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Predicting whether and how populations will adapt to rapid
climate change is a critical goal for evolutionary biology. To
examine the genetic basis of fitness and predict adaptive evolution
in novel climates with seasonal variation, we grew a diverse panel of
the annual plant Arabidopsis thaliana (multiparent advanced gener-
ation intercross lines) in controlled conditions simulating four cli-
mates: a present-day reference climate, an increased-temperature
climate, a winter-warming only climate, and a poleward-migration
climate with increased photoperiod amplitude. In each climate,
four successive seasonal cohorts experienced dynamic daily tempera-
ture and photoperiod variation over a year.Wemeasured 12 traits and
developed a genomic prediction model for fitness evolution in each
seasonal environment. This model was used to simulate evolutionary
trajectories of the base population over 50 y in each climate, as well as
100-y scenarios of gradual climate change following adaptation to a
reference climate. Patterns of plastic and evolutionary fitness response
varied across seasons and climates. The increased-temperature climate
promoted genetic divergence of subpopulations across seasons,
whereas in the winter-warming and poleward-migration climates,
seasonal genetic differentiation was reduced. In silico “resurrec-
tion experiments” showed limited evolutionary rescue compared
with the plastic response of fitness to seasonal climate change.
The genetic basis of adaptation and, consequently, the dynamics
of evolutionary change differed qualitatively among scenarios.
Populations with fewer founding genotypes and populations with
genetic diversity reduced by prior selection adapted less well to
novel conditions, demonstrating that adaptation to rapid climate
change requires the maintenance of sufficient standing variation.

climate change | annual plant | genomic prediction | season

Ongoing climate change is causing rapid shifts in environmental
selective pressures within local populations (1, 2). To persist,

populations must track the shifting multivariate trait optimum by
phenotypic plasticity or adaptive evolution (3, 4), or migrate to keep
up with poleward shifts in their original climate niche (1). The
outcome of these responses to climate change will depend upon the
seasonal variation a population experiences, particularly in temper-
ate climates, where seasonality is a major source of environmental
heterogeneity (5, 6). Understanding adaptation to seasonal envi-
ronments is critical for predicting the response to climate change in
short-lived organisms with multiple generations per year, like many
insects and annual plants. Such prediction requires theoretical pro-
jections based on solid empirical foundations, tracking phenotypic
change in complex traits as well as in the molecular variation present
within populations as they adapt to different seasons. Here, we use
a genomic prediction model, based on experimental data from
Arabidopsis thaliana, to simulate trajectories of adaptation to
novel climate scenarios in seasonally variable environments.
In nature, the fitness of an individual is usually determined by

multiple correlated traits, each controlled by multiple loci. Natural
selection acts simultaneously on all traits and targets multiple loci,
creating a whole-genome response to selection. Models of genomic

prediction analyze the effect of multiple segregating loci by si-
multaneously using all genome-wide molecular markers (7). These
models assume that traits are additively influenced by every locus
of the genome, and attribute a component of the variance to each
marker. This modeling approach leads to an explicit decomposition
of the genetic architecture of a trait, strictly relying on empirical
measures of genetic effects to infer models of evolution. Further-
more, modeling adaptation with realistic genetic effects and ge-
nomic positions takes into account the interference between linked
loci selected in opposite phase [Hill–Robertson interference (8)],
leading to more conservative estimates of evolutionary potential.
Such models are of considerable interest for predicting the evo-
lutionary response to climate change in complex environments.
For terrestrial plant populations, the adaptive response to

changing climate will involve both plastic and evolutionary responses
in fluctuating seasonal environments. Warming temperatures
(ignoring the effect of water or nutrient availability) may alter
the onset and length of the growing season (9) and also accelerate
phenological events, such as flowering (10, 11) and seed matura-
tion (12). However, if temperatures rise beyond plant tolerance
thresholds, summer will become unfavorable for growth and
survival (13, 14). Also, warmer winters may result in insuffi-
cient chilling exposure for floral induction of some species or
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genotypes, delaying or preventing reproduction (15). Thus, adap-
tation to a warming climate will require an evolutionary response to
heterogeneous natural selection across different seasons. Mi-
gration poleward to track a population’s original temperature
conditions also requires adaptation to seasonal changes in day
length, with longer days in summer, shorter days in winter, and
faster changes in day length in fall and spring (16). Plant re-
productive development is often controlled by interacting seasonal
cues of photoperiod, ambient temperature, and chilling exposure.
Both climate change and poleward migration may create an un-
precedented combination of photoperiodic cues and seasonal
thermal environments, resulting in novel selective pressures.
Short-lived annual plants capable of multiple generations per

