved a sufficient condition on the initial-opinion distri-

bution for the HK model to reach consensus and proposed a variant of the HK model that

guarantees convergence for more general initial opinions. Blondel et al. [BHT10] studied a

continuous-time version of the HK model and proved that, for almost all initial conditions,

the mean opinion is conserved and the opinion variance is nonincreasing. They also proposed

a variant of the HK model with a continuum of agents and proved sufficient conditions on
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the initial opinions to give existence and uniqueness of solutions to their model.

Other investigations have modified the confidence bound or compromise parameters.

Such generalizations affect the opinion updates of interacting agents. Unlike the standard

DW model, the standard HK model does not have a compromise parameter. Chazelle and

Chu [CW17] studied an HKmodel with an inertia parameter that functions like a compromise

parameter and determines how much a node moves from its own opinion when compromising.

Several researchers [DAW02, Zha14, HDH18] considered DW models with heterogeneous

compromise parameters.

Many researchers have generalized the DW and HK models by incorporating heterogene-

ity into the confidence bounds. Lorenz [Lor10] extended the DW and HK models so that

each node has its own confidence bound, which can result in asymmetric influence and opin-

ion updates. Using numerical simulations, Lorenz demonstrated that these BCMs are more

likely than the standard BCMs to reach a consensus state when there are both open-minded

and closed-minded nodes (which have large and small confidence bounds, respectively). By

analyzing the heterogeneous-confidence DW model of [Lor10] on a complete graph, Chen

et al. [CSM20] proved almost-sure convergence of opinions for certain parameter values and

derived sufficient conditions for the nodes of a network to eventually reach a consensus. In

a related work, Chen et al. [CSD20] examined a noisy HK model and showed that hetero-

geneous confidence bounds in this setting can yield larger differences in node opinions in

the infinite-time limit. Su et al. [SGW17] examined the heterogeneous-confidence HK model

of [Lor10] and proved that at least some nodes of a network converge to a steady-state

opinion in finite time. Researchers have also incorporated edge-based heterogeneities in the

confidence bounds of BCMs. Shang [Sha14] studied a DW model with edge-based confidence

bounds that arise from independent and identically distributed Poisson processes. They de-

rived sufficient conditions for consensus to occur almost surely for a 1D lattice graph. Ete-

sami [Ete19] examined an HK model on networks with time-independent edge-heterogeneous

confidence bounds and proved that their model is Lyapunov stable.
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Researchers have also generalized BCMs and other opinion models by incorporating adap-

tivity and time-dependence into the parameters. Weisbuch et al. [WDA02] studied a gener-

alized DW model in which each node has a heterogeneous, time-dependent confidence bound

that is proportional to the standard deviation of the opinions that that node observed in all

prior interactions. They also consider a variant of their model that places more weight on

opinions in recent interactions. Deffuant et al. [DAW02] examined a “relative agreement”

DW model in which each agent has a unique uncertainty parameter that determines whether

interacting nodes influence each other and how much they compromise their opinions. A node

changes both its opinion and its uncertainty values when it is influenced by another node.

Bagnoli et al. [BCF07] considered a variant of the DW model in which each pair of nodes has

an affinity parameter that changes based on the magnitude of their opinion difference each

time they interact and determines whether they influence each other. Bernardo, Vasca, and

Iervolino [VBI21, BVI22] developed variants of the HK model in which nodes have individ-

ual, time-dependent confidence bounds that depend on the opinions of neighboring nodes. In

their models, nodes that differ too much from their neighbors widen their confidence bounds

so that they seek different opinions.
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CHAPTER 4

A Bounded-Confidence Model with Heterogeneous

Node-Activity Levels

In this chapter, we study a generalization of the DW model that has node weights to model

heterogeneous agent-activity levels. Using numerical simulations, we systematically investi-

gate the effects of node weights, which we assign uniformly at random to the nodes. This

chapter is adapted1 from an original paper [LP23] that I co-authored with my advisor Mason

A. Porter.2 We include our code and all figures (including those that are not shown in this

chapter) in our repository at https://gitlab.com/graceli1/NodeWeightDW.

4.1 Introduction and motivation

In this chapter, we generalize the DW model to incorporate heterogeneous node-activity

levels. Although the DW model has been generalized in many ways [NVT20], few studies

have modified the procedure to select which agents interact in a time step. The ones that

have modified this procedure (see, e.g., [AC15, ZXL18, SPG19, PRM22]) have focused on

specific scenarios, rather than on investigating the effects of introducing heterogeneities into

agent-selection probabilities.

In the standard DW model (see Section 3.1), one uniformly randomly selects pairs of

1Adapted with permission from [LP23]. Copyright 2023, American Physical Society.

2I led this project with mentorship from Mason Porter. Mason Porter and I wrote the paper [LP23]
together.
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agents to interact, but social interactions in real life are not uniformly random. Some studies

of DW models have modified the selection procedure that determines which agents interact

with [AC15, ZXL18, SPG19, PRM22]. When selecting agents in a way that is not uniformly

at random, one can think of the agents as having different activity levels that encode their

interaction frequencies. (In a given time interval, we expect these agents to have different

numbers of interactions.) The idea of heterogeneous node-activity levels plays an important

role in activity-driven models of temporal networks [PGP12]. Activity-driven frameworks

have also been used to model which agents can interact with each other in studies of opinion

dynamics. Li et al. [LHM17] developed an activity-driven model of opinion dynamics on

networks with nodes with assigned activity rates (i.e., assigned activation probabilities). At

each time step of their model, one removes all existing edges and then the active agents

randomly form connections to other agents. All agents then evaluate the mean opinions of

their neighbors to determine if and how to update their own opinions [LHM17]. Researchers

have also incorporated heterogeneous agent selection in voter models of opinion dynamics.

Masuda et al. [MGR10] studied a voter model with heterogeneous “flip” rates, which one

can interpret as heterogeneous node weights that encode activity levels. Baronchelli et

al. [BCP11] studied a voter model with heterogeneous edge weights, which one can interpret

as encoding heterogeneous edge activities.

Some researchers have generalized the DW model to incorporate heterogeneous agent

selection. Alizadeh and Cioffi-Revilla [AC15] studied a modified DW model that incorpo-

rates a repulsion mechanism (which was proposed initially by Huet et al. [HDJ08]) in which

interacting agents with opinions that differ by more than a cognitive-dissonance threshold

move farther away from each other in the space of opinions. They used two-dimensional

(2D) vector-valued opinions and placed their nodes on complete graphs. To model agents

with different activity levels, Alizadeh and Cioffi-Revilla [AC15] implemented a Poisson

node-selection probability, which one can interpret as independent internal “clocks” that

determine agent activation. In comparison to selecting agent pairs uniformly at random
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(as in the standard DW model), the Poisson node-selection probability can either lessen or

promote the spread of extremist opinions, depending on which opinions are more prevalent

in more-active agents.

Zhang et al. [ZXL18] examined a modified DW model with asymmetric updates on

activity-driven networks. In their model, each node has a fixed activity potential, which

one assigns uniformly at random from a distribution of activity potentials. The activity

potential of an agent gives its probability of activating. At each time step, each active agent

i randomly either (1) creates a message (e.g., a social-media post) or (2) boosts a message

that was created by a neighboring agent j. If agent i boosts a message from agent j, then i

updates its opinion using the standard DW update mechanism. Zhang et al. [ZXL18] simu-

lated their model on a social network from Tencent Weibo and found that the distribution

of activity potentials influences the location of the transition between opinion consensus and

fragmentation. The node weights in our BCM are similar in spirit to the activity potentials

of Zhang et al. [ZXL18]; they can encode the social activity levels of individuals, such as their

frequencies of posting or commenting on social media. However, the way that we incorporate

node weights in our BCM differs fundamentally from what Zhang et al. did in [ZXL18]. We

consider a time-independent network G, and we select a single pair of neighboring agents

to interact at each time step. We first randomly select one agent with a probability that

is proportional to its node weight, and then we randomly select a second neighboring agent

with a probability that depends on its node weight. The two selected agents then update

their opinions using the DW update mechanism.

Heterogeneities in which interactions occur in a social network arise not only because some

individuals are more likely to have interactions, but also because some pairs of individuals

are more likely to interact than other pairs [BCP11]. The curation of content in social-

media feeds is affected by homophily, which is the idea that individuals have a tendency

to connect with others that are similar to themselves (e.g., perhaps they have similar ideas

or beliefs) [MSC01]. Social-media feeds tend to show content to users that closely matches
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their profiles and past activities [Spo17]. To examine the effect of such algorithmic bias

on opinion dynamics, Ŝırbu et al. [SPG19] studied a modified DW model that includes

a homophily-promoting activation mechanism. At each time step, one agent is selected

uniformly at random, and then one of its neighbors is selected with a probability that depends

on the magnitude of the opinion difference between that neighbor and the first agent. The

simulations by Ŝırbu et al. of their model on complete graphs suggest that more algorithmic

bias yields slower convergence times and more opinion fragmentation [SPG19]. Pansanella

et al. [PRM22] applied the same algorithmic-bias model to a variety of network topologies

(specifically, Erdős–Rényi, Barabási–Albert, and Lancichinetti–Fortunato–Radicchi (LFR)

graphs), and they found similar trends as Ŝırbu et al. did on complete graphs.

From the investigations in [AC15, ZXL18, SPG19, PRM22], we know that incorporating

heterogeneous agent-selection probabilities into a DW model can influence opinion dynamics.

Each of these papers examined a specific implementation of heterogeneous agent selection.

We are not aware of any systematic investigations of the effects of heterogeneous agent selec-

tion on opinion dynamics in asynchronous BCMs. In the present chapter, we study a BCM

with heterogeneous agent-selection probabilities, which we implement using node weights.

In general terms, we are studying a dynamical process on node-weighted networks. We use

node weights to model agents with different probabilities of interacting. These probabilities

can encode heterogeneities in individual behavior, such as in sociability or activity levels.

We conduct a methodical investigation of the effects of incorporating heterogeneous node

weights, which we draw from various distributions, into our generalization of the DW model.

We examine these effects on a variety of networks. In our study, we consider fixed node

weights that we assign in a way that disregards network structure and agent opinions. How-

ever, one can readily adapt the node weights in our BCM to consider a variety of sociological

scenarios in which agents have heterogeneous selection probabilities. We find that introduc-

ing heterogeneous node weights into our node-weighted BCM results in longer convergence

times and more opinion fragmentation than selecting nodes uniformly at random. Moreover,
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when studying models with heterogeneous node selection, our results illustrate that it is im-

portant to consider the baseline influence of assigning node-selection probabilities uniformly

at random before drawing conclusions about more specific mechanisms such as algorithmic

bias [SPG19]. More generally, our model illustrates the relevance of incorporating node

weights into network analysis and dynamics.

4.2 A BCM with heterogeneous node-selection probabilities

We now introduce our BCM with heterogeneous node-selection probabilities. Consider an

undirected network G = (V,E). The nodes in the network represent agents that have

opinions that lie in the closed interval [0, 1]. Let each node i have a time-dependent opinion

xi(t) ∈ [0, 1]. As in the standard DW model (see Section 3.1), there is a confidence bound

c ∈ [0, 1] and compromise parameter m ∈ (0, 0.5]. In our BCM, each node also has a fixed

node weight wi > 0 that encodes sociability, how frequently it engages in conversations, or

simply the desire to share its opinions. One can think of a node’s weight as a quantification of

how frequently it communicates with its friends or posts on social media. By incorporating

network structure, the standard DW model can include nodes with different numbers of

friends (or other social connections). However, selecting interacting node pairs uniformly at

random is unable to capture the heterogeneous interaction frequencies of individuals. By

introducing node weights, we encode such heterogeneity and then examine how it affects

opinion dynamics in a BCM. Although we employ fixed node weights, one can adapt our

model to include time-dependent node weights, such as through purposeful strategies (e.g.,

posting on social media more frequently as one’s opinions become more extreme).

In our node-weighted BCM, at each discrete time, we first select a node i with a proba-

bility that is proportional to its weight. Node i then interacts with a neighbor j, which we

select with a probability that is equal to its weight divided by the sum of the weights of i’s
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neighbors. That is, the probabilities of first selecting node i and then selecting node j are

P1(i) =
wi

N∑
k=1

wk

, P2(j|i) =
wj∑

k∈N (i)

wk

, (4.2.1)

where N (i) denotes the neighborhood (i.e., the set of neighbors) of i and j ∈ N (i). Once

we select the pair of interacting agents, we update their opinions following the DW opinion

update rule in Equation (3.1.1). For convenience, we repeat the opinion update rule:

xi(t+ 1) =


xi(t) +m(xj(t)− xi(t)) , if |xi(t)− xj(t)| < c

xi(t) , otherwise ,

xj(t+ 1) =


xj(t) +m(xi(t)− xj(t)) , if |xi(t)− xj(t)| < c

xj(t) , otherwise .

(4.2.2)

To capture the fact that some agents have more frequent interactions (such as from

greater sociability or a stronger desire to share their opinions) than others, we use a node-

based agent-selection procedure. For our node-based selection, we first randomly select

one node and then randomly selects one of its neighbors. In the standard DW model (see

Section 3.1), one uses an edge-based agent-selection procedure. The choice between edge-

based and node-based agent selection can have substantial effects on the dynamics of voter

models of opinion dynamics [KP20], and we expect that this is also true for other types of

opinion-dynamics models. We are not aware of a comparison of edge-based and node-based

agent selection in asynchronous BCMs (and, in particular, in DW models), and it seems

both interesting and relevant to explore this issue. Most past research on the DW model

has considered edge-based selection [NVT20]. However, [AC15, SPG19, PRM22] used a

node-based selection procedure to model heterogeneous activities of agents.
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4.2.1 Relating node weights to edge weights

Our BCM incorporates heterogeneous node-selection probabilities with node weights that

model phenomena such as the heterogeneous sociability of individuals. One can also study

heterogeneous selection probabilities of pairwise (i.e., dyadic) interactions, instead of focusing

on the probabilities of selecting individuals. For instance, an individual may discuss their

ideological views with a close friend more frequently than with a work colleague. One can

use edge weights to determine the probabilities of selecting the dyadic interactions in a BCM.

For example, one can assign each edge (i, j) a weight pij such that the sum of the weights is

1 (i.e.,
∑

(i,j)∈E
pij = 1). Then, at each discrete time, one can select edge (i, j) for interaction

in a DW model with probability pij.

One can relate such edge selection to the node selection in our BCM. For example, one

can select the edge between nodes i and j either by selecting node i and then node j or by

selecting node j and then node i. In particular, our node-weighted BCM is equivalent to

a DW model in which, at each discrete time, the edge (i, j) is selected for interaction with

probability

pij = P1(i)P2(j|i) + P1(j)P2(i|j) , (4.2.3)

where P1 and P2 are defined in Equation (4.2.1).

4.3 Details of numerical simulations

In this section, we discuss the setup of our numerical simulations of our node-weighted BCM.

4.3.1 Network structures

We now describe the details of the networks on which we simulate our node-weighted BCM.

We summarize these networks in Table 4.1.

We simulate our BCM on complete graphs as a baseline scenario that lets us examine
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how incorporating heterogeneous node-selection probabilities affects opinion dynamics. To

examine finite-size effects from our networks, we consider complete graphs with sizes N ∈

{10, 20, 30, 45, 65, 100, 150, 200, 300, . . . , 1000}. For all other synthetic networks, we consider

networks with N = 500 nodes.

Table 4.1: The networks on which we simulate our node-weighted BCM.

Network Description Parameters

C(N) Complete graph with N nodes

N ∈ {10, 20, 30, 45, 65,
100, 150, 200,

300, . . . , 1000}

G(N, p)
Erdős–Rényi (ER) random-graph model with
N nodes and homogeneous, independent edge
probability p

p ∈ {0.1, 0.3, 0.5, 0.7}

Two-
Community
SBM1

Stochastic block model with 2 × 2 blocks.
Edges between nodes in the same set (A or B)
exist with a larger probability than edges be-
tween nodes in different sets; the block prob-
abilities satisfy PBB > PAA > PAB.

PAA = 49.9/374

PBB = 49.9/124

PAB = 1/500

Core–
Periphery
SBM1

Stochastic block model with 2 × 2 blocks. Set
A is a set of core nodes and set B is a set
of peripheral nodes. The block probabilities
satisfy PAA > PAB > PBB.

PAA = 147.9/374

PBB = 1/174

PAB = 1/25

Caltech
Network

The largest connected component of the Face-
book friendship network at Caltech on one
day in fall 2005. This network, which is
part of the Facebook100 data set [RKM11,
TMP12], has 762 nodes and 16,651 edges.

1Our SBM networks have N = 500 nodes. We partition an SBM network into two sets of nodes; set A has

75% of the nodes, and set B has 25% of the nodes.

To consider networks with different edge densities, we generate synthetic networks using

the G(N, p) ER random-graph model (see Section 2.3.2). When p = 1, this yields a complete
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graph. We examine G(500, p) graphs with p ∈ {0.1, 0.3, 0.5, 0.7}.

To determine how a network with an underlying block structure affects the dynamics of

our node-weighted BCM, we consider SBM networks with 2 × 2 blocks (see Section 2.3.3).

Inspired by the choices of Kureh and Porter [KP20], we consider two types of SBM networks:

the first has a two-community structure, and the second has a core–periphery structure. To

construct our 2×2 SBMs, we partition a network into two sets of nodes; set A has 375 nodes

(i.e., 75% of the network) and set B has 125 nodes (i.e., 25% of the network).

Consider the symmetric edge-probability matrix in Equation (2.3.1). In a two-community

SBM, the probabilities PAA and PBB are larger than PAB, so edges between nodes in the same

community exist with a larger probability than edges between nodes in different communities.

For our two-community SBM, we choose PAA and PBB so that the expected mean degree

matches that of the G(500, 0.1) ER model if we consider only edges within set A or only edges

within set B. A network from the G(N, p) model has an expected mean degree of p(N − 1)

[New18], so we want the two communities of these SBM networks to have an expected

mean degree of 49.9 = 0.1 × 499. We thus use the edge probabilities PAA = 49.9/374 and

PBB = 49.9/124. To ensure that there are few edges between the sets A and B, we choose

PAB = 1/500.

We want our core–periphery SBM with core set A and periphery set B to satisfy PAA >

PAB > PBB. We chose PAA so that the expected mean degree matches that of the G(500, 0.3)

model (i.e., it is 147.9) if we only consider edges within the set A. We thus choose the edge

probability PAA = 147.9/374. To satisfy PAA > PAB > PBB, we choose PAB = 1/25 and

PBB = 1/174.

Finally, we investigate our node-weighted BCM on a real social network from Facebook

friendship data. We use the Caltech network from the Facebook100 data set [RKM11,

TMP12]. Its nodes encode individuals at Caltech, and its edges encode Facebook “friend-

ships” between them on one day in fall 2005. We only consider the network’s largest con-

nected component, which has 762 nodes and 16,651 edges.
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4.3.2 Node-weight distributions

In Table 4.2, we give the parameters and probability density functions of the node-weight

distributions that we examine in our BCM. In this subsection, we discuss our choices of

distributions.

Table 4.2: The names and specifications of our node-weight distributions. We show both
the general mathematical expressions for the means and the specific values of the means
for our parameter values. For the Pareto distributions, we truncate the distribution means
to four digits after the decimal point. For all other distributions, the means are exact.
Additionally, for our Pareto-80-43 distribution, 80% of the node weights are distributed
among approximately 42.7723% of nodes (see Footnote 3), rather than among 43% of nodes.

Distribution Probability density
function

Parameter
values

Domain Mean

Constant δ(x− 1) N/A {1} 1 1

Pareto-80-43
α

xα+1

α = log4.5(10)

[1,∞)
α

α− 1

2.8836

Pareto-80-20 α = log4(5) 7.2126

Pareto-90-10 α = log9(10) 21.8543

Exp-80-43

1
β
exp

(
−(x−1)

β

) β = 1.8836

[1,∞) β + 1

2.8836

Exp-80-20 β = 6.2125 7.2125

Exp-90-10 β = 20.8543 21.8543

Unif-80-43
1

b− 1

b = 4.7672

[1, b]
1

2
(1+b)

2.8836

Unif-80-20 b = 13.4250 7.2125

Unif-90-10 b = 42.7086 21.8543

To study the effects of incorporating node weights in our BCM, we compare our model

to a baseline DW model. To ensure a fair comparison, we implement a baseline DW model

that selects interacting agents uniformly at random using a node-based selection process. As

we discussed at the end of Section 4.2, it is much more common to employ an edge-based

selection process. We refer to the case in which all node weights are equal to 1 (that is, wi = 1
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for all nodes i) as the “constant weight distribution”. The constant weight distribution (and

any other situation in which all node weights equal the same positive number) results in a

uniformly random selection of nodes for interaction. This is what we call the “baseline DW

model”; we compare our DW model with heterogeneous node weights to this baseline model.

We reserve the term “standard DW model” for the DW model with uniformly random edge-

based selection of agents. When all of the nodes of a network have the same degree, our

baseline DW model is equivalent to the standard DW model.

The node weights in our BCM encode heterogeneities in interaction frequencies, such as

when posting content online. The majority of online content arises from a minority of user ac-

counts [GTC09]. A “90-9-1 rule” has been proposed for such participation inequality. In this

rule of thumb, about 1% of the individuals in online discussions (e.g., on social-media plat-

forms) account for most contributions, about 9% of the individuals contribute on occasion,

and the remaining 90% of the individuals are present online (e.g., they consume content) but

do not contribute to it [Nie06]. Participation inequality has been documented in a variety of

situations, including in the numbers of posts on digital-health social networks [Mie14], posts

on internet support groups [CCG14], and contributions to open-source software-development

platforms [GCB20]. Inequality in user activity has also been examined on Twitter (which

recently was rebranded as X)[AMS19]. For example, Xiong and Liu [XL14] used a power-law

distribution to model the number of tweets about different topics. A few years ago, a survey

by the Pew Research Center found that about 10% of the accounts of adult Twitter users in

the United States generate about 80% of the tweets of such accounts [WH19].

One can interpret the node weights in our BCM as encoding the participation frequen-

cies of individuals who contribute content to a social-media platform. We model online

participation inequality by using a Pareto distribution for the node weights. This choice

of distribution is convenient because of its simple power-law form. It has also been used

to model inequality in a variety of other contexts, including distributions of wealth, word

frequencies, website visits, and numbers of paper citations [New05]. When representing
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social-media interactions, we care only about accounts that make posts or comments; we

ignore inactive accounts. Therefore, we impose a minimum node weight in our model. We

use the Pareto type-I distribution, which is defined on [1,∞), so each node has a mini-

mum weight of 1. This positive minimum weight yields reasonable computation times in our

simulations of our BCM. Nodes with weights near 0 would have very small probabilities of

interacting, and allowing such weights would prolong simulations.

Let Pareto-X-Y denote the continuous Pareto distribution in which (in theory) X% of the

total node weight is distributed among Y% of the nodes. In practice, once we determine the

N node weights for a simulation with a Pareto node-weight distribution, it is not true that

precisely X% of the total weight is distributed among Y% of the N nodes. The Pareto prin-

ciple (which is also known as the “80-20 rule”) is a popular rule of thumb that suggests that

20% of a population of individuals have 80% of the available wealth [New05]. Accordingly,

we consider a Pareto-80-20 distribution. As an example of a node-weight distribution with

a more extreme inequality, we also consider a Pareto-90-10 distribution. Additionally, as an

example of a node-weight distribution with less inequality, we also consider a Pareto-80-43

distribution.3

We also examine uniform and exponential distributions of node weights. To match the

domain of our Pareto distributions, we shift the uniform and exponential distributions so

that their minimum node weight is also 1. We also choose their parameters to approximate

the means of our Pareto distributions. We use Exp-X-Y and Unif-X-Y as shorthand notation

to denote exponential and uniform distributions, respectively, with means that match that

3 Inspired by the results of the aforementioned Pew Research Center survey of Twitter (now rebranded
as X) users [WH19], we intended to consider a Pareto-80-10 distribution, in which one expects 80% of the
total weight to be distributed among 10% of nodes. The Pareto distribution family that we consider has the
probability density function α/xα+1 (see Table 4.2). A Pareto-80-10 distribution entails that α = log4.5(5).
However, we mistakenly used α = log4.5(10) in our simulations. This choice corresponds to a Pareto-80-43
distribution. To calculate the percentage Y% of nodes that one expects to have X% of the total node weight,
one calculates Y/100 = 1− (1−X/100)(1−1/α). In our Pareto distribution with α = log4.5(10), we have that
80% of the node weights are distributed among approximately 42.7723% of the nodes. As a shorthand, we
refer to this distribution as a “Pareto-80-43” distribution.

39



of the Pareto-X-Y distribution to four decimal places (see Table 4.2). When we examine

the results of our numerical simulations, we want to compare distributions with similar

means. We use the phrase “80-20 distributions” to refer to the Pareto-80-20, Exp-80-20,

and Unif-80-20 distributions. We analogously use the phrases “90-10 distributions” and

“80-43 distributions.” In total, we examine three different families of distributions (Pareto,

exponential, and uniform) with tails of different heaviness. In Table 4.2, we show the details

of the probability density functions and the parameters of our node-weight distributions.

4.3.3 Simulation specifications

In our node-weighted BCM, agents have opinions in the 1D opinion space [0, 1]. Accordingly,

we suppose that the confidence bound c ∈ (0, 1). We suppose that the compromise parameter

m ∈ (0, 0.5], which is the typically studied range for DW models [MVP18, NVT20].

