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ABSTRACT OF THE DISSERTATION

Inference of Cell Fate Transition from Single-Cell Transcriptomic Data

By

Yutong Sha

Doctor of Philosophy in Mathematics

University of California, Irvine, 2022

Professor Qing Nie, Chair

Rapid growth of single-cell technologies provides unprecedented opportunities for close scru-

tinizing of heterogeneous cell states. However, detecting cell fate transition especially in-

ferring the intermediate cell states (ICS) and transition cells from single-cell transcriptomic

data remains challenging. In this dissertation, we focus on the epithelial-to-mesenchymal

transition (EMT) as an example of cell fate transition. In Chapter 1, we introduce the ex-

istence and plausible biological roles of ICS in EMT. In Chapter 2, we present QuanTC, a

method to infer cell fate transition, and a single-cell stochastic model of EMT which pro-

vides as a benchmark for QuanTC. In Chapter 3, we further apply QuanTC to single-cell

transcriptomic datasets. We analyze the dynamical properties of inferred ICS based on a

cell population model. In Chapter 4, we study the cellular crosstalk and the underlying gene

regulatory dynamics along EMT from cancer cell lines with different inducing factors and

find that the induced EMTs are context-specific. In Chapter 5, we combine deep learning

with unbalanced optimal transport to model the temporal dynamics of time series single-cell

transcriptomic data.
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Chapter 1

Intermediate Cell States in

Epithelial-to-Mesenchymal Transition

This chapter is a reprint of the material as it appears in [138]. The co-authors listed in this

publication directed and supervised research which forms the basis for this chapter.

1.1 Background

The transition from epithelial to mesenchymal cells, as well as the reverse (mesenchymal-to-

epithelial transition or MET), are highly dynamic processes implicated in various biological

processes. EMT is well studied in the context of embryogenesis, organ fibrosis, and cancer

metastasis, which highlight the categorical subtypes of EMT [77]. As our understanding

of how EMT is regulated expands, it has become clear that EMT exists on a spectrum

or continuum with various possible cell states existing between epithelial and mesenchymal

phenotypes [118]. Cells do not necessarily exist in “pure” epithelial or mesenchymal states,

but instead can be in intermediate cell states (ICS) or hybrid states that possess character-
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istics of both epithelial and mesenchymal cells [118]. Context and tissue specific functions of

EMT exist, but a number of key features and phenotypes are shared amongst the different

subtypes of EMT [77, 118].

EMT involves the transient reduction and sometimes full loss of adhesion between cells.

Hallmark changes involve alterations in cytoskeleton architecture, changes in cell-cell and

cell-matrix adhesions, and loss of apical-basal polarities [92]. In the past, EMT identifi-

cation had been focused on the expression of a few markers such as E-cadherin (E-cad);

however, as our understanding of EMT has progressed, an expanded view of EMT iden-

tification encompasses multiple layers of molecular changes including EMT transcription

factors (EMT-TFs) and their gene regulatory networks that govern the transition [118]. A

number of key EMT-TFs such as Snail/Slug and Zeb1/2 have been identified in promoting

the mesenchymal phenotype while others TFs such as Ovol1/2 and Grhl2 have been shown

to suppress the mesenchymal phenotype thus promoting the epithelial phenotype [118, 92].

EMT regulation also occurs at the microRNA, long noncoding RNA, chromatin, and post-

translational levels [118].

1.2 EMT in normal and diseased epithelial tissues

The development and maintenance of epithelial tissues is largely driven by epithelial stem

cells [15]. The dynamic activities of these stem cells such as proliferation and differentiation

vary depending on the stage of the tissue such as during development, adult regeneration,

or in pathological conditions such as cancer [15]. Increasing evidence implicates EMT (and

its regulation) as being another cellular dynamic component that can promote stem cell

function [118]. In general, stem cell function in adult epithelial tissues is largely focused on

the homeostatic maintenance of the tissue where cells that are differentiated or lost need

to be replaced [15]. In line with the notion that EMT exists in a spectrum of states and
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degrees, its role can vary depending on the epithelial tissue, stage of development, whether

the tissue is undergoing regeneration or repair, and the pathological condition [118]. Below

we highlight several instances of EMT function and regulation in committed epithelial tissues

in different contexts such as normal development, adult regeneration and repair, and briefly

discuss in the context of cancer (readers are referred to other comprehensive reviews on this

topic, e.g. [118]).

The normal and cancerous mammary epithelium has been utilized as a model to study

the potential role and regulation of EMT in epithelial stem cell function. Experiments

using immortalized human mammary epithelial cells provided in vitro evidence that ectopic

expression of EMT-TFs Snail and Twist leads to acquisition of stem-like activities [108]. A

positive correlation between heightened EMT gene signature and stem cell fate has also been

noted for normal and cancerous mammary epithelial cell types in culture or directly isolated

from the human or mouse tissue [112, 158]. These data generated much interest in EMT as

they suggest a link between EMT and the gain of stem-like features.

Further work in the mammary model in vivo found that Snai2 (Slug) is the major EMT-TF

expressed in mouse mammary basal cells known to contain multipotent stem cells, and that

ectopic expression of Snai2 leads to enhanced stem-like features [114]. Moreover, knockout

or knockdown of Snai2 compromises mammary epithelial development and/or the ability

of primary mammary epithelial cells to regenerate a mammary tree [114, 48]. Zeb1 has

also been found to be expressed in normal mouse and human mammary basal cells [115],

with expression particularly enriched in the Procr+ stem cell subset [158]. However, its

functional significance remains to be elucidated. Interestingly, using a transgenic mammary

tumor model, Snail- but not Snai2- expressing cells appeared in the early hyperplastic lesions

as well as more high-grade carcinomas [173]. These cells lack E-cad expression and begin to

express other EMT-TFs such as Zeb1, suggesting that Snail (but not Snai2) is responsible

for governing the EMT program in cancer progression [173]. These observations highlight
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the notion that different EMT-TFs can have different, context-specific functions even in

the same tissue, and the exact underlying molecular and cellular mechanisms may differ.

Thus, we emphasize again the importance to now expand our view of EMT beyond a simple

binary, linear or universally identical process with the end goal of generating mesenchymal

cells. EMT can be thought of as a historical term that is redirected to describe the diverse

and complex variant forms associated with epithelial-mesenchymal plasticity. Specifically,

EMT may be considered a navigation through a rugged, highly nonlinear multidimensional

landscape of different axes that cumulatively define EMT [76, 136]. On this landscape, cell

states other than epithelial and mesenchymal cells often exist, exhibiting mixed (or hybrid)

features of epithelial and mesenchymal states. Such cell states, termed as Intermediate

Cell States (ICSs) in this paper, may play important roles in regulating transitions between

epithelial cells and mesenchymal cells.

Growing evidence also points to the importance of regulating EMT during physiological

epithelial development and regeneration. Within the mammary epithelium, suppression of

EMT by Elf5 and Ovol2 TFs appears to be an integral component of its normal devel-

opment and regeneration [31, 164]. Loss of Ovol2 in the mammary epithelium results in

an up-regulation of a large number of EMT/mesenchymal markers such as vimentin (Vim)

and EMT-TFs such as Zeb1, as well as in vivo morphological transformation reminiscent

of EMT [164]. Importantly, many of these EMT genes are direct targets of Ovol2’s tran-

scriptional repressor activity and depletion of Zeb1 rescues the regenerative defect caused

by Ovol2 deficiency [164], underscoring an EMT-centric function of Ovol2 in the mammary

gland. Interestingly and adding to the clinical importance of EMT regulation, incidence of

metastasis-free survival increases in breast cancer patients with low levels of Ovol2 [164].

Transcriptional inhibition of EMT by Ovol2 and its homolog, Ovol1, is also critically im-

portant for normal skin epithelial development during embryogenesis. Loss of both Ovol2

and Ovol1 leads to defective epidermal and hair follicle morphogenesis [96]. Similar to the
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observations in the mammary gland, loss of Ovol leads to up-regulated expression of EMT

structural markers and EMT-TFs, as well as EMT-like phenotypes such as reduced adhesion

between, and aberrant migration of, embryonic epidermal cells [96]. In adult skin, loss of

Ovol2 alone results in defective wound healing [51] , a process that has been proposed to

involve partial EMT of wound peripheral epidermal cells so they can efficiently migrate to

close the wound [118, 50, 5]. Ovol2-deficient epidermal and hair follicle stem cells migrate

faster than their normal counterparts, but with significantly reduced directionality [51] –

defects that are near-completely rescued when EMT-TF Zeb1 is simultaneously lost. On the

other hand, loss of EMT-TF Snai2 compromises epidermal migration after wounding, and

results in a thin epidermis and transient delay of hair growth during normal development

[5, 141, 60]. Together these data suggest that a delicate balance of EMT regulation exists to

maintain both epithelial-like and mesenchymal-like states and this ability to toggle between

the two states might be critical for skin epithelial development and regeneration. The study

of EMT in cancer has largely been focused on its role in promoting invasion and metastasis

with an involvement in chemoresistance recently demonstrated [118]; however many ques-

tions remain unanswered. Conflicting literature exists and the extent of EMT importance in

patients’ clinical outcomes remains unclear [118]. The roles of partial EMT and intermediate

states in the context of cancer is still not well understood likely due to the transient nature

of these events [118, 30]. The variation of different EMT-TFs’ expression together with the

diverse cell types in the tissues of origin adds to the complexity. Below we delve deeper into

the idea of intermediate states and discuss relevant existing data in the contexts of both

normal and diseased cells.
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1.3 Existence of ICS in EMT

During EMT, cells exist on a reversible spectrum, and can toggle between ICSs, which lie

between epithelial and mesenchymal states. Several lines of evidence using in vitro, in vivo,

and computational modeling suggest the existence of ICS. In vitro models that have fo-

cused on using various cell lines are largely focused on the dual expression of epithelial and

mesenchymal markers for identification of ICS. Glomerular parietal epithelial cells (GPECs)

from adult mouse kidney adopt an intermediate phenotype expressing both epithelial and

mesenchymal markers [144]. The MCF10A mammary epithelial cell line exists in an ICS

with expression of both epithelial (E-cad) and mesenchymal (VIM) markers as compared

to other well characterized breast cancer cell lines [55]. Cancerous cell lines have also been

shown to exhibit ICS. Some cells from the human non-small-cell lung cancer cell line A549

are in an intermediate EMT state in culture based on co-expression of VIM and SNAI2 [4].

ITGB4+ triple-negative breast cancer stem cell-enriched cells reside in an intermediate state

between “pure” epithelial and mesenchymal cells [14]. Research from a number of groups

indicates that individual carcinoma cells, rather than all cells at a population level, can exist

in ICSs. Distinguished by the widely used cell-surface markers resolving epithelial and mes-

enchymal cells, single CD24+/CD44+ cells in tumorigenic human mammary epithelial cells

are ICS cells [57]. H1975 lung cancer cells co-stained for both VIM and E-cad display an

ICS phenotype at a single-cell level [74]. Circulating tumor cells from human breast cancer

cell lines captured by a microfluidic device from blood exhibit both epithelial (MCF7 and

SKBR3) and mesenchymal (MDA-MB-231) characteristics, indicating existence of potential

ICSs [174]. The classical view of the metastatic cascade depicts a sequence of events including

dissemination, invasion, intravasation, and eventually extravasation, and ICS cells expressing

both epithelial and mesenchymal features can be observed at these different stages; however,

dissecting the exact role that EMT plays at these stages in vivo has proven to be difficult

[118]. Findings generated by modeling and computational approaches also support the idea
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of ICS. Modeling of the microRNA (miR)-based chimeric modules showed the miR-200/Zeb

module functions as a ternary switch, allowing an intermediate phenotype in addition to

the epithelial and mesenchymal phenotypes [105]. Random circuit perturbation (RACIPE),

interrogating the robust dynamical behavior of a gene regulatory network, has identified two

different types of intermediate phenotypes when applying to a proposed 22-gene network of

EMT [56]. A topographic map using the combination of numerical simulations of a Boolean

network model and the analysis of bulk and single-cell gene expression data revealed multi-

ple ICSs, separating stable epithelial and mesenchymal states [43]. Energy-landscape based

methods like scEpath could also be used to identify ICS [68] and the landscape of the free

energy changes during the EMT of lung cancer cells suggests a stable ICS [176]. Previous

studies predicted that multiple ICSs may exist between epithelial and mesenchymal states

[146], but the number of intermediate phenotypes is still a matter of debate [46]. Recent

experiments have provided evidence for one, two and three intermediate phenotypes from

TGF-β–induced EMT in MCF10A cells [179], ovarian carcinoma (OC) cell lines [58], and

circulating tumor cells in blood [174], respectively. While theoretical analysis helps to predict

the number of ICSs, modeling studies have revealed that complex EMT regulatory networks

govern the existence of multiple ICSs [107]. Modeling of miRNA-based regulation composed

of a tristable circuit miR-200/Zeb driven by the monostable module miR-34/Snail allowed

one intermediate EMT phenotype [105]. Ovol can modulate cellular plasticity by restricting

EMT, driving MET, expanding the existence of the ICS and turning both EMT and MET

into two-step processes based on the mechanism-based mathematical model coupling Ovol

with the core regulatory network miR-200/Zeb [62]. Later, two distinct intermediate phe-

notypes in EMT dynamics were predicted and experimentally validated, and were shown to

be modulated by Ovol2 and the Ovol2-Zeb1 mutual inhibition circuit [55]. Recently, anal-

ysis of a mathematical model that integrates expression data with the reported Tcf21-Slug

interactions reveals one stable and two metastable ICSs in EMT [155].
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1.4 Roles of ICS

1.4.1 Stemness

Recent theoretical and experimental studies have suggested that cells in ICSs can be more

stem-like than both “pure” epithelial and mesenchymal cells. For example, trophoblast stem

cells isolated from the conceptuses of MAP3K4 kinase-inactive mouse (TSKI4) cells are found

to be trapped in an ICS and exhibit properties of both EMT and stemness [1]. Other cells at

ICS states may also acquire stemness. For example, co-culture of cells from E and M states

actually enhances mammosphere formation (an assay for stemness), and the isolation of the

CD24+/CD44+ hybrid E/M cell state leads to enhanced stemness [57]. In another example,

more than 90% of CD24+ cells from kidney GPECs show co-expression of surface markers

of renal progenitors CD24 and cadherin-11, suggesting that these cells have acquired stem

cell-like properties [144]. Mathematical modeling and computational analysis also predict

that the ICS confers stemness potential. A model on three-way switch LIN28/let-7 circuit

and a model on EMT-STEM-Notch coupled circuit both revealed a high likelihood of an

ICS phenotype (when compared with either epithelial or mesenchymal states) in gaining

stemness [72, 19]. Moreover, the ICS location in the low-dimensional gene expression space

can shift towards either end of the EMT spectrum, and a crosstalk between EMT and stem

cell regulatory modules in conjunction with Notch signaling creates a window of opportunity

for stemness [19]. If one could reduce the size of the window or shift the window away from

the mesenchymal end of the EMT space, the tumor would be less aggressive in growth or

invasiveness [116]. ICS importance has also been analyzed in other systems not directly

related to EMT [107]. For example, based on a five-node stochastic gene regulatory network

controlling cellular stemness, ICS is found to significantly decrease the barrier of potential

landscape and the minimal action value along the transition path to promote the differ-

entiation process [175]. Clearly, additional experimental studies are needed to clarify the
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mechanistic link between ICS and stemness, the relationship of which may be correlative

rather than casual in some cases.

1.4.2 Collective migration

The ability of cells in ICS to migrate in a collective manner has been implicated during em-

bryonic development, wound healing and the formation of tumor cell clusters [5, 74, 110, 131].

Cells undergoing collective migration display some migratory characteristics reminiscent of

mesenchymal cells while maintain epithelial characteristics, implicating a connection to the

ICS. For example, collective migration of H1975 lung cancer cells in vitro is associated

with an ICS phenotype, and both are impaired after depletion of EMT-inhibiting TFs [74].

Cross-talks between Tcf21 and Slug have been identified to mediate phenotypic and mi-

gration plasticity in high-grade serous ovarian adenocarcinoma, and ICSs were found to be

important in collective cell migration [155]. As discussed above, our recent studies highlight

the importance of balancing the functions of EMT-inhibiting TF Ovol2 and EMT-TF Zeb1

in achieving directional cell migration of skin epithelial cells to support tissue repair and

regeneration [51].

1.4.3 Drug resistance

The ICSs in EMT have great clinical relevance as they have been associated with drug

resistance. The triple-negative breast cancer cells, which contain a number of intermediate

E/M cells in primary tumor [174], exhibit de novo resistance to current standard therapies

such as anthracyclines and taxanes [3, 70]. However, the underlying signaling pathways

and molecular mechanisms of the interplay between ICS and drug resistance remain largely

elusive [70].
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1.4.4 Metastasis

The overarching role of EMT in metastasis has been extensively studied, however the precise

role of ICS remains unclear. During the metastatic cascade, cells in primary tumor adopt

mesenchymal-like features and are then able to leave the primary tumor and colonize in

other locations, such as in mouse breast or pancreatic cancer models where Snail-positive

or “EMTing” cells are sometimes fully detached from epithelial islands while losing E-cad

expression [132]. The EMT-TF Zeb1 has been shown to be important for promoting a

spectra of tumor types from mesenchymal, mixed (possibly at ICS), and epithelial as its loss

leads to a confined epithelial state in pancreatic cancer [87]. In vivo live cell imaging coupled

with gene expression analysis indicates that cells disseminated from primary tumors exhibit

low expression of E-cad and enhanced expression of mesenchymal markers [9], suggesting

that those cells have characteristics of ICSs. Interestingly, in a pancreatic cancer model,

deletion of Twist or Snail does not cause any alterations in invasiveness [182], indicating

cells (possibly ICS) that lose some of the well-studied mesenchymal markers may possess

mesenchymal-like features. Along the same lines, in a lung metastases model, although EMT

occurs within the primary epithelial tumor, the initial lung metastases are mainly derived

from non-EMT tumor cells [42], and EMT cells do play a major role in recurrent lung

metastasis after chemotherapy [42]. Beyond the gain of mesenchymal-like features during

primary tumor dissemination, dynamic EMT gene expression is also observed in circulating

breast tumor cells [174]. Together these data suggest that during EMT there are cells other

than mesenchymal cells showing mesenchymal-like features with tissue and context specific

roles during metastasis. Further analysis on such cells and their connection with ICS is

important for better understanding of metastasis.
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1.4.5 Speculated roles of ICS: controlling noise and dynamical ro-

bustness

Mathematical modeling and computational analysis have shown that ICS has the ability to

control noise and increase the robustness of EMT dynamics. Increased number of interme-

diate phenotypes in the EMT system can better attenuate the overall fluctuations of the

cell population in terms of phenotypic compositions, thereby stabilizing a heterogeneous cell

population on the EMT spectrum, via a dynamic ODE modeling of the population of each

cell phenotype [145]. The existence of ICS can also allow noise attenuation while maintaining

the mean of the signal [129]. In another example using a regulatory circuit of miR-200, Zeb,

and Snail, the ICS is observed to increase the plasticity of cell fate and the robustness of

EMT dynamics [100]. With ICS, the EMT process can be carried out through transition first

from the epithelial state to a ICS temporarily, and making further transition then from the

ICS to the mesenchymal state or directly going from the epithelial state to the mesenchymal

state. Moreover, cells at ICS can go back to epithelial state at other times, depending on

the signal inputs for flexibility [100].

1.4.6 Stability

The ICS of EMT has been considered “metastable” [146, 97], reflecting the flexibility of

these cells to undergo or reverse the EMT process [133]. In angiogenesis, hybrid tip/stalk

phenotype, resulting from higher production levels of Jagged, relates with poorly perfused

and chaotic angiogenesis based on the theoretical framework for Notch-Delta-Jagged-VEGF

signaling [16]. But some evidence show that ICS could be stable. Experimentally, H1975

lung cancer cells can display a stable ICS over two months in culture [74]. In addition, the

landscape of the free energy changes during EMT of the lung cancer cells shows a stable

intermediate state [176]. Not only in EMT, ICS of immune system’s T-helper cells are also
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observed and are stable, having two canonical subtypes [59]. Interestingly, computational

modeling that considers the mutual inhibitory loops between several miRNAs and EMT-TFs

indicates that such networks are capable of generating additional stable ICSs [118, 55, 74]

and have identified multiple phenotypic stability factors, such as Ovol, GRHL2, miR-145

[74] and NUMB, that can stabilize an intermediate E/M phenotype [20]. What’s more, ICSs

can be stabilized due to the increase of gene expression noises [56, 85].