year face particular challenges in adapting to novel seasonal
environments. Seasonal variation could lead to the maintenance
of genetically specialized subpopulations adapted to different sea-
sonal environments (17). Seasonal specialization has two non-
exclusive drivers: differences in selection across seasons, resulting in
some genotypes being favored over others in a particular season, and
nonoverlapping life histories, resulting in a reproductive isolation of
subpopulations (18). Seasonally varying selection is a more direct
mechanism for adaptive differentiation and does not preclude gene
flow across subpopulations, potentially maintaining genetic diversity,
whereas life history exclusion would not, per se, increase the adap-
tive fitness and might eventually erode the genetic basis of the
population through drift. However, few studies have investigated the
potential for seasonal differentiation. Depending on the specific
genetic architecture of traits and fitness in the different seasonal
environments, seasonal adaptation may result in selective trade-offs
but may also occur through adaptation at season-specific, condi-
tionally neutral loci. Altogether, strong seasonality results in more
complex selective environments, with more different and temporary
transient optima. Including multiple seasonal cohorts in models of
climate adaptation is therefore fundamental to understand the long-
term response in temperate environments.
The annual plant Arabidopsis thaliana provides an excellent

opportunity to model trajectories of adaptation to novel climate
scenarios. A. thaliana is a widespread species experiencing a wide
range of climates. Some populations produce multiple seasonal
cohorts per year, including winter annuals as well as rapid cycling
cohorts germinating in spring, summer, or early autumn (19).
This species shows evidence of adaptation to climate on a broad
geographic scale (2, 20–22) as well as along altitude gradients
(23–25). Populations are large (26) and geographically struc-
tured over multiple spatial scales (27), maintaining extensive
genetic variation. Although the species is largely self-fertilizing,
outcrossing is not uncommon, allowing recombination to gen-
erate new genotypes (28). These properties make A. thaliana a
powerful model for exploring general features of the evolution-
ary process leading to adaptation in temporally heterogeneous
environments. Finally, the resources available for Arabidopsis
enable the use of genomic prediction models to dissect the dy-
namic of this adaptation at the molecular level, genome-wide.
Here, we investigated the short-term dynamic of seasonal ad-

aptation in A. thaliana through simulation based on experimental
data. In controlled environments, multiple cohorts of a subset of
multiparent advanced generation intercross (MAGIC) (29) lines
were planted at four different times of the year in four different
simulated climates. These climates corresponded to (i) a reference
(REF) climate set in Norwich (United Kingdom); (ii) a climate
with a warmer winter (WAW), mimicking the effect of climate
change only affecting winter; (iii) a climate with a year-round
warmer temperature (TEM), corresponding to what plants will
face in Norwich in 2100 according to Intergovernmental Panel on
Climate Change (IPCC) A1B model predictions (30); and (iv) a
climate with an increased photoperiod amplitude (PHO), mim-
icking the seasonal climate poleward migrating plants will have to
adapt to. We measured 12 ecologically relevant traits for each plant

that defined life history, development, fitness, and offspring ger-
mination patterns and recorded mortality. These data were de-
veloped into individual-based simulations of adaptive trajectories,
by first dissecting the influence of multiple traits on fitness and
characterizing the genetic basis of each trait at the SNP level and
then tracking over the course of the simulation the change in trait
values linked to specific genetic combinations and the change in the
overall molecular variation present in the population. The simulation
model was designed to reflect an isolated population of fixed size,
with recombination from standing variation as the only source of
genetic innovation and no de novo mutation. Competition in a fixed-
size population then selected particular genotypes based on the
empirical measures of traits, depending on the underlying genetic
effects. We tested for differences in genetic composition and rate of
adaptation across seasons under the different climate scenarios,
starting with a broad synthetic base population representing species-
wide genetic diversity. We then investigated the effect of adaptation
on global genetic diversity as well as for specific loci associated with
trait variation. Finally, we tested how easily populations with less
genetic variation after being preadapted to a specific environment
could readapt to a new environment, mimicking climate change.