In our node-weighted BCM, the generation of the graphs in a random-graph ensemble,

the sets of node weights, the sets of initial opinions, and the selection of pairs of agents

to interact at each time step are all stochastic. We use Monte Carlo simulations to reduce

these sources of noise in our simulation results. For each of our random-graph models (i.e.,

the ER and SBM graphs), we generate five graphs. For each graph and each node-weight

distribution, we randomly generate ten sets of node weights. For each set of node weights,

we generate ten sets of initial opinions that are distributed uniformly at random. In total, we

consider 100 distinct sets of initial opinions and node weights for the Monte Carlo simulations

of each individual graph. When we compare simulations from different distributions of node

weights for the same individual graph, we reuse the same 100 sets of initial opinions.

The update rule (see Equation (4.2.2)) for our node-weighted BCM is the same as the

update rule in the standard DW model. Therefore, using the same argument as in the

standard DW model (see Section 3.3.1), each opinion in our node-weighted BCM converges

to a steady-state value. Furthermore, as in the standard DW model, we can determine the

steady-state opinion clusters in finite time (see the discussion at the end of Section 3.3.2) for
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our node-weighted BCM. In our numerical simulations in this chapter, we use the stopping

criterion in Equation (3.3.8). We specify that one of our simulations has converged if each

opinion cluster has a diameter that is less than a tolerance of 0.02. That is, for each opinion

cluster Sr, we have maxi,j∈Sr |xi−xj| < 0.02. We denote the time step in which a simulation

reaches the stopping criterion by Tf .

It is computationally expensive to numerically simulate a DW model. Additionally, as

we will show in Section 4.4, our node-weighted DW model with heterogeneous node weights

often converges to a steady state even more slowly than the baseline DW model. To reduce

the computational burden of checking for convergence, we compute the convergence time to

three significant digits. We thereby avoid checking for convergence at each time step. To

guarantee that each simulation stops in a reasonable amount of time, we set a bailout time

of 109 time steps. In our simulations, the convergence time Tf is always shorter than the

bailout time. We thus report the results of our simulations as steady-state results.

To characterize the opinions in our node-weighted BCM, we calculate the quantities that

we described in Sections 3.3.3 and 3.3.4 at steady state. Namely, we calculate the steady-state

numbers of major and minor opinion clusters (see Section 3.3.3) and steady-state Shannon

entropy H(Tf ) (see Equation (3.3.7)) of entire opinion-cluster profiles (see Section 3.3.4). In

this chapter, we say that an opinion cluster is a “minor opinion cluster” if it has at most

2% of the nodes in a network. That is, an opinion cluster Sr is a minor opinion cluster if

|Sr| ≤ 0.02N . We say that an opinion cluster that is not a minor cluster is a “major opinion

cluster”.

Additionally, we calculate a quantity that we call the mean local receptiveness, which

we define shortly. One way to quantify opinion fragmentation is to look at a local level

and consider individual nodes of a network. As Musco et al. [CW22] pointed out, if an

individual node has many neighbors with similar opinions to it, then it may be “unaware”

of other opinions in the network. For example, most of the neighbors of a node may hold an

opinion that is uncommon in the network. This phenomenon is sometimes called a “majority
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illusion” [LYW16]. If a set of adjacent nodes tend to have neighbors with similar opinions

as theirs, they may be in an “echo chamber” [FGR16], as it seems that they are largely

exposed only to conforming opinions. To quantify the local observations of nodes, Musco

et al. [CW22] examined a notion of local agreement by calculating the fraction of a node’s

neighbors with opinions on the same side of the network’s mean opinion as that node. In

our simulations, we often observe opinion fragmentation with three or more opinion clusters.

Therefore, we need to look beyond the mean opinion of an entire network. To do this, we

introduce the local receptiveness of an node. At time t, a node i with neighborhood N (i)

has a local receptiveness of

Li(t) =
|{j ∈ N (i) : |xi(t)− xj(t)| < c}|

|N (i)|
. (4.3.1)

That is, Li(t) is the fraction of the neighbors of agent i at time t to which it is receptive

(see Section 3.1). In the present chapter, we only consider connected networks, so each

agent i has |N (i)| ≥ 1 neighbors. If one wants to consider isolated nodes, one can assign

them a local receptiveness of 0 or 1. In our numerical simulations, we calculate the local

receptiveness of each agent of a network at the convergence time Tf . We then calculate the

mean ⟨Li(Tf )⟩ of all agents in the network. This is the steady-state mean local receptiveness,

as it is based on edges in the steady-state effective graph Geff(Tf ) (see Equation (3.3.3)).

When consensus is not reached, a smaller mean local receptiveness is an indication of greater

opinion fragmentation. As we will discuss in Section 4.4, computing Shannon entropy and

mean local receptiveness can give insight into the extent of opinion fragmentation when one

considers them in concert with the number of opinion clusters.

4.4 Numerical simulations and results

In this section, we present results of our numerical simulations of our node-weighted BCM.

In our numerical experiments, we consider compromise-parameter values m ∈ {0.1, 0.3, 0.5}.
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For the confidence bound, we first consider c ∈ {0.1, 0.3, 0.5, 0.7, 0.9}, and we then examine

additional values of c near regions with interesting results. As we discussed in Section 4.3.3,

for each individual graph, we use 100 distinct sets of initial opinions and node weights

in Monte Carlo simulations of our BCM. For each of the random-graph models (i.e., ER

and SBM graphs), we generate five graphs. For the 500-node complete graphs, we use the

10 weight distributions in Table 4.2. Because of computation time, we consider the 90-10

distributions only for the 500-node complete graph. For the other networks in Table 4.1, we

consider seven distributions: the constant weight distribution, the three 80-43 distributions,

and the three 80-20 distributions.

In Table 4.3, we summarize the trends that we observe in the examined networks. In the

following subsections, we discuss details of our results for each type of network. For each

network, we plot the numbers of major and minor clusters, Shannon entropies, and values

of mean local receptiveness at steady state. We include our code and all figures (includ-

ing those not shown in this chapter) in our repository at https://gitlab.com/graceli1/

NodeWeightDW.

4.4.1 Simulations on a complete graph

The simplest underlying network structure on which we simulate our node-weighted BCM is

a complete graph. A complete graph gives a baseline setting to examine how heterogeneous

node-selection probabilities affect opinion dynamics. In our numerical simulations on a 500-

node complete graph, we consider all three means (which we denote by 80-43, 80-20, and

90-10) for each of the uniform, exponential, and Pareto node-weight distribution families.

The standard DW model on a complete graph with agents with opinions in the interval

[0, 1] eventually reaches consensus if the confidence bound c ≥ 0.5. As one decreases c from

0.5, there are progressively more steady-state opinion clusters (both major and minor clus-

ters) [BKR03, Lor07]. Lorenz [Lor07] showed using numerical simulations that the number

of major clusters is approximately ⌊ 1
2c
⌋ for the standard DW model. Therefore, there is a
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Table 4.3: Summary of the trends in our simulations of our node-weighted BCM. Unless we
note otherwise, we observe these trends for each of the networks that we examine (complete
graphs, ER and SBM random graphs, and the Caltech Facebook network).

Quantity Trends

Convergence
Time

• For fixed values of the confidence bound c and compromise param-
eter m, the heterogeneous weight distributions have longer conver-
gence times than the constant weight distribution.

Opinion
Fragmentation1

• For fixed values of c ∈ [0.1, 0.4] and m, the heterogeneous weight
distributions usually have more opinion fragmentation than the
constant weight distribution.

• For fixed values of c and m and a fixed distribution mean, there
usually is more opinion fragmentation when the tail of a distribu-
tion is heavier.

• For fixed values of c and m and a fixed family of distributions,
there usually is more opinion fragmentation when a distribution
has a larger mean.

Number of
Major Clusters

• A larger minimum value of c is required to always reach consen-
sus for a heterogeneous weight distribution than for the constant
weight distribution.

• For fixed values of c and m and a fixed distribution mean, there
usually are more major clusters when a distribution tail is heavier.

• For fixed values of c and m and a fixed family of distributions,
there usually are more major clusters when a distribution has a
larger mean.

Number of
Minor Clusters

• For the constant weight distribution and for fixed c, there usu-
ally are more minor clusters when the compromise parameter
m ∈ {0.3, 0.5} than when m = 0.1. The heterogeneous weight
distributions do not follow this trend.2

1We quantify opinion fragmentation using Shannon entropy and mean local receptiveness. We observe clearer

trends for the Shannon entropy than for the mean local receptiveness.
2For the Caltech network, we usually observe more minor clusters when m ∈ {0.3, 0.5} than when m = 0.1

for each of our heterogeneous weight distributions.
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transition between consensus and opinion fragmentation for c ∈ [0.25, 0.3]. In our simula-

tions, we observe that this transition occurs for c ∈ [0.25, 0.4] in our node-weighted BCM.

To examine this transition, we zoom in on these values of c. For the uniform and exponen-

tial distributions, we focus on c ∈ [0.25, 0.3]. For the Pareto distributions, the transition

occurs for larger values of c than for the other distributions; we consider additional values

of c ∈ [0.3, 0.4]. For the constant weight distribution, which gives our baseline DW model,

we examine all values of c that we consider for any other distribution.

In Figure 4.1, we show the convergence times of our BCM simulations for various node-

weight distributions. For fixed values of c andm, all of the heterogeneous weight distributions

yield longer convergence times than the constant weight distribution. Additionally, for fixed

c andm and a fixed family of distributions (uniform, exponential, or Pareto), the convergence

time increases as we increase the mean of a distribution. Furthermore, for fixed c and for

each heterogeneous weight distribution, the convergence time usually increases as we decrease

the compromise parameter m. When calculating convergence time, we include time steps

in which two nodes interact but do not change their opinions. To see if the heterogeneous

weight distributions have inflated convergence times as a result of having more of these futile

interactions, we also calculate the number of time steps to converge when we exclude such

time steps. That is, we count the total number of opinion changes that it takes to converge.

On a logarithmic scale, there is little difference between the total number of opinion changes

and the total number of time steps to converge.

In Figure 4.2, we show the numbers of steady-state major opinion clusters in our BCM

simulations for various node-weight distributions. For all weight distributions, consensus

occurs in all of our simulations when the confidence bound c ≥ 0.5. For fixed values of

c ∈ [0.1, 0.4] and m, the heterogeneous weight distributions usually yield more steady-state

major clusters than the constant weight distribution. When we introduce heterogeneous

node weights into our BCM, we need a larger confidence bound c than for the constant

weight distribution to always reach consensus in our simulations. It appears that our BCM
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Figure 4.1: Convergence times (in terms of the number of time steps) in simulations of our
node-weighted BCM on a 500-node complete graph with various node-weight distributions.
If we consider only the time steps in which interacting nodes actually change their opinions,
the convergence times are smaller; however, the trends are the same. For this heat map
and all subsequent heat maps, the depicted values are means of our simulations of our BCM
for each node-weight distribution and each value of the BCM parameter pair (c,m). (This
figure originally appeared in [LP23].)
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with heterogeneous node weights tends to have more opinion fragmentation than the baseline

DW model. For fixed c and m, we observe for each distribution family that the mean number

of steady-state major clusters increases as we increase the distribution mean. To see this,

proceed from left to right in Figure 4.2 from the 80-43 distributions to the 80-20 distributions

and then to the 90-10 distributions. Additionally, for fixed values of c and m and a fixed

distribution mean, there are usually more steady-state major clusters as we proceed from a

uniform distribution to an exponential distribution and then to a Pareto distribution.

To investigate how the node-weight distribution and the BCM parameters (i.e., c and m)

affect the amount of opinion fragmentation, we calculate the Shannon entropy (see Equa-

tion (3.3.7)) and mean local receptiveness (see Equation (4.3.1)) at steady state. In Fig-

ure 4.3, we show the steady-state entropy values of our BCM simulations for various node-

weight distributions. For all node-weight distributions, when there is opinion fragmentation

instead of consensus, the steady-state entropy increases as we decrease the confidence bound

c for fixed m. In line with our observations in Figure 4.2, when c ∈ [0.1, 0.4], simulations of

heterogeneous weight distributions usually yield larger entropies than the constant weight

distribution. For fixed values of c and m and a fixed distribution mean, we also tend to ob-

serve a slightly larger entropy as we proceed from a uniform distribution to an exponential

distribution and then to a Pareto distribution. For the Pareto distribution family and fixed

values of c and m, the entropy increases as we increase the distribution mean. (Proceed from

left to right in Figure 4.3.) The exponential and uniform distributions also have this trend,

although it is less pronounced (i.e., the entropies tend to increase only slightly) than for the

Pareto distributions. When we quantify fragmentation using Shannon entropy, we conclude

that increasing the mean node weight has less effect on the amount of opinion fragmenta-

tion for the uniform and exponential distributions than it does for the Pareto distributions.

Because Shannon entropy depends on the sizes of the opinion clusters, it provides more

information about opinion fragmentation than tracking only the number of major opinion

clusters. Our plot of the steady-state mean local receptiveness illustrates the same trends
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Figure 4.2: Steady-state numbers of major opinion clusters in simulations of our node-
weighted BCM on a 500-node complete graph with various node-weight distributions. We
consider a cluster to be major cluster if it has more than 2% of the nodes of a network. In
this case, a major cluster must have at least 11 nodes. (This figure originally appeared in
[LP23].)
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as the entropy, but we do not show it here. (See our code repository for the relevant fig-

ure.) This suggests that both Shannon entropy and mean local receptiveness are useful for

quantifying opinion fragmentation.

In Figure 4.4, we show the numbers of steady-state minor opinion clusters in our BCM

simulations. For each node-weight distribution and each value of c and m, when we take the

mean of our 100 simulations, we obtain at most three steady-state minor clusters. We observe

the most minor clusters when c ∈ {0.1, 0.2}, which are the smallest confidence bounds that

we examine. For the constant weight distribution, we typically observe more minor clusters

when m ∈ {0.3, 0.5} than when m = 0.1. However, we do not observe this trend for the

heterogeneous weight distributions. For example, for the Pareto-80-43 distribution, when

c ∈ [0.34, 0.4], decreasing m results in more minor opinion clusters. For the three Pareto

distributions, as we decreasem, we also observe that minor clusters tend to appear at smaller

confidence bounds. Smaller values of m entail smaller opinion compromises for interacting

agents; this may give more time for agents to interact before they settle into their steady-

state opinion clusters. For the constant weight distribution, this may reduce the number of

minor clusters by giving more opportunities for agents to assimilate into a major cluster.

However, for our heterogeneous weight distributions, nodes with larger weights have larger

probabilities of interacting with other nodes and we no longer observe fewer minor clusters

as we decrease m.

We now propose a possible mechanism by which our node-weighted BCM may promote

the trends in Table 4.3. In Figure 4.5, we show the trajectories of opinions versus time

for a single simulation with node weights that we draw from a Pareto-80-43 distribution.

To qualitatively describe our observations, we examine the large-weight and small-weight

nodes (i.e., the nodes that are near and at the extremes of a set of node weights in a given

simulation). Because our node-selection probabilities are proportional to node weights, we

normalize the node weights in a simulation to sum to 1. In Figure 4.5, the large-weight

nodes appear to quickly stabilize into their associated steady-state major opinion clusters,

49

https://gitlab.com/graceli1/NodeWeightDW


Figure 4.3: Shannon entropies of the steady-state opinion-cluster profiles in simulations of
our node-weighted BCM on a 500-node complete graph with various node-weight distribu-
tions. (This figure originally appeared in [LP23].)
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Figure 4.4: Steady-state numbers of minor opinion clusters in simulations of our node-
weighted BCM on a 500-node complete graph with various node-weight distributions. We
consider a cluster to be minor cluster if it has at most 2% of the nodes of a network. In
this case, a minor cluster must have 10 nodes or fewer. (This figure originally appeared in
[LP23].)
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and some small-weight nodes are left behind to form the two minor clusters. More generally,

in our simulations of our BCM on a complete graph, we observe that heterogeneity in the

node weights results in large-weight nodes interacting more frequently than other nodes and

quickly settling into steady-state major opinion clusters. Small-weight nodes that are not

selected for opinion updates early in a simulation are left behind to form the smallest clusters

in a steady-state opinion-cluster profile; this increases the amount of opinion fragmentation.

When we increase the mean node weight, increase the relative proportion of large-weight

nodes (by increasing the heaviness of the tail of a distribution), or decrease the value of

the compromise parameter m, small-weight nodes tend to take longer to settle into opinion

clusters. Node-weight heterogeneity may thereby promote both opinion fragmentation and

the formation of minor opinion clusters.

Figure 4.5: Sample trajectories of agent opinions versus time t in a single simulation of
our node-weighted BCM on a 500-node complete graph with BCM parameters c = 0.2 and
m = 0.1 and node weights that we draw from a Pareto-80-43 distribution. We color the
trajectory of each agent by its node weight, which we normalize so that the sum of all node
weights is 1. The nodes in the two minor opinion clusters are all small-weight nodes; their
weights are close to 0 (and are hence in purple). (This figure originally appeared in [LP23].)
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4.4.2 ER graphs

We now discuss our simulations of our BCM on G(N, p) ER random graphs, where p is

the homogeneous, independent probability of an edge between any pair of nodes (see Sec-

tion 2.3.2). In our simulations, we examine edge probabilities p ∈ {0.1, 0.3, 0.5, 0.7} and

generate five graphs for each value of p. Each graph has N = 500 nodes. For each value of

p, we observe each of the trends in Table 4.3.

In Figure 4.6, we show the steady-state Shannon entropies of our simulations for various

node-weight distributions and values of p. The entropies are comparable to those that

we obtained in our simulations on a 500-node complete graph (see Section 4.4.1). When

c ∈ [0.1, 0.4], for each of our three node-weight distribution families and for fixed values of

p, c, and m, the 80-20 distribution tends to yield a larger Shannon entropy than the 80-43

distribution (which has a smaller mean).

For larger p, we expect the results of our simulations onG(500, p) networks to be similar to

those of our simulations on a 500-node complete graph. For p ∈ {0.3, 0.5, 0.7} and N = 500,

the number of major opinion clusters and the mean local receptiveness are comparable to

the corresponding results for a 500-node complete graph. When p = 0.1 and there is opinion

fragmentation, for a fixed node-weight distribution and fixed values of c and m, we usually

observe fewer major opinion clusters than for larger values of p. For p = 0.1, a fixed node-

weight distribution, and fixed c ∈ [0.1, 0.4] and m, we also observe that the mean local

receptiveness tends to be larger than it is for larger p. One possible contributing factor for

this observation may be that smaller values of p yield G(N, p) graphs with more small-degree

nodes; these small-degree nodes have fewer available values of local receptiveness than larger-

degree nodes. For example, a node with degree 2 can only have a local receptiveness of 0,

0.5, or 1. Unless a small-degree node is an isolated node in the steady-state effective graph

Geff(Tf ), its presence may help inflate the value of the steady-state mean local receptiveness.

For a fixed node-weight distribution and fixed values of c and m, decreasing p tends to
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Figure 4.6: Shannon entropies of the steady-state opinion-cluster profiles in simulations of
our node-weighted BCM on G(500, p) ER random graphs for various node-weight distribu-
tions and several values of p. (This figure originally appeared in [LP23].)
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increase the steady-state number of minor opinion clusters. For p ∈ {0.5, 0.7}, the steady-

state numbers of minor clusters are comparable to the numbers that we obtained for a

500-node complete graph. When p ∈ {0.5, 0.7}, for each node-weight distribution and each

value of c and m, when we take the mean of our 500 simulations, we obtain at most 3

steady-state minor clusters. For these simulations, we observe the most minor clusters when

c ∈ {0.1, 0.2}. For p = 0.1, the mean number of steady-state minor clusters is at most 9;

this occurs when c ∈ {0.35, 0.4}. It seems sensible that smaller values of p yield more minor

opinion clusters. For small p, there are more small-degree nodes than for larger values of

p. It is easier for small-degree nodes than for large-degree nodes to be in a minor opinion

cluster, as small-degree nodes need to become unreceptive to few neighbors to end up in a

minor cluster at steady state. That is, if i is a small-degree node, few neighbors j need to

satisfy the inequality |xi − xj| < c.

4.4.3 SBM graphs

We now discuss our simulations of our BCM on 500-node SBM random graphs that we

generate using the parameters in Table 4.1. For both the two-community and core–periphery

SBM graphs, we observe the trends in Table 4.3.

For the two-community SBM graphs, the steady-state Shannon entropies and numbers

of major opinion clusters are comparable to those in our simulations on a 500-node complete

graph. When there is opinion fragmentation, for a fixed node-weight distribution and fixed

values of c and m, the steady-state values of mean local receptiveness tend to be similar

to the values for G(500, 0.1) graphs and larger than the values for a complete graph. The

steady-state numbers of minor opinion clusters are similar to those for theG(500, 0.1) random

graphs.

For the two-community SBM graphs, for each node-weight distribution and each value of

c and m, when we take the mean of our 500 simulations, we obtain at most 10 steady-state

minor clusters. We observe the most steady-state minor clusters when c ∈ {0.35, 0.4}. Recall
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that we select the edge probabilities of the two-community SBM so that each of the two com-

munities has an expected mean degree that matches that of G(500, 0.1) graphs. Therefore, it

is reasonable that we obtain similar results for the two-community SBM and the G(500, 0.1)

random graphs. In our numerical simulations, we assign the node weights randomly without

considering the positions (which, in this case, is the community assignments) of the nodes of

a network. When we assign weights to nodes uniformly at random, it seems that graph spar-

sity may be more important than community structure for determining if our BCM reaches

a consensus or a fragmented state.

For a fixed node-weight distribution and fixed values of c and m, the core–periphery

SBM graphs tend to have fewer major clusters than a complete graph. Additionally, both

the steady-state Shannon entropy and the mean local receptiveness tend to be larger for

the core–periphery SBM graphs than for a complete graph. Larger entropy and smaller

local receptiveness are both indications of more opinion fragmentation. If we consider only

the number of major opinion clusters, it seems that the core–periphery SBM graphs yield

less opinion fragmentation than a complete graph. However, when we examine the entire

opinion-cluster profile of a network and account for the cluster sizes and the minor clusters,

the Shannon entropy reveals that there is more opinion fragmentation for our core–periphery

SBM graphs than for a complete graph. The steady-state mean local receptiveness indicates

that the nodes of a core–periphery SBM graph tend to be receptive to a larger fraction of

their neighbors than the nodes of a complete graph.

We believe that Shannon entropy gives a more useful quantification of opinion fragmenta-

tion than mean local receptiveness. For networks with a large range of degrees, small-degree

nodes can inflate the mean local receptiveness. (Analogously, a network’s mean local cluster-

ing coefficient places more importance than its global clustering coefficient on small-degree

node [New18].) In the context of our node-weighted BCM, consider a node with degree 2

and a node with degree 100, and suppose that both of them have a local receptiveness of 0.5.

The larger-degree node’s local receptiveness of 0.5 gives a better indication that there may

56



be opinion fragmentation than the smaller-degree node’s local receptiveness of 0.5. However,

we treat both nodes equally when we calculate the mean local receptiveness. We believe that

local receptiveness is a useful quantity to calculate for individual nodes to determine how

they perceive the opinions of their neighbors. However, mean local receptiveness appears to

be less useful than Shannon entropy for quantifying opinion fragmentation in a network.

For a fixed node-weight distribution and fixed values of c andm, the steady-state numbers

of major opinion clusters that we obtain in the core–periphery SBM graphs are comparable

to the numbers for a complete graph. The steady-state numbers of minor opinion clusters

tend to be larger for core–periphery SBM graphs than for two-community SBM graphs

(which have more minor clusters than a complete graph). For each node-weight distribution

and each value of c and m, when we take the mean of our 500 simulations, we observe

at most 12 steady-state minor clusters; this occurs when c = 0.1. One possibility is that

the core–periphery structure makes it easier to disconnect peripheral nodes of an effective

graph, causing these nodes to form minor clusters. (Recall that we defined effective graphs

in Section 3.3.2.) For core-periphery SBM graphs, it seems interesting to investigate the

effect of assigning node weights in a way that depends on network structure. For example, if

we assign all of the large weights to core nodes, will these nodes pull many peripheral nodes

into their opinion clusters? If we place a large-weight node in the periphery, will it be able

to pull core nodes into its opinion cluster?

4.4.4 Caltech network

We now discuss the Caltech Facebook network, which is an empirical data set in which

the nodes are individuals with Caltech affiliations and the edges represent “friendships” on

Facebook on one day in fall 2005 [RKM11, TMP12]. We consider the network’s largest

connected component, which has 762 nodes and 16,651 edges. The Caltech network has all

but one of the trends that we reported in Table 4.3; the only exception is the trend in the

number of minor opinion clusters. When there is opinion fragmentation, the Caltech network

57



has more steady-state minor clusters and larger steady-state Shannon entropies than in our

synthetic networks.

In Figure 4.7, we show the steady-state numbers of minor opinion clusters in simulations

of our BCM on the Caltech network. We obtain the most minor clusters when c = 0.1, which

is the smallest value of c that we examine. Given a node-weight distribution and values of

c and m, when we take the mean of our 100 simulations on the Caltech network, we often

observe a large number of minor clusters (including as many as 78 of them, which is much

larger than the single-digit numbers that we usually observed for our synthetic networks).

Additionally, unlike in our synthetic networks, for all node-weight distributions (not just the

constant weight distribution), the Caltech network tends to have more minor clusters when

m ∈ {0.3, 0.5} than when m = 0.1.

Figure 4.7: Steady-state numbers of minor opinion clusters in simulations of our node-
weighted BCM on the Caltech Facebook network with various distributions of node weights.
We consider an opinion cluster to be minor cluster if it has at most 2% of the nodes of a
network. In this case, a minor cluster has at most 15 nodes. (This figure originally appeared
in [LP23].)