1.5 Rising issues and challenges

Recently, single-cell RNA sequencing (scRNA-Seq) has emerged as a powerful means to

dissect the heterogeneity in normal and diseased epithelial tissues. The ability to sample

the transcriptome and quantify gene expression changes at single-cell resolution has yielded

unprecedented insights into the physiology of epithelial systems by aiding in the discovery

of rare cell types, shedding light on the dynamics of lineage differentiation, and providing

comprehensive gene expression profiles of diverse cell types [115, 94]. scRNA-Seq has also

begun to be employed to better understand the transition states that occur during EMT in

cancer. In a recent study, scRNA-Seq revealed the presence of a partial EMT-like state in

human squamous cell carcinoma (SCC) samples, implicating the existence of ICS in vivo.

Another study utilized mouse models of SCC and mammary tumorigenesis for single-cell sur-

face marker/RNA-seq analyses, and identified subpopulations of tumor cells corresponding

to different degrees of EMT, with some displaying hybrid phenotypes that likely represent

multiple distinct ICSs in vivo [121]. It is anticipated that single-cell approaches will also

reveal EMT-related heterogeneity and enable the detection of ICSs in various normal ep-

ithelial tissues. Indeed, sequencing of 1,916 single cells from eight different organs from E9.5

to E11.5 embryos led to the identification of epithelial-mesenchymal ICSs in all epithelial

tissues sampled, including intestine, liver, lung, and skin [39]. In addition to characteriz-
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ing ICSs, single-cell approaches have been used to suggest a role for EMT and/or ICS in

development/differentiation and disease. Using an experimental pipeline that incorporates

single-cell qPCR analysis, it was shown that human embryonic stem cells (hESCs) go through

a stepwise differentiation process into hepatocytes by undergoing sequential EMT-MET with

an obligatory ICS, implicating a potential role for EMT/ICS in hESC differentiation into a

definitive endodermal fate [101]. The SCC cells of the distinct ICSs discussed above display

different clonogenic and differentiation potentials, as well as distinct invasive and plastic

properties, providing experimental evidence that the different transition states that arise

from EMT progression have different biological functions [121]. It has become increasingly

clear that ICSs during EMT are important biological entities and must be considered when-

ever EMT is studied. The exact roles of EMT, and particularly of the constituent ICSs in

different developmental and disease contexts need to be investigated using a combination

of experimental and computational approaches. It would be interesting to computationally

model the overall dynamics of the cellular states in a continuum fashion to capture their

relatively unstable properties rather than studying multiple statuses in between the main

stable states. Developing sophisticated computational tools that facilitate the identification

and characterization of various ICSs – cell states that are more transient and may be differ-

ent from other major cell states - represents a major challenge as well as opportunity in the

EMT field.
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Chapter 2

Inference of Transition Cells via

Single-cell Transcriptomic Data

This chapter is a reprint of the material as it appears in [140]. The co-authors listed in this

publication directed and supervised research which forms the basis for this chapter.

2.1 Background

Rapid growth of single-cell transcriptomic data provides unprecedented opportunities for

close scrutinizing of dynamical cellular processes. Through investigating epithelial-to-mesenchymal

transition (EMT), we develop an integrative tool that combines unsupervised learning of

single-cell transcriptomic data and multiscale mathematical modeling to analyze transitions

during cell fate decision. Our approach allows identification of individual cells making tran-

sition between all cell states, and inference of genes that drive transitions. Multiscale ex-

tractions of single-cell scale outputs naturally reveal intermediate cell states (ICS) and ICS-

regulated transition trajectories, producing emergent population-scale models to be explored
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for design principles. Tested on the newly designed single-cell gene regulatory network model,

our unsupervised learning method faithfully captures cell plasticity and transition trajectory.

2.2 Introduction

The epithelial-to-mesenchymal transition (EMT) is an important process observed in many

biological systems, including embryogenesis, wound healing and malignant progression [118].

Recently, several lines of in vitro and in vivo evidence, along with computational modeling,

suggest that cells undergoing EMT is not a simple binary switch, and during the transition

some cells exhibit mixed features of both epithelial and mesenchymal features [118, 138].

Those cells characterized as intermediate cell state (ICS) have been implicated in the po-

tential roles of stemness, collective migration, drug resistance, metastasis, and noise control

[118, 179, 58].

Key gene regulatory elements of EMT, such as EMT-suppressing microRNAs and EMT-

promoting transcriptional factors, have been used for modeling and experimental analysis

of ICS. Existence of multi-stable states of the modeled gene regulatory networks has been

used to imply existence of ICS [105, 149, 55]. Few regulators have been found to be critical

in formation of ICS, such as a transcriptional factor Ovol for regulating growth and Notch

signaling for cell-cell communications [55, 142, 17], and few others have been suggested in

stabilizing ICS [62, 74, 69].

Are the cells in ICS showing strong variability or tightly controlled? Single-cell RNA sequenc-

ing (scRNA-seq) technology provides unprecedented opportunities to explore cellular het-

erogeneity, distinct cell states, marker genes and the accompanying functions [82, 157, 135].

Expression levels of epithelial and mesenchymal markers and transcription factors of ICS

have been recently analyzed in EMT at single-cell resolution [120]. EMT scoring metrics
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have been developed by applying the best-fit model obtained from a previously-developed it-

erative statistical procedure to quantify EMT status of cells in different cell lines [44, 61, 64].

More recently, a topographic map underlying EMT has been constructed to explore ICS for

its phenotypic plasticity [43].

One major challenge is to analyze temporal dynamics of cells in EMT from the snapshot

transcriptomic data. Pseudo-temporal ordering (pseudotime) of cells in scRNA-seq data

provides trajectories of cells that may recapitulate transition between cell states. However,

such approach is usually dependent on the cell-embedding in the low-dimensional space via

dimension reduction or structured graphs [185, 47, 143]. Recently, the single-cell method

SOUP allows classification of both pure and intermediate cells by constructing the cell-cell

similarity matrix and estimating a membership matrix [185]. Robust tools to quantify the

transition trajectories and detect driving genes in EMT are still in need.

What are the transitional properties of cells near or at ICS? Is ICS simply another stable

cell state between epithelial and mesenchymal states? Can we construct and quantify the

transition paths in EMT? Here we first develop an unsupervised learning method (QuanTC)

to infer and quantify transitional property of individual cells in scRNA-seq data. Then

we validate QuanTC against our EMT multiscale single-cell model, which combines several

previously published gene regulatory networks.

2.3 Method details

2.3.1 Overview of QuanTC

QuanTC takes the scRNA-seq data matrix as input to construct a cell-cell similarity matrix

using a consensus clustering method (Figure 2.1) [82]. Via non-negative matrix factorization
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Figure 2.1: Outline of key components of the approach in analyzing transition cells and ICS.
(A) Input single-cell transcriptomic datasets to an unsupervised learning method (QuanTC)
to explore the transition cells, transition genes and other transition properties. (B) Develop
multi-scale agent-based of gene regulatory network and cell-population dynamics models
to validate and test outputs from QuanTC. (C) Overview of QuanTC: 1) feature selection
and consensus clustering, 2) calculation of cell-to-cell similarity matrix, 3) computing cell-
to-cluster matrix via NMF, and 4) using probabilistic regularized embedding (PRE) for
two-dimensional visualization: Each solid circle represents one cell, colored by the value of
Cell Plasticity Index (CPI) that quantifies the transition capability of each cell, and each
larger circle represents the center of a stable cell subpopulation.
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[88], a method of soft clustering, QuanTC then calculates the probabilities of a given cell

belonging to the identified clusters (Figure 2.1C). To detect transition cells (TC), the cell-

to-cluster probabilities are next used to measure the plasticity of each cell, i.e. the extent

to which the cell may change its cluster identity. To better visualize cells in transition,

we project cells to a low-dimensional space based on a probabilistic regularized embedding

(PRE) (Figure 2.1C). The transition trajectories are then inferred by summing the cluster-

to-cluster transition probabilities that are calculated from cell-to-cluster probabilities and

TC between clusters. The clusters in the middle of the transition trajectories are denoted

as ICS. The transition genes and marker genes of clusters are obtained through factorizing

the gene expression matrix as product of cell-to-cluster probabilities and likelihoods of genes

uniquely marking each cluster.

2.3.2 Feature selection and consensus matrix construction

We start by removing the low-expressed cells (expressed < 5% of the total number of genes),

and the rare and ubiquitous genes that are either expressed in less than 10% of cells or

expressed with low variance (< 0.005) among all cells (Figure 2.1C). Then we fit expressions

of each gene with a Gaussian mixture model consisting of three distributions and use the

weights and means of the model to choose the most informative (bimodal distributed) genes.

We remove the rarely expressed genes for which the components of the mixture models with

mean 0 accounting for more than 90% weights. To select the bimodal distributed genes,

we rank the remaining genes according to two criteria. We first sort the difference between

means of the top two components in descending order. Then we sort the difference between

weights of the top two components in ascending order. By aggregating the ranks of the two

orders, we select the top 3000 informative genes for further analysis.

QuanTC computes a cell-to-cell similarity matrix, M , through the cluster-based similarity
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partitioning algorithm to estimate the similarity between cells. A binary matrix is con-

structed for each clustering outcome such that two cells are classified within one cluster, the

corresponding value in the binary matrix is one, otherwise zero. A cell-to-cell similarity ma-

trix M is calculated as the mean of the binary matrices constructed from clustering, leading

to a symmetric non-negative matrix.

2.3.3 Quantifying transition cells via cell plasticity index (CPI)

Through symmetric non-negative matrix factorization [88, 89, 187, 22], the cell-cell similar-

ity matrix M is decomposed into a product of a non-negative low-rank matrix H and its

transpose (n is the number of cells, k is the number of clusters) (Figure 2.1C):

min
H≥0

∥∥M −HHT
∥∥2

F
, H ∈ Rn×k (2.1)

Each column of H represents a cluster and each row of H corresponds to the relative weights

of a cell belonging to all the clusters. In other words, H contains the clustering information

of cells: the largest element in each row showing the cluster identity of the corresponding

cell and the likelihood of a cell belonging to each cluster. The number of clusters k is

estimated by analyzing the largest gap of the sorted eigenvalues of symmetric normalized

graph Laplacian (Figure B.1A).

By normalizing each row of H, we obtain a probability-like matrix P = [pij] where pij

represents the probability of cell i belonging to cluster j. QuanTC uses an entropy approach

to characterize the degree of plasticity of each cell through a Cell Plasticity Index (CPI) (for

cell i) defined as (Figure 2.1C):

CPIi = − 1

log k

k∑
j=1

Pij log (Pij) . (2.2)
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A cell undergoing the transition between clusters has higher entropy in contrast to cells

located in one well-defined cluster. A higher value of CPI for a cell implies the cell is more

plastic, making transition between clusters.

2.3.4 Visualization of transition trajectories

In order to faithfully capture both transition trajectories and discrete cell states, the cells are

visualized through a probabilistic regularized embedding (PRE) approach using a probability-

like matrix P in a low-dimensional space (Figure 2.1C). We first calculate the cluster-cluster

relationship from HTH, where each row of H denotes to what extend the cells belonging to

each cluster while each row of HT defines a distribution of weights over all cells in the cluster.

The locations of cluster centers aj in the two-dimensional space are then computed via the

projection of the cluster-cluster relationship [86]. The projection of cells x is achieved by

aligning each cell to the cluster centers based on the probabilities while keeping cells separate

from each other through the following constraint:

min
X

n∑
i=1

k∑
j=1

pij ‖xi − aj‖2
2 −

λ1

n

n∑
i=1

n∑
l=1

‖xi − xl‖2
2 . (2.3)

The cluster with possible transitions to all the other clusters, which shows strong potential of

high plasticity, is considered as a candidate for an ICS. The potential transition trajectory

among clusters are then inferred via selecting one of the non-ICS (e.g. epithelial cells)

as the initial cluster and ordering the clusters according to transitions. Two clusters are

considered as neighbor if there are TC between them. By aligning cells along the potential

cluster transition via the probability matrix P , QuanTC detects the transition trajectories.

A cell i is aligned between cluster k and j if the two largest elements of ith row of the

probability matrix P are located at kth and jth columns. The cells aligned from cluster

k to j are then ordered in ascending CPI with the largest element at kth location and in
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descending CPI with the largest element at jth location. The starting cell is selected as

the cell with the largest probability belonging to the chosen initial cluster. In the method,

multiple transition trajectories might exist, and the probabilities of occurrence of different

transition trajectories are calculated by the percentage of cells included in each trajectory

over the entire cell population size.

Furthermore, QuanTC calculates its own pseudotime of cells in each transition trajectory.

A cell’s pseudotime value is calculated as the Euclidean distance in PRE from the starting

cell. In order to make the pseudotime value comparable for cells from different trajectories,

we scale the range of pseudotime values between neighboring clusters to obtain a global

pseudotime value of each cell by using the minimum value along all possible transition

trajectories.

2.3.5 Finding cluster marker genes and the transition genes that

mark transition

In order to identify the marker genes of clusters, we calculate the probabilities for each

gene to uniquely mark a cluster. This is achieved by minimizing the difference between the

submatrix Ds, containing cells from one inferred transition trajectory of the original feature

selected gene expression D, and the submatrix Hs, with such cells of the factorized matrix

H (m is the number of genes):

min
H̄,W

∥∥Ds − H̄W
∥∥2

F
− λ2 Tr

(
H̄THs

)
, H̄ ∈ Rn×k

+ ,W ∈ Rk×m
+ . (2.4)

The optimization solution leads to a gene-cluster matrix W to ensure that the factor matrix

H̄ is similar to Hs derived from the consensus similarity matrix. Then the gene-cluster

matrix W can be used to infer transition genes and marker genes. Each column of W ,
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after normalization, describes likelihoods for the corresponding gene to uniquely mark the

clusters. Each row of W , describes how well the genes delineate the corresponding cluster.

The marker genes of cluster j are the genes with the largest values located at jth row of

the column-normalized W . The marker genes of a specific cluster are then ordered based on

their corresponding elements in row j of the column-normalized W . The difference of the

top two elements of each gene is chosen to be greater than a given value (default value is

0.03) to ensure that the gene is differentially expressed in cluster j. The default value of

λ2 is 10, and how W depends on the parameter is investigated, showing robustness of the

method (Figure B.1B).

In order to uncover genes that mark the transition, that is, the genes varying most among

the transition (Figure 2.1A), we select the marker genes of the two clusters involved in the

transition and calculate the Spearman’s rank correlation coefficient between gene expression

and the order of cells by CPI undergoing transition. Genes with absolute value of Spearman’s

rank correlation coefficient above a specified threshold (default value is 0.64) are considered

as transition genes for the transition of the two clusters. A positive coefficient implies the

gene expression levels of aligned cells show increasing changes while the negative coefficient

implies decreasing in gene expressions during transition.

2.4 Multiscale agent-based single-cell model based on

gene regulatory network

A multiscale model is constructed to track the gene expression values in each cell using an

EMT regulatory circuit of genes [55] that are stochastic in time. 18 ordinary differential

equations are used to describe the expression levels over time based on a previous study

[55]. With certain parameters, the circuit has four distinct stable steady states. Each cell
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is located at one of the four steady states or makes transition towards those steady states.

The transition between different steady states may be caused by external signals or induced

by stochastic influences over time. In the model, we make the following assumption:

Figure 2.2: Modeling illustration. (A) Relationship between the four stable steady states
and the expression levels of the epithelial marker (Ecad) and mesenchymal marker (Vim) in
the model. Each dot represents a stable steady state. (B) Illustration of individual cells and
cell division: the cell state transition may be caused by the intrinsic noise in gene regulatory
dynamics or stochastic effects in cell divisions.

1. The initial population is composed of 200 cells: 50 epithelial cells (E), 50 first inter-

mediate cells (I1), 50 second intermediate cells (I2) and 50 mesenchymal cells (M).

2. All cells divide at a normally-distributed rate ∼ N (700, 200) (N refers to a normal

distribution). The time unit in the model is hour and the parameter values of the model

are chosen based on a previous study [55]. Every time a cell divides, its expression

levels of all the EMT factors are used as initial conditions to its daughter cells. The

gene expression levels of each cell are compared to the expression levels of different

stable steady states in the EMT spectrum to determine the cell’s phenotype. The E

state is characterized by high Ecad expression, and M state is characterized by high

Vim expression. I1 and I2 states are characterized by both relatively high Ecad and

Vim expression while I1 corresponds to stronger Ecad expression and I2 corresponds

to stronger Vim expression among the stable steady states (Figure 2.2A). The cells not

at any steady states are considered as TC.
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3. Stochastic effects are integrated into our model by adding two types of noise (Fig-

ure 2.2B). (a) We first perturb the expression levels of the mother cell upon its division

into two daughter cells:

noisediv = Imotherexpr ∗ N (0, 0.7)

Idaughter1expr = Imotherexpr + noisediv

Idaughter2expr = Imotherexpr − noisediv

In this case, the noise added at the division is the expression levels of mother cell

multiplied by a normally-distributed rate. The perturbed expressions serve as the

initial conditions for the daughter cells. (b) The multiplicative noise is applied to the

parameters in the EMT model:

dIexpr = f (Iexpr) dt+ σIexprdWt

The function f represents the EMT regulatory circuit dynamics and W stands for

the Wiener process with EWt = 0 and EWtWs = min(t, s). σ represents the noise

amplitude with default value 0.01. We use Euler-Maruyama scheme to numerically

solve the system.

4. The number of times a cell can divide is described by a discrete uniform distribution

∼ U(2, 7) with an equal probability chosen from a natural number between 2 and

7. Once the cell cannot divide any more, the cell dies at a normally-distributed rate

N (1000, 100).

The multiscale model is simulated over a time span of five cell division cycles.
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2.5 Results

Our study consists of two major components: a) unsupervised learning of scRNA-seq data

and b) modeling EMT dynamics (Figure 2.1). To scrutinize the transition of cells, we first

propose QuanTC (Figure 2.1C, Materials and Methods), a method to quantify the transi-

tional status of individual cells and identify the transition genes that mark the transition

process and the marker genes that distinguish different cell states. The QuanTC is then val-

idated on a multiscale agent-based stochastic model based on a core EMT gene regulatory

network (Figure 2.1B).

QuanTC faithfully captures cell plasticity and transition trajectory in simulated

datasets

To test capability of QuanTC in capturing transition cells and intermediate cell states, we

first constructed a multiscale single-cell model using a core EMT/MET gene regulatory

network (Figure 2.3A) [105, 55, 62, 145, 107]. The new agent-based model dynamically

describes the expression levels of genes featured in the regulatory circuit within individual

cells, and explicitly includes cell division to track the individual cells. The cell state transition

may be caused by the external signal (TGF-β) or stochastic effects in cell division and/or

gene regulatory dynamics (Figure 2.2B). The single-cell model outputs a group of single cells

along with the expression values of the 18 modeled regulatory components at each temporal

point (Materials and Methods) to mimic an EMT scRNA-seq dataset.

One typical model simulation exhibits four distinct stable steady states corresponding to

four cell phenotypes: epithelial state (E), two intermediate cell states (I1 and I2) and mes-

enchymal state (M) (Figure 2.3B). The intermediate state closer to the E is denoted as I1,

and the one closer to the M as I2. The cells that have not reached any of the steady states

are considered as transition cells (TC). In this simulated system, initially each state con-
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differentiation of hESCs. (A) The EMT gene regulatory network used in the multi-scale
agent-based model; blue: epithelial promoting factor; purple: mesenchymal promoting fac-
tor. (B) Illustration of the modeling output: each cell colored by its true state labels. (C)
A simulation dataset: the proportion of each state induced by the previous cell states at the
end of each cell cycle. The size of the dot is proportional to the number of cells, and the color
denotes the cell states of the mother cell. The arrows represent the occurred state transitions
and the circle represents the state of the daughter cell. It shows the transition dynamics of
each state. (D-E) PRE visualization of each cell at the end of first cell cycle (a circle) colored
by its true state from the model (D) and the calculated CPI value (E). The percentage for
each cell type is the percentage of a given cell type over the entire cell population size. (F)
Clustering and PRE visualization of the qPCR dataset. Each dot represents one cell colored
by the identified state, and its shape represents its real time. (G) Percentage of TC in each
state relative to the total number of TC with colors consistent with (F). Dashed box: the
intermediate cell state. (H) Comparison of the inferred pseudotime and the day collected in
the experiment of each cell. The parameters are provided in Table B.1.
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sists of 50 cells and after five cell cycles the system grows to 2030 cells. To detect possible

transitions between the different states, the cells at the end of each cell cycle were tracked

back to the previous cell cycle to identify their mother cells (Figure 2.3C and Figure 2.4A)).

For example, E cells were found to come from TC whereas M cells came from TC with few

from I1 and I2. The observed transitions among the four states indicate that TC have the

strongest capability to give rise to all different EMT subpopulations with the cells in ICS

next in such transition capability. Interestingly, E and M cells show less potential to make

transitions directly (Figure 2.3C and Figure 2.4A).