Results
Trait Variation Across Climate and Season. For each of the four
climates tested, the four cohorts planted through the year (on April
1 for spring, on July 29 for summer, on September 9 for early fall,
and on October 14 for late fall) showed extensive plasticity to
season of planting and climate treatment (SI Appendix, Fig. S1).
The effect of climate treatment on trait means differed among
seasonal cohorts. All traits exhibited significant genotype-by-season
interaction [mixed-linear model (MLM); P < 10−4], indicating ge-
netic variation in plasticity to seasonal environment. Days to
bolting, weight at harvest, and germination rate of the offspring
seeds had the greatest genotype-by-season interaction variance
(SI Appendix, Fig. S2). By contrast, we observed little genetic
variation in plasticity to climate (genotype-by-climate interaction),
revealing more potential to evolve in response to seasonal varia-
tion than to climate variation alone. This pattern is consistent with
the fact that intraannual variation in temperature and photoperiod
in this experiment was greater than variation across the climates
tested (SI Appendix, Fig. S3).
The high correlation among traits revealed strong functional

interdependence (SI Appendix, Fig. S4). A trait network was used
to model trait (co)variation, defining the topology using a back-
ward stepwise method taking germination rate as the most down-
stream trait, adding each trait iteratively, and allowing a maximum
of three upstream connections per trait based on the Bayesian
information criterion (BIC). The model that best explained the
relationships between traits across all 16 plantings placed days to
bolting as the most upstream trait and followed the phenological
order of plant life history, with the exception of early growth rate
placed downstream of days to bolting, due to its strong corre-
lation with total seed weight (Fig. 1A). Total seed weight, seed
number, and (seed) dormancy showed the highest connectivity
across traits, with three upstream connections each. No trait was
left unconnected using the BIC for alternative model compari-
son. Although the overall topology of the model was fixed across
environments based on the experimental data, the variance and
covariance between traits based on observed values were allowed
to change across seasons and climates, effectively modeling envi-
ronmental plasticity. Comparison of the predicted values against
the observed values for the estimated seed number showed the
model fitted the data with good accuracy (R2 = 89%; SI Appendix,
Fig. S5). Broad-sense heritabilities ranged from 0 to 0.96 (mean =
0.29 for the 12 traits in 16 plantings), with days to bolting being the
most heritable trait, suggesting a strong genetic component. The
contribution of individual SNPs to the genetic variance of each trait
was calculated using genomic prediction models (Materials and
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Methods) including the fixed effect of upstream traits (Fig. 1A).
This genomic prediction model was used to simulate over time the
adaptation of the experimental population in the four different
climates going through yearly seasonal variation (Fig. 1B).

Simulation of Population Differentiation, Fitness Change, and Adaptive
Trajectory. Starting with the standing genetic diversity present in the
52 MAGIC genotypes, and using a time step of 2 wk between
germination cohorts from March 1 until November 15, adaptation
was simulated in each of the four climates for 50 y with 250 rep-

licated runs. Populations predominantly remained polymorphic
(SI Appendix, Table S1), and extinction never occurred. Only in the
PHO climate did a single genotype ever reach fixation at appre-
ciable frequency (4.42% of the runs); fixation of a single genotype
never happened in more than 1% of runs in the other climates.
Even under an equal and continuous germination model limiting
the demographic differences between seasons, the genetic differ-
entiation between seasonal cohorts was significant in most runs for
the REF and TEM climates [Reynolds, Weir, and Cockerham
(RWC) distance; generalized linear model (GLM) testing the
within- and between-seasons RWC distance, P < 0.05], with dis-
tinctive spring, summer, and fall populations (SI Appendix, Table
S1). Mean genetic distance between seasons was substantially in-
creased in the TEM treatment, suggesting that climate warming
may promote genetic differentiation of seasonal subpopulations.
In the PHO climate, there was less genetic differentiation among
seasonal cohorts than in the REF climate, whereas the WAW cli-
mate showed the least differentiation of all climates.
The mean timing of life history events showed some difference