In Figure 4.8, we show the steady-state numbers of major opinion clusters in simulations

of our BCM on the Caltech network. For a fixed node-weight distribution and fixed values of

c and m, the Caltech network tends to have fewer major opinion clusters than our synthetic
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Figure 4.8: Steady-state numbers of major opinion clusters in simulations of our node-
weighted BCM on the Caltech Facebook network with various distributions of node weights.
We consider an opinion cluster to be major cluster if it has more than 2% of the nodes of a
network. In this case, a major cluster must have at least 16 nodes. (This figure originally
appeared in [LP23].)

networks. This observation is in line with our observation that the Caltech network can have

many more minor clusters than our synthetic networks.

In Figure 4.9, we show the steady-state Shannon entropies for the Caltech network.

For a fixed node-weight distribution and fixed values of c and m, when there is opinion

fragmentation, we observe a larger entropy for the Caltech network than for our synthetic

networks. This aligns with our observation that the Caltech network has many more minor

opinion clusters than our synthetic networks. We show a plot of the steady-state values

of mean local receptiveness for the Caltech network in our code repository. The values of

the mean local receptiveness tend to be larger for the Caltech network than for a 500-node

complete graph. We suspect that this arises from the presence of many small-degree nodes

in the Caltech network. In Section 4.4.3, we discussed the impact of small-degree nodes on

the mean local receptiveness.

The histogram of the node degrees of the Caltech network (see Figure 4.10) differs dra-

matically from those of our synthetic networks. Unlike in our synthetic networks, the most

59



Figure 4.9: Shannon entropies of the steady-state opinion-cluster profiles in simulations of
our node-weighted BCM on the Caltech Facebook network with various node-weight distri-
butions. (This figure originally appeared in [LP23].)

common degrees in the Caltech network are among the smallest degrees. In Figure 4.10,

the tallest bar in the histogram is for nodes with degrees 1–9. These abundant small-degree

nodes are likely to disconnect from the largest connected components of the effective graph

and form minor opinion clusters. Because we select the initial opinions uniformly at random

from [0, 1], when c = 0.1, it is possible that small-degree nodes are initially isolated nodes of

the effective graph because of their initial opinions. The abundance of small-degree nodes in

the Caltech network helps explain its larger steady-state numbers of minor opinion clusters

and the correspondingly larger entropies than for our synthetic networks. Despite the fact

that the Caltech network is structurally very different from our synthetic networks, it follows

all of the trends in Table 4.3 aside from the one for the number of minor opinion clusters.

Therefore, it seems that the trends that we observe in our node-weighted BCM when we

assign weights to nodes uniformly at random (and hence in a way that is independent of

network structure) are fairly robust to the underlying network structure.
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Figure 4.10: Histogram of the node degrees of the Caltech Facebook network. The bins have
width 10 and originate at the left end point (i.e., the bins indicate degrees of 0–9, 10–19,
and so on). (This figure originally appeared in [LP23].)

4.4.5 Finite-size effects

We now investigate finite-size effects by simulating our BCM on complete graphs of different

sizes. Previously, to ensure reasonable computation times, we examined synthetic networks

with 500 nodes. However, it is useful to get a sense of whether or not the trends in Ta-

ble 4.3 hold for networks of different sizes. We thus simulate our BCM on complete graphs

of sizes N ∈ {10, 20, 30, 45, 65, 100, 150, 200, 300, . . . , 1000}. We examine m ∈ {0.3, 0.5}, and

c ∈ {0.1, 0.3, 0.5}, which give regimes of opinion fragmentation, a transition between frag-

mentation and consensus for the constant weight distribution, and opinion consensus. We

consider the constant weight distribution and the 80-43 distributions (i.e., the uniform, ex-

ponential, and Pareto distributions with a mean node weight of 2.8836). We do not examine

any larger-mean distributions because they require longer computation times.

In this chapter, we show our results for convergence times and steady-state Shannon

entropies. To visualize our results, we plot graph sizes on a logarithmic scale. We include

plots of our simulation results at steady state for the numbers of major opinion clusters, the

numbers of minor opinion clusters, and the values of mean local receptiveness in our code
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repository.

In Figure 4.11, we show the convergence times of our simulations of our BCM on complete

graphs of various sizes. For all node-weight distributions, the convergence times become

longer as we increase the graph size. For each graph size, the convergence times for the

heterogeneous weight distributions are similar to each other and are longer than those for

the constant weight distribution.

Figure 4.11: Convergence times (in terms of the number of time steps) in simulations of
our node-weighted BCM on complete graphs of various sizes. We show results for various
choices of c and m; the marker shape and color indicate the node-weight distribution. For
this figure and subsequent figures of this type, the points are means of 100 simulations and
the error bars indicate one standard deviation from the mean. The horizontal axis gives the
graph size on a logarithmic scale. For clarity, the vertical axes of the plots have different
scales. (This figure originally appeared in [LP23].)

In Figure 4.12, we show the steady-state Shannon entropies from our simulations of our

BCM on complete graphs of various sizes. For a fixed value of c, we observe similar results

whenm = 0.3 andm = 0.5. When c = 0.5, for each node-weight distribution, our simulations

always reach a consensus (i.e., there is exactly one steady-state major opinion cluster) for

N ≥ 200. Correspondingly, the steady-state entropies are close to 0. (They are not exactly
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0 because the calculation of Shannon entropies includes information from minor clusters.)

As we increase the network size, the error bars (which indicate one standard deviation from

the mean) become progressively smaller. When c ∈ {0.1, 0.3}, for sufficiently large graph

sizes (specifically, when N ≥ 100), we observe that the entropy increases as we increase the

heaviness of the tail of a distribution. For c = 0.3, the mean steady-state entropies appear

to no longer change meaningfully with N when N ≥ 400. For c = 0.1, this is the case when

N ≥ 100.

Figure 4.12: Shannon entropies of the steady-state opinion-cluster profiles in simulations of
our node-weighted BCM on complete graphs of various sizes. We show results for various
choices of c and m; the marker shape and color indicate the node-weight distribution. (This
figure originally appeared in [LP23].)

When there is opinion fragmentation, the heterogeneous node-weight distributions tend

to yield larger steady-state Shannon entropies (and hence more opinion fragmentation, if

one is measuring it using entropy) than the constant weight distribution for each graph size.

Additionally, for the 80-43 distributions and sufficiently large graph sizes, we obtain larger

entropies as we increase the heaviness of the distribution tail. We have not explored the effect

of graph size on the observed trends (see Table 4.3) when we increase the distribution mean

for a fixed family of distributions. In our code repository, we include a plot of the steady-state
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mean local receptiveness for complete graphs of various sizes. In that plot, we also observe

that there tends to be more opinion fragmentation (in the sense of a smaller mean local

receptiveness) for heterogeneous node-weight distributions with increasingly heavy tails.

We also examine the steady-state numbers of major and minor opinion clusters in simu-

lations of our BCM on complete graphs of various sizes; we include plots of them in our code

repository. For a fixed value of c, we observe similar results when m = 0.3 and m = 0.5.

When N ≤ 49, there are no minor opinion clusters, by definition, because minor clusters

can include at most 2% of the nodes of a network (and even a single node constitutes more

than 2% of all nodes for such small networks). When N ≥ 65 and c ∈ {0.1, 0.3}, for each

distribution, the number of minor clusters tends to increase as we increase N . We do not

observe a clear trend in which node-weight distributions yield more minor clusters. For all

N and c = 0.5, the mean number of minor clusters is close to 0. We now consider major

opinion clusters. When c = 0.5 and N ≥ 200, all simulations yield one major opinion cluster

(i.e., they all reach consensus). When c = 0.3, for all graph sizes, there are more major

opinion clusters as we increase the heaviness of the tail of a distribution. Additionally, when

c = 0.3, for the Pareto-80-43 distribution, the number of major clusters tends to increase

as we increase the graph size. For the other node-weight distributions, the number of ma-

jor clusters tends to decrease as we increase the graph size. When c = 0.1 and N ≥ 200,

there again tends to be more major clusters as we increase the heaviness of the tail of a

distribution, although the trend is not as clear as it was for c = 0.3.

Based on our exploration of finite-size effects, we are confident that complete graphs with

N ≥ 500 nodes have the trends in Table 4.3. For graphs with N ≥ 500 nodes, the mean

steady-state Shannon entropies for each node-weight distribution appear to no longer change

meaningfully with respect to N . For each graph size, the heterogeneous 80-43 distributions

have longer convergence times than the constant weight distribution. For a fixed graph size

and fixed values of c and m, we observe more opinion fragmentation as we increase the

heaviness of the tail of a distribution. Because of computation time, we have not examined
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finite-size effects for distributions other than the 80-43 distributions. However, because the

mean Shannon entropies no longer change meaningfully with respect to N for graphs with

N ≥ 500 nodes, we hypothesize that the trends in opinion fragmentation and convergence

time in Table 4.3 continue to hold for our synthetic networks when there are more than 500

nodes.

4.5 Conclusions and discussion

We studied a BCM with heterogeneous node-selection probabilities, which we modeled using

node weights. One can interpret these node weights as encoding phenomena such as hetero-

geneous agent sociabilities or activity levels. We studied our node-weighted BCM with fixed

node weights that we assign in a way that disregards network structure and node opinions.

We demonstrated that our node-weighted BCM has longer convergence times and more opin-

ion fragmentation than a baseline DW BCM in which we uniformly randomly select nodes

for interaction. It is straightforward to adapt our BCM to assign node weights in a way that

depends on network structure and/or node opinions. See Section 4.5.2 and Section 4.5.3 for

discussions.

4.5.1 Summary of our main results

We simulated our node-weighted BCM with a variety of node-weight distributions (see Ta-

ble 4.2) on several random and deterministic networks (see Table 4.1). For each of these

distributions and networks, we systematically investigated the convergence time and opinion

fragmentation for different values of the confidence bound c and the compromise parameter

m. To determine if the nodes of a network reach consensus or if there is opinion fragmenta-

tion, we calculated the steady-state number of major clusters in our simulations. To quantify

the amount of opinion fragmentation, we calculated the steady-state Shannon entropy and

the mean local receptiveness. For a given network, we found that entropy and mean local
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receptiveness follow the same trends in which node-weight distributions have more opinion

fragmentation (see Table 4.3). Additionally, based on our results, we believe that Shannon

entropy is more useful than mean local receptiveness for quantifying opinion fragmentation

in a network. However, calculating local receptiveness is insightful for explorations of the

opinion dynamics of individual nodes.

In our simulations of our node-weighted BCM, we observed a variety of typical trends

(see Table 4.3). In particular, we found that heterogeneous node-weight distributions tend

to yield longer convergence times and more opinion fragmentation than the baseline DW

model (which we obtain by using a constant weight distribution) in simulations of our BCM.

Opinion fragmentation also tends to increase if either (1) for a fixed distribution mean, we

increase the heaviness of the tail of a distribution or (2) for a fixed distribution family, we

increase the distribution mean. Given a set of heterogeneous node weights, we hypothesize

that large-weight nodes are selected early in a simulation with large probabilities and quickly

settle into their associated steady-state major opinion clusters. Small-weight nodes that are

not selected early in a simulation are left behind to form small opinion clusters, resulting in

more opinion fragmentation than in the baseline DW model.

4.5.2 Relating node weights to network structure

We examined deterministic and random graphs with various structures, and we observed

the trends in Table 4.3. For each of our BCM simulations, we selected node weights from

a specified distribution and then assigned these weights to nodes uniformly at random.

Therefore, our investigation conveys what trends to expect with fixed, heterogeneous node

weights that are assigned to nodes without regard for network structure. However, our

model provides a flexible framework to study the effects of node weights when they are

correlated with network structure. For example, one can assign weights to nodes in a way

that depends on some centrality measure (such as degree). In our BCM, we expect nodes

with large degree or large weight to have more interactions than nodes with small degree
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or small weight. Nodes with larger degrees have more neighbors that can select them for

an interaction, and nodes with larger weights have larger probabilities of being selected for

an interaction. One possible area of future work is to investigate the combined effects of

node weights and node degrees on the frequencies of interactions and the distribution of

steady-state opinions in our BCM. Mean-field approaches, such as the one in [FBQ21], may

offer insights into these effects.

For a given set of node weights, larger-weight nodes have larger probabilities of interacting

with other nodes, so their positions in a network likely influence the dynamics of BCMs and

other models of opinion dynamics. One can also investigate the effect of homophily when

choosing how to assign node weights. For example, in social-media platforms, very active

accounts may engage with each other more frequently by sharing or commenting on each

others’ posts. We can incorporate such features into our BCM through a positive node-

weight assortativity, such that large-weight nodes are more likely to be adjacent to each

other than to other nodes.

As in the standard DW model, we assign the initial agent opinions uniformly at random

in our BCM. However, in a real social network with community structure, this choice may

not be realistic. One can consider a social network with communities with different mean

opinion values and examine the effect of placing large-weight nodes in different communities.

For example, how does placing all large-weight nodes in the same community affect opin-

ion dynamics and steady-state opinion-cluster profiles? How does the presence of a small

community of “outspoken” (i.e., large-weight) nodes influence the final opinions of nodes in

other communities of a network? Will the small community quickly induce an echo chamber

[FGR16], will it pull other nodes into its final opinion cluster, or will something else occur?

4.5.3 Relating node weights to node opinions

In the present chapter, we considered fixed node weights that are independent of node

opinions. One can readily adapt our BCM to incorporate time-dependent node weights,
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such as ones that depend on node opinions. One can allow the probability of selecting a

node for interaction to depend on how extreme its opinion is [AC15] or on the similarity of

its opinion to that of another node [SPG19].

Ŝırbu et al. [SPG19] studied a modified DW model with heterogeneous node-selection

probabilities that model algorithmic bias on social media. In their model, one first selects

an agent uniformly at random. One then calculates the magnitude of the opinion difference

between that agent and each of its neighbors and then selects a neighbor with a probability

that is proportional to this difference. In the context of our BCM, one can represent their

agent-selection mechanism using time-dependent node weights. To do this, at each time t,

one assigns the same weight to all nodes when selecting a first node i. When selecting a node

to interact with i, one then assigns weights to the neighbors j of node i that depend on the

opinion difference |xi(t)−xj(t)|. One assigns a weight of 0 to nodes that are not adjacent to

i. Simulations by Ŝırbu et al. on complete graphs suggest that more algorithmic bias results

in longer convergence times and more opinion clusters [SPG19]. Pansanella et al. [PRM22]

observed similar trends in a study of the algorithmic-bias model of Ŝırbu et al. for various

random-graph models.

In our simulations of our BCM with heterogeneous node-selection probabilities, we ob-

served similar trends of longer convergence times and more opinion clusters (and opinion

fragmentation) than in our baseline DW model. When studying a BCM with heterogeneous

node-selection probabilities, we see from our results that it is important to consider the base-

line influence of assigning node weights uniformly at random before attributing trends such

as longer convergence times and more opinion fragmentation to specific mechanisms such as

algorithmic bias. Different mechanisms can yield very similar empirical observations.

4.5.4 Edge-based heterogeneous activities

In the standard DW model, at each time, one selects an edge of a network uniformly at ran-

dom and the two agents that are attached to that edge interact with each other [WDA03].
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Most past work on the DW model and its extensions has focused on this edge-based se-

lection mechanism [NVT20]. In our BCM, to incorporate node weights (e.g., to encode

heterogeneous sociabilities or activity levels of individuals), we instead used a node-based

selection mechanism. For voter models of opinion dynamics, it is known that the choice

between edge-based and node-based agent selection can substantially affect a model’s qual-

itative behavior [KP20]. We are not aware of a comparison of edge-based and node-based

agent selection in asynchronous BCMs (and, in particular, in DW models), and it seems

interesting to investigate this issue.

Our BCM has node weights to encode heterogeneous activity levels of individuals. One

can also examine heterogeneous pairwise activity levels to account for the fact that individ-

uals do not interact with each of their social contacts with the same probability. To encode

such heterogeneity, one can construct a variant of our BCM that incorporates edge weights.

At each time step, one can select a pair of agents to interact with a probability that is pro-

portional to the weight of the edge between them. Additionally, one can relate edge-selection

mechanisms to node-selection mechanisms. We have not examined edge-based heterogeneous

activity levels in a BCM, and we expect that it will be interesting to investigate them.

4.5.5 Importance of node weights

The key feature of our BCM is our incorporation of node weights into opinion dynamics.

Node weights have been used in activity-driven models of temporal networks [PGP12], and

activity-driven frameworks have been used to model which agents can interact with each

other in models of opinion dynamics [LHM17, ZXL18]. In our BCM, the node weights

determine the probabilities to select agents for interaction in a time-independent network.

Alizadeh and Cioffi-Revilla [AC15], Ŝırbu et al. [SPG19], and Pansanella et al. [PRM22]

examined specific scenarios of heterogeneous node-selection probabilities in modified DW

models. Our node-weighted BCM gives a general framework to incorporate node weights

into asynchronous BCMs. Using our framework, one can consider node weights that are
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fixed and assigned uniformly at random to nodes (i.e., as we investigated in this chapter),

fixed and assigned according to some other probability distribution (see the discussion in

Section 4.5.2), or assigned in a time-dependent way (see the discussion in Section 4.5.3). In

network science, node weights have been studied far less than edge weights, and even the

term “weighted network” usually refers specifically to edge-weighted networks by default. For

example, it is very common to study centralities in edge-weighted networks [OAS10], but

studies of centralities in node-weighted networks (e.g., see Refs. [HDZ12, SSI20]) are much

less common. Heitzig et al. [HDZ12] generalized common network statistics to node-weighted

networks and used node weights to represent the “sizes” of the nodes of a network. They used

their framework to study brain networks with node weights that encode the areas of regions

of interest, international trade networks with node weights that encode the gross domestic

products (GDPs) of countries, and climate networks with node weights that encode areas

in a regular grid on the Earth’s surface. Singh et al. [SSI20] developed centrality measures

that incorporate both edge weights and node weights, and they used them to study service-

coverage problems and the spread of contagions. These studies demonstrate the usefulness

of node weights for incorporating salient information in network analysis in a variety of

applications.

In our node-weighted BCM, we are interested in determining which nodes of a network

are (in some sense) more influential than others and thereby have a larger impact on steady-

state opinion-cluster profiles. Brooks and Porter [BP20] quantified the influence of media

nodes in a BCM by examining how their ideologies influence other nodes of a network.

An interesting area of future work is to develop ways to quantify the influence of specific

nodes in models of opinion dynamics with node weights. For example, can one determine

which nodes to seed with extreme opinions to best spread such opinions? Are there nodes

that make it particularly easy for communities to reach consensus and remain connected

in a steady-state effective graph Geff(Tf )? One can tailor the node weights in our BCM

to examine a variety of sociological scenarios in which nodes have heterogeneous activity
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levels or interaction frequencies. More generally, our model illustrates the importance of

incorporating node weights into network analysis, and we encourage researchers to spend

more time studying the effects of node weights on network structure and dynamics.
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CHAPTER 5

Bounded-Confidence Models with Adaptive Confidence

Bounds

In this chapter, we investigate BCMs in which each pair of agents has a distinct confidence

bound that changes when the pair interacts. We analytically and numerically explore the

limiting behaviors of these BCMs. This chapter is adapted from an original paper [LLP23]

that I co-authored with Jiajie Luo and my advisor Mason A. Porter.1 We include our code

and all figures (including those that are not shown in this chapter) in our repository at

https://gitlab.com/graceli1/Adaptive-Confidence-BCM.

5.1 Introduction and motivation

In this chapter, we formulate and study adaptive-confidence BCMs that generalize the HK

and DW models by incorporating distinct, time-dependent confidence bounds for each pair

of adjacent nodes (i.e., each dyad). The confidence bounds in our adaptive-confidence

BCMs change after nodes interact with each other. These changes highlight the idea

that the quality of an interaction between individuals can affect how much they trust each

other [GAP13, LMM17, CS20]. For example, in online marketplaces, trust between users

depends on their past experiences with each other and on the reported experiences of other

users in reputation systems [RKZ00, RKK07, SNP13]. The word “trust” can have different

1My contributions to the paper [LLP23] were formulating the update rules for our BCMs jointly with Jiajie
Luo, proving Theorem 5.3.4 jointly with Jiajie Luo, proving Theorem 5.3.7, and running and interpreting
the numerical simulations. All co-authors wrote the paper together.
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meanings in different disciplines; one interpretation is that trust represents an expectation

about future behavior [SNP13]. Rather than considering trust, our BCMs use a notion of “re-

ceptiveness”, which encodes the willingness of an individual to consider the future opinions

of another individual. When two nodes interact with each other, their mutual receptiveness

changes. See [BCF07, XLC17, NGW23] for other opinion models with interaction-influenced

receptiveness.

In our adaptive-confidence BCMs, when two nodes successfully compromise their opin-

ions in an interaction (i.e., they have a “positive interaction”), they become more receptive

to each other. Likewise, when two nodes interact but do not change their opinions (i.e., they

have a “negative interaction”), they become less receptive to each other. When nodes i and

j interact and influence each others’ opinions (i.e., their current opinion difference is smaller

than their current confidence bound), we increase their confidence bound cij. When nodes i

and j interact and do not influence each others’ opinions (i.e., their current opinion difference

is at least as large as their current confidence bound), we decrease their confidence bound

cij. In our adaptive-confidence BCMs, each dyad has a distinct confidence bound and inter-

actions are symmetric (i.e., either both nodes influence each other or neither node influences

the other). One can interpret the increase of a dyadic confidence bound in our BCMs as

nodes becoming more receptive to nodes with whom they compromise, and one can interpret

the decrease of a dyadic confidence bound as nodes becoming less receptive to nodes with

whom they do not compromise. When nodes in our BCMs have a negative interaction, they

adapt their dyadic confidence bounds, but their opinions stay the same. Other researchers

have considered BCMs with “repulsion”, in which the opinions of interacting nodes with

sufficiently different opinions move farther apart from each other [HDJ08, AC15, KF23].

5.1.1 Related work

Many researchers have generalized the HK and DW models by incorporating heterogeneity

into the confidence bounds. Lorenz [Lor10] extended these BCMs so that each node has
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its own confidence bound, which can result in asymmetric influence and opinion updates.

Using numerical simulations, Lorenz demonstrated that these BCMs are more likely than

the baseline BCMs to reach a consensus state when there are both open-minded and close-

minded nodes (which have large and small confidence bounds, respectively). By analyzing

the heterogeneous-confidence DWmodel of [Lor10] on a complete graph, Chen et al. [CSM20]

proved almost-sure convergence of opinions for certain parameter values and derived sufficient

conditions for the nodes of a network to eventually reach a consensus. In a related work, Chen

et al. [CSD20] examined a heterogeneous HK model with “environmental noise” (e.g., from

media sources) and showed that heterogeneous confidence bounds in this setting can yield

larger differences in node opinions in the infinite-time limit. Su et al. [SGW17] examined

the heterogeneous-confidence HK model of [Lor10] and proved that at least some nodes of a

network converge to a steady-state opinion in finite time.

Researchers have also incorporated edge-based heterogeneities in the confidence bounds

of BCMs. Etesami [Ete19] examined an HK model on networks with time-independent

edge-heterogeneous confidence bounds and proved that their model is Lyapunov stable.

Shang [Sha14] studied a DW model in which each edge has a confidence bound that takes a

value from an independent and identically distributed Poisson process. They derived suffi-

cient conditions for consensus to occur almost surely for a one-dimensional lattice graph.

Other generalizations of BCMs and related opinion models generalize the model param-

eters by making them time-dependent or adaptive. Weisbuch et al. [WDA02] studied a

generalized DW model in which each node has a heterogeneous, time-dependent confidence

bound that is proportional to the standard deviation of the opinions that that node observed

in all prior interactions. They also considered a variant of their model that places more weight

on the observed opinions from recent interactions. Deffuant et al. [DAW02] examined a DW

model with “relative agreement”. In their model, each node has an uncertainty parameter

that determines (1) whether it and the node with which it interacts influence each other and

(2) the amount by which they influence each other. A node changes both its opinion and
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its uncertainty when it is influenced by another node. Bagnoli et al. [BCF07] considered

a BCM on complete graphs in which each pair of adjacent nodes (i.e., each dyad) has an

associated time-dependent affinity value (which determines whether or not they can influ-

ence each other) that depends on the magnitude of their opinion difference. Chacoma and

Zanette [CZ15] examined opinion and confidence changes in a questionnaire-based experi-

ment, and they then proposed an agent-based opinion model based on the results of their

experiment. Their model is not a BCM, but it does incorporate a notion of time-dependent

confidence between nodes. Bernardo, Vasca, and Iervolino [VBI21, BVI22] developed vari-

ants of the HK model in which nodes have individual, time-dependent confidence bounds2

that depend on the opinions of neighboring nodes. In their models, nodes adapt their con-

fidence bounds through a heterophilic mechanism (i.e., they seek neighboring nodes whose

opinions differ from theirs). By contrast, in our models, nodes do not actively seek neighbors

with different opinions. Instead, their mutual receptiveness increases when their opinions

are sufficiently close to each other.

In this chapter, we incorporate adaptivity into the confidence bounds of BCMs, but

one can instead incorporate adaptivity in the network structures of BCMs [KB08a, KB08b,

DSC17, KFP23].3 Kozma and Barrat [KB08a, KB08b] modified the DW model to allow

rewiring of “discordant” edges, which occur between nodes whose opinions differ from each

other by more than the confidence bound. In their model, rewired edges connect to new

nodes uniformly at random. Kan et al. [KFP23] generalized this model by including both

a confidence bound and an opinion-tolerance threshold, with discordant edges occurring

between nodes whose opinions differ by more than that threshold. They incorporated opinion

homophily into the rewiring probabilities, so nodes are more likely to rewire to nodes with

more similar opinions. They observed in numerical simulations that it is often harder to

achieve consensus in their adaptive DW model than in an associated baseline DW model.

2The confidence bounds update with time in different ways in the models in [VBI21] and [BVI22].