The simulation dataset provides the true label of each cell and its transition details. Ap-

plying QuanTC to the data collected at the end of the first cell cycle, we identified four cell

states and TC between them (Figure 2.3D), Materials and Methods). Principal component

analysis (PCA) was unable to separate different states at the end of later cell cycles let

alone detecting the potential transitions between states (Figure 2.4D-E). To quantify the

transition capability, we computed cell plasticity index (CPI) of all cells (Figure 2.3E) and

found that the TC marked using modeling data have relatively high CPI values while cells

closer to the primary states have lower CPI values. More TC with higher CPI values were

found to be around the two ICS (Figure 2.4B, D-E), suggesting high transition potential of

ICS.

The transition genes that mark the transition processes between states, and the marker genes

of identified states were uncovered using QuanTC (Figure 2.4. Ecad and ZEB, along with

other genes sharing the similar expression behavior, were found to be marker genes of E and

M cells. As for ICS cells, while no clear state marker genes were identified, multiple transition

genes are highly expressed due to their strong potential to make transitions (Figure 2.4C).

Through cell state identification, estimating cell plasticity, and inferring marker and transi-

tion genes, QuanTC recapitulates the observed states and their transitions in the single-cell

model that can be explicitly delineated.
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Figure 2.4: The distribution of the cell population at the end of cell cycles.
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Figure 2.4 (continued): (A) Histogram of the number of cell population at the end of each
cycle. The color denotes the mother cell states. The x-labels represent the states of the
daughter cell. (B-C) Simulated EMT/MET datasets at the end of first cell cycle. The per-
centage for each cell type is the percentage of a given cell type over the entire cell population
size. (B) PCA and PRE visualization of the cells with each cell (a circle) colored by its true
state (left) and the calculated CPI value (right). (C) Heat map of normalized expression of
marker genes and transition genes (left). Columns represent cells ordered along the transi-
tion trajectory and rows represent genes. Coloring represents the normalized expression of
each gene. Transition genes are marked in the box. Top: CPI values of each cell along the
transition trajectory. Expression levels of top marker genes and transition genes with cells
ordered along the most probable transition trajectories (right). Solid lines, smoothed expres-
sion curves for each gene in the transition trajectory. (D-E) PCA and PRE visualization of
the cells with each cell (a circle) colored by its true state (left) and the calculated CPI value
(right) from simulated EMT/MET datasets at the end of third (D) and fifth cell cycle (E).

2.6 Discussion

Compared with direct clustering [82, 185] and pseudotime analysis [126, 152, 165] for scRNA-

seq data, the unsupervised learning algorithm QuanTC can simultaneously detect the inter-

mediate cell states, and construct transition trajectories via quantifying the cell plasticity.

An attractive feature of QuanTC is its soft clustering approach to identify cells in mixed

states or undergoing transition between states, a ubiquitous property in many cell fate sys-

tems. The projection of cells in PRE marked by CPI for transitions offers a parsimonious

and meaningful alternative to analyzing a large number of discrete cell states.

Unlike other methods that can only infer marker genes for cell subpopulations, such as a

recent random coefficient matrix-based regularization method on identifying transition cells

[183], QuanTC can uncover key genes that mark the state transitions. The projection of

cells in PRE marked by CPI for transition processes offers a parsimonious and meaningful

alternative to analyzing a large number of discrete cell types.

A multiscale agent-based model of EMT gene regulatory network has been developed to

generate simulation data with the ground truth, allowing easy validation of our unsuper-
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vised learning method QuanTC. Previous models were mainly focused on the regulation

mechanisms of EMT by ODEs with feedback control to identify important agents that are

responsible for initiating or suppressing EMT [179, 105, 149, 55]. In those models, cell activ-

ities or states defined by changes in gene expressions are confined within each individual cell.

We have extended the modeling of EMT to a heterogeneous population of cells, while still

incorporating gene regulatory networks, offering a convenient framework to explore cell pro-

liferation by monitoring the changes in gene expressions prompted by interactions between

various EMT agents, which is important for cancer studies [120, 79, 81]. Our model explic-

itly incorporates stochastic effects caused by each cell division [153, 66] that may affect cell

fates. Our model can also easily incorporate different assumptions on proliferative dynamics

of each cell state. For example, we have analyzed a case in which the I1 cells are assumed

to be non-proliferative (Figure A.1) to investigate ICS under cell cycle arrest during EMT

[104, 168].

In our study, more efficient algorithms to explore cell-cell similarities will likely improve

QuanTC significantly in its speed and ability to learn transition trajectories. The agent-

based multiscale model can be further improved by adding new interactions between genes

and cell-cell communications over time, and the inclusion of other cell types, such as immune

cells, may gain further insights into the functional role of ICS.
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Chapter 3

Application of QuanTC to Single-cell

Transcriptomic Data

This chapter is a reprint of the material as it appears in [140]. The co-authors listed in this

publication directed and supervised research which forms the basis for this chapter.

3.1 Background

Applying our unsupervised learning method, QuanTC, to twelve published single-cell EMT

datasets in cancer and embryogenesis, we uncover the roles of intermediate cell states (ICS)

on adaptation, noise attenuation, and transition efficiency in EMT, and reveal their trade-

off relations. Overall, our unsupervised learning method is applicable to general single-

cell transcriptomic datasets, and our integrative approach at single-cell resolution may be

adopted for other cell fate transition systems beyond EMT.
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3.2 Introduction

What are the functional advantages of ICS in state transitions? Cell population modeling

suggests the increased number of ICS attenuates the fluctuations in cell numbers during

transition [145] in addition to help maintain the mean of signal response [129]. Experimental

and modeling analysis shows ICS can also facilitate the robustness of population dynamics

[49]. Signal adaptation has been found to tightly constrain gene regulations [106], and

however, could be important as a “survival strategy” in growth and migration of cells [10].

At the level of gene regulations, achieving robustness and signal adaptation, which both

are important to cell fate transition, often require different, sometimes competitive, gene

regulations [124]. Comparisons of ICS across different EMT systems remain a major open

problem [71].

Here we apply QuanTC to twelve published EMT transcriptomic datasets in cancer and

embryogenesis. By inspecting transition cells, ICS, and their relationship with epithelial and

mesenchymal states, we construct the ICS-regulated EMT trajectories. We then compare

the inferred transition trajectories, which are different between cancer and embryogenesis,

with another method based on critical transition theory, and re-constructed core gene regu-

latory circuits for the published datasets to analyze the similarity and consistency in state

transition.

To further investigate the inferred trajectories shared by various EMT systems, we develop

and analyze cell transition models by defining and measuring three metrics emergent from

EMT cell population dynamics. Differences between inferred EMT trajectories and their

integrations with scRNA-seq data are then analyzed. Our integrative approach, which fuses

unsupervised learning of gene expression data at single-cell resolution along with principle-

guided cell population model, provides multiscale effective connections between genes and

cells in analyzing complex cell fate decision that involves ICS, multiple trajectories, and
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genes that mark transitions.

3.3 Materials and methods

3.3.1 Quantification and statistical analysis

hESCs data

The single-cell qPCR data [101] was performed with 48 selected genes during a sequential

EMT-MET from days 0 to 21. We start with 345 cells from day 0 to day 3. Based on the

cell-cell similarity matrix resulting from consensus clustering [82], we use the largest gap

of consecutive eigenvalues of symmetric normalized graph Laplacian to infer the number of

cluster k = 3. The initial cluster chosen to be the start of transition trajectory because of

including day 0 (epithelial) cells.

SCC data

We apply QuanTC to the SCC dataset [121] including 382 cells. After removing the low-

expressed cells (expressed < 5% of the total number of genes), 361 cells remain for further

analysis. After feature selection, we use top 3000 genes for consensus clustering and inference

of marker genes and transition genes. The cluster having the smallest number of TC around

(i.e. low transition taking place) is considered as the start or the end of the transition

trajectory. The initial cluster is named as E state based on the high expression levels of

Epcam. Other clusters are named based on the inferred transition trajectories compared

with the E-I1-I2-M spectrum in EMT. The cell-cycle phase of each cell is determined based

on the computed cell cycle scores provided in Seurat [150, 25].
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Mouse embryonic development data

This scRNA-Seq data [39] includes cells from skin (155 cells), lung (176 cells), liver (123

cells), and intestine (173 cells) during E9.5 to E11.5. After removing the low-expressed cells

(expressed < 5% of the total number of genes), 155 skin cells, 176 lung cells, 123 liver cells

and 173 intestine cells remain for future analysis as in SCC data.

HNSCC data

This dataset [123] has ∼ 6, 000 single cells from 18 head and neck squamous cell carcinoma

(HNSCC) patients. We focus on six tumors from which the largest numbers of malignant

cell transcriptomes and cells involved in EMT were acquired. The six tumors include pa-

tient 5 (132 tumor cells), patient 6 (123 tumor cells), patient 17 (330 tumor cells), patient

18 (140 tumor cells), patient 25 (209 tumor cells) and patient 28 (138 tumor cells). For

each patient, we first use all the tumor cells, based on the selected features by QuanTC, for

clustering. Similar to the original study [123], we remove the clusters having high expres-

sion levels of the cell cycle and stress markers because those cells are known not involved in

EMT. For the remaining tumor cells mostly similar to epithelial cells, we add 20 fibroblast

cells to each dataset to act as a reference of mesenchymal cells. We then apply QuanTC

to the mixed datasets of each patient. We notice that all the six datasets have four clus-

ters including two ICS. The raw and filtered datasets are available on the package website

(https://github.com/yutongo/QuanTC).

Mouse hematopoietic progenitors data

This scRNA-Seq data [54] includes 2018 cells. After removing the low-expressed cells (ex-

pressed < 5% of the total number of genes), 1957 cells remain for further analysis. Twelve
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clusters are identified by QuanTC (Figure B.2A). The cells with high CPI values (> 0.34)

are considered as TC (Figure B.2B). Cluster C6, C7 and C12 are considered as non-ICS or a

potential start or end of the transition trajectories because fewer TC exist in or around them

(Figure B.2C) with weak capability of making transition. B cells and plasmacytoid dendritic

cells (pDC) share a common progenitor (42). Cluster C6, C7 are B cells and pDC, respec-

tively, based on the high expressions of the known marker genes (Ebf1, Irf8 and Siglech).

Based on the relative number of TC between clusters (Figure B.2D), the transition trajec-

tories C5-C8-C7 and C5-C11-C6 indicate that B cells (C6) and pDC (C7) share a common

progenitor C5. The transition trajectories inferred by QuanTC are consistent with the pre-

vious findings [54]. QuanTC identifies the maker genes and transition genes involved in the

two transition trajectories (Figure B.2E). When ordering cells in the transition trajectories,

the known lineage markers increase along the pseudotime (Figure B.2F).

Gene Ontology enrichment

The Gene Ontology enrichment analysis [6, 36, 109] is performed on the top 100 markers

genes (Table S2 in [140]) of each ICS selected by QuanTC.

Comparison with Monocle 3

Monocle 3 [29] is applied to the simulation and SCC datasets (Figure B.3). While Monocle

3 separates Epcam+ tumor cells from Epcam- tumor cells in SCC dataset, it is unable to

obtain the known epithelial to mesenchymal lineage (Figure B.3A). However, if only using

the top 3000 genes selected by QuanTC (Figure B.3B), Monocle 3 is able to capture the

previously observed epithelial to mesenchymal lineage, suggesting usefulness of QuanTC

in feature selection. For the simulation dataset, Monocle 3 separates different cell states,

however, it cannot identify TC, consequently cannot obtain the transitions between clusters
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(Figure B.3C).

3.3.2 Dynamical system modeling of transition trajectories and

three dynamic quantities

To reduce the parameter complexity and increase model accountability, we simplify the

model to incorporate only three dimensionless parameters α,β and γ (Figure 3.1). For

easy comparison, the direct transition rate (DTR) from E to M state is used as a base for

comparison (set to one). The parameter α represents the dimensionless cell-state transition

rate from M state directly to the E state (i.e. the reverse DTR). We assume that α > 1

to guarantee that E state is more stable at equilibrium when there is no induced EMT

by extrinsic signal. It also incorporates the effects of other possible M-to-E transitions

(MET) that might not be revealed by the trajectories in EMT datasets. The parameter

γ depicts the forward transition rate between adjacent cell states along the ICS-regulated

transition path, also denoted as the indirect transition rate (IDR) of EMT. We use βγ to

represent the reverse cell-state transition rates along the indirect EMT routes with ICS.

Based on the inferred transition paths (Results), we assume that γ � 1 and β � 1 such

that EMT is mainly carried out through the ICS-regulated trajectories, and the rate of EMT

is significantly larger than the reverse MET along these trajectories.

Then the prescribed ordinary differential equations (ODEs) that describe the population

fraction change of epithelial E(t), mesenchymal M(t) and ICS Ik(t)(k = 1, 2, .., N) can be

derived.

dE

dt
= αM + βγI1 − (1 + γ)E (3.1)

dI1

dt
= γE + βγI2 − γ(1 + β)I1 (3.2)

dIk
dt

= γIk−1 + βγIk+1 − γ(1 + β)Ik, 2 ≤ k ≤ N − 1 (3.3)
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Figure 3.1: Mechanism and results of EMT population model. (A) The state-transition
structure of population model and associated parameters. The model focuses on two major
possible routes of EMT 1) the direct transition from E to M state, with rate DTR normal-
ized as 1 and inverse transition rate α. 2) the indirect EMT transition mediated by N ICS,
with the forward transition rate (also denoted as the indirect transition rate, ITR) γ and
backward transition rate βγ. (B-D) The dependence of signal adaptation, noise attenua-
tion and transition efficiency measures over the space of key parameter N and γ. We fix
other parameters α = 10 and β = 0.01 in B-D. (B) The dependence of signal adaptation
sensitivity on N and γ. The colors represent the value of sensitivity. The arrows indicate
the corresponding transition structures in cancer (increase of both N and γ) and embryo
(increase only in γ) respectively. (C) The dependence of noise attenuation property on N
and γ. The colors represent the CV of output M population dynamics. (D) The dependence
of transition efficiency on N and γ. The colors represent the value of efficiency.
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dIN
dt

= γIN−1 + βγM − γ(1 + β)IN (3.4)

dM

dt
= E + γIN − (α + βγ)M (3.5)

The initial conditions of ODEs are set as E(0) = 1, M(0) = Ik(0) = 0 to assume only E

cells initially. To tackle the stiffness problem introduced by large N or γ, we called ODE15s

solver in Matlab to evolve the dynamical systems.

To study noise attenuation, we add the persistent white noise term to epithelial dynamics,

equation 3.1 to simulate the extrinsic fluctuation, i.e. we modify the dynamics as stochastic

differential equation (SDE)

dẼ(t) =
[
αM̃(t) + βγĨ1(t)− (1 + γ)Ẽ(t)

]
dt+ σdWt (3.6)

where Wt is the standard Wiener process with EWt = 0 and EWt = 0 and σ represents the

noise amplitude, which is set as 1 in our simulation. We use Euler-Maruyama scheme to

simulate system described by equation 3.2-3.6.

The mesenchymal population fraction M(t) potentially measures how the EMT process

adapts or responds to extrinsic signals or fluctuations, as well as the efficiency of transition

from epithelial to mesenchymal cells. To quantify the three properties, in a model with

N intermediate states we define adaptation sensitivity (AS), noise attenuation (NA) and

transition efficiency (TE) as

ASN = maxtM(t)−M(+∞)
maxtM(t)

NAN = std[M̃(t)]

mean[M̃(t)]
, TEN = M(+∞)

where M̃(t) denotes the mesenchymal population in the stochastic ODEs. The reliance of

ASN , NAN and TEN on N and γ are investigated to study different EMT lineage structures

and role of ICS in population-survival. We explore the AS, NA and TE as the functions of
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key parameters N and γ (Figure 3.1B-D). From the single-cell data analysis, the embryonic

EMT is associated with an increase of γ, while in cancer EMT there is a simultaneous

increase of N and γ.

Roles of ICS in adaptation

When the ICS does not exist in the system, the dynamics of M population can be solved ex-

plicitly as M(t) = 1
1+α

(
1− e−(1+α)t

)
, which is a monotonic function of time. Therefore, the

adaptation sensitivity is zero in the two-state system. Generally, in the linear system equa-

tion 3.1-3.5 withN ICS, the solution can be expressed asM(t) = C0+
∑N+1

k=1 Cke
λkt,Re (λk) <

0. When the eigen-values λkt are real and Ck have different signs, there could exist local

maximums of M(t) trajectory, resulting in the non-zero adaptation sensitivity. Meanwhile, if

the eigen-values λkt are complex, we even can have the oscillatory trajectory of M(t) before

it reaches stationary state. Through numerical simulation, we validate that the adaptation

sensitivity will increase with N when keeping other parameters as constant (Figure 3.1B).

3.4 Results

By applying QuanTC to twelve published single-cell datasets during embryogenesis or cancer,

we reveal the common cell lineage structures mediated by the ICS. We finally model such

cell lineages (Figure 2.1B) to investigate similarity and difference of identified cell lineages

in terms of signal adaptation, noise attenuation and EMT transition.
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3.4.1 A near synchronous EMT though one ICS during embryonic

stem cell differentiation

Previous studies revealed a global epithelial–mesenchymal–epithelial transition during the

hepatic differentiation of human embryonic stem cells (hESCs) [102]. Recently, a single-cell

qPCR analysis with 48 selected genes was performed to study this process [101]. In this

dataset, cells from day 0 are all epithelial cells in a pluripotent state while cells at day 3 are

definitive endoderm (DE) cells in a typical mesenchymal-like status. Cells from day 0 to day

3 are found to follow a near synchronous EMT.

We applied QuanTC to the dataset of 345 cells from day 0 to day 3, identifying three clusters

(Figure 2.3F). Two clusters are E (high expression of pluripotent marker gene SOX2 ) and

M (high expression of DE marker genes FOXA2 and GATA6 ) whereas the other expresses

both epithelial marker gene CDH1 and DE marker gene FOXA2 (Figure B.4), named as

intermediate state I.

Next we quantified the transition dynamics of EMT in embryonic stem cell differentiation us-

ing QuanTC. We found that the cells located around the overlapping space between clusters

have higher CPI values, while cells closer to cluster centers have lower CPI value (Fig-

ure B.4A). More TC with higher CPI values locate around the identified state I, suggesting

that the I state has high potential to make transitions to both E and M (Figure 2.3G). The

transition trajectory from E to M via I state includes 99.7% of total cells, indicating that

the ICS-mediated path dominates the cell transitions during EMT.

The cells in early pseudotime were found to be the same ones in early real time (Figure 2.3H),

suggesting the transition from day 0 to day 3 follows a near synchronous EMT, a result

consistent with the experimental observations on differentiation of hESCs to hepatic lineage

[101].
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Novel transition genes and marker genes of the three states were identified (Figure B.4B-C).

MIXL1, the marker of DE, is identified as a transition gene from E-I, because its expression

level increases gradually during E-I transition (Figure B.4D). Two pluripotency markers,

POU5F1 and NANOG, and other genes sharing similar expression profiles are transition

genes of I-M because of the observed gradual decrease from I to M.

For this dataset, QuanTC not only captures the synchronous EMT but also detects ICS

that express both E and M markers. The ICS identified by QuanTC shows strong transition

dynamics and ICS-regulated path dominates the cell transitions during EMT.

3.4.2 Multiple ICS found in mouse skin tumor dataset

To study epithelial-to-mesenchymal transition in cancer [118, 122], we applied QuanTC to

a skin squamous cell carcinoma (SCC) dataset, in which multiple tumor subpopulations

associated with different EMT stages were identified, and some of them displayed hybrid

phenotypes that likely represent multiple distinct ICS in vivo [121]. This dataset of 382

cells on skin tumors contains FACS-isolated epithelial YFP+Epcam+ tumor cells, which are

relatively homogeneous, and mesenchymal-like YFP+Epcam- tumor cells, which are more

heterogeneous [121].