across climates, with the most noticeable being accelerated bolting
and flowering but longer dormancy of the offspring for the summer
cohorts of the TEM climate (SI Appendix, Fig. S6). The most di-
versity in life history strategies was found for the fall cohorts in the
PHO climate, where both long- and short-cycling genotypes per-
sisted. The offspring of summer cohorts also germinated over a
longer time span than spring or later fall ones, potentially exposing
them to a wider range of seasonal climates. Variation in matura-
tion time and levels of dormancy led to broadly overlapping co-
horts, leaving the possibility for the reproductive outcome of any
cohort to colonize other seasonal niches and interbreed with
genotypes from other cohorts. Furthermore, we found no consis-
tent differences across climates in the way the offspring of the

A B

Fig. 1. (A) Structure of traits network. This topology was inferred through
iterative mixed modeling by jointly using all climates and seasonal plantings.
The different colors highlight four different trait functional clusters: life
history timing, growth, reproductive fitness, and offspring development. A
dynamic view of the network is available at traitnet.adaptive-evolution.org/
DynAdapt/TraitNetwork.html. (B) Phenological and fitness model. Details
are provided in Materials and Methods.

Fig. 2. Change in mean estimated seed number per plant over the year after 50 y of simulation in four experimental climates. The seed number is expressed
relative to its mean value in the first year of simulation. Each of the 250 lines corresponds to an independent simulation. The x axis represents a set of discrete
cohorts germinating at the given dates. Dynamic analysis for all traits can be viewed at traitnet.adaptive-evolution.org/DynAdapt/VideoLauncher.html.
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different seasonal cohorts overlapped in the seed bank, suggesting
no steady pattern of reproductive isolation over time.
The mean estimated seed number per plant, a trait central to

fitness in the model, increased for most replicates in all climates,
showing the general adaptive potential of the starting population.
However, this fecundity increase, a reflection of adaptive success,
was uneven across seasons (Fig. 2). The largest increase in fitness
was observed for the summer cohorts in the more seasonally equable
WAW climate, where the mean seed number per plant increased by
more than 25%. Variation between replicates was lower in the PHO
climate, and particularly in WAW climate (F test for variance dif-
ferences, P < 10−5). Adaptation was thus rather predictable, with all
runs but one yielding similar fitness increases. For the TEM climate,
the other climate with a warm winter, the gain in seed number was
also potentially greater in summer but differed dramatically across
replicates, many of which showed declining fecundity. In this case,
successful adaptive evolution depended on newly recombined geno-
types (the only source of genetic innovation in the model; SI Ap-
pendix, Table S1), which were able to take advantage of the summer
niche. When analyzing adaptation over time, mean seed number first
increased in spring and/or fall and then in summer for all climates

(Fig. 3). In the WAW climate, the reduced seasonal differentiation
resulted in an initially more even increase across seasons. However,
after a phase of general increase, fitness continued to increase in
summer but stabilized in spring or decreased in fall, the most striking
example of fitness trade-offs across seasons observed in the data. In
all climates, we tested in parallel the fitness of the first spring cohort
(March 1), the midsummer cohort (July 1), and the last fall cohort
(November 15) at every germination date. In general, “home” sea-
sonal cohorts did not outperform “away” cohorts over the longer
term when reciprocally transplanted across seasons (Fig. 3). The
relative performance of each cohort was transient over the 50 y
simulated, with a generally fittest fall cohort early on, progressively
matched or outperformed by summer and spring cohorts.
The contribution of each germination cohort to the evolution in

the different climates was determined using principal component
analysis (PCA) of the matrix of change in mean seed number after
50 y (in each of the 18 two-week cohorts × 250 replicated runs).
For all climates except the WAW climate, the first eigenvector,
which captured the principal evolutionary dimension, explained be-
tween 43% and 49% of the variance in mean seed number per plant.
In the WAW climate, the climate with less seasonal differentiation,