3See the reviews [SBL23, BGK23] for discussions of various notions of adaptivity in dynamical systems.
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5.2 BCMs with adaptive confidence bounds

We now describe our BCMs with adaptive confidence bounds. The idea for these models

was developed primarily by Jiajie Luo. Let G = (V,E), where V is the set of nodes and E

is the set of edges, denote a time-independent, unweighted, and undirected graph without

self-edges or multi-edges. The nodes in our BCMs represent agents that have opinions that

lie in the closed interval [0, 1]. Each node i has a time-dependent opinion xi(t) ∈ [0, 1]. Let

x(t) denote the vector of the opinions of all nodes at time t (i.e., the entry [x(t)]i = xi(t)).

5.2.1 Our HK model with adaptive confidence bounds

In this chapter, we refer to the standard HK model with update rule (3.2.1) as the baseline

HK model. For convenience, we repeat the opinion update rule. For the baseline HK model,

at each time t, we update the opinion of each node i by calculating

xi(t+ 1) = |I(i, x(t))|−1
∑

j∈I(i,x(t))

xj(t) , (5.2.1)

where I(i, x(t)) = {i} ∪ {j | |xi(t)− xj(t)| < c and (i, j) ∈ E} ⊆ {1, 2, . . . , N}.

Our HK model with adaptive confidence bounds is similar to the baseline HK model with

update rule (5.2.1), but now each edge (i, j) ∈ E has a dyadic confidence bound cij(t) ∈ [0, 1]

that is time-dependent and changes after each interaction between the nodes in that dyad.

We refer to this model as our adaptive-confidence HK model. Instead of a fixed confidence

bound, there is an initial confidence bound c0 ∈ (0, 1) and we initialize all of the confidence

bounds4 to cij(0) = c0 for each edge (i, j) ∈ E. There is also a confidence-increase parameter

γ ∈ [0, 1] and a confidence-decrease parameter δ ∈ [0, 1], which control how much cij(t)

increases and decreases, respectively, after each interaction.

4When c0 = 0, nodes are never receptive to their neighbors (i.e., cij(t) = 0 for all adjacent nodes i and j
at all times t). When c0 = 1, all nodes are always receptive to all of their neighbors (i.e., cij(t) = 1 for all
adjacent nodes i and j at all times t). We do not examine these values of c0.
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At each time t, we update the opinion of each node i by calculating

xi(t+ 1) = |I(i, x(t))|−1
∑

j∈I(i,x(t))

xj(t) , (5.2.2)

where5 I(i, x(t)) = {i} ∪ {j | |xi(t)− xj(t)| < cij(t) and (i, j) ∈ E} ⊆ {1, 2, . . . , N}. Adja-

cent nodes i and j are receptive to each other at time t if their opinion difference is less than

their dyadic confidence bound cij (i.e., |xi(t)−xj(t)| < cij(t)). At each time, we also update

each confidence bound cij by calculating

cij(t+ 1) =


cij(t) + γ(1− cij(t)) , if |xi(t)− xj(t)| < cij(t)

δcij(t) , if |xi(t)− xj(t)| ≥ cij(t) .

(5.2.3)

That is, if the opinion difference between nodes i and j is smaller than their confidence

bound at time t, their associated dyadic confidence bound cij increases; otherwise, their

dyadic confidence bound decreases. Larger values of γ correspond to sharper increases in

the receptiveness between nodes when nodes compromise their opinions. Smaller values of δ

correspond to sharper drops in the receptiveness between nodes when nodes interact but do

not compromise.

Because c0 ∈ (0, 1) and γ, δ ∈ [0, 1], the update rule (5.2.3) preserves cij(t) ∈ (0, 1) for

each edge (i, j) and all times t. If (γ, δ) = (0, 1), then cij(t) = c0 for all t and all edges

(i, j) ∈ E. That is, the confidence bounds are homogeneous and time-independent, so our

adaptive-confidence HK model reduces to the baseline HK model.

5Although Equation (5.2.1) and Equation (5.2.2) look the same, they use different definitions of the
quantity I(i, x(t)). Equation (5.2.1) has a homogeneous and time-independent confidence bound, whereas
Equation (5.2.2) has heterogeneous and adaptive confidence bounds.

77



5.2.2 Our DW model with adaptive confidence bounds

In this chapter, we refer to the standard DW model with update rule (3.1.1) as the baseline

DW model. For convenience, we repeat the opinion update rule. For the baseline DW model,

at each time t, we uniformly randomly selects an edge (i, j) ∈ E. Nodes i and j then update

their opinions through the following update rule:

xi(t+ 1) =


xi(t) +m(xj(t)− xi(t)) , if |xi(t)− xj(t)| < c

xi(t) , otherwise ,

xj(t+ 1) =


xj(t) +m(xi(t)− xj(t)) , if |xi(t)− xj(t)| < c

xj(t) , otherwise .

(5.2.4)

We refer to our DW model with adaptive confidence bounds as our adaptive-confidence

DW model. As in the baseline DW model, there is a compromise parameter m ∈ (0, 0.5]. As

in our adaptive-confidence HK model, we initialize the confidence bounds in our adaptive-

confidence DW model to be cij(0) = c0, where c0 ∈ (0, 1) is the initial confidence bound.6

There again is a confidence-increase parameter γ ∈ [0, 1] and a confidence-decrease parameter

δ ∈ [0, 1], which control how much cij(t) increases and decreases, respectively, after each

interaction.

At each time t, we select an edge (i, j) ∈ E uniformly at random. If nodes i and j are

receptive to each other (i.e., if |xi(t) − xj(t)| < cij(t)), we update the opinions of nodes

i and j using the DW update rule (5.2.4). Otherwise, the opinions xi and xj remain the

same. We also update the dyadic confidence bound cij using Equation (5.2.3). That is, if

the opinions of nodes i and j differ by less than their current dyadic confidence bound at

6As in our adaptive-confidence HK model, when c0 = 0, nodes are never receptive to any of their neighbors
(i.e., cij(t) = 0 for all adjacent nodes i and j at all times t). When c0 = 1, nodes are always receptive to
all of their neighbors (i.e., cij(t) = 1 for all adjacent nodes i and j at all times t). We do not examine these
values of c0.
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time t, the confidence bound increases; otherwise, it decreases. The update rules preserves

cij(t) ∈ (0, 1) for each edge (i, j) and all times t. All other opinions and confidence bounds

remain the same. Our adaptive-confidence DW model reduces to the baseline DW model

when (γ, δ) = (0, 1).

5.3 Theoretical results

In this section, we discuss some theoretical guarantees of our BCMs. We discuss our theoreti-

cal results for our adaptive-confidence HK and DW models in Section 5.3.1 and Section 5.3.2,

respectively.

As stated in [Lor05], Theorem 3.3.1 (see Section 3.3.1) guarantees that the opinion of

each node convergences to a limit opinion in the baseline HK and DW models. Because the

node opinions in our adaptive-confidence HK and DW models update in the same way as in

the corresponding baseline BCMs (see Equation (5.2.1) and Equation (5.2.4), respectively),

the node opinions in our models also converge to a limit opinion. The limit opinion x∗
i of

node i is lim
t→∞

xi(t).

5.3.1 Adaptive-confidence HK model

In this section, we discuss our theoretical results for the confidence bounds and effective

graphs in our adaptive-confidence HK model.

5.3.1.1 Confidence-bound analysis

In this section, we state Lemma 5.3.1 and Theorem 5.3.2 without proof. The proofs of

Lemma 5.3.1 and Theorem 5.3.2 are primarily the work of Jiajie Luo. They are in [LLP23],

but we do not include them in this dissertation.

Theorem 5.3.2 is our main result about the behavior of the confidence bounds (which
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update according to Equation (5.2.3)) in our adaptive-confidence HK model. Lemma 5.3.1

is a result that we use to prove Theorem 5.3.2. In Lemma 5.3.1, we consider γ ∈ [0, 1] and

δ ∈ [0, 1], so it also applies to the baseline HK model. We use Lemma 5.3.1 in our proof of

Theorem 5.3.4.

Lemma 5.3.1. Consider our adaptive-confidence HK model (with update rules (5.2.2) and

(5.2.3)) with parameters γ ∈ [0, 1] and δ ∈ [0, 1]. There is a time T such that no adjacent

nodes i and j in different limit opinion clusters (i.e., x∗
i ̸= x∗

j) are receptive to each other

(i.e., |xi(t)− xj(t)| < cij(t)) at any time t ≥ T .

Theorem 5.3.2. In our adaptive-confidence HK model (with update rules (5.2.2) and (5.2.3))

with parameters γ ∈ (0, 1] and δ ∈ [0, 1), the dyadic confidence bound cij(t) of each pair of

adjacent nodes, i and j, converges either to 0 or to 1. Furthermore, if i and j are in different

limit opinion clusters, then cij(t) converges to 0.

5.3.1.2 Effective-graph analysis

In this section, we discuss the convergence of effective graphs in our adaptive-confidence HK

model (see Theorem 5.3.3) and the baseline HK model (see Theorem 5.3.4).

We first state Theorem 5.3.3, which is our convergence result for effective graphs in

our adaptive-confidence HK model. The proof of Theorem 5.3.3 (which is in [LLP23]) is

predominantly the work of Jiajie Luo; we do not include it in this dissertation.

Theorem 5.3.3. In our adaptive-confidence HK model (with update rules (5.2.2) and (5.2.3))

with parameters γ ∈ (0, 1] and δ ∈ [0, 1), the effective graph Geff(t) is eventually constant

with respect to time. That is, there is some time T such that Geff(t) = Geff(T ) for all times

t ≥ T . Moreover, all of the edges of the limit effective graph lim
t→∞

Geff(t) are between nodes

in the same limit opinion cluster.

Theorem 5.3.3 states that all edges of a limit effective graph are between nodes in the

same limit opinion cluster. However, the edges between nodes in the same limit opinion
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cluster do not have to exist in the limit effective graph. As we will discuss in Section 5.4.3

and Section 5.5, our numerical simulations suggest that our adaptive-confidence BCMs can

have adjacent nodes in the same limit opinion cluster whose associated dyadic confidence

bound converges to 0. The associated edge is thus not in the limit effective graph.

We now state and prove Theorem 5.3.4, which guarantees that the effective graphs in

the baseline HK model converge in the limit t → ∞. Theorem 5.3.4 was proved jointly with

Jiajie Luo. Unlike in our adaptive-confidence HK model, all edges between nodes in the

same limit opinion cluster in the baseline HK model must exist in the limit effective graph.

Therefore, the limit opinion values in the baseline HK model fully determine the structure

of the limit effective graph.

Theorem 5.3.4. In the baseline HK model (with update rule Equation (5.2.1)), the effective

graph Geff(t) = (V,Eeff(t)) is eventually constant with respect to time. Moreover, the edge

(i, j) ∈ E exists in the limit effective graph if and only if this edge is between two nodes in

the same limit opinion cluster (i.e., x∗
i = x∗

j).

Proof. We first consider adjacent nodes, i and j, that are in different limit opinion clusters

(i.e., x∗
i ̸= x∗

j). By Lemma 5.3.1, because our adaptive-confidence HK model with γ = 0 and

δ = 1 reduces to the baseline HK model, there exists a time T1 such that nodes i and j are

not receptive to each other (i.e., |xi(t)− xj(t)| ≥ c) at any time t ≥ T1. Therefore, the edge

(i, j) /∈ Eeff(t) at any time t ≥ T1.

Now consider adjacent nodes, i and j, that are in the same limit opinion cluster (i.e.,

x∗
i = x∗

j). Choose a time T2 such that |xk(t)−x∗
k| < c/2 for each node k and all times t ≥ T2.

For all t ≥ T2, we then have

|xi(t)− xj(t)| ≤ |xi(t)− x∗
i |+ |x∗

i − x∗
j |+ |x∗

j − xj(t)| < c/2 + 0 + c/2 = c .

Therefore, at any time t ≥ T2, nodes i and j are receptive to each other and the edge

(i, j) ∈ Eeff(t). By taking T = max{T1, T2}, for any time t ≥ T , we have that (i, j) /∈ Eeff(t)
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for all edges (i, j) with x∗
i ̸= x∗

j and that (i, j) ∈ Eeff(t) for all edges (i, j) with x∗
i = x∗

j .

5.3.2 Adaptive-confidence DW model

In this section, we discuss our theoretical results for the confidence bounds and effec-

tive graphs in our adaptive-confidence DW model. Both the baseline DW model and our

adaptive-confidence DW model are asynchronous and stochastic. At each discrete time, we

uniformly randomly select one pair of adjacent nodes to interact. Because of the stochas-

ticity in the baseline and adaptive-confidence DW models, our theoretical results for them

are in an “almost sure” sense. By contrast, our theoretical results (see Section 5.3.1) are

deterministic for the baseline and adaptive HK models.

5.3.2.1 Confidence-bound analysis

In Theorem 5.3.5, we state our main result about the behavior of the confidence bounds

in our adaptive-confidence DW model. This result mirrors Theorem 5.3.2 for our adaptive-

confidence HK model. The proof of Theorem 5.3.5 (which is in [LLP23]) is predominantly

the work of Jiajie Luo; we do not include it in this dissertation.

Theorem 5.3.5. In our adaptive-confidence DW model (with update rules Equation (5.2.4)

and Equation (5.2.3))with parameters γ ∈ (0, 1] and δ ∈ [0, 1), the dyadic confidence bound

cij(t) converges either to 0 or to 1 almost surely. Moreover, if nodes i and j are in different

limit opinion clusters (i.e., x∗
i ̸= x∗

j), then cij(t) converges to 0 almost surely.

5.3.2.2 Effective-graph analysis

In this section, we discuss the convergence of effective graphs in our adaptive-confidence DW

model (see Theorem 5.3.6) and the baseline HK model (see Theorem 5.3.7).
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We first state Theorem 5.3.3, which is our convergence result for effective graphs in

our adaptive-confidence DW model. The proof of Theorem 5.3.3 (which is in [LLP23]) is

predominantly the work of Jiajie Luo; we do not include it in this dissertation.

Theorem 5.3.6. In our adaptive-confidence DW model (with update rules (5.2.4) and (5.2.3))

with parameters γ ∈ (0, 1] and δ ∈ [0, 1), the effective graph Geff(t) almost surely eventually

has edges only between nodes of the same limit opinion cluster. That is, there is almost

surely some time T such that (i, j) ∈ Eeff(t) implies that x∗
i = x∗

j for all t ≥ T .

Unlike in our adaptive-confidence HK model, lim
t→∞

Geff(t) may not exist in our adaptive-

confidence DW model. When the limit does exist, we refer to lim
t→∞

Geff(t) as the limit effective

graph.

We now state Theorem 5.3.7, which guarantees the almost-sure convergence of the effec-

tive graphs as t → ∞ in the baseline DW model.

Theorem 5.3.7. Consider the baseline DW model (with update rule (5.2.4)). Almost surely,

the effective graph Geff(t) is eventually constant with respect to time. That is, there is almost

surely a time T such that Geff(t) = Geff(T ) for all times t ≥ T .

Furthermore, suppose that the limit effective graph lim
t→∞

Geff(t) exists. If adjacent nodes

i and j have the same limit opinion (i.e., if x∗
i = x∗

j), then the edge (i, j) is in the limit

effective graph. Additionally, if the edge (i, j) is in the limit effective graph, then x∗
i = x∗

j

almost surely.

We prove Theorem 5.3.7 by first proving Lemma 5.3.8 and Lemma 5.3.9. The proof for

Lemma 5.3.9 uses ideas from a discussion with Weiqi Chu. Because the baseline DW model

has a time-independent confidence bound c, our proof of Theorem 5.3.7 uses different ideas

than our proof of Theorem 5.3.6.

Lemma 5.3.8. Consider the baseline DW model (with update rule (5.2.4)). There is a time

T1 and there is almost surely a time T2 such that the following statements hold for all adjacent

nodes i and j.
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(1) If |x∗
i − x∗

j | < c, then |xi(t)− xj(t)| < c and the edge (i, j) is in the effective graph for

all times t ≥ T1.

(2) If |x∗
i − x∗

j | > c, then |xi(t)− xj(t)| > c and the edge (i, j) is not in the effective graph

at any time t ≥ T1.

(3) If |x∗
i − x∗

j | = c, then |xi(t)− xj(t)| ≥ c and the edge (i, j) is not in the effective graph

at any time t ≥ T2.

Proof. Consider adjacent nodes i and j, and let ∆ij = |x∗
i −x∗

j | denote the difference between

their opinions.

We first consider the case in which ∆ij ̸= c. Choose a time Tij such that

|xk(t)− x∗
k| <

1

2
|c−∆ij| (5.3.1)

for node k ∈ {i, j} and all times t ≥ Tij.

Suppose that ∆ij < c. For all times t ≥ Tij, we have

|xi(t)− xj(t)| ≤ |xi(t)− x∗
i |+ |x∗

i − x∗
j |+ |xj(t)− x∗

j |

< 2

(
1

2

)
(c−∆ij) + ∆ij

= c .

Therefore, the edge (i, j) is in the effective graph for all t ≥ Tij.

Now suppose that ∆ij > c. Without loss of generality, let x∗
i > x∗

j . For all times t ≥ Tij,
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we have

xi(t)− xj(t) >

(
x∗
i −

1

2
|c−∆ij|

)
−
(
x∗
j +

1

2
|c−∆ij|

)
= (x∗

i − x∗
j)− |c−∆ij|

= ∆ij −∆ij + c

= c .

Therefore, the edge (i, j) is not in the effective graph at any time t ≥ Tij.

If there are no adjacent nodes i and j with |x∗
i − x∗

j | ≠ c, then let T1 = 0. Otherwise, let

T1 = max
(i,j)∈E

{Tij such that |x∗
i − x∗

j | ≠ c} . (5.3.2)

We have shown that statements (1) and (2) hold for all times t ≥ T1.

We now consider the case ∆ij = c. Without loss of generality, let x∗
i > x∗

j . Choose a

time T̃ij so that

|x∗
k − xk(t)| <

mc

2(1 + 2m)
(5.3.3)

for node k ∈ {i, j} and all times t ≥ T̃ij. We will show that, almost surely, there are a finite

number of times t ≥ T̃ij such that |xi(t)−xj(t)| < c. Suppose on the contrary that there is a

sequence t1, t2, . . . of times such that tk ≥ T̃ij and |xi(tk)−xj(tk)| < c for all k. At each time

t, nodes i and j interact with probability 1/|E| > 0, where |E| is the number of edges in

the graph. Therefore, with probability 1, nodes i and j interact at some time tk ≥ T̃ij with

|xi(tk)− xj(tk)| < c. Nodes i and j compromise their opinions at time tk, so the inequality
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(5.3.3) implies that

|xi(t+ 1)− xi(t)| = m|xi(t)− xj(t)| ≥ m

[(
x∗
i −

mc

2(1 + 2m)

)
−
(
x∗
j +

mc

2(1 + 2m)

)]
= m

[
c− 2

(
mc

2(1 + 2m)

)]
=

mc[(1 + 2m)−m]

1 + 2m

= (1 +m)
mc

1 + 2m

>
mc

1 + 2m
. (5.3.4)

From the inequality (5.3.3), we have

|xi(t+ 1)− xi(t)| ≤ |xi(t+ 1)− x∗
i |+ |x∗

i − xi(t)| < 2

(
mc

2(1 + 2m)

)
=

mc

1 + 2m
,

which cannot hold simultaneously with inequality (5.3.4). Therefore, with probability 1,

there are a finite number of times t ≥ T̃ij such that |xi(t)− xj(t)| < c. Consequently, there

almost surely exists some time Tij ≥ T̃ij such that |xi(t) − xj(t)| ≥ c and the edge (i, j) is

not in the effective graph for any t ≥ Tij.

If there are no adjacent nodes i and j with |x∗
i − x∗

j | ≠ c, then let T2 = 0. Otherwise, let

T2 = max
(i,j)∈E

{Tij such that |x∗
i − x∗

j | = c} , (5.3.5)

where T2 exists almost surely because each Tij exists almost surely. We have shown that

statement (3) holds for all times t ≥ T2 if T2 exists.

Lemma 5.3.9. For adjacent nodes i and j with |x∗
i − x∗

j | < c, we have that x∗
i = x∗

j almost

surely.

Proof. Fix adjacent nodes i and j with |x∗
i − x∗

j | < c, and let ∆ij = |x∗
i − x∗

j | denote

86



the distance between their opinions. Without loss of generality, let x∗
i > x∗

j . We want to

show that ∆ij = 0 almost surely. Suppose instead that ∆ij > 0. Fix ϵ so that 0 < ϵ <

min{1
4
(c−∆ij),

∆ij

2(1+1/m)
} and choose Tij so that

|x∗
k − xk(t)| < ϵ (5.3.6)

for each node k and all times t ≥ Tij.

By the Borel–Cantelli lemma, there is almost surely some time t ≥ Tij at which nodes i

and j interact. The inequality ϵ < 1
4
(c−∆ij) implies that

|xi(t)− xj(t)| ≤ |xi(t)− x∗
i |+ |x∗

i − x∗
j |+ |x∗

j − xj(t)|

<
1

4
(c−∆ij) + ∆ij +

1

4
(c−∆ij) =

1

2
(∆ij + c)

< c ,

so nodes i and j are receptive to each other at time t. Consequently, if they interact at time

t, they update their opinions and

xj(t+ 1) = xj(t) +m[xi(t)− xj(t)]

≥ xj(t) +m[x∗
i − ϵ− (x∗

j + ϵ)]

= xj(t) +m(∆ij − 2ϵ)

≥ (x∗
j − ϵ) +m(∆ij − 2ϵ)

> x∗
j + ϵ , (5.3.7)

where the last inequality holds because ϵ <
∆ij

2(1+1/m)
, which we rearrange to obtain 2ϵ <

m(∆ij − 2ϵ). The inequality Equation (5.3.6) implies that

|x∗
j − xj(t+ 1)| < ϵ , (5.3.8)
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which cannot hold simultaneously with the inequality Equation (5.3.7). Therefore, if 0 < x∗
i−

x∗
j < c, then nodes i and j cannot interact at times t ≥ Tij. However, by the Borel–Cantelli

lemma, nodes i and j almost surely interact infinitely often. Consequently, 0 < x∗
i − x∗

j < c

with probability 0. Therefore, we almost surely have x∗
i = x∗

j .

We now use Lemma 5.3.8 and Lemma 5.3.9 to prove Theorem 5.3.7.

Proof of Theorem 5.3.7. There is a time T1 such that statements (1) and (2) of Lemma 5.3.8

hold, and there is almost surely a time T2 such that statement (3) of Lemma 5.3.8 holds.

Therefore, there is almost surely a time T = max{T1, T2} such that all three statements

(1)–(3) of Lemma 5.3.8 hold for all times t ≥ T . Consequently, the edges of the effective

graph satisfy EEff(t) = EEff(T ) for all t ≥ T . The effective graph is thus eventually constant

with respect to time for all t ≥ T .

Suppose that the limit effective graph lim
t→∞

Geff(t) exists. For adjacent nodes i and j with

the same limit opinion (i.e., x∗
i = x∗

j), we know that |x∗
i − x∗

j | = 0 < c. By statement (1) of

Lemma 5.3.8, there thus exists a time T1 such that the edge (i, j) is in the effective graph

for all times t ≥ T1. Therefore, the edge (i, j) is in the limit effective graph.

Now suppose that the edge (i, j) is in the limit effective graph. We seek to show that

x∗
i = x∗

j almost surely. Because the edge (i, j) is in the limit effective graph, there exists

a time T̃ such that (i, j) ∈ EEff(t) for all times t ≥ T̃ . Consequently, by statement (2)

of Lemma 5.3.8, it cannot be the case that |x∗
i − x∗

j | > c. Therefore, by statement (3) of

Lemma 5.3.8, it almost surely cannot be the case that |x∗
i −x∗

j | = c. Consequently, we almost

surely have |x∗
i − x∗

j | < c. By Lemma 5.3.9, it is almost surely the case that x∗
i = x∗

j .
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5.4 Details of our numerical simulations

We now discuss the details of our numerical simulations of our adaptive-confidence HK and

DW models.

5.4.1 Network structures

We first simulate our adaptive-confidence HK and DW models on complete graphs to better

understand their behaviors. We subsequently examine how different network structures affect

those behaviors. We simulate our adaptive-confidence HK model on synthetic networks that

we generate using random-graph models, and we simulate both adaptive-confidence BCMs

on networks from empirical data. Because of computational limitations, we consider larger

networks for the adaptive-confidence HK model than for the adaptive-model DW model.

We simulate our adaptive-confidence HK model on a complete graph, G(N, p) ER random

graphs (see Section 2.3.2), and two-community SBM random graphs (see Section 2.3.3). In

each case, we consider graphs with 1000 nodes. We consider G(N, p) graphs with p ∈

{0.1, 0.5} to vary the sparsity of the graphs while still yielding connected graphs for our

simulations. To construct our 2× 2 two-community SBMs, we partition a network into two

sets of nodes; set A has 750 nodes (i.e., 75% of the network) and set B has 250 nodes (i.e., 25%

of the network). For our two-community SBMs, we consider the symmetric edge-probability

matrix in Equation (2.3.1). In our simulations, we take PAA = PBB = 1 and PAB = 0.01.

In addition to synthetic networks, we also simulate our adaptive-confidence HK model

on several real-world networks. For each network, we use the largest connected component.

In Table 5.1, we give the numbers of nodes and edges in the largest connected components

of these networks, which are social networks from the Facebook100 data set [RKM11,

TMP12]. In each of these networks, the nodes are the Facebook pages of individuals at a

university and the edges encode Facebook “friendships” between individuals in a one-day

snapshot of the network from fall 2005 [RKM11, TMP12]. The numbers of nodes in the
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largest connected components of the examined Facebook networks range from 962 to 14,917.