Four clusters were identified by QuanTC, showing two clusters are clearly E and quasi-

mesenchymal (QM) states (Figure 3.2A and Figure B.5, B.6) and the two other clusters,

labeled as I1 and I2, express both epithelial marker gene Dsp and mesenchymal marker

gene Vim. Nearly all epithelial YFP+Epcam+ cells were found in the E state while most

mesenchymal-like cells were clustered into I1, I2, or the QM state. The remaining mesenchymal-

like cells were clustered into E but closer to I1, similar to the I1 cells. The overall cell distri-

butions in four different states are very much consistent with the previous observed Epcam+

and Epcam- cells in their levels of heterogeneity [121].
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Figure 3.2: Analyzing EMT in mouse skin squamous cell carcinoma (SCC) dataset using
QuanTC. (A-C) Visualization of cells via PRE.
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Figure 3.2 (continued): (A) Each star or solid circle colored by the corresponding cell state
represents one of the 67 epithelial YFP+Epcam+ and 292 mesenchymal-like YFP+Epcam-
tumor cells. (B) Identification of TC. Each dot is colored by its CPI value. The cells outside
circles with relatively high CPI values are considered as TC. The parameters are given in
Table B.1. (C) Transition trajectory inference. Arrowed solid and dashed lines show two
main transition trajectories, with cells colored based on their pseudotime. (D) Percentage
of TC associated with each state relative to the total number of TC. (E) Percentage of
TC between two states relative to the total number of cells. (F) Visualization of marker
genes and transition genes between states. Each triangle represents a gene colored by its
type and arrowed lines indicate the transition direction of EMT. (G) Expression levels of
top transition genes with cells ordered along the two most probable transition trajectories.
Solid lines, smoothed expression curves for each gene in the transition trajectory. (H-I) Heat
map of normalized expression of marker genes and transition genes. Columns represent cells
ordered along the transition trajectory and rows represent genes. Coloring represents the
normalized expression value of each gene. Transition genes are marked in the box. Top: CPI
values of each cell along the transition trajectory.

Novel transition trajectories from E to QM were revealed according to the locations of

TC (Figure 3.2B). There are two main transition trajectories: E-I1-I2-QM and E-I1-QM,

which consist of 94% of cells (Figure 3.2C). This suggests the two most probable transition

trajectories from E to QM both pass through ICS. The I1 and I2 states, consisting of TC from

all the other states around them (Figure 3.2D), show strong capability of making transition

– a nature property of cells in intermediate cell state. The transition between I1 and QM

was found to have most TC (almost 30% TC in total) followed by the transition between I1

and I2 (Figure 3.2E).

The identified marker genes of E (Figure 3.2F-I) have a broad agreement with known markers

of epithelial cells [119] (Figure B.6), with their levels of transition genes varying significantly

during transition. For example, Lad1 decreases gradually and Pdgfrb increase gradually as

E cells transition to I1.

Using QuanTC we identified new marker genes for ICS, with some of them shown to have

special functions in EMT via separating ICS from the mesenchymal-like states. For example,

Igf1 and Mfap2, differentially expressed in I1 state, have been shown to induce EMT in
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hepatocellular carcinoma and in gastric cancer cells respectively [181, 159]. As a result, ICS

can be identified not only via co-expression of epithelial and mesenchymal markers but also

through specific ICS markers.

The two ICS, I1 and I2 states, are indeed distinct cell states based on the Gene Ontology

enrichment analysis of the top marker genes of I1 and I2 states. Both I1 and I2 states share

similar biological processes including cell migration and cell motility (mesenchymal features),

in addition to proliferation and cell-to-cell communications (Table S2 in [140]). The ability of

regulating cell communication and signaling is uniquely found for ICS. I1 state not only has

all the biological processes included in I2 state but also has the unique biological processes

related to cell adhesion that shares with the epithelial cells. This suggests that the cells in

ICS display hybrid epithelial/mesenchymal features [74] as well as communicates with other

cells through cell signaling [17, 178].

3.4.3 EMT via ICS during mouse embryonic development

scRNA-seq datasets were collected for four organs and tissues of E9.5 to E11.5 mouse em-

bryos: skin (155 cells), lung (176 cells), liver (123 cells), and intestine (173 cells) [39]. Apply-

ing QuanTC to the four datasets, three clusters were observed for each dataset (Figure 3.3).

Based on the known cluster labels of epithelial and mesenchymal cells [39] and the marker

genes inferred by QuanTC, two clusters are clearly E and M cells (Figure 3.3 and Figure B.7,

B.8). The remaining cluster is located between E and M, with more TC of higher CPI values

around it, showing clear characteristics of ICS. The cells close to the I state matches the

known labels well, exhibiting mixture of features of epithelial and mesenchymal cells [39].

In the four datasets, > 86% cells were found to be involved in the newly discovered E-I-M

transition trajectory, suggesting most cells undergoing EMT via the intermediate cell state

instead of direct transition from E to M (Figure B.7, B.8A, G). Except for skin having only
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Figure 3.3: Comparison analysis of EMT during organogenesis in intestine, liver, lung and
skin. (A-D) Top: the expression levels of E-I transition genes (green) and I-M transition
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a few more TC in E-I than I-M transition, the other three have significantly more TC in I-M

transition than E-I transition (Figure B.7, B.8D, J). This observation suggests that I and M

states are potentially more similar to each other whereas E could be a distinct state.

Gene Ontology enrichment analysis of the top marker genes (Table S2 in [140]) indicates

that the ICS from intestine and liver share several biological processes, including cellular

component movement, cell motility and cell migration (mesenchymal features), cell adhesion

(epithelial features), regulation of signal transduction and cell communication. The ICS from

lung and skin relate to the mesenchymal and epithelial cell differentiation. Interestingly, the

transition genes inferred from the four organs or tissues are quite different (Figure B.7,

B.8), indicating that genes regulating EMT may vary under different conditions at different

developmental stages.

3.4.4 Comparisons with another state transition method and in-

ference of gene regulatory networks

To further investigate the transition in EMT and validate QuanTC, we next used a previously

developed state transition index Ic to predict transitions based on a different method that

uses correlated information between cells and genes [111]. The index Ic serves as an early

warning signal of a critical transition that coincides with lineage commitment [111]. By

evaluating Ic for all five datasets, we found nearly all TC identified via QuanTC admit

higher Ic than the cells in the stable states (Figure 3.4A), consistent with the observation

that TC are the cells involved in the transition process. The relatively low cell-cell correlation

and high gene-gene correlation (Figure B.9A) during state transitions correspond to the idea

that the state transition involves a decrease of cell-cell correlation and concomitant increase

of gene-gene correlation. One exception happens for the E-I trajectory in lung, partly due

to a very small number of TC cells (only 3 cells) identified between E and I.

46



SCCs   E─I1─I2─QM

St
at

e 
tr

an
si

tio
n 

in
de

x

Intestine liver Iung Skin

0.2

1.6

0

0.5

0.05

0.15

E       I1       I2     QM
0.9

1.7

0.035

0.08

0.066

0.082

E             I1         QM
0.65

0.95

0.06

0.085

0.048

0.066

E             I             M
0.4

1

0.09

0.15

0.06

0.09

E             I             M
0.2

1.4

0

0.4

0.04

0.11

E             I             M
0.6

1.3

0.075

0.105

0.05

0.11

E             I             M

SCCs   E─I1─QM

E
I1 or I
I2
(Q)M
E─I1 or E─I
I1─I2
I2─(Q)M
I1─(Q)M or I─(Q)M

E─I1 or E─I
I1─I2
I2─(Q)M
I1─(Q)M or I─(Q)M

M
ar

ke
r

ge
ne

s

I1

I2

QM

E

I

M

EI

M

EI

M
M

I

SCCs Intestine Liver Lung Skin

E

E

Tr
an

si
tio

n
ge

ne
s

A

B
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To investigate how transition genes may regulate state marker genes in EMT, we inferred

gene regulatory networks of both state marker genes and transition genes via the PIDC

algorithm [32]. The inferred markers of different states were projected into lower-dimensional

space, with top genes marked by their states or transition trajectories and the edge length,

which is inversely proportional to the interaction strength between genes (Figure 3.4B and

Figure B.9B). Two genes that are close to each other with a short edge indicate a strong

regulatory interaction, in contrast to genes located away from each other with a longer edge

between them.

For example, in the SCC dataset, E markers are mostly linked to I1 markers through E-I1

transition genes, and marker genes of I1 and I2 are linked directly or via I1-I2 transition

genes, showing a gene regulatory circuit consistent with the inferred trajectory and CPI

values using QuanTC (Figure 3.2B-C). In addition, marker genes of I2 and QM are linked

directly or via I2-QM transition genes along with an edge linking markers of I1 and QM

to I1-QM transition genes nearby, suggesting that E-I1-QM is another transition trajectory,

consistent with the two previously inferred trajectories (Figure 3.2C). Interestingly, markers

of E have longer edges linking to other marker genes, suggesting the relative dissimilarity

of E to I1, I2 and Q, consistent with our findings directly using QuanTC (Figure 3.2).

Similar structures in gene regulatory networks were seen among the intestine, liver and

lung. In particular, marker genes of E, I and M form distinct groups and markers of E

and I are linked directly or via E-I transition genes, while markers of I and M are linked

directly or via I-M transition genes. Interestingly, for skin, different markers are much less

separated compared to other three embryonic development systems, except for markers of E,

suggesting the transitions and the genes regulating the transition in developing skin could

be more intermingled and complicated.
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3.4.5 Dynamical properties of inferred ICS-regulated EMT tra-

jectories

To explore the dynamics of the inferred transition trajectories, we developed a cell population

model that contains multiple ICS and only relies on three effective dimensionless parameters

(Materials and Methods, Figure 3.1A). Subsequently, three emergent quantities were then

defined to measure the EMT population dynamics (Figure 3.5A, Materials and Methods): 1)

sensitivity of signal adaptation, 2) coefficient of variance (CV) to quantify noise attenuation

and 3) the efficiency of population transition from epithelial to mesenchymal states. We then

investigated how the existence of ICS, as well as the transitions via ICS, affect the robustness

and efficacy of EMT dynamics using these three quantities.

The signal adaptation property is demonstrated by the reset of output level after the re-

sponse to stimulus in cell populations (Figure 3.5A). In cancer EMT, adaptation with high

sensitivity permits the transient peak of the massive release of malignant mesenchymal pop-

ulation, forming the effective metastasis strategy under the immune regulation. In the

two-state system with only pure epithelial or mesenchymal states, we rigorously proved that

no adaptation is allowed (Materials and Methods). The modeling results suggest that both

the increase in ICS number and the moderate increase in indirect transition rate (ITR) via

the ICS (Figure 3.1B, Materials and Methods) can increase the adaptation sensitivity (Fig-

ure 3.5C), however, further increase in ITR (over a certain threshold) can instead decrease

the sensitivity. Interestingly, the increase in ICS number may result in the oscillatory adap-

tation of cell population dynamics, i.e. the M population goes through multiple peaks before

reaching a steady level (Figure 3.5B). This potentially provides a “hide-and-seek” strategy

for metastatic mesenchymal cells battling with immune systems in cancer.

The noise attenuation property depicts the system’s capability to reduce fluctuations in

population dynamics. Both the increase in ICS number and ITR help reduce the CV of
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Figure 3.5: Dynamical properties of inferred ICS-regulated EMT trajectories. (A) The defi-
nitions and measurements of three quantities – adaptation, noise attenuation and population
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of ICS number N can result in the multiple peaks in M population trajectory, forming the
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Figure 3.1). (top row) Changes in three quantities by fixing N=2 and tuning gamma from
5 to 80. The increase in ITR gamma lowers the noise coefficient of variance (CV) of output
M population, and increases the transition efficiency from E to M. The signal adaptation
sensitivity is not a monotonic function of gamma, which reaches the peak before a certain
threshold and declines afterwards with further increase in gamma. (bottom row) Change
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M population trajectories (Figure 3.5C), stabilizing the dynamics in population transition.

The property of population transition is quantified by the final fraction of M population that

originates from pure E population. The increase in ITR results in boosting of population

transition efficiency in EMT, while the increase in ICS number reduces such efficiency.

The trade-off between adaptation sensitivity and transition efficiency were observed in EMT

(Figure 3.5C-D). Although larger ICS numbers may increase adaptation sensitivity, it also

impairs the effective transition toward M state (Figure 3.5C). On the other hand, increasing

ITR can boost efficiency while the overly-large value results in a decrease in adaptation

sensitivity. Hence, an increase in one parameter only, either ICS number or ITR, fails to

optimize all the properties simultaneously (Figure 3.5D). The transition trajectories may

need a combined increase in both ICS and ITR to achieve the desired property, as seen in

the inferred SCC transition trajectories (Figure 3.5E).

The derived relationships between three emergent quantities and EMT population param-

eters shed light on our findings obtained from single-cell EMT data mining. Based on

the percentages of TC between state transitions among all the cells involved in EMT, we

quantified the EMT trajectories in twelve single-cell datasets by QuanTC (Figure 3.5E and

Figure B.9C, B.10B), which include six additional head and neck squamous cell carcinoma

(HNSCC) datasets (Materials and Methods, Figure B.10). For all the investigated mouse

and human datasets from both normal and tumor tissues, we found that the majority of tran-

sitions involve ICS while the direct transition between epithelial and mesenchymal states is

relatively rare (FFigure B.9C, B.10B). This corresponds to the increase in ITR in the model,

resulting in the strengthening of noise attenuation property (Figure 3.5C), as well as en-

hancement of adaptation sensitivity (provided that increase in ITR does not over-exceed the

observed threshold in Figure 3.5C). Besides, compared to only one ICS involved in EMT in

embryo, cancer EMT has more numbers of ICS. Therefore, in cancer EMT the adaptation

sensitivity of population dynamics is further enforced by the presence of multiple ICS, with
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sacrifice of E-to-M transition efficiency. In comparison, in embryogenesis EMT fewer ICS

and the large ITR flux can lead to higher E-to-M transition efficiency, however, at the cost

of lower sensitivity of population dynamics adaptation.

3.5 Discussion

By unsupervised learning of transition trajectories in twelve EMT single-cell datasets and

multiscale mathematical modeling, we have analyzed transition cells and dynamics of EMT

that highlights the transition trajectories mediated by ICS. By investigating several emergent

dynamic quantities of describing transitions, we have suggested that the inferred transition

trajectories not only attenuate the noise, but also enhance the signal adaptation in EMT.

Modeling analysis has indicated cancer EMT trajectories strengthen the signal adaptation,

whereas trajectories in embryogenesis EMT is in favor of effective population transition

toward mesenchymal states.

To compare with other methods, we have applied the popular pseudotime inference method

Monocle 3 to the simulation datasets and SCC datasets (Materials and Methods, Figure B.3).

While Monocle 3 correctly depicts the overall progression of epithelial-mesenchymal transi-

tion, it lacks the resolution to distinguish transition cells from other stable cells. In addition,

the trajectories inferred by Monocle 3 strongly depends on input gene selections. Interest-

ingly, the features selected by QuanTC could improve the consistency of trajectory inference

by Monocle 3 in SCC dataset (Figure B.3), suggesting usefulness and its broader application

of the feature selection function in QuanTC.

QuanTC is adaptive to the downstream analysis of other soft clustering methods and is ap-

plicable to systems beyond EMT. For instance, we applied QuanTC to a single-cell RNA-seq

dataset of 2,000 mouse hematopoietic progenitors (Materials and Methods, Figure B.2). We
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found two prominent non-ICS, i.e. plasmacytoid dendritic cells (pDCs) and B cells, exactly

corresponding to the target states identified in the original study [54]. The transition cells

along the trajectory indicates that pDCs and B cells share the same progenitors, consistent

with the findings based on the FateID inference [54].

Interesting trade-offs among signal adaptation, noise attenuation and effective transition have

been observed in modeling analysis. Consistent with previous findings [145], the increase in

ICS number during EMT attenuates fluctuations; in addition, boosting the transitions via

ICS (i.e. ITR) also plays the similar role in noise buffering. The concept of adaptation

sensitivity, previously mainly used for signal transductions [106, 124], was introduced in this

study to quantify the transient, adaptive dynamics in EMT populations. Such transient

property were previously reported in breast cancer cell lines [49], and theoretically studied

in the context of non-equilibrium statistical physics. Interestingly, the increase of ITR alone

cannot improve adaptation persistently, and the robust adaptation in population dynamics

requires both large ITR and multiple ICS, a result consistent with the learned single-cell

trajectories in SCC. We reason that the transient peaks in highly-adaptive trajectories ensure

adequate release of mesenchymal cells, with the short-lasting times impeding immune systems

to efficiently capture and respond timely to metastasis. It is very interesting to note that

ICS in EMT are associated with poor prognosis of cancer treatment according to clinical

studies [120]– our findings between ICS number and adaptation may serve as the potential

explanation from cell population dynamics.

Overall, our integrative approach provides an initial attempt to bridge single-cell data mining

and multiscale modeling to investigate transitions and role of intermediate cell states in EMT.
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Chapter 4

Inference of Intercellular

Communications and Multilayer

Gene-Regulations of

Epithelial–Mesenchymal Transition

From Single-Cell Transcriptomic Data

This chapter is a reprint of the material as it appears in [139]. The co-authors listed in this

publication directed and supervised research which forms the basis for this chapter.

4.1 Background

Epithelial to mesenchymal transition (EMT) plays an important role in many biological pro-

cesses during development and cancer. The advent of single-cell transcriptome sequencing
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techniques allows the dissection of dynamical details underlying EMT with unprecedented

resolution. Despite several single-cell data analysis on EMT, how cell communicates and reg-

ulates dynamics along the EMT trajectory remains elusive. Using single-cell transcriptomic

datasets, here we infer the cell-cell communications and the multilayer gene-gene regulation

networks to analyze and visualize the complex cellular crosstalk and the underlying gene reg-

ulatory dynamics along EMT. Combining with trajectory analysis, our approach reveals the

existence of multiple intermediate cell states (ICS) with hybrid epithelial and mesenchymal

features. Analysis on the time-series datasets from cancer cell lines with different inducing

factors show that the induced EMT are context-specific: the EMT induced by TGFB1 is

synchronous while the EMT induced by EGF and TNF are asynchronous, and the response

of TGF-β pathway in terms of gene expression regulations are heterogeneous under different

treatments or among various cell states. Meanwhile, network topology analysis suggests that

the ICS during EMT serve as the signaling in cellular communication under different con-

ditions. Interestingly, our analysis of a mouse skin squamous cell carcinoma (SCC) dataset

also suggests regardless of the significant discrepancy in concrete genes between in vitro and

in vivo EMT systems, the ICS play dominant role in the TGF-β signaling crosstalk. Over-

all, our approach reveals the multiscale mechanisms coupling cell-cell communications and

gene-gene regulations responsible for complex cell-state transitions.

4.2 Introduction

Epithelial to mesenchymal transition (EMT) is a biological process where epithelial cells lose

cell-cell adhesion and gain some mesenchymal traits of migration and invasion [75, 77]. EMT

not only occurs widely during normal embryonic development, organ fibrosis and wound

healing, but also plays an important role in tumor progression with metastasis [118, 91].

Recent studies have underscored that EMT is not a binary process, but instead exists on
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a spectrum with various hybrid states ranging from epithelial to mesenchymal phenotypes

[118]. Cells undergoing EMT can display mixed epithelial and mesenchymal features, and

are considered in the intermediate cell states (ICS) [70, 138, 61]. In the context of cancer

progression, these ICS have been proposed as the main drivers of metastasis due to their

ability to undergo collective cell migration as highly metastatic multicellular clusters [70].

Therefore, understanding the features and role of ICS during EMT could potentially unlock

novel clinical strategies. With the unprecedented opportunities brought by single-cell RNA

sequencing (scRNA-seq), the existence of multiple ICS and their transcriptomic profiles has

been observed and analyzed via pseudotemporal ordering or energy landscapes [126, 121, 68,

99, 34, 2]. Very recently, specially designed methods have also been proposed to infer EMT

trajectories or transition paths from the single-cell transcriptomic [140] or imaging data [162].

The integrative analysis combining unsupervised learning of single-cell transcriptomic data

and computational modeling of EMT in cancer and embryogenesis successfully uncovered the

novel roles of ICS on adaption, noise attenuation, and transition efficiency [140]. While these

methods have provided insights into the dynamics of EMT from a single cell perspective,

the role of intercellular communication in EMT remains largely unknown.

Indeed, EMT is not necessarily a cell autonomous process. Cells secrete, and in turn respond

to various growth and differentiation signaling factors secreted by other cells in the extra-

cellular environment, including transforming growth factor β (TGF-β), WNT and Notch

proteins [169, 113, 17, 19]. Among them, the well-characterized TGF-β pathway has re-

ceived much attention as a major inducer of EMT during embryogenesis, cancer progression

and fibrosis [169, 166]. The TGF-β pathway can also cross-talk with other pathways such

as WNT and SHH [168], forming the complex response of signaling. In addition, signaling

in cell-cell communications have also been found important in the formation and regula-

tion of ICS (e.g. through Notch pathway) [21]. This intercellular communication has been

shown to play significant roles in regulating gene expression dynamics within individual

cells, through analysis of scRNA-seq datasets from several development and cancer systems
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[123, 27, 177, 90, 160]. Computational methods have been developed to infer cell-cell com-

munication networks based on ligand-receptor interactions [161, 26, 163, 67], and elucidate

how cell-cell communications propagate to downstream target genes through transcription

factors [24]. While methods have been developed to infer EMT gene regulatory network

from RNA-seq single cell data [130], the role of cell-cell communications on gene regulation

dynamics along EMT trajectory is poorly understood.