Fig. 3. Seasonal reaction norms of the estimated seed number (Left) and mean estimated seed number (Right) across replicated simulations over time. For the seasonal
reaction norms, each segment of the radar plot represents the normalized mean relative fitness (y axis) calculated from 2001 for each germination date (circularized x axis),
arbitrarily ranging from 0 to 1. Aminimum value indicates that the seed number is reaching theminimal seed number for this specific climate at this specific germination date,
whereas a maximum value indicates the seed number reaches its maximum over the years. For the mean seed number plot, each curve represents a different cohort
transplanted over the year: March 1 spring cohort is shown in solid green, July 1 summer cohort is shown in dashed yellow, and November 15 fall cohort is shown in dotted
brown. The x axes are identical to the x axes in Fig. 2. A dynamic real-time analysis for all traits can be viewed at traitnet.adaptive-evolution.org/DynAdapt/VideoLauncher.html.
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the first eigenvector explained 64% of the total variance (SI Ap-
pendix, Table S2), suggesting more variation was accessible along
the first evolutionary dimension. We further focused on the three
specific cohorts contributing the most to the change in mean seed
number; for each climate, these three cohorts corresponded to a
spring germination date, a summer germination date, and a fall
germination date. Analysis of the first derivatives confirmed ad-
aptation to summer systematically extended for longer periods of
time (derivative reaching 0 later; SI Appendix, Fig. S7), indicating
slower evolutionary dynamics for these cohorts. Also, the fitness
increase in summer greatly varied across replicates (Fig. 2), and
corresponded to the emergence of recombined genetic variants
not initially present in the population (SI Appendix, Table S1).

Evolution of the Molecular Diversity and Pattern of Selection for
Specific Loci. In all climates, the simulations showed a sharp initial
decline in genetic diversity [Nei index (31)], as expected for a pop-
ulation adapting to a novel environment (Fig. 4), with theWAW and
PHO climates showing the sharpest decline. After 50 y, the amount
of genetic diversity differed across climates, with the REF and
WAW climates retaining more diversity and showing reduced vari-
ation across replicates (t test for mean difference between climates,
F test for variance difference, P < 10−15). In contrast, for the TEM
and PHO climates, where overall fitness gain was lower, levels of
molecular variation were very variable, with the TEM climate
remaining, on average, more diverse than the PHO climate. In-
terestingly in the WAW climate, with the sharpest initial diversity
decrease, the diversity recovered substantially. Increasing the pop-
ulation size led to greater maintenance of diversity in all climates but
also to a sharper initial decrease for the WAW and PHO climates
(SI Appendix, Fig. S8). Increasing the outbreeding rate also increased
the mean genetic diversity retained but increased the number of
replicates where a few genotypes reached fixation with limited ge-
netic variation remaining. This dual effect illustrates the role of re-
combination: Between neutral and selected loci, recombination
reduces hitchhiking of neutral diversity linked to selected loci (which
could otherwise lead to the fixation of a single genotype); between
loci selected in the opposite haplotype phase, recombination breaks

the linkage between potentially interfering loci, thus increasing se-
lection efficiency (32, 33). Despite consequences at the molecular
level, population size and outbreeding rate had a very limited effect
on fitness (SI Appendix, Fig. S9). The limited effect of demographic
parameters indicates that trait evolution is more robust with respect
to change in demographic parameters, such as population size and
outbreeding, relative to the more sensitive molecular evolution.
The model sensitivity to the starting conditions was further tested
by initiating the simulation with a set of either two or 10 founder
genotypes. As expected, starting with a reduced amount of genetic
variation led to the depletion of all genetic diversity (Nei index
close to 0) in all climates, with very few instances of a population
recovering diversity, even in the WAW climate (SI Appendix, Fig.
S8). However, the effect of the initial amount of variation at the
fitness level was significant in all climates (paired t test, P < 10−2)
except the TEM climate (P = 0.72) when comparing 10 and 52
founders (SI Appendix, Fig. S9).
To analyze the pattern of selection at specific loci, the probability