For our adaptive-confidence DW model, we examine a complete graph and one real-

world network. We simulate our adaptive-confidence DW model on a 100-node complete

graph, which is one tenth of the size of the complete graph that we consider for our

adaptive-confidence HK model. We use this smaller size because of computational limi-

tations. Our simulations of our adaptive-confidence DW model on a 100-node complete

graph frequently reach our “bailout time” (see Section 5.4.2 and Table 5.5) for small initial

confidence bounds. We also simulate our adaptive-confidence DW model on the LCC of the

real-world NetScience network of coauthorships between researchers in network science

[New06].

Table 5.1: The real-world networks on which we simulate our adaptive-confidence BCMs.
For each network, we use the largest connected component and indicate the numbers of
nodes and edges in that component.

Network Number of Nodes Number of Edges Model
NetScience 379 914 DW

Reed 962 18,812 HK
Swarthmore 1657 61,049 HK

Oberlin 2920 89,912 HK
Pepperdine 3440 152,003 HK

Rice 4083 184,826 HK
UC Santa Barbara 14,917 482,215 HK

5.4.2 Simulation specifications

In Table 5.2, we indicate the values of the model parameters that we examine in our sim-

ulations of our BCMs. The BCM parameters are the confidence-increase parameter γ, the

confidence-decrease parameter δ, the initial confidence bound c0, and (for the adaptive-

confidence DW model only) the compromise parameter m. For both our HK and DW

models, the parameter pair (γ, δ) = (0, 1) corresponds to the associated baseline BCM.

Our BCM simulations include randomness from the initial opinions of the nodes and
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from the specific networks in random-graph ensembles. The adaptive-confidence DW model

also has randomness from the selection of nodes at each time step. We use Monte Carlo

simulations to mitigate the effects of noise. For each parameter set of a random-graph model

(i.e., the ER and SBM graphs), we generate five graphs. Additionally, for each graph, we

generate 10 sets of initial opinions uniformly at random and reuse these sets of opinions for

all BCM parameter values.

Table 5.2: The BCM parameter values that we examine in simulations of our adaptive-
confidence BCMs. We consider more parameter values for complete graphs than for the
other networks. We consider all of the indicated values for complete graphs, and we consider
values without the asterisk (∗) for the ER, SBM, and real-world networks.

Model BCM Parameters

Adaptive-Confidence HK

γ ∈ {0, 0.0001∗, 0.0005∗, 0.001, 0.005, 0.01, 0.05, 0.1∗}
δ ∈ {0.01∗, 0.1∗, 0.5, 0.9, 0.95, 0.99, 1}
c0 ∈ {0.02, 0.03, . . . , 0.19, 0.20, 0.30, 0.40, 0.50}

Adaptive-Confidence DW

γ ∈ {0.1, 0.3, 0.5∗}
δ ∈ {0.3∗, 0.5, 0.7∗}
c0 ∈ {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}
m ∈ {0.1, 0.3, 0.5}

∗ We consider these parameter values only for complete graphs.

In our numerical simulations in this chapter, we use the stopping criterion in Equa-

tion (3.3.8). We specify that a simulation has converged if each opinion cluster has a di-

ameter that is less than a tolerance values. That is, for each opinion cluster Sr, we have

maxi,j∈Sr |xi − xj| < tolerance. We use a tolerance value of 1 × 10−6 for our adaptive-

confidence HK model. Because of computational limitations, we use a tolerance value of

0.02 for our adaptive-confidence DW model. We denote the “convergence time” (see Sec-

tion 3.3.5), which is the time step in which a simulation reaches the stopping criterion, by

Tf . In our simulations, the “final effective graph” is the effective graph at the convergence

time Tf . We refer to the connected components of the final effective graph as the “final

opinion clusters” of a simulation; they approximate the limit opinion clusters.
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Our theoretical results about effective graphs inform our stopping criterion. Theo-

rem 5.3.3 and Theorem 5.3.4 give theoretical guarantees for our adaptive-confidence HK

model and the baseline HK model, respectively, that eventually the only edges of an effec-

tive graph are those between adjacent nodes in the same limit opinion cluster. Theorem 5.3.6

and Theorem 5.3.7 give similar but weaker guarantees for our adaptive-confidence DW model

and the baseline DW model. Consequently, if one of our simulations runs for sufficiently

many time steps, its final opinion clusters are a good approximation of the limit opinion

clusters. However, instead of imposing a set number of time steps for our simulations, we

use a tolerance value as a proxy to determine a “sufficient” number of time steps.

The final and limit opinion clusters in our models may not be the same, as our choice

of tolerance values can lead to simulations stopping before we can determine their limit

opinion clusters. Additionally, if two distinct connected components in an effective graph

converge to the same limit opinion value, the nodes in those connected components are in

the same limit opinion cluster. However, the sets of nodes that constitute these connected

components are distinct final opinion clusters. In practice, our simulations are unlikely to

have distinct opinion clusters that converge to the same opinion in the infinite-time limit.

Therefore, for small tolerance values, our final opinion clusters are a good approximation of

the limit opinion clusters.

To ensure that our simulations stop after a reasonable amount of time, we use a bailout

time of 106 time steps. Our simulations of the adaptive-confidence HK model never reach

this bailout time. However, our simulations of the adaptive-confidence DW model frequently

reach the bailout time for small values of c0. See Section 5.5.2.1 and Table 5.5.

5.4.3 Quantifying model behaviors

In our numerical simulations, we investigate the convergence time and characterize the final

opinions. To examine the convergence time, we record the number Tf of time steps that

it takes for simulations to reach our stopping criterion. To characterize node opinions in
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our adaptive-confidence BCMs, we calculate the numbers of major and minor final opinion

clusters (see Section 3.3.3), quantify the opinion fragmentation using the Shannon entropy

(see Equation (3.3.7)) of the final opinion-cluster profiles (see Section 3.3.4), and examine

the numbers of nodes and edges in each final opinion cluster.

In this chapter, we say that an opinion cluster is a “minor opinion cluster” if it has at

most 1% of the nodes of a network. That is, an opinion cluster Sr is a minor opinion cluster

if |Sr| ≤ 0.01N . We say that an opinion cluster that is not a minor cluster is a “major

opinion cluster”. As we discussed in Section 5.4.2, the final opinion clusters approximate,

but may not be exactly the same as, the limit opinion clusters. In this chapter, we say that

a simulation that results in one major final opinion cluster yields a “consensus” state and

that a simulation that results in at least two major final opinion clusters yields “opinion

fragmentation” (i.e., a “fragmented” state).

To examine the structure of final opinion clusters, we study the properties of final effective

graphs. Our theoretical results allow the possibility that some adjacent nodes converge to

the same opinion without being mutually receptive. We observe this phenomenon in our

numerical simulations. (See Section 5.5 for more discussion.) To quantify this behavior, we

calculate a weighted average of the fractions of edges (which we call the “weighted-average

edge fraction”) that are in each opinion cluster of the final effective graph. In an opinion-

cluster profile {Sr(t)}Rr=1, let E(r) denote the set of edges of the original graph G between

nodes in opinion cluster r and let Eeff(t, r) denote the set of edges of the effective graph

Geff(t) that are in opinion cluster r. That is,

E(r) = {(i, j) ∈ E such that i, j ∈ Sr(t)} ,

Eeff(t, r) = {(i, j) ∈ Eeff(t) such that i, j ∈ Sr(t)} .

The weighted average of the fractions of edges (i.e., the weighted-average edge fraction) that
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(a) One final opinion cluster in a simulation of
our adaptive-confidence HK model that does not
reach consensus on a 1000-node complete graph
with γ = 0.001, δ = 0.5, and c0 = 0.1.

(b) The final effective graph in a simulation of
our adaptive-confidence DW model that reaches
consensus on a 100-node complete graph with
γ = 0.1, δ = 0.5, c0 = 0.1, and m = 0.1.

Figure 5.1: Examples of final effective graphs with W (Tf ) < 1. We color the nodes by their
initial opinion values. (This figure originally appeared in [LLP23].)

are in the effective graph for each opinion cluster is

W (t) =
R∑

r=1
E(r)̸=0

(
|Sr(t)|
N − ℓ

)(
|Eeff(t, r)|
|E(r)|

)
, (5.4.1)

where ℓ is the number of isolated nodes of the effective graph.7 An isolated node is an opinion

cluster with E(r) = 0. We are interested in the value of W (t) at the convergence time Tf .

Therefore, we calculate the weighted-average edge fraction W (Tf ). If each opinion cluster of

an effective graph has all of its associated original edges of G, then W = 1. The value of W

is progressively smaller when there are progressively fewer edges between nodes in the same

opinion cluster of the effective graph. In Figure 5.1, we show examples of effective graphs

with W (Tf ) < 1.

7If every component of an effective graph is an isolated node (i.e, N = ℓ), then one can take either
W (t) = 0 or W (t) = 1. In our simulations, this situation never occurred.
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5.5 Results of our numerical simulations

We now present the results of numerical simulations of our adaptive-confidence BCMs. We

consider various values of the BCM parameters, which are the initial confidence bound

c0, the confidence-increase parameter γ, the confidence-decrease parameter δ, and (for the

adaptive-confidence DW model only) the compromise parameter m. We use the BCM-

parameter values in Table 5.2, including the values that correspond to the baseline models

(i.e., (γ, δ) = (0, 1)). Our code and plots are available in our code repository.

As we described in Section 5.4.3, for both of our adaptive-confidence BCMs, we examine

the number of major clusters (which we use to determine whether a simulation reaches a

consensus state or a fragmented state), the number of minor clusters, the Shannon entropy

H(Tf ) (see equation Equation (3.3.7)), the weighted-average edge fraction W (Tf ) (see equa-

tion Equation (5.4.1)), and the convergence time Tf . When the Shannon entropy and the

number of major clusters follow similar trends, we only show results for the number of major

clusters, as it is easier to interpret than the entropy. To avoid drowning readers with too

much repetition, we do not show plots for all of our numerical results; the omitted plots are

available in our code repository.

Our simulation results and theoretical results about effective graphs complement each

other. Theorem 5.3.2 states that all dyadic confidence bounds in our adaptive-confidence HK

model converge either to 0 or to 1. Additionally, the dyadic confidence bounds for node pairs

in different limit opinion clusters must converge to 0. However, we have not proven whether

or not the dyadic confidence bounds for nodes in the same limit opinion cluster converge

to 1, so it is possible for such confidence bounds to converge to 0. If a dyadic confidence

bound convergences to 0, then the corresponding edge is absent in the limit effective graph

(which is guaranteed to exist by Theorem 5.3.3). Our numerical simulations suggest that a

final opinion cluster can include adjacent nodes whose dyadic confidence bound converges

to 0. In particular, in many simulations, we observe that the weighted-average edge fraction
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W (Tf ) < 1, which corresponds to absent edges of the final effective graph between nodes

that are in the same final opinion cluster. Our adaptive-confidence DW model has analogous

theoretical results (see Theorem 5.3.5 and Theorem 5.3.6) and we again observe simulations

with W (Tf ) < 1.

5.5.1 Adaptive-confidence HK model

5.5.1.1 Summary of our simulation results

For our adaptive-confidence HK model, all of our numerical simulations reach a consensus

state for c0 ≥ 0.3. (As we discussed in Section 5.4.3, a consensus state has exactly one major

opinion cluster.) We show our simulation results for c0 ∈ {0.02, 0.03, . . . , 0.20}; we include

the results for the other examined values of c0 (see Table 5.2) in our code repository. We

examine the numbers of major and minor clusters, the Shannon entropy H(Tf ) (see equation

Equation (3.3.7)), the weighted-average edge fractionW (Tf ) (see equation Equation (5.4.1)),

and the convergence time Tf . We plot each of these quantities versus the initial confidence

bound c0. For each value of the confidence-increase parameter γ, we generate one plot; each

plot has one curve for each value of the confidence-decrease parameter δ. Each point in our

plots is a mean of our numerical simulations for the associated values of the BCM parameter

set (γ, δ, and c0). We also show one standard deviation from the mean. For our simulations

on a complete graph and the Facebook100 networks, each point in our plots is a mean of

10 simulations (from 10 sets of initial opinions). For our simulations on G(N, p) ER random

graphs and SBM random graphs, each point in our plots is a mean of 50 simulations (from

five random graphs that each have 10 sets of initial opinions). We include all plots, including

those that we do not present in this dissertation, in our code repository. In Table 5.3, we

summarize the trends that we observe in our simulations.

In all of our simulations of our adaptive-confidence HK model, we observe that γ ≥ 0.001

results in fewer major clusters than in the baseline HK model. For a fixed initial confidence
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Table 5.3: Summary of the observed trends in our adaptive-confidence HK model. Unless we
note otherwise, we observe these trends for the complete graph, all examined random-graph
models, and all examined real-world networks.

Quantity Trends

Convergence
Time

• For fixed values of the initial confidence bound c0, our adaptive-
confidence HK model tends to converge more slowly than the base-
line HK model.

• When our simulations reach a consensus state, for fixed values of
c0 and the confidence-increase parameter γ, our model converges
faster when the confidence-decrease parameter δ = 1 than when
δ ≤ 0.9. For δ ∈ {0.95, 0.99}, the convergence time transitions from
the δ ≤ 0.9 behavior to the δ = 1 behavior as we increase c0.

Opinion
Fragmentation1

• Our adaptive-confidence HK model yields consensus for γ ≥ 0.05.

• For fixed values of c0, our adaptive-confidence HK model tends to
yield fewer major clusters than the baseline HK model. When we fix
the other BCM parameters, the number of major clusters decreases
as either (1) we decrease δ or (2) we increase γ.

• For our synthetic networks, we observe that the trends in Shannon
entropy match the trends in the numbers of major clusters and that
our adaptive-confidence HK model tends to yield less opinion frag-
mentation than the baseline HK model.1

W (Tf )

• When δ = 1, both our adaptive-confidence HK model and the base-
line HK model yield W (Tf ) = 1.

• For fixed γ and c0, as we increase δ, the weighted-average edge frac-
tion W (Tf ) tends to decrease.

• For simulations that reach a consensus state, we observe two quali-
tative behaviors for W (Tf ): for δ ≤ 0.9, we observe that W (Tf ) < 1
and that there is a seemingly linear relationship between W (Tf )
and c0; for δ = 1, we observe that W (Tf ) = 1. Additionally, for
δ ∈ {0.95, 0.99}, the behavior of W (Tf ) transitions from the δ ≤ 0.9
behavior to the δ = 1 behavior as we increase c0.

1For the Facebook100 networks, we do not observe this trend, seemingly because of the large numbers of

minor clusters (which are incorporated in our calculation of Shannon entropy in Equation (3.3.7)) for these

networks
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bound c0, our adaptive-confidence HK model tends to yield fewer major opinion clusters

and less opinion fragmentation as either (1) we increase γ for fixed δ or (2) we decrease

δ for fixed γ. Intuitively, one expects larger values of γ to encourage consensus because a

larger γ entails a larger increase in a dyadic confidence bound after a positive interaction.

Less intuitively, smaller values of δ, which entail a larger decrease in a dyadic confidence

bound after a negative interaction, also seem to encourage consensus. In our adaptive-

confidence HK model, we update opinions synchronously, with each node interacting with of

all its neighboring nodes at each time. When two adjacent nodes are mutually unreceptive,

their dyadic confidence bound decreases. Given the synchronous updates in our adaptive-

confidence HK model, we hypothesize that small values of δ yield a faster decrease than large

values of δ in the dyadic confidence bound between mutually unreceptive nodes. For small

values of δ, pairs of nodes may quickly become mutually unreceptive and remain mutually

unreceptive. Meanwhile, individual nodes can be receptive to (and thus average) fewer

“conflicting” opinions8, possibly aiding in reaching a consensus.

In the baseline HK model, the number of major opinion clusters tends to decrease as

we increase c0. For intermediate values of γ (e.g., γ ∈ {0.005, 0.01} for a complete graph;

see panels (E) and (F) in Section 5.5.1.2), we do not observe this trend in our adaptive-

confidence HK model. Instead, as we increase c0, we observe an increase and then a decrease

in the number of major clusters; unlike for the baseline HK model, small values of c0 tend

to promote more consensus (i.e., it tends to yield fewer major clusters). For smaller values

of c0, it seems that nodes tend to be receptive to fewer nodes early in a simulation, so

fewer opinions can influence them. Therefore, for these values of c0, nodes that are mutually

receptive may quickly approach a consensus when γ is sufficiently large. Our calculations of

the weighted-average edge fraction W (Tf ) support this hypothesis. For sufficiently large γ,

small values of c0 yield small values of W (Tf ), indicating that final opinion clusters tend to

8When the neighbors to which a node is receptive have large differences in opinions with each other, we
say that that node is receptive to “conflicting” opinions.
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have many pairs of mutually unreceptive nodes.

5.5.1.2 A complete graph

We now discuss the simulations of our adaptive-confidence HK model on a complete graph.

We summarize the observed trends in Table 5.3.

Figure 5.2: The numbers of major clusters in simulations of our adaptive-confidence HK
model on a 1000-node complete graph for various combinations of the BCM parameters γ, δ,
and c0. In this and subsequent figures, we plot the mean value of our simulations for each set
of BCM parameters. The bands around each curve indicate one standard deviation around
the mean values. For clarity, in this figure and in subsequent figures, the vertical axes of
different panels have different scales. (This figure originally appeared in [LLP23].)

In Section 5.5.1.2, we observe for a 1000-node complete graph that our adaptive-confidence

HK model yields fewer major clusters (i.e., it encourages more consensus) than the base-

line HK model for a wide range of BCM parameter values. Our adaptive-confidence HK

model always reaches a consensus state for γ ≥ 0.05. In our simulations that do not reach

consensus, we tend to observe progressively more major clusters and more opinion fragmen-

tation as either (1) we decrease γ for fixed δ and c0 or (2) we increase δ for fixed γ and
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c0. For the baseline HK model and our adaptive-confidence HK model with small values

of γ (specifically, γ ∈ {0.0001, 0.0005, 0.001}), the number of major opinion clusters tends

to decrease as we increase c0. We do not observe this trend for larger values of γ (specifi-

cally, γ ∈ {0.005, 0.01}). Instead, for these values of γ, small values of c0 tend to promote

more consensus. For example, simulations always reach a consensus state when γ = 0.01 and

c0 ≤ 0.08. At the end of Section 5.5.1.1, we discussed our hypothesis behind this observation.

We observe very few minor clusters in our simulations of our adaptive-confidence HK

model on a 1000-node complete graph. For each value of the BCM parameter set (γ, δ, c0),

the mean number of minor clusters in our 10 simulations is bounded above by 1. Because

there are few minor clusters, the Shannon entropy (which accounts for both major clusters

and minor clusters; see equation Equation (3.3.7)) and the number of major clusters follow

similar trends for a 1000-node complete graph.

Figure 5.3: The weighted-average edge fraction W (Tf ) (see equation Equation (5.4.1)) in
simulations of our adaptive-confidence HK model on a 1000-node complete graph for various
combinations of the BCM parameters γ, δ, and c0. (This figure originally appeared in
[LLP23].)

In Section 5.5.1.2, we show W (Tf ) (see equation Equation (5.4.1)), which is the weighted
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average of the fractions of edges in the opinion clusters of the final effective graph. When

δ = 1, both our adaptive-confidence HK model and the baseline HK model yield W (Tf ) = 1.

This indicates that all final opinion clusters (i.e., the connected components of the effective

graph at time Tf ) are complete subgraphs (i.e., cliques). By contrast, in our adaptive-

confidence HK model, when δ < 1 and for a wide range of the other BCM parameters, we

observe that W (Tf ) < 1. This indicates that some nodes that are adjacent in the graph

G and in the same final opinion cluster do not have an edge between them in the final

effective graph Geff(Tf ). The nodes in these dyads are thus not receptive to each other (and

hence do not influence each other’s opinions), but they nevertheless converge to the same

opinion. When δ is sufficiently small (specifically, δ ≤ 0.9), we observe that our adaptive-

confidence HK model can reach a consensus with W (Tf ) < 1. For sufficiently large values

of γ (specifically, γ ≥ 0.05), even though the nodes in some dyads are not receptive to

each other, most nodes (at least 99% of them, based on our definition of major cluster) still

converge to the same final opinion and hence reach a consensus.

For fixed values of γ and c0, we observe that W (Tf ) tends to decrease as we decrease δ.

For γ ∈ {0.05, 0.1}, our simulations always reach a consensus state. In these simulations,

for each fixed δ, we observe that W (Tf ) appears to increase monotonically with respect to

c0. Additionally, for these values of γ, we observe a transition in W (Tf ) as a function of δ.

For δ ≤ 0.9, we observe that W (Tf ) < 1 and that there is a seemingly linear relationship

between W (Tf ) and c0. When δ = 1, we observe that W (Tf ) = 1. For δ ∈ {0.95, 0.99},

the behavior of W (Tf ) transitions from the δ ≤ 0.9 behavior to the δ = 1 behavior as we

increase c0. This transition between behaviors occurs for smaller c0 for δ = 0.99 than for

δ = 0.95.

In Section 5.5.1.2, for fixed c0, we observe that our adaptive-confidence HK model takes

longer to converge than the baseline HK model. For a 1000-node complete graph and fixed

BCM parameters (i.e., γ, δ, and c0), we observe that the logarithm log10(Tf ) of the conver-

gence time Tf for our adaptive-confidence HK model can be up to 4 more than the logarithm
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Figure 5.4: The convergence times (in terms of the number of time steps) on a logarithmic
scale in simulations of our adaptive-confidence HK model on a 1000-node complete graph for
various combinations of the BCM parameters γ, δ, and c0. (This figure originally appeared
in [LLP23].)

of the convergence time for the baseline HK model. That is, the convergence time can be as

much as 104 times larger. The convergence time tends to increase as either (1) we increase γ

for fixed δ and c0 or (2) we decrease δ for fixed γ and c0. For large values of γ (as is especially

evident for γ ∈ {0.05, 0.1}), the convergence time decreases with c0. As with W (Tf ), for

these values of γ, we observe a transition in the convergence time as a function of δ. In

Section 5.5.1.2, the curves of log10(Tf ) versus c0 for δ ≤ 0.9 overlay each other and indicate

larger convergence times than the curve for δ = 1. The curves for δ = 0.95 and δ = 0.99

transition from the δ ≤ 0.9 behavior to the δ = 1 behavior as we increase c0. By contrast,

for the baseline HK model and for our model with small values of γ, we observe no clear

pattern between the convergence time and initial confidence bound. When our adaptive-

confidence HK model reaches a consensus state, we observe from the behavior of W (Tf ) (see

Section 5.5.1.2) and the convergence times (see Section 5.5.1.2) in our simulations that there

is qualitative transition in the model behavior as we vary δ. We are not aware of previous
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discussions of similar transitions in variants of the HK model.

5.5.1.3 ER graphs

We now discuss additional results of our simulations of our adaptive-confidence HK model

on G(N, p) ER random graphs. We generate five ER random graphs for each value of

p ∈ {0.1, 0.5}. Each point in our plots is a mean of 50 simulations (from five random graphs

that each have 10 sets of initial opinions). For fixed BCM parameters (namely, γ, δ, and

c0), our results for G(1000, 0.5) graphs are more similar than those for G(1000, 0.1) graphs

to our results for the 1000-node complete graph.

Figure 5.5: The numbers of major clusters in simulations of our adaptive-confidence HK
model on G(1000, p) ER random graphs with (A–E) p = 0.1 and (F–J) p = 0.5 for various
combinations of the BCM parameters γ, δ, and c0. (This figure originally appeared in
[LLP23].)
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In Section 5.5.1.3, we show the numbers of major clusters in our simulations of our

adaptive-confidence HK model on ER graphs. For the G(1000, 0.1) graphs, when γ = 0.001,

small values of c0 tend to yield few major clusters. As we increase c0, we observe an initial

increase in the number of major clusters followed by a decrease in that number. By contrast,

for the 1000-node complete graph and G(1000, 0.5) graphs, small values of c0 tend to yield

the most major clusters; for fixed values of γ and δ, the number of major clusters tends

to decrease as we increase c0. G(1000, 0.1) graphs have more small-degree nodes than the

complete graph. These small-degree nodes can easily form minor opinion clusters, especially

for small values of c0. We hypothesize that these minor clusters form quickly in a simulation

and that the nodes in them quickly become unreceptive to the other nodes of a network.

For fixed BCM parameters (namely, γ, δ, and c0), we tend to observe fewer major opinion

clusters for G(1000, 0.1) graphs than for the 1000-node complete graph. Additionally, for

small initial confidence bounds (specifically, c0 ≤ 0.04), we observe more minor clusters for

the G(1000, 0.1) graphs than the G(1000, 0.5) graphs and the 1000-node complete graph.

(For G(1000, 0.1) graphs, once we take the mean for each BCM parameter set, we sometimes

observe as many as 20 minor clusters.) The expected mean degree of a G(N, p) ER graph

is p(N − 1) (see Section 2.3.2). Therefore, for small probability p, we expect more nodes to

have small degrees. For small initial confidence bounds, we hypothesize that many nodes

with small degrees quickly disconnect to form minor opinion clusters in the effective graph.

As we just discussed, for small values of c0, our simulations of the adaptive-confidence

HK model on the G(1000, 0.1) graphs yield more minor clusters than our simulations on

the G(1000, 0.5) graphs and the 1000-node complete graph. Nevertheless, although Shannon

entropy (see equation Equation (3.3.7)) accounts for minor clusters, we still observe that

it follows similar trends as the number of major clusters for both p = 0.1 and p = 0.5.

Specifically, the Shannon entropy tends to increase as either (1) we decrease γ for fixed δ

and c0 or (2) we increase δ for fixed γ and c0.