Through both experimental and mathematical modelling studies, the key circuits of EMT

involving few epithelial/mesenchymal markers, transcription factors and signaling molecules

have been summarized [168, 170, 154, 41, 55, 100, 79]. Due to different roles of nodes, the

circuits can be modelled as a multilayer network [83] with hierarchical structures [24]. In

the multilayer network, cells communicate with each other and the environment via signal

transduction pathways (Layer 1), which directly targets the downstream factors or genes

(Layer 2) that subsequently regulate the expression of marker genes of various cell states

(Layer 3). In addition, there may be dynamical changes of network structure during EMT,

where the temporal (or pseudo-temporal) information constitutes another independent di-

mension of the layer sets. The complex interactions among nodes may exist within the

same layers or across different layers, in controlling EMT. Here we study the time-series

scRNA-seq datasets of OVCA420 cancer cell line exposed to various EMT-inducing factors

[37]. We first delineate the underlying transition details at individual cell resolution with a

recently developed method, QuanTC. For the cancer cell lines undergoing EMT under three

different treatments, we quantify the ICS-regulated trajectories and detect the driver genes

in EMT for each case, respectively. While cells undergo TGFb1-driven EMT in a highly

synchronized fashion, EMT guided by EGF and TNF is asynchronous. Next, we develop a

multilayer network approach to infer and visualize the hierarchical interactions that combine

cell-cell communications through the TGF-β pathway, signal transductions and gene regula-

tory networks from single-cell transcriptomic data. After trajectory inference, we then utilize

the multilayer network approach to decipher the role of TGF-β pathway in regulating EMT
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dynamics with different inducing factors. We also compare the results of in vitro cancer cell

lines with further analysis of in vivo mouse skin squamous cell carcinoma (SCC) dataset

[121].

4.3 Materials and methods

4.3.1 scRNA-Seq data clustering and transition trajectory recon-

struction

QuanTC was used to perform clustering and transition trajectory reconstruction. QuanTC

can simultaneously detect the ICS and construct transition trajectories via quantifying the

cell plasticity index (CPI) [140]. The cells with higher CPI values are considered to be transi-

tioning between clusters and are identified as transition cells (TC). Via non-negative matrix

factorization, QuanTC calculates the probabilities of a given cell belonging to the identified

clusters. Cells are projected to a low-dimensional space based on a probabilistic regularized

embedding. The transition trajectories are then inferred by summing the cluster-to-cluster

transition probabilities that are calculated from cell-to-cluster probabilities and TC between

clusters. The transition genes and marker genes of clusters are obtained through factoriz-

ing the gene expression matrix as product of cell-to-cluster probabilities and likelihoods of

genes uniquely marking each cluster. In the first step of QuanTC, we applied two additional

considerations when choosing the number of identified clusters. First, we know from the

original experiment that cells undergo EMT (i.e. there is at least one E state and one M

state); furthermore, given that we seek to study intermediate cell states during EMT, we

search for at least 3 total states.
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Preprocessing

Single cells with less than 95% expressed genes among all detected genes were considered

as low-quality cells and were filtered. Top 3000 bimodal distributed genes were selected by

QuanTC with default parameters to do downstream analysis.

Clustering

A total of 3000 selected genes and 558 cells of OVCA420 induced by TGFB1, 1137 cells

of OVCA420 induced by EGF, 1856 cells of OVCA420 induced by TNF from day 0 to

day 7 were retained for clustering. Consensus clustering via SC3 [82] was performed on

the expression matrix to capture the cell-cell similarity. The clusters were defined based

symmetric non-negative factorization as wrapped in QuanTC.

Transition trajectory

The beginning and end of EMT transition trajectory, E/M states, were identified based on

the percentage of TC around each cluster. The parameters to choose TC were given in

Table C.1. The clusters with fewer TC around were considered as E/M states while the

rest clusters were considered as ICS along EMT. The E/M states between the two clusters

were then identified based on the canonical epithelial and mesenchymal marker genes. The

potential transition trajectory was inferred according to the TC between clusters using “traj”

function wrapped in QuanTC. The pseudotime value of each cell was then computed by

QuanTC based on the two most probable trajectories.
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EMT marker genes

The marker genes and transition genes were defined using “markers” function wrapped in

QuanTC.

GO analysis

The analysis of gene ontology biological processes was performed by Metascape [184] on the

top 50 markers genes of each ICS selected by QuanTC.

4.3.2 Qualitatively characterizing cell-cell communications

SoptSC [161] was used on the datasets without gene filtering to calculate the probability

matrix of signals being passed between cells and clusters. Signaling probabilities between

cells are defined based on weighted co-expression of signaling pathway activity in sender-

receiver cell pairs. With the input of ligand-receptor pairs and target genes (upregulated or

downregulated in response to pathway activation), SoptSC computes signaling probabilities

between sender cells (expressing ligands) and receiver cells (expressing receptors and exhibit-

ing differential target genes activity). Intuitively, given a ligand-receptor pair for a specific

signaling pathway, if the ligand is highly expressed in cell i, the cognate receptor is highly

expressed in cell j and the target gene activity in cell j suggests that the signaling pathway

may have been activated in this cell, then there is a chance that communication occurred

between these two cells. The signaling passed from cell i to j for a given ligand-receptor

pair is quantified by the signaling probability Pi,j. For a set of ligand-receptor pairs, SoptSC

considers the consensus signaling probabilities between cells by taking the average over all

signaling probability matrices. The signaling probability passed from cluster u to cluster v

is then given by Pu,v =
∑

i∈Cu,j∈Cv
Pi,j

|Cu||Cv | with |Cu| representing the number of cells in cluster u.
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The list of ligands, receptors and target genes were retrieved from previous studies [169, 166,

67] and are given in Table 4.1.

Ligand Receptor Target genes (up) Target genes (down)
TGFB1 TGFBR1

FN1 VTN CDH2
COL1A1 COL1A2
MMP2 MMP3 MMP9
TWIST1 TWIST2
IDS
ZEB1 ZEB2
SPARC
ITGA5 ITGB3
NCAM VIM ACTA2
PLAU DAB2 HIC5
TGFB1I1 HMGA2

OCLN CRB3 ESR1
CD34 CDH1 DSP
CLDN1 CLDN2 CLDN3
CLDN4 CLDN5 CLDN6
CLDN7 CLDN8 CLDN9
CLDN10 CLDN11 CLDN12
CLDN13 CLDN14 CLDN15
CLDN16 CLDN17 CLDN18
CLDN19 CLDN20 CLDN21
CLDN22 CLDN23
PKP1 PKP2 PKP3
CK5 CK14 CK8 CK18

TGFB2 TGFBR1
TGFB3 TGFBR1
TGFB1 TGFBR2
TGFB2 TGFBR2
TGFB3 TGFBR2
TGFB1 ACVR1
TGFB2 ACVR1
TGFB3 ACVR1
TGFB1 ACVR1B
TGFB2 ACVR1B
TGFB3 ACVR1B
TGFB1 ACVR1C
TGFB2 ACVR1C
TGFB3 ACVR1C

Table 4.1: TGFB pathway used for generating cell-to-cell signaling networks and cluster-to-
cluster signaling networks

4.3.3 Measuring node centrality

The centrality of a node (cluster) in cellular communication network is used to quantify its

importance in the signaling. We used strength, closeness and pagerank as metrics to measure

node centrality. All these centralities were calculated with the package igraph 1.2.4 [38].

Strength is one of the basic measures of centrality: it is measured by summing up the edge

weights of the adjacent edges for a given node. Our inferred cluster-cluster communication

networks are directed so we calculated in-strength (incoming edges) and out-strength (out-

going edges). Closeness of a given node is defined by the inverse of the average length of

the shortest path to/from all the other nodes. In-closeness measures the path to the node

while out-closeness measures the paths from the node. We used the normalized values to

avoid biases based on the network size. Pagerank is proportional to the average time spent
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at a given node during all random walks. In the cluster-cluster communication networks,

the clusters with high pagerank can be seen as the signaling hub.

4.3.4 Multilayer regulations of EMT

We utilized the multilayer network framework [83] to analyze and visualize the changes of

complex hierarchical signaling and gene expression regulations in EMT across multiple scales.

Mathematically, the multilayer network can be expressed as the M = (VM , EM , V,L). Here,

V denotes sets of all nodes in the network (as in the regular case), and L = {La}da=1 denotes

d aspects of the network layers, with each aspect La = {Lia}
ka
i=1 contains ka elementary

layers. Denotes × as the Cartesian product of sets, then the node-layer tuple set VM ⊆

V × L1 × · · · × Ld represents all the feasible node-layer combinations in which a node is

present in the corresponding layers. The edges set EM ⊆ VM × VM denotes the weighted

links across nodes and layers.

In our context, the nodes set V not only contains cell states S =
⋃Nc

k=1 Sk along the EMT

trajectories with Nc denoting the number of cell states but also contains target genes T of

specified signal transduction pathway and marker genes A of each cell state. The layers

L = {LH , LC} have two aspects: The hierarchy aspect LH = {L1
H , L

2
H , L

3
H} represents

the elementary layers of cell-cell communication L1
H , target genes L2

H and marker genes

L3
H respectively, and the cell states aspect LC =

{
LkC
}Nc

k=1
represents the EMT stages of

E state, ICS and M state ordered by pseudotime of QuanTC, since we are interested in

constructing cell-state specific regulatory relations. For simplicity, we denote the node-layer

tuples in EMT as VM = {(S, L1
H , ·) , (T, L2

H , ·) , (A,L3
H , ·)} ⊆ V × LH × LC , representing

the hierarchical regulation structures at different stages. For instance, (A,L3
H , L

1
C) denotes

the marker genes analyzed in the E state, while (T, L2
H , L

2
C) represents the target genes

considered in the first ICS. We next specify how the edges EM are constructed based on the
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VM .

The edges within layer (S, L1
H , ·)

The first layer L1
H in hierarchy aspect displays the cluster-cluster interactions of intercellular

communication, where the aligned nodes showing the different EMT states/clusters. Using

the notations above,
(
S, L1

H , L
k
C

)
only contains one node for each k, representing the cell

state Sk. The weights for the directed edges to connect (S, L1
H , L

i
C) and

(
S, L1

H , L
j
C

)
are

the cluster-cluster interactions between state Si and state Sj computed by SoptSC above

threshold 0.7.

The edges within layer (T, L2
H , ·)

The second layer L2
H demonstrates the state-specific interactions among target genes at

different stages. The target genes T are the intersection of the list of target genes and the

top 3000 selected informative genes. Given the stage LkC , the weighted edges between target

gene pair
(
TX , L

2
H , L

k
C

)
and

(
TY , L

2
H , L

k
C

)
were constructed by PIDC algorithm [32] using

partial information decomposition, only with the cells in cluster Sk. The input to PIDC is an

expression matrix with cells from Sk, and the confidence of an edge between a pair of genes

is given by c = FX (UX,Y ) + FY (UX,Y ) where FX(U) is the cumulative distribution function

of all the proportional unique contribution scores involving gene X. The top 30% weights

were used to embed the inferred network in
(
T, L2

H , L
k
C

)
using “graph” function in Matlab

based on spectral layout [86]. The weights were normalized with max 2 to be comparable

with other datasets.
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The edges within layer (A,L3
H , ·)

The third layer L3
H demonstrates the state-specific interactions among marker genes at dif-

ferent stages. The marker genes selected were the identical for
(
A,L3

H , L
k
C

)
with respect to

the choice of k , which represent the union of top five marker genes in each cluster inferred

by QuanTC. The edges between marker genes are state-specific for each cell-state layer LkC ,

using the same strategy as for the target genes described above.

The Edges Connecting Layer (S, L1
H , ·) and (T, L2

H , ·)

These edges quantify the expression of target genes within different states during EMT. The

weights for the edges between
(
S, L1

H , L
k
C

)
and

(
T, L2

H , L
k
C

)
are the mean expression levels

of target genes within cell state Sk, and top 20% weights were shown.

The Edges Connecting Layer (T, L2
H , ·) and (A,L3

H , ·)

These edges display the regulatory interactions from target genes to marker genes within

different states during EMT. The weights for the edges between
(
T, L2

H , L
k
C

)
and

(
A,L3

H , L
k
C

)
were inferred by PIDC within cell state Sk, and top 1.5% weights were shown.

4.4 Results

4.4.1 Synchronous EMT with two ICS induced by TGFB1

We analyzed the published datasets [37] with ovarian OVCA420 cancer cell line capable

of undergoing EMT. This cell line, which normally shows an epithelial morphology, was

exposed to known EMT-inducing factors: TGFB1, EGF and TNF, respectively, to promote
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EMT. We used the samples collected at five distinct time points from day 0 to day 7 after

the treatment. To compare the process of EMT under three treatments, we used QuanTC

[140] to perform the clustering and transition trajectory reconstruction. QuanTC estimates

the optimal number of clusters by analyzing the sorted eigenvalues of symmetric normalized

graph Laplacian (Figure C.1A). Four clusters were identified in EMT induced by TGFB1

(Figure 4.1A). A first cluster (C3) was mostly composed by cell subpopulations collected

at day 0 and 8 hours after induction (Figure 4.1B) and expressed relatively high levels

of epithelial markers CDH1 (Figure C.1B). Conversely, a second cluster (C2) consisted of

cells collected at day 3 and day 7 (Figure 4.1A-B) and expressed relatively high levels of

mesenchymal markers FN1 and SNAI2 (Figure C.1C). Furthermore, cells in these clusters

had a low Cell Plasticity Index (CPI). CPI employs an entropy-based approach to estimate

cell plasticity, so that a higher index implies a higher probability of transition between

clusters (see Methods). Based on the CPI values, QuanTC predicted that clusters C2 and

C3 have lower percentages of transition cells (TC) (Figure 4.1C-D), thus suggesting that

they are the beginning or end of the trajectory. Based on these observations, we identified

cluster C3 as the E state and cluster C2 as the M state.

After choosing the E state, C3, as the beginning of the transition, QuanTC computed the

most probable transition trajectory, C3-C4-C1-C2, consisting of 67% of the total cell popu-

lation (Figure 4.1E). The cluster C4 and C1 were thus identified as intermediate cell state

(ICS) I1 and I2, respectively. The marker genes of each state and the transition genes mark-

ing the transition between states along the transition trajectory were inferred by QuanTC

(Figure C.1D). To characterize the two ICS, I1 and I2, we performed a Gene Ontology bio-

logical processes analysis [36] of the top 50 marker genes of each state (Figure C.1E). Both

ICS shared similar biological processes including signaling and localization. Furthermore,

I2 also related to adhesion and locomotion. This suggested that the cells in ICS displayed

both epithelial and mesenchymal features and communications with other cells through cell

signaling.
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Figure 4.1: Analyzing OVCA420 cancer cell line undergoing EMT induced by TGFB1 using
QuanTC. (A-C) Visualization of cells in the two dimensional space by QuanTC. Each circle
represents one cell colored by clustering (A), the collection time of the samples after the
treatment (B) and CPI values (C). (D) Percentage of TC associated with each cluster relative
to the total number of TC. The dashed box covers the ICS having more TC around. The
parameters to choose TC are given in Table C.1. (E) Visualization of cluster centers with
color consistent with (A). Each percentage on the line show the percentage of TC between two
clusters relative to the total number of cells. Arrowed solid line shows the main transition
trajectory. (F) Violin plot of pseudotime value of each cell vs the collection time points.
Each dot represents a cell colored by collection time points. The circle displays the mean
and vertical line shows the interquartile ranges.
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Finally, we inspected the population dynamics during TGFB1-driven EMT by considering

the pseudotime distribution. Pseudotime quantifies the position of a given cell along the

transition trajectory predicted by QuanTC, and therefore does not necessarily correlate

with the experiment’s physical time. In this time series, however, most cells at t=0 days

were characterized by a low pseudotime (i.e. they were positioned toward the beginning

of the transition trajectory), while cells at later time points exhibited progressively higher

pseudotime values (Figure 4.1F). In other words, OVCA420 cells started from the E state

and progressively transitioned throughout the 7 days of EMT induced by TGFB1 in a nearly

synchronous fashion.

4.4.2 Asynchronous EMT induced by EGF and TNF

Applying QuanTC to the OVCA420 dataset where EMT was induced by EGF, four clusters

were also identified based on the biggest eigenvalue gap after the first two eigenvalues since

we want to investigate the ICS during EMT (Figure C.2A, 4.2A). Differently from TGFB1-

driven EMT, however, cells collected at different time points co-localized within the same

clusters and no group of cells at any given time point dominated any cluster (Figure 4.2B).

Based on the CPI values, the two clusters (C2 and C3) were considered as the E and M

states based on the fewer TC around them (Figure 4.2C-D). Specifically, C2 was then iden-

tified as the E state according to the relatively high expression levels of epithelial markers

CDH1 (Figure C.2B), and C3 was identified as the M state because of higher expressions of

mesenchymal markers FOXC2 and SNAI2 (Figure C.2C).

The most probable transition trajectory was inferred after choosing cluster C2 as the starting

state (Figure 4.2E). The two remaining clusters (C1 and C4) between E and M along the

transition trajectory had more TC around them and were identified as I1 and I2, respectively.

According to the Gene Ontology analysis of the top marker genes (Figure C.2D), the I2 state
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Figure 4.2: Analyzing OVCA420 cancer cell line undergoing EMT induced by EGF using
QuanTC. (A-C) Visualization of cells. Each circle represents one cell colored by clustering
(A), the collection time of the samples after the treatment (B) and CPI values (C). (D)
Percentage of TC associated with each cluster relative to the total number of TC. The
dashed box covers the ICS having more TC around. The parameters to choose TC are
given in Table C.1. (E) Visualization of cluster centers with color consistent with (A). Each
percentage on the line show the percentage of TC between two clusters relative to the total
number of cells. Arrowed solid line shows the main transition trajectory. (F) Violin plot
of pseudotime value of each cell vs the collection time points. Each dot represents a cell
colored by collection time points. The circle displays the mean and vertical line shows the
interquartile ranges.
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displayed biological processes including adhesion, locomotion and signaling showing mixed

feature of both epithelial and mesenchymal cells (Figure C.2E).

The average pseudotime values slightly increased along collection time points, hence demon-

strating that the EGF stimulus induces an EMT response. Compared to TGFB1-driven

EMT, however, pseudotime distribution within each time point had a high variance, thus

indicating that the EMT induced by EGF was more asynchronous (Figure 4.2F). We ap-

plied a similar analysis to EMT induced by TNF, and also identified four clusters with two

ICS (Figure C.3A, 4.33A). Similar to the case of EGF induction, cells collected at different

time points were mixed up in different clusters (Figure 4.3B). After selecting cluster C3 as

the E state based on fewer TC around (Figure 4.3C-D) and expression levels of canonical

epithelial and mesenchymal marker genes (Figure C.3B-C), the most probable transition

trajectories were revealed (Figure 4.3E). Based on the Gene Ontology analysis of the top

marker genes (Figure C.3D), the two ICS were different states (Figure C.3E). The I1 state

were related to signaling and locomotion indicating the communications with other cells and

sharing mesenchymal features.

Similar to EMT induced by EGF, the average pseudotime values slightly increased across

time points with high variance within each time point, thus suggesting the heterogeneity of

cells undergoing EMT (Figure 4.3F). Therefore, EMT induced by TNF was also found to be

an asynchronous process.