of fixation for each SNP allele was calculated and compared with its
initial frequency (Fig. 5). After removing alleles with an initial fre-
quency greater than 0.95, we considered all alleles whose fixation
frequency was greater than the initial allele frequency to be posi-
tively selected, under the Wright–Fisher fixation model. In the
WAW climate, an important fraction of the alleles reached fixation
in a single selection event (25% of the alleles; SI Appendix, Fig.
S10C). A similar pattern was found for the REF (14% of the al-
leles) climate; however, afterward, a second selection event swept to
fixation other alleles with lower initial frequency (SI Appendix, Fig.
S10A). The fixation of this second set of alleles happened after 35 y
and corresponded across all runs to the maximum of the derivative
for change in seed number, indicating accelerating fitness evolution
in fall (GLM, P < 0.001; SI Appendix, Fig. S7). Allele frequency
change thus paralleled fitness trajectories in Figs. 2 and 3, occur-
ring protractedly, first along the first evolutionary dimension for all
seasons and then along other dimensions where genetic variance
remained, specifically exploiting the fall niche. In the REF and
WAW climates, adaptation targeted specific sets of alleles, pre-
serving much of the molecular variation (Fig. 5). Such targeted

Fig. 4. Evolution of Nei diversity index over 50 y of simulation and histogram of the distribution in 2050. The simulations all started from the same level in
2001, but curves were only plotted from 2005 onward to improve readability.
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sweeps were not observed in the PHO and TEM climates, where,
overall, a greater fraction of alleles had a nonnull probability of
fixation compared with the REF or WAW climate (SI Appendix,
Fig. S10 B and D). In the PHO climate, a greater proportion of
rare alleles was targeted, leading to a higher fixation rate overall.
When selection targets rare alleles, intense selective sweeps and
major loss of diversity can occur; conversely, when selection targets
frequent alleles, the loss of genetic diversity caused by hitchhiking
of linked loci is limited, even when multiple loci are under selection
(34, 35). The sets of selected SNPs did not overlap significantly
between climates, except for the SNP selected in the REF climate
also showing high fixation probability in the WAW climate (SI
Appendix, Fig. S11), suggesting a largely independent genetic basis
for adaptation across climate. Interestingly, the flowering time
gene FRIGIDA showed frequent fixation of the Columbia deletion
allele in the REF climate, which improves fitness in late fall (GLM,
P < 10−7), whereas the alternative Landsberg deletion allele
showed more frequent fixation in the PHO climate.

Resilience to Environmental Change. To assess the capacity of the
experimental population to transition effectively from the REF
climate to the novel ones, the population was preadapted in silico to
the REF climate for 10 y, corresponding to the phase with positive
derivatives for fitness change in all seasons (SI Appendix, Fig. S7)
and before fixation of most adaptive alleles (SI Appendix, Fig.
S10A). Climate change was modeled as a gradual change of 1% per
year in the regression coefficients over 100 y from the REF climate
to the novel climates. Transitioning from the REF climate to the
PHO climate is referred to as the Migration scenario, transitioning
from the REF climate to the WAW climate is referred to as the
Winter Warming scenario, and transitioning from the REF climate
to the TEM climate is referred to as the Adaptation scenario. The
evolution of seed number differed dramatically between scenarios
(SI Appendix, Fig. S12). The results showed all possible conse-
quences of climate change on fitness: a strong fitness gain, except
for early spring cohorts, for the Winter Warming scenario; a loss of
fitness in spring compensated for by a gain in summer and fall for the
Adaptation scenario; and a loss of spring and summer fitness and
gain in fall fitness for the Migration scenario. Over the course of the
climate change simulation, the Nei index went through wave-like

fluctuations, whose amplitude depended upon the final climate (REF
to PHO > REF to TEM > REF to WAW; SI Appendix, Fig. S12).
To distinguish the relative contributions of phenotypic plasticity