For our simulations on ER graphs with both p = 0.1 and p = 0.5, we observe the
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convergence-time trends in Table 5.3. For fixed values of γ, δ, and c0, the mean convergence

time for p = 0.1 is at least as long as that for p = 0.5. Unlike for the complete graph,

the ER graphs do not have a clear trend in the dependence of the convergence time either

on γ (with fixed δ and c0) or on δ (with fixed γ and c0). As with the 1000-node complete

graph, our fastest convergence times for ER graphs typically occur for δ = 1. For fixed γ

and c0, we often observe that the convergence time increases as we decrease δ. However, we

do not always observe this trend; for some values of γ and c0, smaller values of δ yield faster

convergence than larger values of δ.

5.5.1.4 Two-community SBM graphs

We now discuss additional results of our simulations of our adaptive-confidence HK model

on two-community SBM graphs. Each of our SBM graphs consists of two complete graphs

that are joined by a small number of edges (see Section 5.4.1). This yields a two-community

structure. For our two-community SBM graphs, for fixed BCM parameters, the numbers of

major clusters and Shannon entropies are similar to those for the complete graph. It seems

that this two-community structure does not significantly impact the simulation results of

our adaptive-confidence HK model.

In Figure 5.6, we show the numbers of major clusters in our simulations on SBM graphs.

For fixed values of the BCM parameters (namely, γ, δ, and c0), these simulations yield

similar numbers of major clusters as in our simulations on the 1000-node complete graph

(see Section 5.5.1.2) and G(1000, 0.5) ER graphs (see Section 5.5.1.3). We observe few minor

clusters; for each BCM parameter set, the mean number of minor clusters is bounded above

by 3. Consequently, the Shannon entropy and the number of major clusters follow similar

trends.

The convergence times in our simulations on SBM graphs follow the trends in Table 5.3.

For fixed values of γ and c0, we do not observe a clear trend in how the convergence time

changes as we vary δ. One commonality between the SBM graphs, the ER graphs, and the
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Figure 5.6: The numbers of major clusters in simulations of our adaptive-confidence HK
model on 1000-node SBM random graphs with connection probabilities Paa = Pbb = 1 and
Pab = 0.01 for various combinations of the BCM parameters γ, δ, and c0. (This figure
originally appeared in [LLP23].)

complete graph is that δ = 1 gives the fastest convergence times. For a wide range of fixed

values of γ and δ, we also observe that the convergence time tends to decreases as we increase

c0 for both our adaptive-confidence HK model and the baseline HK model.

5.5.1.5 Facebook100 university networks

We now discuss our simulations of our adaptive-confidence HK model on Facebook100

networks (see Section 5.4.1) [RKM11, TMP12]. We show plots of the number of major

clusters and Shannon entropy for the UC Santa Barbara network, as well as a plot of the

number of major clusters for Reed College. In our code repository, we include all plots for our

simulations on Facebook100 networks (including plots for the other examined quantities

and the other four universities in Table 5.1).

The six Facebook100 networks (see Table 5.1) mostly exhibit the same trends. The

Reed College network is a notable exception; we discuss it at the end of this subsubsection.
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Except for the trends in Shannon entropy, we observe the same trends (see Table 5.3) for

the Facebook100 networks that we observed for the synthetic networks. For the Face-

book100 networks, most of the final opinion clusters for both our adaptive-confidence HK

model and the baseline HK model are minor opinion clusters. Our simulations on the UC

Santa Barbara network yield more minor clusters than our simulations on the other Face-

book100 networks; when c0 = 0.02 and δ ≤ 0.9, the UC Santa Barbara network has more

than 4000 minor clusters. Our calculation of Shannon entropy (see Equation (3.3.7)) in-

cludes contributions from minor opinion clusters. Therefore, because of the large numbers of

minor clusters for the Facebook100 networks, the Shannon entropy and numbers of major

opinion clusters follow different trends. For these networks, they thus give complementary

views of opinion fragmentation.

Figure 5.7: The numbers of major clusters in simulations of our adaptive-confidence HK
model on the UC Santa Barbara network for various combinations of the BCM parameters
γ, δ, and c0. (This figure originally appeared in [LLP23].)

In Figure 5.7, we observe for the UC Santa Barbara network that our adaptive-confidence

HK model always yields consensus (the number of major clusters is exactly 1) when γ ≥

0.005. For these values of γ, the Shannon entropy (see Figure 5.8) tends to decrease as we

increase c0 for fixed values of γ and δ. This trend occurs because the number of minor opinion
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Figure 5.8: The Shannon entropies in simulations of our adaptive-confidence HK model on
the UC Santa Barbara network for various combinations of the BCM parameters γ, δ, and
c0. (This figure originally appeared in [LLP23].)

clusters also tends to decrease as we increase c0 for fixed values of γ and δ. This observation

contrasts with our simulations of our adaptive-confidence HK model on synthetic networks

(see Sections 5.5.1.2–5.5.1.4), for which we observed that the Shannon entropy follows similar

trends as the number of major clusters as we vary one of γ, δ, or c0 while fixing the other

BCM parameters. We believe that one reason for this difference is that the Facebook100

networks have many small-degree nodes, which allow more minor opinion clusters to form.

We show the numbers of major opinion clusters for the Reed College network in Figure 5.9.

For very small initial confidence bounds c0 ≤ 0.04 and fixed values of the BCM parameters,

the Reed College network tends to have more major clusters and larger Shannon entropies

than the other five Facebook100. This difference may arise from the small size of the Reed

College network in concert with our definition of major cluster. For example, a final opinion

cluster with 20 nodes is a major cluster for the Reed College network (which has 962 nodes

in its largest connected component), but an opinion cluster of that size is a minor cluster for

the UC Santa Barbara network (which has 14,917 nodes in its largest connected component).
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Figure 5.9: The numbers of major clusters in simulations of our adaptive-confidence HK
model on the Reed College network for various combinations of the BCM parameters γ, δ,
and c0. (This figure originally appeared in [LLP23].)

5.5.2 Adaptive-confidence DW model

We now show our results of our simulations of our adaptive-confidence DW model on a 100-

node complete graph and the NetScience network. In Table 5.4, we summarize the trends

that we observe in these simulations. We simulate our adaptive-confidence DW model with

the values of the BCM parameters (namely, the initial confidence bound c0, the confidence-

increase parameter γ, the confidence-decrease parameter δ, and the compromise parameter

m) in Table 5.2. Because of the long computation times, we consider much smaller graphs

and fewer BCM parameter values for our adaptive-confidence DW model than we did for our

adaptive-confidence HK model. Notably, the value of the compromise parameter m (which

is in the DW models but is not the HK models) affects our simulation results.

We explore the dependence of the numbers of major and minor clusters, the Shannon

entropy H(Tf ) (see equation Equation (3.3.7)), the weighted-average edge fraction W (Tf )

(see equation Equation (5.4.1)), and the convergence time Tf on the initial confidence bound

c0. For each value of (γ, δ), we generate one plot; each plot has one curve for each value of the
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compromise parameter m. Each point in our plots is the mean of 10 numerical simulations

(from 10 sets of initial opinions) with one BCM parameter set (γ, δ, c0,m). We also show

one standard deviation from the mean. All plots, including those that we do not present in

this appendix, are available in our code repository.

5.5.2.1 A complete graph

We first discuss our simulations of our adaptive-confidence DWmodel on a 100-node complete

graph. In the present section, we show plots of the numbers of major opinion clusters (see

Figure 5.10) and the weighted-average edge fractions W (Tf ) (see Figure 5.11).

Our adaptive-confidence DW model tends to converge more slowly than both the baseline

DW model and our adaptive-confidence HK model. Our simulations of our adaptive DW

model often reach the bailout time, particularly for small values of c0 and m. In Table 5.5, we

indicate the numbers of simulations that reach the bailout time. In some simulations, despite

reaching the bailout time, we are still able to identify the final opinion clusters. However, the

maximum difference in the opinions of the nodes in these clusters is not within our tolerance

value (see Section 5.4.2) of 0.02 for our adaptive-confidence DW model. In those instances,

we still use the cluster information to calculate the numbers of major and minor opinion

clusters, the Shannon entropy H(Tf ), and the weighted-average edge fraction W (Tf ). For

our simulations of our adaptive-confidence DW model with (γ, δ) = (0.1, 0.5), we run each

simulation to convergence (i.e., until we reach the stopping condition that we described in

Section 5.4.2). We plot the results of these simulations in Figure 5.10E and Figure 5.11B.

Although some simulations reach the bailout time, the information that we are able to obtain

about the opinion clusters (from both the simulations that we run to convergence and the

simulations that reach the bailout time) give us confidence in the trends in Table 5.4.

In Figure 5.10, we observe for a wide range of BCM parameter values that our adaptive-

confidence DWmodel yields fewer major clusters (i.e., it encourages more consensus) than the

baseline DW model. When c0 ≥ 0.5, our adaptive-confidence DW model and the baseline
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Table 5.4: Summary of the observed trends in our adaptive-confidence DW model.

Quantity Trends

Convergence
Time

• For the complete graph, for fixed values of the compromise parame-
ter m and initial confidence bound c0 ≤ 0.3, our adaptive-confidence
DW model tends to converge more slowly than the baseline DW
model.

• For the NetScience network, for fixed values of m and c0, our
adaptive-confidence DW model and the baseline DW model have
similar convergence times.

Number of
Major
Clusters

• For the complete graph, when we fix the other BCM parameters,
we (1) tend to observe fewer major clusters as we increase the
confidence-increase parameter γ and (2) observe little effect on the
numbers of major clusters when we vary the confidence-decrease pa-
rameter δ.

• For the complete graph, for a fixed value of c0 ≤ 0.3, our adaptive-
confidence DW model yields fewer major clusters when m = 0.1
than when m ∈ {0.3, 0.5}. The baseline DW model does not have
this behavior.

• For the NetScience network, for a fixed value of c0, our adaptive-
confidence DW model yields at least as many major clusters as the
baseline DW model. For this network, m has little effect on the
number of major clusters.

W (Tf )

• The baseline DW model always yields W (Tf ) = 1. Our adaptive-
confidence DW model also yields W (Tf ) = 1 for the complete graph
with c0 ≥ 0.4 and the NetScience network with c0 ∈ {0.8, 0.9}.

• When W (Tf ) < 1, for fixed values of the parameters γ, δ, and c0,
decreasing m tends to also decrease W (Tf ) for both the complete
graph and the NetScience network.
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Figure 5.10: The numbers of major clusters in simulations of (A) the baseline DW model
and (B–J) our adaptive-confidence DW model on a 100-node complete graph for various
combinations of the BCM parameters γ, δ, c0, and m. In this figure and subsequent figures,
we do not use simulations in which we are unable to determine the final opinion clusters
(see Table 5.5) to calculate the means and standard deviations. In (E), in which we show
our simulations with (γ, δ) = (0.1, 0.5), we run all of our simulations to convergence (i.e.,
we ignore the bailout time) and use all of our simulations to calculate the mean numbers of
major opinion clusters. (This figure originally appeared in [LLP23].)
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Table 5.5: Summary of the numbers of simulations of our adaptive-confidence DWmodel that
reach the bailout time of 106 time steps. For each combination of the BCM parameters (γ, δ,
c0, and m), we run 10 simulations, which each have a different set of initial opinions. In each
table entry, the focal number is the number of simulations that reach the bailout time and
the number in parentheses is the number of those simulations for which we are also unable
to determine the final opinion clusters. We run our simulations with (γ, δ) = (0.1, 0.5) to
convergence (i.e., without a bailout time); for those simulations, we do not track the number
of opinion clusters at the bailout time.

Number of simulations that reach bailout
(number of simulations for which we are also
unable to determine the final opinion clusters)

m = 0.1 m = 0.3 m = 0.5
c0 = 0.1 c0 = 0.2 c0 = 0.3 c0 = 0.1 c0 = 0.2 c0 = 0.1

γ = 0.1
δ = 0.3 9 (7) 2 (2) 1 (1) 0 0 0
δ = 0.5 8 1 0 1 0 0
δ = 0.7 9 (6) 2 (2) 1 (1) 2 (0) 0 0

γ = 0.3
δ = 0.3 9 (5) 0 0 2 (1) 0 2 (0)
δ = 0.5 8 (7) 0 0 2 (2) 0 0
δ = 0.7 7 (4) 0 0 5 (3) 2 (1) 0

γ = 0.5
δ = 0.3 9 (6) 0 0 2 (2) 1 (0) 0
δ = 0.5 8 (4) 0 0 2 (1) 0 0
δ = 0.7 6 (4) 0 0 7 (4) 0 1 (1)

DW model always reach consensus. For fixed values of γ, δ, and c0, when our adaptive-

confidence DW model does not reach consensus, decreasing the compromise parameter m

tends to result in fewer major clusters. By contrast, m has little effect on the number of

major clusters in the baseline DW model. Increasing γ with the other BCM parameters (i.e.,

δ, c0, and m) fixed also tends to result in fewer major clusters. Changing δ with the other

parameters fixed has little effect on the number of major clusters. In fact, changing δ with

the other parameters fixed appears to have little effect on any of the computed quantities,

so we show results only for δ = 0.5 in our subsequent figures. In our code repository, we

include plots for the other examined values of δ.

We observe very few minor clusters in our simulations of our adaptive-confidence DW

model on the 100-node complete graph. For each BCM parameter set (γ, δ, c0,m), the mean
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number of minor clusters in our 10 simulations is bounded above by 1. Consequently, the

number of major clusters and Shannon entropy follow similar trends. Overall, in our simula-

tions on the 100-node complete graph, our adaptive-confidence DW model encourages more

consensus than the baseline DW model and this difference between these two models be-

comes more pronounced for larger values of the confidence-increase parameter γ and smaller

values of the compromise parameter m.

In Figure 5.11, we show the weighted-average edge fraction W (Tf ) (see Equation (5.4.1)).

The baseline DW model always has W (Tf ) = 1. By contrast, for sufficiently small initial

confidence values c0, our adaptive-confidence DW model yields W (Tf ) < 1. For m = 0.1 and

small c0 (specifically, c0 ≤ 0.3), our adaptive-confidence DW model can reach consensus with

W (Tf ) < 1. As in our adaptive-confidence HK model (see our discussion in Section 5.5.1.2),

this observation indicates that some adjacent nodes in the same final opinion cluster are not

receptive to each other.

Figure 5.11: The weighted-average edge fraction W (Tf ) (see equation Equation (5.4.1)) in
simulations of (A) the baseline DW model and (B–D) our adaptive-confidence DW model
on a 100-node complete graph for various combinations of the BCM parameters γ, δ, c0,
and m. In (E), in which we show our simulations with (γ, δ) = (0.1, 0.5), we run all of
our simulations to convergence (i.e., we ignore the bailout time) and use the resulting final
opinion clusters. (This figure originally appeared in [LLP23].)

For fixed values of c0 ≤ 0.3 and m, our adaptive-confidence DW model tends to converge

more slowly than the baseline DW model. Additionally, when we fix the other BCM param-

eters (i.e., γ, δ, and m), the convergence time tends to increase as we decrease c0. As we

showed in Table 5.5, for small values of c0 (specifically, c0 ∈ {0.1, 0.2}), more simulations
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reach the bailout time as we decrease m. In both our adaptive-confidence DW model and

the baseline DW model, m = 0.1 yields longer convergence times than m ∈ {0.3, 0.5} for

fixed values of γ, δ, and c0.

5.5.3 Network of network-scientist coauthorships

We now discuss our simulations of our adaptive-confidence DW model on the NetScience

network [New06], which is a network of network scientists with unweighted and undirected

edges that encode paper coauthorships.

For the NetScience network and fixed values of c0 and m, our adaptive-confidence

DW model tends to have at least as many major opinion clusters (see Figure 5.12) and

minor opinion clusters (see Figure 5.13) as the baseline DW model. In Figure 5.13, we

see for c0 ≤ 0.5 that both our adaptive-confidence DW model and the baseline DW model

yield many more minor clusters for the NetScience network than for the 100-node com-

plete graph. For values of c0 that are near the transition between consensus and opinion

fragmentation (specifically, c0 ∈ {0.3, 0.4, 0.5}), our adaptive-confidence DW model yields

noticeably more major clusters and minor clusters than the baseline DW model. The tran-

sition between consensus and fragmentation appears to occur for a larger threshold in our

adaptive-confidence DW model than in the baseline DW model. For the NetScience net-

work (and unlike for the 100-node complete graph), changing the value of m with the other

BCM parameters fixed appears to have little effect on the numbers of major and minor

opinion clusters.

For the NetScience network and fixed values of c0 and m, our adaptive-confidence DW

model has convergence times that are similar to those of the baseline DW model. All of our

simulations of our adaptive-confidence DW model on the NetScience network converge

before reaching the bailout time. We obtain the longest convergence times for c0 = 0.3. By

contrast, for the 100-node complete graph, the convergence time increases as we decrease

c0 and many simulations reach the bailout time for c0 ∈ {0.1, 0.2}. In both our adaptive-
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confidence DW model and the baseline DW model, m = 0.1 yields longer convergence times

than m ∈ {0.3, 0.5} for fixed values of γ, δ, and c0. We do not observe a clear trend in

how the convergence time changes either as a function of γ (with fixed δ, c0, and m) or as a

function of δ (with fixed γ, c0, and m).

Figure 5.12: The numbers of major clusters in simulations of (A) the baseline DW model
and (B, C) our adaptive-confidence DW model on the NetScience network for various
combinations of the BCM parameters γ, δ, c0, and m. (This figure originally appeared in
[LLP23].)

Figure 5.13: The numbers of minor clusters in simulations of (A) the baseline DW model
and (B, C) our adaptive-confidence DW model on the NetScience network for various
combinations of the BCM parameters γ, δ, c0, and m. (This figure originally appeared in
[LLP23].)
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5.6 Conclusions and discussion

5.6.1 Summary and discussion of our results

We developed two BCMs— a synchronously-updating one that generalizes the HKmodel and

an asynchronously-updating one that generalizes the DW model — with adaptive confidence

bounds. The confidence bounds in our adaptive-confidence BCMs are distinct for each

dyad of a network and change when nodes interact with each other. One can interpret the

changes in confidence bounds as changes in receptiveness between nodes. We demonstrated

that incorporating time-dependent, adaptive confidence bounds in our BCMs yields a variety

of interesting behaviors, such as adjacent nodes that converge to the same limit opinion but

are eventually unreceptive to each other.

For our adaptive-confidence BCMs9 and the baseline BCMs, we proved results about

the limiting behaviors of effective graphs, which track which nodes of a network are able

to influence each other. We demonstrated using numerical simulations that our BCMs have

fewer major opinion clusters and take longer to converge than the associated baseline BCMs.

See Table 5.3 for a summary of the trends in our adaptive-confidence HK model, and see

Table 5.4 for a summary of the trends in our adaptive-confidence DW model.

The results of our numerical simulations of our adaptive-confidence BCMs complement

our theoretical results (which informed the stopping criteria in our computations). For our

adaptive-confidence HK model, (1) all dyadic confidence bounds must converge either to 0 or

to 1 and (2) the dyadic confidence bounds between nodes in different limit opinion clusters

must converge to 0 (see Theorem 5.3.2). For our adaptive-confidence DW model, analogous

results hold almost surely (see Theorem 5.3.5). However, in both of our adaptive-confidence

BCMs, the dyadic confidence bounds between nodes in the same limit opinion cluster do not

necessarily converge to 1, as it is possible for them to instead converge to 0. Indeed, when

9The proofs for the adaptive-confidence BCMs are primarily the work of Jiajie Luo.
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the confidence-decrease parameter δ < 1, our numerical simulations of both of our adaptive-

confidence BCMs demonstrate for a wide range of the other BCM parameter values that

some dyads in the same final opinion cluster have confidence bounds that converge to 0.

Although the nodes in these dyads are unreceptive to each other, they still converge to the

same opinion. The nodes in these dyads do not have an edge between them in the final

effective graph, so the final opinion clusters (i.e., the connected components of the final

effective graph) in our BCMs can have a richer structure than those in the baseline BCMs.

5.6.2 Future work

Our investigation lays groundwork and provides a point of comparison for the study of more

complicated adaptive-confidence mechanisms in BCMs. Future investigations of adaptive-

confidence BCMs include establishing additional theoretical guarantees, examining and val-

idating such BCMs in sociological contexts, and generalizing these models in various ways.

It is worthwhile to analytically and numerically study the mutual receptiveness of nodes in

our BCMs when they reach a consensus state. In our numerical simulations of our adaptive-

confidence BCMs, when the confidence-decrease parameter δ < 1, some adjacent nodes in

the same final opinion cluster are eventually not receptive to each other. More specifically,

our numerical simulations suggest that some adjacent nodes can converge to the same limit

opinion without having an edge between them in the limit effective graph. One can explore

this behavior of our BCMs and determine how the model parameters influence the existence

of edges between adjacent nodes with the same limit opinion in limit effective graphs.

It is also important to consider how the behaviors of our BCMs connect to real-life social

situations. One can interpret the opinion values in our models as representing outwardly ex-

pressed opinions, which may differ from internally held beliefs [Kur95]. The achievement of a

“consensus” can represent agents arriving at the same outwardly expressed behavior or deci-

sion, rather than achieving an actual agreement of their internal values [Hor62]. Researchers

have studied models with both internal and expressed opinions [Noo20, CLY20, HLJ21], and
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one can incorporate such considerations into adaptive-confidence BCMs.

In our adaptive-confidence BCMs, adjacent agents that are unreceptive to each other’s

opinions can still interact with each other. Alternatively, a pair of agents can eventually stop

interacting with each other — effectively changing the network structure — after repeated

negative interactions. Researchers have modeled such ideas, along with network restructuring

to consider new social interactions, using adaptive networks with edge rewiring [PRM22,

KFP23]. A possible area of further study is the investigation of which models effectively have

“mediator” nodes that assist in bringing together the opinions of agents that are unreceptive

to each other or no longer interact. If there are such mediator nodes, one can examine

whether or not they share common characteristics or are identifiable from network structure

and initial agent opinions.

There are many possible areas to explore in the study of adaptive opinion models. In

research on opinion dynamics, it is important to incorporate network adaptivity, which

provides fertile ground for theoretical, computational, and empirical investigations of opinion

dynamics.
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CHAPTER 6

Bounded-Confidence Models with Topic-Weighted

Opinion Discordance

In this chapter, we study BCMs that have multi-dimensional opinions that consist of multiple

interdependent topics. This project is ongoing work in collaboration with Jiajie Luo and

Weiqi Chu.1

6.1 Introduction and motivation

In this chapter, we generalize the DW and HKmodels to study agents that have vector-valued

opinions on interdependent topics. Each agent in the standard BCMs (see Section 3.1 and

Section 3.2) has a single scalar-valued opinion. In real life, people have opinions on topics

that are related and have some interdependency. We generalize the standard BCMs to model

this situation.

Political scientist Philip Converse [Con06] used the term “belief system” to describe atti-

tudes that are bound together by some form of constraint or interdependence. Empirically,

researchers have observed correlations between political positions [BL06, BL12]. In models

of opinion dynamics, agents can have vector-valued opinions that encode either a combina-

tion of different issues or a single issue with multiple coordinates [Fri15]. When developing

1The idea for the BCMs in this project was developed primarily by Jiajie Luo. My main contributions
to this project so far are deriving the region of absorption (see Section 6.3.2) and running and interpreting
the numerical simulations (see Sections 6.4 and 6.5).
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a discrete-time BCM with opinions in two or more dimensions, one must make choices that

are not present in a model with 1D opinions. In particular, one must decide which opinion

topic(s) to update at each time step and how to measure a notion of distance between opinion

vectors.

Researchers have studied variants of the DW [Lor06, LX17] and HK [FLP05, Lor06,

BBC13, EBN13, HK19, BP20] models with multidimensional opinions. In these papers, the

authors calculated the distances between two opinion vectors using the Euclidean norm of

their differences.2 In political science, researchers often use Euclidean distance in models for

mathematical convenience and tractability, but there is little empirical evidence that it is

suitable for modeling opinions [BL06]. Some researchers have generalized multidimensional

BCMs to have non-Euclidean distances. For example, Fortunato et al. [FLP05] studied a

continuum HK model with 2-dimensional opinions in which agents are receptive to each other

if and only if their opinion difference in both topics is within a confidence bound c. That is,

agents with opinions x and y are receptive to each other if and only if both |x1−y1| < c and

|x2 − y2| < c, where xi denotes the ith entry of x. Schweighofer et al. [SGS20] developed

and simulated multidimensional BCMs that have a “directional” distance that measures the

angle between two opinion vectors. In their models, when agents compromise their opinions,

their opinion vectors rotate towards each other in opinion space.

Researchers have incorporated topic correlation or coupling parameters into models of

opinion dynamics with interdependent topics. Parsegov et al. [PPT15] studied variants of

the Friedkin–Johnson model, a linear model of opinion dynamics with agents that “stub-

bornly” factor their initial opinion into every update, with multidimensional opinions with

interdependent topics. Their models have a matrix parameter C in which each entry Cpq

determines how much topic q affects topic p. Ye et al. [YTL20] subsequently examined a

continuous-time model inspired by the models in [PPT15]. Baumann et al. [BLS21] studied

2For two K-dimensional opinion vectors x and y, the Euclidean norm of their difference is ∥x − y∥2 =√∑K
i=1(x

i − yi)2, where xi and yi denote the ith entries of x and y, respectively.

121



a model of opinion dynamics with a “topic overlap” matrix parameter Φ. Each entry Φpq en-

codes the angles between topics p and q in a latent topic space and determines how much the

opinions of agents on topic p affect the opinions of agents on topic q. Chen et al. [CWY21]

developed and simulated a rather complex agent-based model with multidimensional opin-

ions that involves time-dependent correlations between topics. At each time, a selected

agent first updates its opinion using rules that involve the topic correlations and external

interventions. It then selects another agent to interact with and updates its opinion using a

modified Jager–Amblard update rule [JA05], which is a DW update (see Equation (3.1.1))

if the Euclidean distance between opinions is sufficiently small and a repulsive update if the

Euclidean distance is sufficiently large.