4.4.3 Context-specific cellular communications with underlying

gene regulations in TGF-β signaling

TGF-β is a strong promoter of EMT [52]. TGF-β ligands are not exclusively provided as an

external EMT-inducing signal, but can also be secreted by cells, thus raising the possibility of

cell-cell communication and EMT driven by intercellular signaling. In order to determine the
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Figure 4.3: Analyzing OVCA420 cancer cell line undergoing EMT induced by TNF using
QuanTC. (A-C) Visualization of cells. Each circle represents one cell colored by clustering
(A), the collection time of the samples after the treatment (B) and CPI values (C). (D)
Percentage of TC associated with each cluster relative to the total number of TC. The
dashed box covers the ICS having more TC around. The parameters to choose TC are
given in Table C.1. (E) Visualization of cluster centers with color consistent with (A). Each
percentage on the line show the percentage of TC between two clusters relative to the total
number of cells. Arrowed solid line shows the main transition trajectory. (F) Violin plot
of pseudotime value of each cell vs the collection time points. Each dot represents a cell
colored by collection time points. The circle displays the mean and vertical line shows the
interquartile ranges.
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Figure 4.4: TGFB pathway on OVCA420 cancer cell line undergoing EMT induced by
TGFB1.
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Figure 4.4 (continued): (A) Visualization of signaling probability scores of Ligand-Receptor
pairs and their downstream signaling components. Dot size represents the number of aver-
aged cells with nonzero probability scores between clusters. Dot color represents the signaling
probability scores. (B) Circos plot of intercellular network on the top ten ligand-producing
and top ten receptor-bearing cells from every cluster. The upper hemisphere of the plot
shows receptor-bearing cells. The chords of the plot are colored by the ligand-producing
cells in the lower hemisphere. The directed edges from the lower hemisphere to the upper
hemisphere represent the probabilities of signaling between cells. The probabilities of signal-
ing between cells above the thresholds are presented. (C) Intercluster network. The widths
of edges are proportional to the signaling probability scores between clusters. The directed
edges are colored by the ligand-producing clusters. (D) Multilayer network. The first layer
shows the intercluster network as in (C) but with higher signaling probabilities greater than
0.5. Second and third layers show gene regulatory networks of target genes and top marker
genes of clusters respectively using the PIDC algorithm. The target up (down) genes are
the up-regulated (down-regulated) target genes of TGF-β signaling. Each dot represents a
gene colored by its type. Graph edges indicate the top interactions and the length of the
edge is inversely proportional to the interaction strength between genes. The link between
first and second layer indicates the target gene are higher expressed within the cluster. The
link between second and third layer indicates the strong interaction strength between target
and marker genes. The widths of links between layers are proportional to the interaction
strength. The ligands, receptors and target genes are given in Table 4.1.

possible role of TGF-β signaling in EMT, we assembled in silico ligand-receptor interaction

pairs to explore the crosstalk between ICS and E/M states. We applied SoptSC [161] to

the expression matrix with inferred states, and calculated the signaling probability of each

ligand-receptor pair and their downstream targets between pairs of cells. Finally, averaging

these pairwise signaling probabilities within each EMT state provides a snapshot of how cells

tend to communicate based on their degree of EMT progression (Figure 4.4A-C).

In Figure 4.4B, the directed edges from lower hemisphere to upper hemisphere were inferred

between cells where a high probability of signaling was predicted according to the expressions

of ligands in a ‘sender’ (lower hemisphere in the figure) cell and the appropriate expressions of

cognate receptors and target genes in a ‘receiver’ cell (upper hemisphere in the figure). The

large proportion of M state behaving as ‘receiver’ with high signaling probabilities suggests

that the M state played a dominant role as receiver in TGF-β signaling. All the four states
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behaved as ‘sender’ in TGF-β signaling.

The cluster-cluster signaling network was then constructed based on the average cell-cell

signaling within each cluster (Figure 4.4C). We used strength, closeness and pagerank as

metrics to measure node centrality in the signaling network so that we can quantify the

centralities of states in TGF-β signaling. Strength is defined as the sum over weights of the

adjacent edges for a given node. Closeness of a node is the inverse of the average length

of the shortest path to/from all the other nodes. Pagerank is proportional to the average

time spent at a given node during all random walks; therefore, we interpret a high pagerank

score as an indication that a node serves as a signaling hub in the network. The pagerank

centrality of I1 and M were higher, thus showing the signaling hub potential (Table C.2). The

I1 and M states had higher in-strength and lower in-closeness indicating that they behaved

more like receivers (Table C.2).

To explore the change of the gene regulatory networks (GRN) underlying TGF-β signaling

with respect to EMT progress, we applied PIDC [32], an algorithm using partial information

decomposition to identify GRN, to the gene expression matrix of target genes and marker

genes inferred by QuanTC within each state. In the dataset induced by TGFB1, the first

layer of the multilayer network showed the cluster-cluster interactions as in Figure 4.4C but

with only higher signaling probabilities greater than 0.5 (Figure 4.4D, top layer). The widths

of the directed lines were proportional to the signaling probabilities. The central and bottom

layers displayed the GRN of target genes and marker genes within each state respectively.

The interactions between genes within each state were shown by the edges with lengths

inversely proportional to the correlations between genes.

Based on the average correlations between target genes of TGF-β signaling and marker

genes (Figure C.1F), both the up-regulated target genes and down-regulated target genes

had stronger interactions with marker genes within E and M states. The up-regulated target

genes always had largest correlations with marker genes of M stats while the down-regulated
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target genes had relatively larger correlations with E marker within only E and M states.
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Figure 4.5: TGFB pathway on OVCA420 cancer cell line undergoing EMT induced by EGF.

In the dataset of EMT induced by EGF, the average TGF-β signaling probabilities suggests

that I2 and M states played important roles as receivers while all four states shared similar

importance as senders (Figure 4.5A-C). Compared to EMT induced by TGFB1, the pagerank

centrality of I2, instead of I1, and M states were higher (Table C.2).

In the multilayer network, the highly varied target genes were quite similar to EMT induced
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Figure 4.5 (continued): (A) Visualization of signaling probability scores of Ligand-Receptor
pairs and their downstream signaling components. Dot size represents the number of aver-
aged cells with nonzero probability scores between clusters. Dot color represents the signaling
probability scores. Dot color represents the signaling probability scores. (B) Circos plot of
intercellular network on the top ten ligand-producing and top ten receptor-bearing cells from
every cluster. The upper hemisphere of the plot shows receptor-bearing cells. The chords
of the plot are colored by the ligand-producing cells in the lower hemisphere. The directed
edges from the lower hemisphere to the upper hemisphere represent the probabilities of sig-
naling between cells. The probabilities of signaling between cells above the thresholds are
presented. (C) Intercluster network. The widths of edges are proportional to the signaling
probability scores between clusters. The directed edges are colored by the ligand-producing
clusters. (D) Multilayer network. The first layer shows the intercluster network as in (C) but
with higher signaling probabilities greater than 0.5. Second and third layers show gene regu-
latory networks of target genes and top marker genes of clusters respectively using the PIDC
algorithm. The target up (down) genes are the up-regulated (down-regulated) target genes
of TGF-β signaling. Each dot represents a gene colored by its type. Graph edges indicate
the top interactions and the length of the edge is inversely proportional to the interaction
strength between genes. The link between first and second layer indicates the target gene are
higher expressed within the cluster. The link between second and third layer indicates the
strong interaction strength between target and marker genes. The widths of links between
layers are proportional to the interaction strength. The ligands, receptors and target genes
are given in Table 4.1.
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by TGFB1 (Figure 4.4, 4.5D). The up-regulated target genes were the same except missing

COL1A1 and five out of the eight down-regulated target genes were the same as in Fig.

4D. However, the top five marker genes of each state varied between the two treatments.

Only LGALS4, BPIFA2 and ZBED2 shared marker genes of E and M states. CCNB1 and

CCNB2, used to be I2 markers, were I1 markers for EMT induced by EGF.

The average correlations between target genes and marker genes were stronger within the I1

state (Figure C.2F). The up-regulated target genes did not always have largest correlations

with marker genes of M state but still with relatively large correlations. The down-regulated

target genes had stronger correlations with E markers except in the M state.

In the dataset of EMT induced by TNF, the different EMT states seemed have similar

importance as sender in TGF-β signaling (Figure 4.6A-C). The E and M states behaved as

the main receivers. The M state had higher pagerank value showing the potential of signaling

hub (Table C.2).

In the multilayer network, the varied up-regulated target genes were the subset of the genes

in EMT induced by EGF except having CLDN3, and the down-regulated target gene were

the subset of those genes in EMT induced by TGFB1 (Figure 4.4, 4.5, 4.6D). More than

half of the marker genes of E, I1 and M states were the same as in EMT induced by EGF

suggesting the similarity of the EMT under the two treatments.

The target genes and marker genes had higher correlations within the I2 state (Figure C.3F).

The up-regulated target genes always had relatively large correlations with marker genes of

M state. The down-regulated target genes had stronger correlations with E markers except

in the I2 state.

Overall, the M state and part of the ICS behaved as the signaling hub in the TGF-β signaling

of EMT under three different treatments (Figure 4.4, 4.5, reffig:c6). The M state was the

main receiver in OVCA420 under three treatments with lowest in-closeness (Table C.2).
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Figure 4.6: TGFB pathway on OVCA420 cancer cell line undergoing EMT induced by TNF.
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Figure 4.6 (continued): (A) Visualization of signaling probability scores of Ligand-Receptor
pairs and their downstream signaling components. Dot size represents the number of aver-
aged cells with nonzero probability scores between clusters. Dot color represents the signaling
probability scores. (B) Circos plot of intercellular network on the top ten ligand-producing
and top ten receptor-bearing cells from every cluster. The upper hemisphere of the plot
shows receptor-bearing cells. The chords of the plot are colored by the ligand-producing
cells in the lower hemisphere. The directed edges from the lower hemisphere to the upper
hemisphere represent the probabilities of signaling between cells. The probabilities of signal-
ing between cells above the thresholds are presented. (C) Intercluster network. The widths
of edges are proportional to the signaling probability scores between clusters. The directed
edges are colored by the ligand-producing clusters. (D) Multilayer network. The first layer
shows the intercluster network as in (C) but with higher signaling probabilities greater than
0.5. Second and third layers show gene regulatory networks of target genes and top marker
genes of clusters respectively using the PIDC algorithm. The target up (down) genes are
the up-regulated (down-regulated) target genes of TGF-β signaling. Each dot represents a
gene colored by its type. Graph edges indicate the top interactions and the length of the
edge is inversely proportional to the interaction strength between genes. The link between
first and second layer indicates the target gene are higher expressed within the cluster. The
link between second and third layer indicates the strong interaction strength between target
and marker genes. The widths of links between layers are proportional to the interaction
strength. The ligands, receptors and target genes are given in Table 4.1.

While the underlying GRN changed between different treatments and along EMT progress.

Besides, the top marker genes of different EMT states were quite different among the EMT

induced by different treatments, all suggesting the context-specific regulation of GRN during

EMT.

4.4.4 Dominant role of ICS in vivo during TGF-β signaling

Finally, we compare the results obtained for OVCA420 cells with in vivo data from a skin

squamous cell carcinoma (SCC) mouse model to seek whether the defining traits of EMT

dynamics are conserved or context-specific. In the original study, a total of six distinct cell

populations were identified based on differential expression of cell surface markers (CD106,

CD61, and CD51), including four transition states [121].
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Figure 4.7: TGF-β pathway on EMT in SCC dataset.
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Figure 4.7 (continued): (A) Visualization of cells using QuanTC. Each circle represents a
cell colored by corresponding cell state. (B) Circos plot of intercellular network on the top
ten ligand-producing and top ten receptor-bearing cells from every cluster. The upper hemi-
sphere of the plot shows receptor-bearing cells. The chords of the plot are colored by the
ligand-producing cells in the lower hemisphere. The directed edges from the lower hemisphere
to the upper hemisphere represent the probabilities of signaling between cells. The probabil-
ities of signaling between cells above the thresholds are presented. (C) Intercluster network.
The widths of edges are proportional to the signaling probability scores between clusters.
The directed edges are colored by the ligand-producing clusters. (D) Visualization of signal-
ing probability scores of Ligand-Receptor pairs and their downstream signaling components.
Dot size represents the number of averaged cells with nonzero probability scores between
clusters. Dot color represents the signaling probability scores. (E) Multilayer network. The
first layer shows the intercluster network as in (C) but with higher signaling probabilities
greater than 0.5. Second and third layers show gene regulatory networks of target genes
and top marker genes of clusters respectively using the PIDC algorithm. The target up
(down) genes are the up-regulated (down-regulated) target genes of TGF-β signaling. Each
dot represents a gene colored by its type. Graph edges indicate the top interactions and the
length of the edge is inversely proportional to the interaction strength between genes. The
link between first and second layer indicates the target gene are higher expressed within the
cluster. The link between second and third layer indicates the strong interaction strength
between target and marker genes. The widths of links between layers are proportional to
the interaction strength. The ligands, receptors and target genes are given in Table 4.1.
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In our previous work [140], we identified a total of four EMT states (Figure C.4A, 4.7A) when

applying QuanTC unsupervised clustering [121]. There were two ICS displaying biological

processes including cell-cell adhesion and cell migration indicating hybrid epithelial/mes-

enchymal features (Figure C.4B).

Compared to the OVCA420 cancer cell line undergoing EMT, the ICS in SCC had higher

probabilities of signaling and played the even more dominant role of cell-cell and cluster-

cluster interactions during TGF-β signaling (Figure 4.7B-D). The ICS, especially the I1

state, had higher Pagerank scores and served as the signaling hub (Table C.2). Both two

ICS had lower out-closeness score, indicating that they played the dominant role as the

sender in TGF-β signaling. While the M state had by far the higher pagerank score in

the three OVCA420 datasets, the pagerank score of the M state in SCC was comparable to

those of I1 and I2. Consistently, in the original study, the mesenchymal SCC exhibited a

“quasi-mesenchymal” phenotype, which was more similar to intermediate state, instead of a

fully mesenchymal phenotype [121].

The highly varied target genes and marker genes of each states shared no similarity to the

OVCA420 cancer line (Figure 4.7E). The target genes had strong associations with inferred

marker genes within E and I1 states (Figure C.4C). It suggests that EMT varies both between

mouse versus human, and in vitro versus in vivo.

4.5 Discussion

In this study, we have developed an approach combing unsupervised learning, multivari-

ate information theory and multilayer network approach to uncover the complex cellular

crosstalk and the underlying gene regulatory relationship of EMT from scRNA-seq data.

We started with trajectory reconstruction on the time-series datasets of an OVCA420 can-
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cer cell line undergoing EMT induced by three different external signal (TGFB1, EGF,

TNF) and uncovered the existence of multiple intermediate cell states (ICS) displaying hy-

brid epithelial and mesenchymal features. Analysis of single cell RNA-sequencing previously

demonstrated that EMT induction by TGFB1, EGF and TNF is carried by context-specific

signaling pathways [37]. Here, we show striking differences in the EMT population dynamics

as well. While EMT induced by TGFB1 is synchronous, EGF and TNF induce asynchronous

transitions because cells collected at different time points spread all over different clusters.

These differences at the cell population level could be explained by the signaling complexity

and modularity in response to different EMT inducers. TNF can activate NF-kB signal-

ing, which in turn crosstalks with several transduction pathways and induces responses to

inflammation [53]. TNF-NF-kB signaling has also been proposed as a stability factor for

hybrid E/M phenotypes, thus potentially resisting a complete EMT in TNF-induced EMT

[18]. Similarly, EGF regulation of EMT is not direct, but rather relies on several interme-

diate signaling steps that could hamper a synchronized transition [78]. Certainly, future

efforts focusing on integrating high-throughput data analysis with in silico modeling of the

underlying regulatory circuitry will help validate or falsify these hypotheses.

To clarify how cells in different EMT states contribute to cell-cell signaling, we subsequently

constructed multilayer networks displaying the TGF-β signaling communication between

cells in different EMT states and the underlying GRN that regulates EMT at different EMT

stages. We found that ICS serve as signaling hubs of cell-cell communication, as well as

the context-specific response of TGF-β under different treatments. In other words, cells in

intermediate EMT states can send and receive inputs from other cells through TGF-β signal-

ing, potentially inducing EMT in their neighbors. Therefore, both cell autonomous TGFB1

induction and intercellular TGFB signaling could contribute to EMT. Future experiments

controlling conditional knock-outs of TGFB ligands could validate this prediction and quan-

tify the role played by cell-cell communication in EMT. These observations also raise an

interesting parallel with Notch signaling, another master regulator of cell-cell communica-
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tion [23]. Signaling through the Notch-Jagged pathway between cancer cells in intermediate

EMT states has been proposed as a mechanism that (i) stabilizes intermediate EMT states

and (ii) further induces ‘partial EMT’ in other cells [69, 20]. Our analysis on in vivo dataset

also suggests that ICS plays the more dominant role in the TGF-β signaling communication.

The core gene circuits for EMT are known to involve multiple molecular components and

interactions [170, 63, 148], providing mechanisms of the EMT transition process [73]. Recent

time-series scRNA-seq data suggests that EMT are indeed highly context-specific [37], call-

ing for the need of inferring EMT regulation circuits from a data-driven approach [130, 147].

Previous works have constructed the GRN of EMT based on the combination of prior knowl-

edge, transcription factor predictions and model validations from single-cell datasets [130].

Here we have incorporated the intercellular communications in the context of analyzing

transition cells and Intermediate Cell States to inspect the dynamical change of regulation

interactions along the EMT spectrum.

Our analysis reveals that ICS plays the crucial role in not only interchanging information

with both pure epithelial and mesenchymal states, but also communicating with other cells

in ICS during EMT. Previously, the role of ICS has been studied for tumor metastasis [70],

and analyzed through the emergent dynamical properties such as signal adaptation, noise

attenuation and population transition [138, 45, 145]. Taken together, the EMT cell lineage

models with ICS-mediated feedback through cell-cell communications [93, 103] could be

further developed to explore the nonlinear effects on different cell populations [65].

The integrative analysis here is a general approach and can be applied to other cell-state

transition processes beyond EMT. In particular, the multiplayer gene regulatory and in-

tercellular network provides a multiscale framework to simultaneously explore the cellular

communications, the underlying gene regulations and dynamics of GRN along transitions.

By incorporating additional layers of different transduction elements beyond TGF-β [67] and

associated transcription factors, one can investigate the more complex regulation processes,
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such as signal crosstalk and corporation of multiple pathways [168]. In addition, the inclusion

of spatial information layer may also facilitate the accuracy of intercellular communication

analysis [28].

Overall, our study provides an initial attempt to investigate the multiscale interactions of

intercellular communications and gene expression regulations during the dynamical process

of cell-fate determination.
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Chapter 5

Dynamic Unbalanced Optimal

Transport Network for Modeling

Cellular Dynamics

5.1 Introduction

The advanced single-cell technologies such as scRNA-seq [84] provide great opportunities for

dissection of gene expression at single-cell resolution. However, the lineage relationships and

gene expression dynamics of individual cell is untraceable since cells are killed during single-

cell sequencing. Experimental lineage tracing approaches can be combined with scRNA-seq

but are mostly limited to in vitro applications [7, 156, 40, 8, 125].

Reconstructing the cell fate transitions thus rely heavily on the computational approaches.

One extensively used approach is to order cells along differentiation trajectories based on the

assumption that developmentally related cells tend to share similarities in gene expressions

[167, 126, 134, 152]. Recently, RNA-velocity uses the spliced-to-unspliced mRNA ratio to
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get the cell transition direction [13]. The aforementioned approaches were mainly designed

for one dataset and largely omitted the temporal information from experiments by integrat-

ing multiple datasets together for downstream analysis. With the outbreaks of single-cell

RNA-seq technology, time series data become largely available. However, integrating the

temporal datasets remains challenging. In addition, inferring cellular dynamics from the

high-dimensional gene expression space, including growth and death, remain elusive.

Conventional mechanism-driven mathematical modeling serves as a critical tool in studying

cell fate transition. In particular, stochasticity [128, 127, 117] and growth [186] are two

major factors that drive cell fate transition, that have been extensively studied. The poten-

tial integration of modeling and data provides new opportunities in recovering the cell fate

dynamics. Recently, optimal transport (OT) has been used to link the time series data. OT

was introduced by Monge in 1871 and formally formulated by Kantorovich in 1942 [80]. OT

has served as an approach in finding the transport from two distributions that require mini-

mal transport cost. Kantorovich formulation has been applied to infer the correspondence of

scRNA-seq measured at different time points [137, 171, 180]. However, the time dependency

of multiple time points is missing in these works because of the pairwise interpolation of two

consecutive time points. Moreover, the traditional OT method requires mass conservation

which is not appropriate in cellular dynamics.

In this work, we propose an unbalanced optimal transport to model the temporal dynamics

of gene expression as a dynamical system. We assume that cells collected at any time are

drawn from a distribution in gene expression space. Our method is capable of inferring the

temporal changes of those distributions as well as division/death rates of cells. We also

use deep learning methods to provide a mesh-free solver which can be extended to high

dimensional unpaired time series snapshots.
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5.2 Method

5.2.1 Dynamic optimal transport

Dynamic optimal transport introduced by Benamou and Brenier [12] models the transport

in a continuum sense utilizing the fluid dynamic framework. They consider a smooth and

time-dependent density ρ(x, t) ≥ 0 and velocity fields v(x, t) ∈ Rd satisfying the continuity

equation

∂tρ+∇ · (vρ) = 0 (5.1)

for all t ∈ [0, T ], and it transfers ρ0 to ρT with a continuum sense:

ρ(·, 0) = ρ0, ρ(·, T ) = ρT . (5.2)

In Kantorovich formulation, the optimal transport function attains the Wasserstein distance.