In the present chapter, we study BCMs with multidimensional opinions and non-Euclidean

distances between opinion vectors. Our topic-weighted “discordance” functions account for

the magnitudes of the opinion differences in each topic. When determining whether or not

two agents are receptive to each other on topic k, depending on the value of a topic-weight

parameter, our topic-weighted discordance puts at least as much importance on their opinion

difference on topic k than on their opinion difference on each other topic. In our models,

we do not have correlation parameters that precisely control how much each pair of topics

affects each other. However, inspired by [PPT15, YTL20, CWY21], this is a viable way to

extend our models.

6.2 BCMs with topic-weighted opinion discordance

We now describe our BCMs with K-dimensional opinions and topic-weighted opinion dis-

tance. The idea for these models was developed primarily by Jiajie Luo.

Consider a time-independent, unweighted, undirected network G = (V,E) with no self-

edges or multi-edges, where V is a set of nodes and E is a set of edges between them. The

nodes of the network represent agents with opinions, each of which lie in the closed interval
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[0, 1], on K related topics. Let xi(t) ∈ RK denote the opinion vector of node i at time t; its

kth entry, which we denote by xk
i (t), is the opinion of node i on topic k.

We describe our variants of the HK model and the DW model in Section 6.2.1 and

Section 6.2.2, respectively. Both of our models have a confidence bound c ∈ [0, 1] that is

analogous to the confidence bound in the standard HK model (see Section 3.2) and the

standard DW model (see Section 3.1).

We define topic-weighted distance functions dk : [0, 1]K × [0, 1]K 7→ [0, 1] that we call

discordance functions.3 For each topic k, the discordance function dk takes two opinion

vectors as inputs and calculates a distance between them that emphasizes topic k while

accounting for the other topics. For topic k, the discordance between opinion vectors xi and

xj is

dk(xi,xj;ω) = ω|xk
i − xk

j |+
1− ω

K

K∑
ℓ=1

|xℓ
i − xℓ

j| , (6.2.1)

where the topic weight ω ∈ [0, 1] is a parameter that determines how much weight is placed

on the opinion difference in topic k. In our models, when nodes i and j have opinions that

satisfy dk(xi,xj) < c, we say that nodes i and j are receptive to each other on topic k.

The maximum discordance function dmax is

dmax(xi,xj;ω) = max
1≤k≤K

dk(xi,xj;ω) . (6.2.2)

When nodes i and j have opinions that satisfy dmax(xi,xj) < c, nodes i and j are receptive

to each other on all topics.

6.2.1 Our HK model with topic-weighted opinion discordance

We now describe our HK model with topic-weighted opinion discordance. We refer to this

model as our topic-weighted HK model. Our topic-weighted HK model has two parameters:

3Our choice to call these functions “discordance” functions was inspired by Hickok et al. [HKB22].
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the confidence bound c ∈ [0, 1] and the topic weight ω ∈ [0, 1].

The set4 of nodes that a node i is receptive to on topic k at time t is

N k
i (t) = {i} ∪ {j : (i, j) ∈ E and dk(xi(t),xj(t)) < c} . (6.2.3)

At each discrete time, we update the opinions of all nodes on all topics by calculating

xk
i (t+ 1) =

1

|N k
i (t)|

∑
j∈N k

i (t)

xk
j (t) (6.2.4)

for all nodes i and all topics k.

When the topic weight is ω = 1, Equation (6.2.1) reduces to dk(xi,yi;ω = 1) = |xk
i −xk

j |,

so the opinion discordance for topic k has no dependence on other topics. Therefore, our

topic-weighted HK model with ω = 1 is equivalent to K independent copies of the standard

HK model (see Section 3.2), with each copy encoding the opinions for one topic. We refer

to our topic-weighted HK model with ω = 1 as our baseline HK model.

6.2.2 Our DW model with topic-weighted opinion discordance

We now describe our DW model with topic-weighted opinion discordance. We refer to this

model as our topic-weighted DW model. Our topic-weighted DWmodel has three parameters:

the confidence bound c ∈ [0, 1], the compromise parameter m ∈ (0, 0.5], and the topic weight

ω ∈ [0, 1]. The confidence bound and compromise parameter in our model are analogous to

those BCM parameters in the standard DW model (see Section 3.1).

At each discrete time, we select an edge (i, j) ∈ E uniformly at random and a topic

k ∈ {1, . . . , K} uniformly at random. We then update the opinions of nodes i and j on topic

4The set N k
i (t) is similar to the set I(i, x(t)) in Equation (3.2.1) for the standard HK model. Unlike

in the standard HK model, in this chapter, opinions are K-dimensional, so we use the notation N k
i (t) for

clarity.
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k by calculating

xk
i (t+ 1) =


xk
i (t) +m(xk

j (t)− xk
i (t)) , if dk(xi(t), xj(t)) < c

xk
i (t) , otherwise ,

xk
j (t+ 1) =


xk
j (t) +m(xk

i (t)− xk
j (t)) , if dk(xi(t), xj(t)) < c

xk
j (t) , otherwise .

(6.2.5)

We refer to our topic-weighted DW model with ω = 1 as our baseline DW model.5

6.3 Preliminary theoretical results

In this section, we discuss some of our preliminary theoretical results for our topic-weighted

BCMs. In Section 6.3.1, we show that the opinions in our topic-weighted BCMs converge to

limit opinions. In Section 6.3.2, we derive what we call the “region of absorption”. Nodes

i and j with opinion vectors x and y, respectively, are receptive to each other on all topics

if and only if y and x are in each other’s regions of absorption. We also have results on

which limit opinion states are possible and some properties of the limit effective graphs in

our topic-weighted BCMs. The derivation of these results are predominantly the work of

Weiqi Chu; we do not include them in this dissertation.

6.3.1 Convergence of opinions

The theorems and proofs in this subsection are joint work with Weiqi Chu and Jiajie Luo. In

this subsection, we use Theorem 3.3.1 to prove that the opinions in our topic-weighted HK

model (see Section 6.2.1) and topic-weighted DW model (see Section 6.2.2) converge. Let

5Due to the stochasticity in selecting a topic at each time in our topic-weighted DW model, our baseline
DW is not equivalent to having independent copies of the standard DW model (see Section 3.1). By contrast,
our topic-weighted HK model is deterministic; as we discussed at the end of Section 6.2.1, it is equivalent to
K independent copies of the standard HK model.
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x(t) ∈ [0, 1]NK denote a vector of the opinions of all nodes on all topics. We construct x(t) by

concatenating the opinion vectors for each node (i.e., by concatenating x1(t),x2(t), . . .xN(t)).

Theorem 6.3.1. The limit x∗ = limt→∞ x(t) for our topic-weighted HK model (with update

rule (6.2.4)) exists.

Proof. Consider each pair of nodes i and j and each topic k. We express the update rule

(6.2.4) as x(t+ 1) = A(x(t), t)x(t), where

A(x(t), t)αβ =


1/|N k

i (t)| , if α = (i− 1)K + k , β = (j − 1)K + k , and j ∈ N k
i (t) for

some nodes i and j and some topic k

0 , otherwise .

(6.3.1)

It is readily checked that each A(x(t), t) satisfies conditions (1)–(3) in Theorem 3.3.1, which

implies that x(t) converges to some limit opinion state x∗.

Theorem 6.3.2. The limit x∗ = limt→∞ x(t) for our topic-weighted DW model (with update

rule (6.2.5)) exists.

Proof. We express the update rule (6.2.5) as x(t + 1) = A(x(t), t)x(t). Suppose that, at

time t, we select edge (i, j) and topic k to update by Equation (6.2.5). If the discordance

function dk(xi(t),xj(t)) ≥ c, then A(x(t), t) = INK is the identity matrix. Otherwise, if

dk(xi(t),xj(t)) < c, then

A(x(t), t)αβ =



1−m, if α = β = (i− 1)K + k

1−m, if α = β = (j − 1)K + k

m , if α = (i− 1)K + k , β = (j − 1)K + k

m , if α = (j − 1)K + k , β = (i− 1)K + k

δαβ , otherwise ,

(6.3.2)
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where δαβ is the Kronecker delta function (i.e., δαβ = 1 if α = β and δαβ = 0 otherwise). It

is readily checked that each A(x(t), t) satisfies conditions (1)–(3) in Theorem 3.3.1, which

implies that x(t) converges to some limit opinion state x∗.

Theorems 6.3.1 and 6.3.2 give us the existence of a limit opinion vector x∗
i = lim

t→∞
xi

for each node i in our topic-weighted BCMs. For each distinct limit opinion vector, we

say that the set of nodes that have that limit opinion vector is a limit opinion cluster (see

Section 3.3.2).

6.3.2 Region of absorption

Fix the opinion vector x. We want to find the region in opinion space of opinions y such

that nodes with opinions x and y are receptive to each other on all topics. We call this the

region of absorption for opinion x. That is, we want to find the region of opinions

Rx = {y ∈ RK : dmax(x,y) < c} . (6.3.3)

Theorem 6.3.3. For our topic-weighted BCMs (with update rules (6.2.4) and (6.2.5)), the

region of absorption Rx (see Equation (6.3.3)) for an opinion vector x ∈ RK is a K-

dimensional polytope. Furthermore, for s ∈ {1, 2, . . . K}, let

Us =

{
u ∈ RK : s entries of u are

c

ω + s
K
(1− ω)

and the remaining K − s entries are 0

}
.

The set of vertices R̂x for the polytope Rx is

R̂x =
{
y ∈ RK : |x− y| ∈ Us for some s ∈ {1, 2, . . . K}

}
, (6.3.4)

where |x− y| is the vector with kth entry |xk − yk|.

Proof. Let d(x,y) ∈ RK denote the vector with dk(x,y) in the kth entry. Let u(x,y) =
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|x− y| denote an opinion-difference vector with |xk − yk| in the kth entry. We have that

d(x,y) =

(
ωIK +

1

K
(1− ω)11T

)
u(x,y) , (6.3.5)

where IK is the K ×K identity matrix. Let B = ωI + 1
K
(1− ω)11T ∈ RK×K . That is,

Bij =


ω + 1

K
(1− ω) , if i = j

1
K
(1− ω) , otherwise .

Fix the opinion vector x. An opinion vector y ∈ Rx if and only if dmax(x,y) < c. By

Equation (6.3.5), dmax(x,y) < c if and only if Bu(x,y) < c1, where the vector inequality

Bu(x,y) < c1 signifies that each entry of the vector Bu(x,y) is less than c. Therefore, the

region of absorption Rx is a K-dimensional polytope containing all opinion vectors y that

satisfy Bu(x,y) < c1. The boundary of Rx consists of all opinion vectors y that satisfy

Bu(x,y) = c1.

We now calculate the vertices of the polytope Rx. Suppose that y ∈ Rx, so dmax(x,y) <

c. Intuitively, if opinions x and y agree exactly on some topic k (i.e., xk − yk = 0), then the

vectors x and y can have a larger difference in opinion in some other topic ℓ ̸= k (i.e., the

ℓth entry of u(x,y) can be larger) than if xk ̸= yk. If y is a vertex of Rx, then u(x,y) can

be 0 in as many as K − 1 entries. Let s ∈ {1, 2, . . . , K} be the number of nonzero entries of

u(x,y), and let us ∈ Rs denote a vector of the nonzero opinion differences of x and y in s

topics. Each entry of us is |xk − yk| for some topic k, and no topics repeat. Let Bs ∈ Rs×s

be the square matrix of the first s rows and columns of B. To find the vertices that define

the polytope Rx, we want to find us that solves the matrix equation

Bsus = c1 (6.3.6)

for each s ∈ {1, 2, . . . , K}.
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Fix s ∈ {1, 2, . . . , K}. We calculate B−1
s by using the Sherman–Morrison formula [Bar51,

Hag89]. Let A be an invertible square matrix, and let v and w be column vectors. The

Shermman–Morrison formula states that the matrix A + vwT is invertible if and only if

1 +wTA−1v ̸= 0. Furthermore, if A+ vwT is invertible, then its inverse is (A+ vwT )−1 =

A−1 − A−1vwTA−1

1+wTA−1v
.

Let A = ωI ∈ Rs×s, which is invertible because ω ̸= 0. Let v = 1
K
(1 − ω)1 ∈ Rs

and w = 1 ∈ Rs. We have that 1 + wTA−1v = 1/ω ̸= 0. Therefore, by applying the

Sherman–Morrisson formula, Bs is invertible and its inverse is

B−1
s = (ωI)−1 −

(ωI)−1
(

1
K
(1− ω)1

)
1T (ωI)−1

1 + 1T (ωI)−11
=

1

ω
I −

1−ω
ω2

1
K
11T

1 + s 1
K

1
ω
(1− ω)

. (6.3.7)

From Equation (6.3.6), us = B−1
s c1. Using the inverse B−1

s in Equation (6.3.7), the ith

entry of us is

ui
s = c

s∑
j=1

[B−1
s ]ij = c

(
1

ω
− s

[ 1−ω
ω2

1
K

1 + s 1
K

1
ω
(1− ω)

])

=
c

ω

(
1−

s
K

1
ω
(1− ω)

1 + s
K

1
ω
(1− ω)

)
=

c

ω

(
1

1 + s
K

1
ω
(1− ω)

)
=

c

ω + s
K
(1− ω)

. (6.3.8)

Therefore, the vertices of the polytope Rx are the coordinates y ∈ RK that have s entries

of u(x,y) = |x− y| that are equal to c
ω+ s

K
(1−ω)

and the remaining K − s entries of u(x,y)

equal to 0.

We now provide some examples of what the polytope Rx looks like. Suppose that there

are K = 2 topics. When s = 2, we have c
ω+ s

K
(1−ω)

= c, so |x − y| = (c, c). This gives four
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vertices at x+(a, b), where a, b ∈ {−c, c}. When s = 1, we have c
ω+ s

K
(1−ω)

= 2c
ω+1

. This gives

four vertices at x± (0, 2c
ω+1

) and x± ( 2c
ω+1

, 0). When K = 2, the region of absorption for x

consists of a polygon with eight vertices. The vertices of Rx in this example are

R̂x =

{
x+ z : z ∈

{
±(c, c),±(c,−c),±

(
0,

2c

ω + 1

)
,±

(
2c

ω + 1
, 0

)}}
.

In Figure 6.1, we show a visualization of the boundary of the region of absorption in 2D

for a fixed value of c and various values of ω. When ω = 1 (i.e., as in the baseline BCMs),

the region of absorption is a square. As we decrease ω, the area of the region of absorption

increases; a node has a larger region of opinion space that a neighbor can be in for them to

be mutually receptive on a particular topic.

Figure 6.1: Boundaries of the region of absorption for the opinion vector (0.5, 0.5) for c =
0.225 and various values of ω. Each colored polygon represents the region of absorption for
a different value of ω. As we decrease ω, the area of the region of absorption increases.

As another example, now suppose that there are K = 3 topics. The region of absorption

for the opinion vector x consists of a polygon with 26 vertices of the form x+ z. For s = 3,

there are eight vertices in which each entry of z is ±c. For s = 2, we get 12 vertices in which

one entry of z is 0 and the remaining two entries are ± 3c
ω+2

. Finally, for s = 1, there are six

vertices in which two entries of z are 0 and the remaining entry is ± 3c
2ω+1

. The vertices of

130



Rx in this example are

R̂x =

{
x+ z : z ∈

{
± (c, c, c),±(−c, c, c),±(c,−c, c),±(c, c,−c),

±
(
0,

3c

ω + 2
,

3c

ω + 2

)
,±

(
0,

3c

ω + 2
,− 3c

ω + 2

)
,

±
(

3c

ω + 2
, 0,

3c

ω + 2

)
,±

(
3c

ω + 2
, 0,− 3c

ω + 2

)
,

±
(

3c

ω + 2
,

3c

ω + 2
, 0

)
,±

(
3c

ω + 2
,− 3c

ω + 2
, 0

)
,

±
(

3c

2ω + 1
, 0, 0

)
,±

(
0,

3c

2ω + 1
, 0

)
,±

(
0, 0,

3c

2ω + 1

)}}
.

6.4 Details of our numerical simulations

In this section, we discuss the setup of our numerical simulations of our topic-weighted

BCMs. For our simulations, we consider opinions with K = 2 topics.

6.4.1 Initial opinion distributions

In this subsection, we describe the initial opinion distributions that we use in our simulations.

In studies on BCMs, it is relatively uncommon to consider initial opinions that arise from

distributions other than uniform distributions (see Section 3.4). In our topic-weighted BCMs,

whether or not two nodes are receptive to each other on a particular topic depends on

their difference in opinions on other topics. We simulate our models with various initial

opinion distributions to examine the impact of introducing different dependencies of the

initial opinions on the two topics.

To simulate our topic-weighted BCMs with initial opinions that have topics that are

independent of each other, we examine an “independent uniform distribution”. For this

initial opinion distribution, we draw initial opinions for topic 1 uniformly at random from

[0, 1]. We independently draw initial opinions for topic 2 uniformly at random from [0, 1].
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This initial opinion distribution is an extension to two opinion topics of the initial opinion

distribution for the standard DW and HK models (see Sections 3.1 and 3.2).

To investigate the behaviors of our topic-weighted BCMs when topic 2 depends com-

pletely on topic 1, we consider what we call a “wedge distribution” of initial opinions. In

this wedge distribution, we draw initial opinions for topic 1 uniformly at random from [0, 1].

Suppose that we select opinion x1
i on topic 1. We then determine the opinion x2

i on topic 2

by calculating

x2
i =


2x1

i , if 0 ≤ x1
i ≤ 0.5

2− 2x1
i , 0.5 < x1

i ≤ 1 .

(6.4.1)

In Figure 6.2, we show the function in Equation (6.4.1). We refer to this distribution as a

wedge distribution due to the shape of the function in Figure 6.2. For our wedge distribution,

the marginal probability distribution for either topic 1 or topic 2 is a uniform distribution

on [0, 1].

Figure 6.2: Opinion on topic 2 given the opinion on topic 1 in our wedge distribution.

To examine our topic-weighted BCMs on distributions for which we can easily control

the correlation between the topics, we consider Gaussian distributions. Let Gaussian(σ, ρ)
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denote a 2D Gaussian distribution with mean (0.5, 0.5) and probability density function

f(x1, x2) =
1

2πσ2
√

1− ρ2

× exp

(
− 1

2σ2(1− ρ2)

[
(x1 − 0.5)2 − 2ρ(x1 − 0.5)(x2 − 0.5) + (x2 − 0.5)2

])
,

(6.4.2)

where x1 and x2 are the opinions on topics 1 and 2, respectively, σ is the standard deviation

of the opinions on topics 1 and 2, and ρ is the Pearson correlation between the opinions on

topics 1 and 2.

For our numerical simulations, we consider a Gaussian(σ = 0.22, ρ = 0) initial opinion

distribution, which is a symmetric Gaussian distribution with no correlation between topics

1 and 2. We also consider the skewed Gaussian distribution Gaussian(σ = 0.22, ρ = 0.8),

which incorporates a correlation between topics 1 and 2. For σ = 0.22, we expect that

about 95% of samples drawn from either of our Gaussian distributions will lie in our opinion

space [0, 1] × [0, 1]. In our numerical simulations, when we draw initial opinions from a

Gaussian(σ = 0.22, ρ = 0) or Gaussian(σ = 0.22, ρ = 0.8) distribution, if the initial opinion

does not lie in [0, 1]× [0, 1], we reject it6 and draw a new initial opinion.

6.4.2 Simulation specifications

We simulate our topic-weighted BCMs on complete graphs. As a next step, we plan to

simulate our models on additional networks (e.g., such as ER graphs and real-world net-

works). We simulate our topic-weighted HK model on a 2000-node complete graph. Our

topic-weighted DW model is computationally more expensive than our topic-weighted HK

6For our simulations, to generate 40, 000 initial opinions from a Gaussian(σ = 0.22, ρ = 0) distribution,
we drew a total of 41, 934 samples (i.e., we rejected about 4.84% of samples). To generate 40, 000 initial
opinions from a Gaussian(σ = 0.22, ρ = 0.8), we we drew a total of 41, 960 samples (i.e., we rejected about
4.90% of samples).
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Figure 6.3: The probability density functions for the Gaussian(σ = 0.22, ρ = 0) and
Gaussian(σ = 0.22, ρ = 0.8) distributions of initial opinions in our simulations of our topic-
weighted BCMs. The red box in each panel indicates the region [0, 1] × [0, 1]. When we
draw an initial opinion outside this region, we reject it and resample from the Gaussian
distribution.

model; we simulate it on a small 500-node complete graph.

In our numerical simulations of our topic-weighted BCMs, nodes have opinions in the 2D

opinion space [0, 1] × [0, 1]. Accordingly, we suppose that the confidence bound c ∈ (0, 1).

For our topic-weighted HK model, we use c ∈ [0.025, 0.3] in our simulations. For our topic-

weighted DW model, we use c ∈ [0.05, 0.4] in our simulations. In our simulations of our

topic-weighted DW model, we use the compromise parameter m = 0.5. Nodes average their

opinions on a topic when they interact and are receptive to each other on that topic.

In our topic-weighted BCMs, the topic weight is ω ∈ [0, 1]. We simulate our topic-

weighted BCMs with values of ω ∈ [0.1, 1]. As we discussed in Section 6.2, when ω = 1,

the discordance function (see Equation (6.2.1)) for topic k depends only on the opinions on

topic k. Our topic-weighted BCMs with ω = 1 are our baseline BCMs. When ω = 0, all

discordance functions are the same7; in our simulations, we do not consider this case.

7For ω = 0, when adjacent nodes i and j interact on any topic, they compromise their opinions on that
topic if their mean opinion difference 1

K

∑K
ℓ=1 |xℓ

i − xℓ
j | is less than c.
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In our simulations of our topic-weighted BCMs, the generation of sets of initial opinions

and (for the topic-weighted DW model only) the selection of pairs of nodes to interact and

the topic to interact on each time step are stochastic. We use Monte Carlo simulations to

reduce these sources of noise. For our simulations of our topic-weighted HK model on a

2000-node complete graph, we randomly generate 20 sets of initial opinions for each initial

opinion distribution. We reuse those sets of initial opinions in our simulations with different

values of the BCM parameters (namely, the confidence bound c and the topic weight ω).

Similarly, for our topic-weighted DW model, we randomly generate 20 sets of initial opinions

for each initial opinion distribution.

In our topic-weighted BCMs, as in the standard HK and DW models, one can determine

the limit opinion clusters in finite time (see the last paragraph of Section 3.3.2). If every

pair of opinion clusters, Sa and Sb, has dmax(xi,xj) ≥ c for all i ∈ Sa and all j ∈ Sb at some

time T̃ , then (because c is fixed) no node in Sa can influence the opinion of a node in Sb (and

vice versa) for all t ≥ T̃ . Meanwhile, nodes in each opinion cluster continue to compromise

their opinions on each topic with each other. In particular, if dmax(xi,xj) < c for all nodes i

and j in an opinion cluster at some time t ≥ T̃ , then (1) all pairs of adjacent nodes in that

opinion cluster are receptive to each other on all topics and (2) all nodes in that opinion

cluster eventually converge to the same limit opinion. Therefore, for our topic-weighted

BCMs, distinct limit opinion clusters form in finite time.

For our topic-weighted BCMs, if two opinion vectors xi and xj satisfy |xk
i − xk

j | < c for

each topic k, then dmax(xi,xj) < c. In our numerical simulations of these BCMs, we use a

modification of the stopping criterion in Equation (3.3.8). We specify that a simulation has

converged if the maximum difference in opinions within each opinion cluster for each topic

is less than a tolerance value. That is,

max{|xk
i (t)− xk

j (t)| such that i, j ∈ Sr(t) for some r and k ∈ {1, 2}} < tolerance . (6.4.3)
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For our topic-weighted HK model, we use a tolerance value of 1×10−6; for our topic-weighted

DW model, we use a tolerance value of 0.01. We denote the time step in which a simulation

reaches the stopping criterion by Tf .

For our topic-weighted DW model, the selection of a pair of nodes to interact and a

topic on which to interact at each time step is stochastic. For each simulation of our topic-

weighted DW model with ω ∈ (0, 1), we simultaneously run a “control” simulation. In a

control simulation, we use a value of ω = 1 (to give the baseline DW model) and we use

the same confidence bound c, set of initial opinions, and sequence of edges and topics for

interactions as in the corresponding simulation of our topic-weighted DW model. If a topic-

weighted DW simulation reaches the stopping criterion (see Equation (6.4.3)) before the

corresponding control simulation, we stop the topic-weighted DW simulation and continue

the corresponding control simulation. Similarly, if a control simulation reaches the stopping

criterion before the topic-weighted DW simulation, we continue the corresponding topic-

weighted DW simulation.

To characterize node opinions in our topic-weighted BCM, we calculate the numbers of

major and minor limit opinion clusters (see Section 3.3.3) and a variant of the limit order

parameter Q(Tf ) (see Equation (3.3.5)) for opinion-cluster profiles (see Section 3.3.4). In

this chapter, we say that an opinion cluster is a “minor opinion cluster” if it has at most

2% of the nodes of a network. That is, an opinion cluster Sr is a minor opinion cluster if

|Sr| ≤ 0.02N . We say that an opinion cluster that is not a minor cluster is a “major opinion

cluster”. We calculate the order parameter using our maximum discordance function (see

Equation (6.2.2)), instead of the absolute value of a 1D opinion difference. In this setting,

the order parameter is thus

Q(t) =
1

N2

N∑
i=1

N∑
j=1

1dmax(xi(t),xj(t))<c , (6.4.4)

where 1dmax(xi(t),xj(t))<c is an indicator function that equals 1 when dmax(xi(t),xj(t)) < c and
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equals 0 otherwise. With our definition of limit opinion clusters (see the last paragraph of

Section 6.3.1) as sets of nodes that converge to the same opinion in all topics, Equation (6.4.4)

is analogous to Equation (3.3.6).