The dynamic optimal transport uses an objective function which is equivalent to the square

of Wasserstein distance in the case of p = 2 [12]:

inf
(ρ,v)

T

∫ T

0

∫
Rd

|v(x, t)|2ρ(x, t)dxdt = W (ρ0, ρT )2
2 . (5.3)

Various numerical solvers can be used for the dynamic optimal transport problem [12]. To

handle high-dimensional problems, several deep learning-based methods have been intro-

duced [151, 172].

5.2.2 Unbalanced dynamic optimal transport

A major constraint of optimal transport is that they are restricted to measures of equal total

mass. The mass conservation is not an appropriate approach in modeling biological systems
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that involve growth (mass creation) and death (mass destruction). The unbalanced optimal

transport has drawn increasingly interests in connecting two densities with different masses.

The unbalanced optimal transport introduces a source term g(x, t) : Rd × [0, T ]→ R in the

continuity equation 5.1,

∂tρ+∇ · (vρ) = gρ

ρ(·, 0) = ρ0, ρ(·, T ) = ρT

(5.4)

Chizat et.al picked the objective function in a form of dynamical mixture of Wasserstein

distance W2 and Fisher-Rao distance, called Fisher-Rao over Hellinger [35]:

T

∫ T

0

∫
Rd

(
|v(x, t)|2 + |g(x, t)|2

)
ρ(x, t)dxdt (5.5)

to measure the influence of the source term and then induced a convex variational problem.

Later, Lee et.al presented fast numerical algorithms for L1 and L2 unbalanced dynamic

optimal transport [98].

Traditional numerical solvers may become computationally inefficient for the high-dimensional

problem. Alternatively, we present our framework in solving the unbalanced dynamic opti-

mal transport problem 5.4 focusing exclusively on the transport cost 5.5 using deep learning

models [33, 189, 188]. This framework allows us to access the dynamic of high-dimensional

gene regulation.

Here, we present our framework to solve the unbalanced optimal transport in high dimen-

sions. For simplification, we use two time point snapshots, ρ0 to ρT , as an example for

explanation. To computationally accelerate high-dimensional integral, we derive an equiva-

lent form of Fisher-Rao over Hellinger:

T

∫ T

0

∫
Rd

(
|v(x, t)|2 + |g(x, t)|2

)
ρ(x, t)dxdt

=TEx0∼ρ0
∫ T

0

(
|v(x, t)|2 + |g(x, t)|2

)
e
∫ t
0 g(x,s)dsdt

(5.6)
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The derivation of 5.6 relies on Theorem 5.1 by taking f(x, t) = |v(x, t)|2 + |g(x, t)|2:

Theorem 5.1. If smooth density ρ(x, t) : Rd × [0, T ] → R+, velocity field v(x, t) : Rd ×

[0, T ]→ Rd and growth rate g(x, t) : Rd × [0, T ]→ R satisfying


∂tρ(x, t) +∇ · (v(x, t)ρ(x, t)) = g(x, t)ρ(x, t)

ρ(x, 0) = ρ0(x)

for all 0 ≤ t ≤ T where


dx(t)

dt
= v(x, t)

x(0) = x0

, then for measurable function f(x, t) : Rd ×

[0, T ]→ Rd, we have

∫ T

0

∫
Rd

f(x, t)ρ(x, t)dxdt = Ex0∼ρ0
∫ T

0

f(x, t)e
∫ t
0 g(x,s)dsdt

Proof. Let σ (x0, t) = x(t), then by Jacobi’s formula

∂

∂t

∣∣∣∣ ∂σ∂x0

∣∣∣∣ = Tr

(
adj

(
∂σ

∂x0

)
∂

∂t

∂σ

∂x0

)
= Tr

(
adj

(
∂σ

∂x0

)
∂
(
∂σ
∂t

)
∂x0

)

= Tr

(
adj

(
∂σ

∂x0

)
∂v

∂x

∂σ

∂x0

)
= Tr

(
adj

(
∂σ

∂x0

)
∂σ

∂x0

∇v
)

=

∣∣∣∣ ∂σ∂x0

∣∣∣∣∇ · v
d

dt

(
ρ

∣∣∣∣ ∂σ∂x0

∣∣∣∣) =
dρ

dt

∣∣∣∣ ∂σ∂x0

∣∣∣∣+ ρ
d

dt

(∣∣∣∣ ∂σ∂x0

∣∣∣∣) =

(
∂ρ

∂x
v +

∂ρ

∂t

) ∣∣∣∣ ∂σ∂x0

∣∣∣∣+ ρ

∣∣∣∣ ∂σ∂x0

∣∣∣∣∇ · v
= (∇ρ · v + gρ−∇ · (vρ))

∣∣∣∣ ∂σ∂x0

∣∣∣∣+ ρ

∣∣∣∣ ∂σ∂x0

∣∣∣∣∇ · v = gρ

∣∣∣∣ ∂σ∂x0

∣∣∣∣
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Let ρ
∣∣∣ ∂σ∂x0 ∣∣∣ = M(t), then M(t) = M(0)e

∫ t
0 g(x,s)ds

∫
Rd

f(y, t)ρ(y, t)dy =

∫
Rd

f (σ (x0, t) , t) ρ (σ (x0, t) , t)

∣∣∣∣ ∂σ∂x0

∣∣∣∣ dx0

=

∫
Rd

f (σ (x0, t) , t) ρ (σ (x0, 0) , 0) e
∫ t
0 g(x,s)dsdx0

= Ex0∼ρ0f(x, t)e
∫ t
0 g(x,s)ds

Note that we assume the characteristic curves do not intersect in the theorem.

To efficiently find the optimal transport, we also relax the constraint of estimated density at

t = T in 5.4 with the replacement of L2 norm of the difference as a penalization term [11].

Then the optimization problem is

inf
ρ,v,g

T

∫ T

0

∫
Rd

(
|v(x, t)|2 + |g(x, t)|2

)
ρ(x, t)dxdt+ λd

1

NT

NT∑
j=1

[
ρ̃T

(
x

(j)
T

)
− ρT

(
x

(j)
T

)]2

= inf
ρ,v,g

TEx0∼ρ0
∫ T

0

(
|v(x, t)|2 + |g(x, t)|2

)
e
∫ t
0 g(x,s)dsdt+ λd

1

NT

NT∑
j=1

[
ρ̃T

(
x

(j)
T

)
− ρT

(
x

(j)
T

)]2

(5.7)

where ρ̃T denotes the numerically estimated density at t = T and the integral above computes

using an ODE solver. KL divergence is a commonly used distance to measure the differ-

ence between two probability distributions. However, when applying KL divergence or the

equivalent maximum likelihood training, the estimated density ρ̃T could be unnormalized.

We consider the scenario where the available data are the discrete observations:

(t1, D
1), (t2, D

2), · · · , (tT , DT ).

The data Di =
{
d

(j)
ti

}N i

j=1
∈ RN i×d is a set of independent and identically distributed samples

drawn from the particle distributions at ti. This sampling captures both the randomness in
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the measurement process and the random selection from the population. If no prior informa-

tion about the mass is given, we consider the number of points observed N i is proportional

to the mass at that time point. We generate the input density ρti via a Gaussian mixture

model where the mean of each component is a sample point, and the covariance matrix is

Σ = σI ∈ Rd×d. The density ρti is then normalized and times the total mass at ti.

5.2.3 Data-derived regularization

We have shown how to perform unbalanced dynamic optimal transport in high dimensions.

When it comes to the single-cell datasets, we consider the spatial variable x is on gene

expression space Rd, and ρ(x, t) = ρt(x) : Rd × [0, T ] → R+ is the continuum density

function interpolates between densities ρ0 and ρT given from the input data. The advection

term v(x, t) = dx
dt

: Rd × [0, T ] → Rd is the velocity field at the gene expression space. The

term g(x, t) : Rd×[0, T ]→ R describes the mass change, which models the cell growth/death.

The smooth and time-dependent density ρ(x, t), velocity fields v(x, t) and growth rate g(x, t)

satisfy 5.4. We assume that cells can move continuously through a real-valued d dimensional

space.

In addition, we may have prior knowledge of cellular systems characterized by growth/death,

i.e. stem cells/terminally differentiated cells, rather than transport and local velocity arrows,

i.e. RNA-velocity [13]. We can add such corresponding regularizations as follows.

Growth/death rate regularization

In some cellular systems, we have the prior knowledge of growth/death rate. For example,

the stem cells (x ∈ S) are capable of dividing and renewing themselves (g ≥ 0) for long

periods while terminally differentiated cells (x ∈ T ) keratinize and eventually die (g ≤ 0).
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We can use them to regularize the growth rate at ti:

Lgrowth,ti =
T∑
i=1

tanh

(
E

x∼ρti ,x∈S
g(x)

)
− tanh

(
E

x∼ρti ,x∈T
g(x)

)
(5.8)

Velocity regularization

In scRNA-seq data, RNA-velocity [13] provides the velocity estimation v̂ of cellular dynamics

so that we can use them to regularize the direction of flow at ti:

Lvelocity,ti =
1

N i

N i∑
j=1

v
(
x

(j)
ti , ti

)
· v̂
(
x

(j)
ti , ti

)
∥∥∥v (x(j)

ti , ti

)∥∥∥∥∥∥v̂ (x(j)
ti , ti

)∥∥∥ (5.9)

5.3 Deep learning-based solver for OT in high dimen-

sion

Lemma 5.1. If density ρ(x, t) : Rd× [0, T ]→ R+, velocity field v(x, t) : Rd× [0, T ]→ Rd and

growth rate g(x, t) : Rd×[0, T ]→ R satisfying


∂tρ(x, t) +∇ · (v(x, t)ρ(x, t)) = g(x, t)ρ(x, t)

ρ(x, 0) = ρ0(x)

for all 0 ≤ t ≤ T where


dx(t)

dt
= v(x, t)

x(0) = x0

, we have d(ln ρ)
dt

= g −∇ · v

Proof. Let σ (x0, t) = x(t)

Then ρ(x, t) = ρ (σ (x0, t)) = ρ̃ (x0, t)

∂ρ
∂t

= gρ−∇ · (vρ) = gρ−∇ρ · v − ρ∇ · v

dρ
dt

= dρ̃
dt

= ∇ρ · dx
dt

+ ∂ρ
∂t

= ∇ρ · v + ∂ρ
∂t

= ∇ρ · v + gρ−∇ρ · v − ρ∇ · v = gρ− ρ∇ · v
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So that d(ln ρ)
dt

= g −∇ · v

We have two neural networks and each one consists of four fully connected layers of 16 nodes

with tanh activations. The two networks take as input the samples and time and output

the derivative of samples with respect to time v = dx
dt

and growth rate g of the sample at

that point respectively. Based on Lemma 5.1, we then have d(ln ρ)
dt

= g −∇ · v. During each

training iteration, we start at the final two consecutive time points, integrate to the one time

point earlier, and continue till the initial time t1. For two consecutive time points ti, ti+1, we

draw samples xti+1
∼ ρti+1

in the following way: we collect 1000 random input samples and

perturb the spatial coordinate of each point with Gaussian noise N (0, σI). The covariance

matrix σI is consistent with the Gaussian mixture model. Taking the integral backward

along the trajectory satisfying v = dx
dt

with the initial xti+1
, we have

x̂ti = xti+1
+

∫ ti

ti+1

v(x, t)dt (5.10)

We can then estimate

ln ρ̃ti+1

(
xti+1

)
= ln ρti (x̂ti)−

∫ ti

ti+1

d ln ρ̃

dt
dt (5.11)

where ρ̃ denotes the estimated density at ti+1. These regularizations are summarized in the

following single loss function:

Lti,ti+1
= (ti+1 −ti)Ex0∼ρti

∫ ti+1

ti

(
|v(x, t)|2 + |g(x, t)|2

)
e
∫ t
ti
g(x(s),s)ds

dt

+ λd
1

N i+1

N i+1∑
j=1

[
ρ̃ti+1

(
x

(j)
ti+1

)
− ρti+1

(
x

(j)
ti+1

)]2

− λg
[
tanh

(
E

x∼ρti ,x∈S
g(x)

)
− tanh

(
E

x∼ρti,x∈T
g(x)

)]

− λv
N i∑
j=1

v
(
x

(j)
ti , ti

)
· v̂
(
x

(j)
ti , ti

)
∥∥∥v (x(j)

ti , ti

)∥∥∥∥∥∥v̂ (x(j)
ti , ti

)∥∥∥

(5.12)
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where the integral above is computed using an ODE solver. Here we use a memory efficient

and reverse accurate integrator for Neural ODEs in the training process [188]. Algorithm 1

shows the framework of our method.

Algorithm 1

Require: A series of snapshots (t1, D
1) , (t2, D

2) , · · · ,
(
tT , D

T
)

where Di =
{
d

(j)
ti

}N i

j=1
∈

RN i×d. If mass M i is not provided, M i = N i

N1

Ensure: Neuron networks: (x, t)→ NN1→ v(x, t) and (x, t)→ NN2→ g(x, t)

Preprocessing: Using Gaussian mixture model to generate density ρti from snapshot Di

ρti(x) =
M i

N i

N i∑
j=1

exp

(
−1

2

(
x− d(j)

ti

)T
Σ−1

(
x− d(j)

ti

))
√

(2π)d|Σ|
,Σ = σI ∈ Rd×d

for epoch from 1 to Epochs do
Loss = 0
for i from T − 1 to 1 do

xti+1
∼ ρti+1

, xti+1
=
(
x

(1)
ti+1

, x
(2)
ti+1

, · · · , x(batch)
ti+1

)
. i.i.d sampling

Integrating backward from ti+1 to ti
dx

dt
= v(x, t)

d(z(x, t))

dt
= g(x, t)−∇ · v(x, t)

,

{
x (ti+1) = xti+1

z (ti+1) = 0
. Estimate x (ti) = x̂ti

zti =
∫ ti
ti+1

(g(x, t)−∇ · v(x, t))dt =
∫ ti
ti+1

d(ln ρ(x,t))
dt

dt . Intermediate variable zti
ln ρ̃ti+1

(
xti+1

)
= ln ρti (x̂ti)− zti . Estimate ρ̃ti+1

Lti,ti+1
=

(ti+1 − ti)Ex0∼ρti
∫ ti+1

ti
(|v(x, t)|2 + |g(x, t)|2) e

∫ t
ti
g(x,s)ds

dt . Compute transport cost

+ λd
batch

∑batch
j=1

[
ρ̃ti+1

(
x

(j)
ti+1

)
− ρti+1

(
x

(j)
ti+1

)]2

. Compute error of estimation

Loss = Loss+ Lti,ti+1

end for
Update NN1 and NN2 using the Adam algorithm by minimizing the Loss

end for

94



5.4 Results

5.4.1 Simulated data from a stochastic model

We build a simulation for stochastic movement of particles in gene expression space. We

assume there is an attractor z = [0, 0]. The resulting velocity v is given by the negative

gradient of the potential: v (x) = −∇ψ (x), where the potential function is ψ(x) = 5‖x−z‖2.

Simulated particles are initially isotropically distributed from a ring where the radius and

angle (r, θ) are uniformly and independently distributed in [2, 2.5] × (0, 2π]. Particles then

evolve following the drift-diffusion dynamics dxt = v (xt) dt+ 0.1dBt where dBt denotes the

increments of a Brownian motion. Particles located outside the circle of radius 0.8 of the

origin are capable of the ability to divide with 1% probability. Every time a particle divides,

its current state xt will be the initial state for the two new trajectories.

Initially, we pick N = 500 particles and run the simulations. The stochastic differential

equation is solved by Euler-Maruyama method using time step ∆t = 0.001. At time t =

0, 0.1, 0.2, we take observed positions of particle as input data and the input densities are

generated by Gaussian mixture model with variance σ = 0.03.

Our deep learning model successfully captures the dynamics in population level connecting

the three input densities (Figure 5.1). In the stochastic model, the particles depart from a

ring and move toward to the center of the ring. The velocity decreases as a particle closer

to the center. In the deep learning model, the velocity is approximated by a neural network.

Rather than the population level, our deep learning model also captures the individual

transition path of each particle where the approximated velocity shows great fit to the

ground truth in both direction and magnitude (Figure 5.1A-B). Moreover, only particles

located outside the circle of radius 0.8 of the origin have the ability for division, indicating

the positive growth rate (g > 0). Our deep learning model also captures the correct signs of
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the growth rate (Figure 5.1A-B).

5.4.2 Epithelial-to-mesenchymal transition (EMT) scRNA-seq data

We apply our method to the time series scRNA-seq which comprise of TGFB1 induced

EMT from A549 cancer cell line [37]. This data consists of cells collected at five timepoints

(Figure 5.2A). For data at each time point, the same number of cells were initially cultured

and treated with the same conditions. As a result, the number of cells collected at different

time points is highly correlated with the mass, and we take number of cells as the input

mass.

The cells at day 0 show epithelial morphology in culture. Under the treatment of TGFB1,

cells exhibit morphological changes which is consistent with EMT during 7 days. The single-

cell data was collected at 5 time points (0d, 8h, 1d, 3d, 7d) independently. We take the

UMAP embeddings of these datasets at two-dimensional space as the input. The input den-

sities are constructed by Gaussian mixture model with σ = 0.02. From these datasets, cell

fate transition can be observed in the projected two-dimensional UMAP space where cells

roughly move in one direction from lower right corner to upper left corner (Figure 5.2A).

Our deep learning model first captures the dynamics of cell densities in the projected space

(Figure 5.2C). The velocity approximately captures directions of the cell fate transition

(Figure 5.2D). Moreover, we reversely track the individual cell fate trajectory at day 7 (Fig-

ure 5.2B). The multiple trajectories roughly recover the cell densities at each day. Indeed,

our model can track cell fate transition in a continuous manner over a large time scale.

Strikingly, our estimation of growth rate is negative at day 7 when cells have become mes-

enchymal cells and is positive when cells are undergoing EMT (day 0 – day3) which matches

the stemness properties of partial EMT [19, 95].
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Figure 5.1: Simulated data and inferred dynamics.
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Figure 5.1 (continued): (A) Snapshots of particles, the input densities ρti and the true
velocities v (x) = −∇ψ (x) of 200 random selected given particles at each time point. (B)
Estimated densities, velocities v and growth rate g at the same subset of particles.

-2 -1 0 1 2
-2

-1

0

1

2
0d 577 cells
8h 885 cells
1d 788 cells
3d 754 cells
7d 129 cells

UMAP_1

U
M

A
P_

2

-2 -1 0 1 2
-2

-1

0

1

2

0d

7d

-2 -1 0 1 2
-2

-1

0

1

2
g at 0d

-2 -1 0 1 2
-2

-1

0

1

2
g at 8h

-2 -1 0 1 2
-2

-1

0

1

2
g at 1d

-2 -1 0 1 2
-2

-1

0

1

2
g at 3d

-2 -1 0 1 2
-2

-1

0

1

2
g at 7d

-3

4

UMAP_1

U
M

A
P_

2

A B

C

-2 -1 0 1 2
-2

-1

0

1

2
v at 0d

-2 -1 0 1 2
-2

-1

0

1

2
v at 8h

-2 -1 0 1 2
-2

-1

0

1

2
v at 1d

-2 -1 0 1 2
-2

-1

0

1

2
v at 3d

-2 -1 0 1 2
-2

-1

0

1

2
v at 7d

UMAP_1

U
M

A
P_

2

UMAP_1

U
M

A
P_

2

-2 -1 0 1 2
-2

-1

0

1

2
0d

-2 -1 0 1 2
-2

-1

0

1

2
8h

-2 -1 0 1 2
-2

-1

0

1

2
1d

-2 -1 0 1 2
-2

-1

0

1

2
3d

-2 -1 0 1 2
-2

-1

0

1

2
7d

0

1.4

UMAP_1

U
M

A
P_

2

E

D

Figure 5.2: EMT scRNA-seq and inferred dynamics shown on the UMAP embedding. (A)
Five time point scRNA-seq data. (B) Trajectory of 100 sampled cells from day 7. The black
line links one cell trajectory. (C-E) Estimated densities, velocities v and growth rate g at
the observed cells.
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5.5 Discussion

We present a method using deep learning to generate a mesh free solver for computing the

unbalanced dynamical optimal transport. Our method is capable of inferring the temporal

dynamics from densities with mass changes due to cellular division and death. We demon-

strate the efficacy of our method first on a benchmark simulated data. Then we apply it to a

time-series scRNA-seq data to infer individual large time scale cell fate transition and cellular

dynamics. Although the method is only applied to problem at two-dimensional space, it can

be efficiently applied to high-dimension. Inferring the trajectories at projected space to gene

space would be interesting to study the temporal dynamics of gene regulatory networks.
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[71] M. K. Jolly and T. Celià-Terrassa. Dynamics of phenotypic heterogeneity associated
with EMT and stemness during cancer progression. Journal of Clinical Medicine,
8(10):1542, 2019.

[72] M. K. Jolly, B. Huang, M. Lu, S. A. Mani, H. Levine, and E. Ben-Jacob. Towards
elucidating the connection between epithelial-mesenchymal transitions and stemness.
Journal of The Royal Society Interface, 11(101):20140962, 2014.

[73] M. K. Jolly and H. Levine. Computational systems biology of epithelial-hybrid-
mesenchymal transitions. Current Opinion in Systems Biology, 3:1–6, 2017.

105



[74] M. K. Jolly, S. C. Tripathi, D. Jia, S. M. Mooney, M. Celiktas, S. M. Hanash, S. A.
Mani, K. J. Pienta, E. Ben-Jacob, and H. Levine. Stability of the hybrid epithe-
lial/mesenchymal phenotype. Oncotarget, 7(19):27067, 2016.

[75] M. K. Jolly, C. Ward, M. S. Eapen, S. Myers, O. Hallgren, H. Levine, and S. S. Sohal.
Epithelial–mesenchymal transition, a spectrum of states: Role in lung development,
homeostasis, and disease. Developmental dynamics, 247(3):346–358, 2018.

[76] M. K. Jolly, K. E. Ware, S. Gilja, J. A. Somarelli, and H. Levine. EMT and MET:
necessary or permissive for metastasis? Molecular oncology, 11(7):755–769, 2017.

[77] R. Kalluri, R. A. Weinberg, et al. The basics of epithelial-mesenchymal transition.
The Journal of clinical investigation, 119(6):1420–1428, 2009.

[78] H.-W. Kang, M. Crawford, M. Fabbri, G. Nuovo, M. Garofalo, S. P. Nana-Sinkam,
and A. Friedman. A mathematical model for microrna in lung cancer. PLoS One,
8(1):e53663, 2013.

[79] X. Kang, J. Wang, and C. Li. Exposing the underlying relationship of cancer metastasis
to metabolism and epithelial-mesenchymal transitions. Iscience, 21:754–772, 2019.

[80] L. V. Kantorovich. On the translocation of masses. In Dokl. Akad. Nauk. USSR (NS),
volume 37, pages 199–201, 1942.

[81] L. G. Karacosta, B. Anchang, N. Ignatiadis, S. C. Kimmey, J. A. Benson, J. B.
Shrager, R. Tibshirani, S. C. Bendall, and S. K. Plevritis. Mapping lung cancer
epithelial-mesenchymal transition states and trajectories with single-cell resolution.
Nature Communications, 10(1):1–15, 2019.

[82] V. Y. Kiselev, K. Kirschner, M. T. Schaub, T. Andrews, A. Yiu, T. Chandra, K. N.
Natarajan, W. Reik, M. Barahona, A. R. Green, et al. Sc3: consensus clustering of
single-cell RNA-seq data. Nature Methods, 14(5):483–486, 2017.
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Appendix A

Additional file for Chapter 2

Figure A.1: Simulation of the model when I1 state is non-proliferative. (A) A simulation
dataset: the proportion of each state induced by the previous cell states at the end of each
cell cycle. The size of the dot is proportional to the number of cells, and the color denotes
the cell states of the mother cell. The arrows represent the occurred state transitions and
the circle represents the state of the daughter cell. (B) Histogram of the number of cell
population at the end of each cycle. The color denotes the mother cell states. The x-labels
represent the states of the daughter cell.
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Appendix B

Additional file for Chapter 3

hESC SCC Intestine Liver Lung Skin
Number top marker genes 4 4 5 5 4 5
Number top transition genes 4 6 8 8 6 6
Percentage of top edges 69% 84% 86% 80% 74% 80%
Thresholds of CPI to select TC 0.34 0.34 0.34 0.2 0.1 0.2

Table B.1: Thresholds of CPI values and to select top genes and edges in PIDC

Figure B.1: Number of clusters predicted based on the graph Laplacian and robustness
of finding marker genes with varied λ2. (A) The first 30 sorted eigenvalues of the graph
Laplacian of the constructed consensus matrix M for the SCC dataset. (B) Clustering
accuracy and robustness of identifying marker genes when λ2 varies from 1 to 10 in the SCC
and mouse embryonic development datasets. Left: the consistency of clustering results based
on the new decomposed H compared to the pre-inferred clusters. Right: the percentage
of finding the same top 100 marker genes for each cluster compared to the marker genes
identified when λ2.
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Figure B.2: Analyzing the dataset of mouse hematopoietic progenitors using QuanTC. (A-B)
Visualization of cells via PRE. (A) Clustering result of 1957 cells after preprocess of the data.
Each dot represents a cell and is colored by its cluster. (B) Each dot is colored by its CPI
value. (C) Percentage of TC associated with each cluster relative to the total number of TC.
(D) Percentage of TC between clusters relative to the entire cell population size. The lines
show the potential transitions between clusters and the dots located at the cluster centers
show the different clusters. Red lines show the potential transition trajectories related to
clusters C6 and C7. (E) Heatmap of normalized expression of marker genes and transition
genes. Columns represent cells ordered along the transition trajectory and rows represent
genes. Coloring represents the normalized expression value of each gene. Top: CPI values
of each cell along the transition trajectory. (F) Expression levels of known lineage markers
with cells ordered along the transition trajectories. Solid lines, smoothed expression curves
for each gene in the transition trajectory.
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Figure B.3: Analyzing SCC and simulation datasets using Monocle 3. (A) Dimensionality
reduction of scRNA-seq data using UMAP coloring by the surface marker (left) and by
the clusters identified by Monocle 3 (middle, right) using the SCC dataset. Dots represent
single cells. Right: Pseudotime-ordering trajectory of scRNA-seq data using Monocle 3. (B)
Dimensionality reduction of scRNA-seq data using UMAP coloring by the surface marker
(left) and by the clusters identified by Monocle 3 (middle, right) using the feature selected
(top 3000 genes) SCC dataset from QuanTC. Dots represent single cells. Right: Pseudotime-
ordering trajectory of scRNA-seq data using Monocle 3. (C) Dimensionality reduction of
first cell cycle simulation dataset using UMAP coloring by the known cell types (left) and
by the clusters identified by Monocle 3 (middle, right). Dots represent single cells. Right:
Pseudotime-ordering trajectory of the data using Monocle 3.
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Figure B.4: Analyzing EMT during hepatic differentiation of hESCs using QuanTC.
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Figure B.4 (continued): (A) Transition trajectory inference. Each dot represents one cell
colored by the value of CPI and its shape represents the time when the data collected given
in the original study. The percentage for each cell type is the percentage of a given cell type
over the entire cell population size. The cells surrounded by larger circles with relatively low
CPI are considered as stable cells. The remaining cells with higher CPI are considered as TC.
Arrows indicate the transition direction of EMT. Top, CPI of the cells colored by identified
states. (B) Visualization of top marker genes and transition genes between states. Each
triangle represents a gene colored by its type. Arrows indicate the transition direction of
EMT. (C) Heat map of normalized expression of marker genes and transition genes. Columns
represent cells ordered along the transition trajectory and rows represent genes. Coloring
represents the normalized expression of each gene. Transition genes are marked in the box.
Top: CPI values of each cell along the transition trajectory. (D) Expression levels of top
transition genes with cells ordered along the most probable transition trajectories. Solid lines,
smoothed expression curves for each gene in the transition trajectory. (E) Dimensionality
reduction of the data using QuanTC coloring for top marker genes and transition genes.
Every dot represents a single cell shaped by its real time and the color scale represents the
normalized expression of the respective genes.
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Figure B.5: Analyzing SCC dataset using QuanTC. (A) Histograms of the expression levels of
selected informative genes and unselected genes. The red curve represents the fitted Gaussian
mixture model. (B-D) Dimensionality reduction of the scRNA-seq data using PCA, tSNE
and PRE visualization. Every dot represents a single cell colored by the clustering inferred
by QuanTC (left) and CPI value (right) and its shape represents the FACS sorting criteria
(Epcam+ or Epcam-). The percentage for each cell type is the percentage of a given cell
type over the entire cell population size. (E) Similarities between states with color showing
the value of similarities.
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Figure B.6: Expression levels of top transition genes and marker genes involved in two main
transition trajectories.
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Figure B.6 (continued): (A) Expression levels of top transition genes and marker genes
with cells ordered along transition trajectory 1 and transition trajectory 2. Solid lines,
smoothed expression curves for each gene in the transition trajectory. (B-D) Dimensionality
reduction of the data using QuanTC coloring for top marker genes and transition genes.
Every dot represents a single cell shaped by the FACS sorting criteria (Epcam+ or Epcam-
) and the color scale represents the normalized expression of the respective genes. (C)
Dimensionality reduction of the data using QuanTC coloring for pure epithelial genes, hybrid
epithelial genes, hybrid mesenchymal genes and pure mesenchymal genes previously identified
in the original study. (D) Dimensionality reduction of SCC data using QuanTC coloring for
known epithelial genes and mesenchymal genes. (E-F) Heat map of normalized expression
of top 20 marker genes and top 20 transition genes. Columns represent cells ordered along
the transition trajectory 1 (E) and trajectory 2 (F) with rows represent genes. Coloring
represents the normalized expression of each gene. Transition genes are marked in the box.
Top: CPI values of each cell along the transition trajectories. (G) Dimensionality reduction
of the data using QuanTC coloring for cell-cycle phase based on computed cell cycle scores.
Every dot represents a single cell.
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Figure B.7: Analysis of EMT during organogenesis in Intestine (top) and liver (bottom).
(A) Visualization of cells via PRE. Each dot represents a single cell colored by the time
of the tissue in mouse embryos from the original study on the corresponding dataset (left),
clustering result from QuanTC (middle) and the value of CPI (right). The shape of each
dot represents the cell states previously identified in the original study on the corresponding
dataset. The thresholds to select TC are given in Table B.1. Arrowed solid line shows the
main transition trajectory. The percentage for each cell type is the percentage of a given cell
type over the entire cell population size.
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Figure B.7 (continued): (B) Dimensionality reduction of the data coloring for known epithe-
lial genes and mesenchymal genes. Every dot represents a single cell and its shape represents
the cell states previously identified in the original study on the corresponding dataset. The
color scale represents the normalized expression of the respective genes. (C) Dimensionality
reduction of the data coloring for cell-cycle phase based on computed cell cycle scores. Every
dot represents a single cell and its shape represents the cell states previously identified in
the original study on the corresponding dataset. (D) Percentage of TC associated with each
state relative to the total number of TC. (E) Expression levels of top transition genes with
cells ordered along the most probable transition trajectory. Solid lines, smoothed expression
curves for each gene in the transition trajectory. (F) Heat map of normalized expression
of top 20 marker genes and top 20 transition genes. Columns represent cells ordered along
the transition trajectory 2 and rows represent genes. Coloring represents the normalized
expression of each gene. Transition genes are marked in the box. Top: CPI values of each
cell along the transition trajectory. (G) Visualization of cells via PRE. Each dot represents a
single cell colored by the time of the tissue in mouse embryos from the original study on the
corresponding dataset (left), clustering result from QuanTC (middle) and the value of CPI
(right). The shape of each dot represents the cell states previously identified in the original
study on the corresponding dataset. The thresholds to select TC are given in Table B.1.
Arrowed solid line shows the main transition trajectory. (H) Dimensionality reduction of
the data coloring for known epithelial genes and mesenchymal genes. Every dot represents a
single cell and its shape represents the cell states previously identified in the original study
on the corresponding dataset. The color scale represents the normalized expression of the
respective genes. (I) Dimensionality reduction of the data coloring for cell-cycle phase based
on computed cell cycle scores. Every dot represents a single cell and its shape represents
the cell states previously identified in the original study on the corresponding dataset. (J)
Percentage of TC associated with each state relative to the total number of TC. (K) Ex-
pression levels of top transition genes with cells ordered along the most probable transition
trajectory. Solid lines, smoothed expression curves for each gene in the transition trajectory.
(L) Heat map of normalized expression of top 20 marker genes and top 20 transition genes.
Columns represent cells ordered along the transition trajectory 2 and rows represent genes.
Coloring represents the normalized expression of each gene. Transition genes are marked in
the box. Top: CPI values of each cell along the transition trajectory.
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Figure B.8: Analysis of EMT during organogenesis in lung (top) and skin (bottom). (A)
Visualization of cells via PRE. Each dot represents a single cell colored by the time of
the tissue in mouse embryos from the original study on the corresponding dataset (left),
clustering result from QuanTC (middle) and the value of CPI (right). The shape of each
dot represents the cell states previously identified in the original study on the corresponding
dataset. The thresholds to select TC are given in Table B.1. Arrowed solid line shows the
main transition trajectory. The percentage for each cell type is the percentage of a given cell
type over the entire cell population size.

126



Figure B.8 (continued): (B) Dimensionality reduction of the data coloring for known epithe-
lial genes and mesenchymal genes. Every dot represents a single cell and its shape represents
the cell states previously identified in the original study on the corresponding dataset. The
color scale represents the normalized expression of the respective genes. (C) Dimensionality
reduction of the data coloring for cell-cycle phase based on computed cell cycle scores. Ev-
ery dot represents a single cell and its shape represents the cell states previously identified
in the original study on the corresponding dataset. (D) Percentage of TC associated each
state relative to the total number of TC. (E) Expression levels of top transition genes with
cells ordered along the most probable transition trajectory. Solid lines, smoothed expression
curves for each gene in the transition trajectory. (F) Heat map of normalized expression
of top 20 marker genes and top 20 transition genes. Columns represent cells ordered along
the transition trajectory 2 and rows represent genes. Coloring represents the normalized
expression of each gene. Transition genes are marked in the box. Top: CPI values of each
cell along the transition trajectory. (G) Visualization of cells via PRE. Each dot represents a
single cell colored by the time of the tissue in mouse embryos from the original study on the
corresponding dataset (left), clustering result from QuanTC (middle) and the value of CPI
(right). The shape of each dot represents the cell states previously identified in the original
study on the corresponding dataset. The thresholds to select TC are given in Table B.1.
Arrowed solid line shows the main transition trajectory. (H) Dimensionality reduction of
the data coloring for known epithelial genes and mesenchymal genes. Every dot represents a
single cell and its shape represents the cell states previously identified in the original study
on the corresponding dataset. The color scale represents the normalized expression of the
respective genes. (I) Dimensionality reduction of the data coloring for cell-cycle phase based
on computed cell cycle scores. Every dot represents a single cell and its shape represents
the cell states previously identified in the original study on the corresponding dataset. (J)
Percentage of TC associated with each state relative to the total number of TC. (K) Ex-
pression levels of top transition genes with cells ordered along the most probable transition
trajectory. Solid lines, smoothed expression curves for each gene in the transition trajectory.
(L) Heat map of normalized expression of top 20 marker genes and top 20 transition genes.
Columns represent cells ordered along the transition trajectory 2 and rows represent genes.
Coloring represents the normalized expression of each gene. Transition genes are marked in
the box. Top: CPI values of each cell along the transition trajectory.
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Figure B.9: State transition index and gene regulatory networks for the EMT datasets and
their comparisons with QuanTC outputs. (A) State transition index of relatively stable cells
in each state and the TC between states. Dashed box: TC with high value of state transition
index. (B) Gene regulatory networks of top marker genes and transition genes using the
PIDC algorithm from the datasets (the top ∼ 80% of edges are shown). The thresholds to
select top genes and edges are given in Table B.1. Each dot represents a gene colored by
its type. Graph edges indicate the top interactions and the length of the edge is inversely
proportional to the interaction strength between genes. (C) EMT cell lineage inferred from
datasets, with node colors consistent with previous figures. The arrow represents potential
transition between states, and number represents the percentage of TC among total number
of cells.
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Figure B.10: (A) Percentage of TC in each state relative to the total number of TC from
the six patients in HNSCC dataset. (B) EMT cell lineage inferred from datasets, with node
colors consistent with previous figures. The arrow represents potential transition between
states, and number represents the percentage of TC among total number of cells.
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Appendix C

Additional file for Chapter 4

OVCA420 TGFB1 OVCA420 EGF OVCA420 TNF
Thresholds of CPI to select TC 0.4 0.55 0.4

Table C.1: Thresholds of CPI values

E I1 I2 M

OVCA420 TGFB1

In-strength 0.1776162 1.9648623 1.2557214 3.4196665
Out-strength 1.689800 1.993284 1.283902 1.850880
In-closeness 22.565594 2.157533 2.940819 1.204396
Out-closeness 1.823565 2.114316 2.861763 3.253483
Pagerank 0.05957221 0.28235406 0.19392289 0.46415084

OVCA420 EGF

In-strength 0.5808987 0.6194308 3.0256635 3.3411261
Out-strength 2.019406 1.465237 2.266148 1.816328
In-closeness 7.040529 6.006635 1.415538 1.180988
Out-closeness 1.608914 2.230063 2.206174 2.954360
Pagerank 0.1027799 0.1071867 0.3774523 0.4125810

OVCA420 TNF

In-strength 1.1865127 0.3591376 1.1528117 3.6014175
Out-strength 1.692995 1.192109 1.666992 1.747783
In-closeness 3.458899 10.294901 3.538624 1.153217
Out-closeness 2.183708 2.668141 2.202695 4.011858
Pagerank 0.19736113 0.08600868 0.19305720 0.52357299

SCC

In-strength 1.506968 3.005718 2.501364 2.870468
Out-strength 1.969614 2.411808 3.287782 2.215314
In-closeness 2.488402 1.320666 1.796591 1.347659
Out-closeness 1.798303 1.788193 1.221375 1.909698
Pagerank 0.1670528 0.2960197 0.2525167 0.2844108

Table C.2: Measuring node centrality
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Figure C.1: OVCA420 cancer cell line undergoing EMT induced by TGFB1. (A) The first
30 sorted eigenvalues of the graph Laplacian of the cell-cell similarity matrix from consensus
clustering. (B-C) Dimensionality reduction of the dataset by QuanTC coloring for known
epithelial genes (B) and mesenchymal genes (C). (D) Heatmap of normalized expression of
marker genes and transition genes. Columns represent cells ordered along the transition
trajectory and rows represent genes. Coloring represents the normalized expression value
of each gene. (E) The top-level gene ontology biological processes analyzed by Metascape
of the marker genes of all cell states and ICS respectively. (F) Boxplot of the correlations
between target genes and marker genes from Fig. 4D within each state. The central red
mark indicates the median, and the bottom and top edges of the box indicate the 25th and
75th percentiles, respectively. The whiskers extend to the most extreme data points.
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Figure C.2: OVCA420 cancer cell line undergoing EMT induced by EGF. (A) The first 30
sorted eigenvalues of the graph Laplacian of the cell-cell similarity matrix from consensus
clustering. (B-C) Dimensionality reduction of the dataset by QuanTC coloring for known
epithelial genes (B) and mesenchymal genes (C). (D) Heatmap of normalized expression of
marker genes and transition genes. Columns represent cells ordered along the transition
trajectory and rows represent genes. Coloring represents the normalized expression value
of each gene. (E) The top-level gene ontology biological processes analyzed by Metascape
of the marker genes of all cell states and ICS respectively. (F) Boxplot of the correlations
between target genes and marker genes from Fig. 4D within each state. The central red
mark indicates the median, and the bottom and top edges of the box indicate the 25th and
75th percentiles, respectively. The whiskers extend to the most extreme data points.
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Figure C.3: OVCA420 cancer cell line undergoing EMT induced by TNF. (A) The first 30
sorted eigenvalues of the graph Laplacian of the cell-cell similarity matrix from consensus
clustering. (B-C) Dimensionality reduction of the dataset by QuanTC coloring for known
epithelial genes (B) and mesenchymal genes (C). (D) Heatmap of normalized expression of
marker genes and transition genes. Columns represent cells ordered along the transition
trajectory and rows represent genes. Coloring represents the normalized expression value
of each gene. (E) The top-level gene ontology biological processes analyzed by Metascape
of the marker genes of all cell states and ICS respectively. (F) Boxplot of the correlations
between target genes and marker genes from Fig. 4D within each state. The central red
mark indicates the median, and the bottom and top edges of the box indicate the 25th and
75th percentiles, respectively. The whiskers extend to the most extreme data points.
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Figure C.4: (A) The first 30 sorted eigenvalues of the graph Laplacian of the cell-cell simi-
larity matrix from consensus clustering. (B) The top-level gene ontology biological processes
analyzed by Metascape of the marker genes of all cell states and ICS respectively. (C) Box-
plot of the correlations between target genes and marker genes from Fig. 4D within each
state. The central red mark indicates the median, and the bottom and top edges of the
box indicate the 25th and 75th percentiles, respectively. The whiskers extend to the most
extreme data points.
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