6.5 Preliminary results of our numerical simulations

6.5.1 Topic-weighted HK model

We now discuss the simulations of our topic-weighted HK model on a 2000-node complete

graph with various initial opinion distributions (see Section 6.4.1) and values of the BCM

parameters (namely, the confidence bound c and topic weight ω). As we discussed in Sec-

tion 6.4.2, for each initial opinion distribution, we use 20 distinct sets of initial opinions in

Monte Carlo simulations of our topic-weighted HK model.

In Figure 6.4, we show the numbers of major limit opinion clusters in our simulations

of our topic-weighted HK model for various initial opinion distributions. For a fixed initial

opinion distribution, as we decrease ω, the transition between a consensus state (i.e., exactly

one major opinion cluster) and a fragmented state (i.e., two or more major clusters) tends

to occur at smaller values of c. For a fixed initial opinion distribution and fixed ω, there

tend to be more major opinion clusters (and correspondingly less consensus) as we decrease

c. However, c = 0.025 often yields fewer major opinion clusters than c = 0.05 for the

independent uniform and Gaussian(σ = 0.22, ρ = 0) initial opinion distributions. This

arises from our ad hoc notion of a major opinion cluster having more than 2% of the nodes

of a network. In Figure 6.5, we show the numbers of minor limit opinion clusters in our

simulations of our topic-weighted HK model for various initial opinion distributions. When

c = 0.025, our simulations with the independent uniform and Gaussian(σ = 0.22, ρ = 0)

initial opinion distributions have many minor opinion clusters. Rather than focusing on the

numbers of major and minor opinion clusters, we calculate the order parameter Q(Tf ) to

examine opinion fragmentation in our topic-weighted HK model.
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Figure 6.4: Numbers of major limit opinion clusters in simulations of our topic-weighted HK
model on a 2000-node complete graph with various initial opinion distributions and various
values of the BCM parameters c and ω. We consider a cluster to be major cluster if it has
more than 2% of the nodes of a network. (In this case, a major cluster must have at least 41
nodes.) For this heat map and all subsequent heat maps, the depicted values are means of
20 simulations of our topic-weighted BCM for each value of the BCM parameter pair (c, ω).
In each heat map, the column on the far right depicts the results of our simulations of the
baseline HK model with ω = 1; it is highlighted with a blue border.
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Figure 6.5: Numbers of minor limit opinion clusters in simulations of our topic-weighted HK
model on a 2000-node complete graph with various initial opinion distributions and various
values of the BCM parameters c and ω. We consider a cluster to be minor cluster if it has
at most 2% of the nodes of a network. (In this case, a minor cluster must have 40 nodes or
fewer.)
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In Figure 6.6, we show the limit order parameters Q(Tf ) (see Equation (6.4.4)) in our

simulations of our topic-weighted HK model for various initial opinion distributions. When

Q(Tf ) = 1, all nodes converge to the same limit opinion vectors and reach a consensus state.

Smaller values of Q(Tf ) indicate more opinion fragmentation than larger values of Q(Tf ).

For fixed ω and a fixed initial opinion distribution, we observe smaller values of Q(Tf ) (and

correspondingly more opinion fragmentation) as we decrease c. For fixed c and a fixed initial

opinion distribution, we tend to observe more opinion fragmentation as we increase ω. This

is especially noticeable near the transition between consensus and fragmentation.

In our simulations, we observe that the choice of initial opinion distribution has a large

effect on whether our topic-weighted HK model reaches a consensus state or a fragmented

state. For fixed ω, the transition between consensus and fragmentation occurs at smaller

values of c for the two Gaussian initial opinion distributions than for the independent uniform

and wedge initial opinion distributions. Intuitively, it makes sense that the two Gaussian

initial opinion distributions promote more consensus than the independent uniform and

wedge distributions. This is because the initial opinions for the Gaussian distributions are

more concentrated near the center (see Figure 6.3) of the opinion space and there is small

probability of initial opinions near the boundaries of the opinion space [0, 1] × [0, 1]. For

the independent uniform and Gaussian(σ = 0.22, ρ = 0) initial opinion distributions, as

we decrease ω, the value of c at which the transition between consensus and fragmentation

occurs also decreases. For these distributions and c = 0.2, our topic-weighted HK model

with ω ≤ 0.4 reaches consensus, while the baseline HK model has opinion fragmentation.

By contrast, for the wedge and Gaussian(σ = 0.22, ρ = 0.8) initial opinion distributions,

ω has little effect on the value of c at which there is a transition between consensus and

fragmentation. For the wedge distribution and fixed c, varying ω typically has little effect

on the limit order parameter Q(Tf ). However, for the wedge distribution, when c = 0.225

(near the transition between consensus and fragmentation), Q(Tf ) tends to increase as we

decrease ω.
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Figure 6.6: Limit order parameters Q(Tf ) in simulations of our topic-weighted HK model on
a 2000-node complete graph with various initial opinion distributions and various values of
the BCM parameters c and ω.
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To investigate the impact of the distribution of initial opinions on the distribution of

limit opinions, we plot the limit opinion clusters in opinion space for our simulations with

confidence bound c near the transition between consensus and fragmentation. In Figure 6.7,

we show an example of the limit opinion clusters for our topic-weighted HK model and the

baseline HK model with c = 0.1 for Gaussian(σ = 0.22, ρ = 0) and Gaussian(σ = 0.22, ρ =

0.8) initial opinion distributions. For the simulations that we show for our topic-weighted

HK model with ω = 0.1 (see panels A and C of Figure 6.7), we observe a limit opinion cluster

near (0.5, 0.5) with almost all of the nodes for the Gaussian(σ = 0.22, ρ = 0) distribution

and most of the nodes for the Gaussian(σ = 0.22, ρ = 0.8) distribution. The simulation

with the Gaussian(σ = 0.22, ρ = 0.8) distribution also has a second major limit opinion

cluster with about 17% of the nodes of the network offset from the limit opinion cluster near

(0.5, 0.5) and lying near the central axis of the skewed Gaussian distribution (see Figure 6.3).

We hypothesize that for small ω, early in a simulation, nodes that have initial opinions near

(0.5, 0.5) have more nodes in their regions of absorption for a Gaussian(σ = 0.22, ρ = 0) initial

opinion distribution than for a Gaussian(σ = 0.22, ρ = 0.8) initial opinion distribution. In

Figure 6.7, for our topic-weighted HK model, more limit opinions are near (0.5, 0.5) and

we observe more consensus for the Gaussian(σ = 0.22, ρ = 0) distribution than for the

Gaussian(σ = 0.22, ρ = 0.8) distribution. When we compare the limit opinion clusters of

our topic-weighted HK model (see panels A and C of Figure 6.7) with those of the baseline

HK model (see panels B and D of Figure 6.7), we see that the baseline HK model has more

small limit opinion clusters, resulting in smaller order parameters Q(Tf ) and less consensus

than in our topic-weighted HK model. For our topic-weighted HK model, as we decrease the

topic weight ω, the areas of the regions of absorption increases. Therefore, for smaller values

of ω, a node can potentially have more nodes to which it is receptive, thereby promoting

consensus.

In Figure 6.8, we show an example of the limit opinion clusters for our topic-weighted HK

model and the baseline HK model with c = 0.2 for independent uniform and wedge initial
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Figure 6.7: The limit opinion clusters in simulations of our topic-weighted HK model and
the baseline HK model with c = 0.1 for the Gaussian initial opinion distributions. In (A,
B), we show simulations of our topic-weighted HK model with ω = 0.1. In (C, D), we show
corresponding simulations of the baseline HK model (with ω = 1) with the same initial
opinion distributions. For this figure and the subsequent figure of this type, each panel
shows the limit opinion clusters for a single simulation. For each panel, in the square plot,
each point represents the location of a single limit opinion cluster. The color, size, and
annotation of each point indicate the number of nodes in that limit opinion cluster. Around
each limit opinion cluster, we show a dotted polygon to indicate its region of absorption
(see Equation (6.3.3)). Above and to the right of each square plot, we show the marginal
distributions of the limit opinions in topic 1 and topic 2, respectively.
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opinion distributions. The simulation that we show of our topic-weighted HK model with

ω = 0.5 and an independent uniform initial opinion distribution (see panel A of Figure 6.8)

reaches a consensus state; there is a single limit opinion cluster near the center (0.5, 0.5) of the

opinion space. For the simulations that we show of the baseline HK model (see panels B and

D of Figure 6.8), there is no limit opinion cluster at the center of the opinion space. Instead,

there are 2–4 major limit opinion clusters located near (0.5, 0.5); their regions of absorption

surround the center of the opinion space at (0.5, 0.5) with little overlap. The baseline model

has smaller regions of absorption than our topic-weighted HK model with ω < 1. Because of

the smaller regions of absorption, it seems that the limit opinions are somewhat away from

the center of the opinion space, promoting opinion fragmentation. The simulation that we

show of our topic-weighted HK model with ω = 0.5 and a wedge initial opinion distribution

(see panel C of Figure 6.8) has three major limit opinion clusters. These three limit opinion

clusters are located near the wedge distribution function (see Equation (6.4.1)) in opinion

space. For fixed c, our topic-weighted HK model with ω = 0.5 has larger regions of absorption

than the baseline model. However, because of the shape of the wedge distribution, it seems

that nodes on one side of the opinion space (e.g., near (0.25, 0.3)) are never receptive to nodes

on the other side of the opinion space (e.g., near (0.75, 0.3)). Consequently, in Figure 6.8C,

our simulation with the wedge distribution results in a fragmented state with three major

limit opinion clusters. The largest major limit opinion cluster is near (0.5, 0.75) and is near

the apex of the wedge (i.e., near (0.5, 1)). This major limit opinion cluster is likely the

largest due to it containing nodes from both “legs” of the wedge distribution (i.e., nodes i

with initial opinion x1
i (0) < 0.5 and nodes i with x1

i (0) > 0.5).

6.5.2 Topic-weighted DW model

We now briefly discuss the simulations of our topic-weighted DW model on a 500-node

complete graph with the independent uniform and wedge initial opinion distributions and

various values of the BCM parameters (namely, the confidence bound c and topic weight ω).
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Figure 6.8: The limit opinion clusters in simulations of our topic-weighted HK model and
the baseline HK model with c = 0.2 for the independent uniform and wedge initial opinion
distributions. In (A, B), we show simulations of our topic-weighted HK model with ω = 0.5.
In (C, D), we show corresponding simulations of the baseline HK model (with ω = 1) with
the same initial opinion distributions.
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We have not yet completed our simulations of our topic-weighted DW model with Gaussian

initial opinion distributions and plan to do so as part of our next steps for this project. As

we discussed in Section 6.4.2, for each initial opinion distribution, we use 20 distinct sets of

initial opinions in Monte Carlo simulations of our topic-weighted DW model.

In Figure 6.9, we show the limit order parameters Q(Tf ) (see Equation (6.4.4)) in our

simulations of our topic-weighted DW model for various initial opinion distributions. For

fixed ω and both the independent uniform and wedge initial opinion distributions, we observe

smaller values of Q(Tf ) (and correspondingly more opinion fragmentation) as we decrease

c. For an independent uniform initial opinion distribution, we observe similar trends for our

topic-weighted DW model as we did for our topic-weighted HK model. One trend is that, for

fixed c and a fixed initial opinion distribution, we tend to observe more opinion fragmentation

as we increase ω. Another trend is that, as we decrease ω, we observe a decrease in the value

of c at which the transition between consensus and fragmentation occurs. For fixed c and the

wedge initial opinion distribution, we typically observe little effect on the order parameter

when we vary ω. However, for c = 0.25, there appears to be less opinion fragmentation for

0.4 ≤ ω ≤ 0.6 than for other values of ω. We are not sure why this seems to occur, so we

plan to run additional simulations to determine if this observation is due to noise.

6.6 Discussion and next steps

We developed BCMs that generalize the HK and DW models to K-dimensional opinions

with topic-weighted opinion discordance functions (see Equation (6.2.1)). As we decrease

the topic weight ω in our BCMs, when two nodes interact on topic k, we more heavily weight

their opinion differences on topics other than k when we determine if they are receptive to

each other on topic k. As we decrease the topic weight ω, the regions of absorption (see

Equation (6.3.3)) increase in area. Therefore, given a node i with opinion xi, a neighboring

node j has a larger region of opinion values for nodes i and j to be receptive to each other
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Figure 6.9: Limit order parameters Q(Tf ) (see Equation (6.4.4)) in simulations of our topic-
weighted DW model with various values of the BCM parameters c and ω for (left) an inde-
pendent uniform and (right) a wedge initial opinion distribution.

on all topics.

In our preliminary numerical simulations, we demonstrated for our topic-weighted BCMs

that the choice of initial opinion distribution has a large effect on (1) whether our models

reaches a consensus state or a fragmented state and (2) the amount of opinion fragmentation.

For a fixed confidence bound c and a fixed initial opinion distribution, we tended to observe

less opinion fragmentation (i.e., more consensus) for smaller values of ω. Smaller values of ω

correspond to larger regions of absorption, so perhaps more pairs of nodes are receptive to

each other on all topics, thereby promoting more consensus. However, for a fixed confidence

bound c and the wedge initial opinion distribution, smaller ω did not promote more consen-

sus; instead, we observed little effect on the order parameter Q (see Equation (6.4.4)) when

varying ω. We hypothesize that this may be due to the shape of the wedge initial opinion

distribution. Our simulations highlight the large effect of initial opinion distribution on the

limit opinions of our topic-weighted BCMs.

We plan to run additional numerical simulations of our topic-weighted BCMs. For our
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topic-weighted DW model, we will run simulations with Gaussian initial opinion distribu-

tions. To investigate the effect of network structure on our topic-weighted HK and DW

models, we will simulate them on additional networks, such as synthetic networks (e.g., ER

graphs and SBM graphs), and real-world networks (such as the ones that we considered in

Chapter 5).
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CHAPTER 7

Conclusions

In this dissertation, we developed and studied three generalizations of bounded-confidence

models (BCMs) of opinion dynamics.

In Chapter 4, we generalized the Deffaunt–Weisbuch (DW) BCM by using node weights

to model agents that have heterogeneous activation probabilities. Using numerical simula-

tions, we systematically investigated (using a variety of network structures and node-weight

distributions) the effects of node weights, which we assign uniformly at random to the nodes.

In our node-weighted BCM, we found that heterogeneous node-weight distributions tend to

yield longer convergence times and more opinion fragmentation than the associated baseline

BCM. Additionally, we tended to observe more opinion fragmentation as we increased the

inequality in node-activation probabilities by increasing either the heaviness of the tail or

the mean of the node-weight distribution. One can tailor the node weights in our BCM to

examine a variety of sociological scenarios in which nodes have heterogeneous activity levels.

For example, one can adapt it to assign node weights in a way that depends on network

structure and/or node opinions. Our model illustrates the importance of incorporating node

weights into network analysis, and we encourage researchers to spend more time studying

the effects of node weights on network structure and dynamics.

In Chapter 5, we generalized the DW and Hegselmann–Krause (HK) BCMs so that each

pair of agents has a distinct confidence bound that changes when the pair interacts. We an-

alytically and numerically explored the limiting behaviors of our adaptive-confidence BCMs.

We gave convergence properties for the dyadic confidence bounds and the limiting behaviors
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of effective graphs. For a variety of networks and a wide range of values of the parameters

that control the increase and decrease of confidence bounds, we demonstrated numerically

that our adaptive-confidence BCMs promote consensus and have longer convergence times

than the associated baseline BCMs. By examining the effective graphs in our numerical sim-

ulations, we showed that our adaptive-confidence BCMs can have neighboring nodes that

converge to the same opinion but are not receptive to each other. This qualitative behavior

does not occur in the associated baseline BCMs.

In Chapter 6, we generalized the DW and HK models to multi-dimensional opinions

that consist of multiple interdependent topics. In our preliminary numerical simulations, we

demonstrated for these topic-weighted BCMs that the choice of initial opinion distribution

has a large effect on (1) whether our models reaches a consensus state or a fragmented

state and (2) the amount of opinion fragmentation. In studies of BCMs, it is uncommon

to examine initial opinion distributions that are not uniformly random (see Section 3.4).

We encourage researchers to consider the effects of initial opinion distributions in studies of

BCMs.

Each of our three generalizations of BCMs incorporates a different modification to make

them more realistic, while maintaining tractability. However, our models have not been

validated empirically. Our BCMs rely on many assumptions that make them tractable, but

these assumptions are generally not true in the complex real-life ways that people change

opinions. Even with these drawbacks, we believe that our mechanistic models are insight-

ful for future work and provide frameworks to explore opinion dynamics. We encourage

researchers to consider exploring effective graphs, incorporating node weights and adaptive

parameters and network structures, and examining different initial opinion distributions in

models of opinion dynamics.
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APPENDIX A

A Linear Analysis of Shock–Grain Interaction for

Inertial Confinement Fusion (ICF) Ablators

In this appendix, we apply a linear theory of shock interaction with density non-uniformity

[VWL07] to study shock interaction for a model of high-density carbon grains. This project

is a collaboration with Seth Davidovits of Lawrence Livermore National Laboratory.1 This

project has been submitted as an original paper [LD24] that I co-authored with Seth Davi-

dovits.2

Ablator materials, such as high-density carbon (HDC), that are used for inertial confine-

ment fusion (ICF) have grain structure that can lead to small-scale density non-uniformity

and the generation of perturbations when the materials are shocked and compressed. One

challenge in simulating the effects of grains and other material microstructures on shock

propagation is the required resolution and computational costs. We investigate the effects of

HDC grains on shock propagation by combining the asymptotic analysis that was developed

by Velikovich et al. [VWL07] for the linearized governing partial differential equations (i.e.,

the compressible Euler equations) with a Fourier decomposition of a model of homogeneous

2D grains. We also compare the results of the linear analysis to numerical simulations of

the compressible Euler equations without the linear approximation. We assess the applica-

1This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore
National Laboratory under Contract DE-AC52-07NA27344.

2My contributions to the paper [LD24] were formulating our model of 2D grains and applying the linear
theory of [VWL07] to a Fourier decomposition of our model for 2D grains. This was done under the
mentorship of Seth Davidovits. Seth Davidovits and I wrote the paper together.
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bility of the linear analysis, examine key features of shock–grain interactions, consider the

effects of the size and aspect ratio of grains, and study the problem of approximating (i.e.,

“de-resolving”) grains in simulations.

We model HDC with grains as a non-uniform density field consisting of a periodic grid

of homogeneous grains that are separated by interstitial spaces with ramped transitions

between the grains and interstitial regions. We apply the linear theory (with one minor

addition) that was developed by Velikovich et al. [VWL07] for shock interaction with a

pre-shock density perturbation that consists of a single Fourier mode. To apply this linear

analysis to our model of 2D grains, we calculate a Fourier expansion of the pre-shock density

perturbations. For each Fourier mode, we calculate the post-shock perturbations following

the aforementioned linear analysis. Taking the sum of these perturbations for each Fourier

mode gives a total perturbation.

Through comparison to simulations, we see that shock–grain interactions are nonlinear,

except in a regime in which the density contrast between the grains and interstitial spaces

is sufficiently small. Nonetheless, the linear theory shows some key features of the shock–

grain interactions. We focus on examining the post-shock perturbed kinetic energy, which

includes contributions from density and velocity perturbations. Our calculations show that

the post-shock perturbations are composed of sonic reflections off of grain boundaries and

vorticity deposition along them, with the latter dominating the perturbed energy content.

We find that the mean post-shock perturbed kinetic energy decreases with increasing grain

size. From the perspective of the post-shock perturbed energy, the linear theory largely

supports a method of Davidovits et al. [DWC22] for de-resolving the grains that treats the

grains statistically.
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APPENDIX B

Detection of Overlapping Communities in Undirected

Graphs with Personalized PageRank

In this appendix, we investigate a method to detect overlapping communities in undirected

graphs. This project is ongoing work in collaboration1 with Trevor Steil at Lawrence Liver-

more National Laboratory (LLNL).2

Many of the methods to detect communities3 (see Section 2.2) in graphs partition the set

of nodes of a graph; they find a set of communities in which each node belongs to exactly one

community [FH16]. For many real-life graphs, it can be appropriate to consider overlapping4

communities [YL15]; a node can belong to multiple communities and communities can have

overlapping node membership. For example, one can consider overlapping friend groups in

a social network or overlapping conference participation of groups of researchers. Building

from the work of Andersen et al. [ACL06] and Whang et al. [WGD13], we study a method

based on personalized PageRank (PPR) to detect overlapping communities in unweighted,

undirected graphs. For computational efficiency and to allow us to handle large graphs, we

implement this method using YGM [SRP23], an asynchronous distributed computing library

1I am leading this project with mentorship from Trevor Steil.

2This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore
National Laboratory under Contract DE-AC52-07NA27344 (LLNL TR-864751). Funding from LLNL LDRD
project 21-ERD-020 was used in this work.

3Researchers sometimes refer to communities in a graph as “clusters” [FH16].

4Overlapping communities are also sometimes called “soft communities”. Additionally, when nodes have
different strengths of membership in different communities, overlapping communities are sometimes called
“fuzzy communities” [FH16].
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that was developed at LLNL.

The PPR vector for a set of seed nodes in a graph indicates the stationary distribution

of a random walk (see Section 2.1) on the graph in which a random walker can “teleport”

to a seed node. Consider a connected, unweighted, undirected graph G = (V,E), where V

is the set of nodes and E is the set of edges. Let W denote the lazy-random-walk transition

matrix W = 1
2
(I+D−1A), where A is the adjacency matrix of the graph and D is a diagonal

matrix of node degrees. Let s be a vector representing a seed set S with size (i.e., number

of nodes) Ns; the vector s has entry 1/NS in seed-node positions and 0 elsewhere. The PPR

vector πs for this seed vector s satisfies

πs = αs+ (1− α)πsW , (B.0.1)

where α ∈ (0, 1] is the teleportation parameter, which controls the probability that a random

walker “teleports” to a seed node. The ith entry of πs is the PPR of node i for the seed set

S.

Andersen et al. [ACL06] developed a method to efficiently calculate PPR vectors and

use them to find local communities for seed nodes in an undirected graph. They developed a

“pushing” algorithm that efficiently approximates PPR with a runtime that is independent

of the size of the graph. They also developed a “conductance-sweep” algorithm, which uses

the PPR vector to find a local community with small conductance (see Equation (2.2.1))

that contains the seed node for the PPR vector. A set of nodes with smaller conductance

can be considered a higher-quality community than a set of nodes with larger conductance

(see Section 2.2). Whang et al. [WGD13] developed a method that uses the algorithm in

[ACL06] to find overlapping communities in a graph. At each step of their method, a seed-

selection procedure selects a seed node that does not yet belong to a community and then

uses PPR to find a community for that seed node. Their method repeats until it reaches the

maximum number of seed nodes that one wants to consider or all nodes in the graph belong
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to at least one community. The resulting set of overlapping communities is a “community

profile”. In [WGD13], Whang et al. investigated a variety of seed-selection procedures.

We use the method of Whang et al. [WGD13] with some small modifications, and we

implement it in a distributed-computing setting. Let R denote the set of all nodes that

have not yet been assigned to any community. When Whang et al. [WGD13] selected a

seed node in R, they took that seed node and all of its neighbors to be the seed set for

their PPR calculation. By contrast, we consider seed sets that consist of a single seed node.

Additionally, when we select a seed node, before calculating PPR, we first check if we can

add it to an existing community without increasing the conductance of that community.

The local conductance [GS12] of a node i in a graph is the conductance (see Equa-

tion (2.2.1)) of the set that consists of i and its neighbors. A node that has a local con-

ductance that is less than or equal to the local conductance of its neighbors has minimal

local conductance. Gleich et al. [GS12] found that nodes with minimal local conductance are

good seed nodes for PPR-based community detection. Whang et al. [WGD13] examined a

seed-selection procedure that finds seed nodes with minimal local conductance.

In our preliminary investigation, we examine two5 seed-selection procedures, which we

call our “largest-degree” and “smallest-local-conductance” seed-selection procedures. For

our largest-degree seed-selection procedure, we select a seed node in R that has the largest

degree. For our smallest-local-conductance seed-selection procedure, we select a seed node

in R that has the smallest local conductance. We test our method with these seed-selection

procedures on a variety of graphs from the Stanford Large Network Dataset Collection

[LK14].

We observe that largest-degree seed selection tends to yield fewer and larger communi-

ties than smallest-local-conductance seed selection. Despite the differences in the numbers

5We also consider variants of these seed-selection procedures in which only the nodes in R that have
minimal local conductance are potential seed nodes. If there are no such nodes, we consider any node in R
as a potential seed. We observe little difference in our results when we restrict seed nodes to have minimal
local conductance when possible.
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and sizes of the resulting communities, both seed-selection procedures yield community pro-

files with similar mean conductance. Additionally, seed nodes that we select later in our

community-detection method do not necessarily yield worse communities. That is, for k < ℓ,

the ℓth community does not necessarily have larger (and therefore worse) conductance than

the kth community. In our preliminary investigation, we find that the choice of seed-selection

procedure can affect the number, sizes, and qualities (which we quantify with conductance)

of the communities. An area for future work is to develop methods to assess and compare

community profiles. Such methods can be application-dependent and will hopefully allow

researchers to determine which community profiles (and which corresponding seed-selection

procedures) are suitable for their application.
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