and genetic adaptation to seasonal fitness changes in each climate
change scenario, we performed an in silico “resurrection” experi-
ment, transferring the 2001 initial population to the future climate
without evolution. We also reciprocally transferred the 2100
evolved population to the present-day reference climate. The dif-
ference in fitness between the 2100 population and the 2001 base
population in the future climate thus directly measured the genetic
adaptation, whereas the difference between the same population in
the two different climates corresponded to the plastic response.
Strikingly, the effect of plasticity far exceeded the effect of evolu-
tionary change in all climates (Fig. 6). Fitness was very similar be-
tween the 2001 and 2100 populations in either environment, but
differed considerably between the current and changed climates for
a given population. When the conditions changed toward the PHO
or WAW climate, the 2100 population showed some degree of
adaptation, outperforming the 2001 population over most of the
year until early fall. However, there was no evidence of adaptation
in populations transferred to the TEM climate. This lack of adap-
tive response suggested that initial adaptation to the REF climate
fixed a substantial amount of genetic variation, reducing evolu-
tionary potential for subsequent adaptation to the TEM climate. In
all three scenarios, when returning both 2001 and 2100 populations
back in the present condition, no fitness loss was observed, implying
that the 2100 population did not become maladapted to its past
climate. With the same framework, we also tested how populations
evolved in the steady PHO, WAW, and TEM climates would per-
form when transplanted to the common REF environment, where
they never evolved. Consistent with the previous analysis, no mal-
adaptation was detected, with no difference in mean fitness between
the pre- and postadaptation populations and only a slight increase
in variance across replicates. This absence of maladaptation rein-
forces the importance of standing variation in the context of
conditional neutrality.

Discussion
Predicting adaptive evolution in a dynamic environment is critical for
understanding how populations and species will respond to climate

Fig. 5. Probability of fixation for each individual SNP
allele in the different climates against the initial allele
frequency in the starting population. This probability is
calculated as the number of times a given allele reaches
fixation across simulation replicates. The dashed line
corresponds to the expected values of fixation proba-
bility proposed by Fisher and obtained from the diffu-
sion approximation theory for different coefficient of
selection in units of 4Nes. Colored crosses correspond to
the alleles considered to have reached fixation more
often than expected under neutrality, and were thus
considered as selected alleles. Colored dots correspond
to those selected alleles that also showed association
with a trait through either simple GLMs (P < 0.001) or
genomic prediction models (SNP effect in top 0.1 per-
centile). FRICol, FRIGIDA allele of the Columbia parent;
FRIIer, FRIGIDA allele of the Landsberg parent.
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change. Empirical studies provide evidence of past adaptation to
climate change (36–38), but measuring multigenerational evolution-
ary response to experimental environmental change is only feasible
for organisms with very short life cycles (39, 40, but also refer to 41,
42). Theoretical quantitative genetic models provide important gen-
eral predictions of phenotypic evolution in response to environmental
change (3, 4, 43, 44) but lack biological specificity. Making biologically
meaningful predictions is particularly difficult when the traits under
selection are plastic and when selective pressures vary temporally
over the year. To address this challenge, we used a genomic pre-
diction framework, based on experimental data, to model phenotypes
and fitness of different genotypes in complex seasonal environments.
We could thus perform in silico experiments exploring the dynamics
of phenotypic adaptation and allele frequency change in different
climate change scenarios. This approach yielded a number of insights.

Genetic Differentiation Between Seasonal Cohorts. Field studies
have revealed multiple seasonal germination cohorts in many
A. thaliana populations (26, 45, 46), as well as seasonal differ-
ences in natural selection on life history traits (47, 48). Moreover,
genotypes may differ in phenology and fitness across natural envi-
ronments (48–51), which may promote reproductive isolation. It is
therefore of interest to ask whether genetic differentiation can occur
among seasonal cohorts within a population. Our simulation ex-
periments predicted that a genetically variable base population could
differentiate genetically into seasonal subpopulations, but the extent
of differentiation depended upon climate. Seasonal differentiation
between genotypes was enhanced in the TEM climate relative to
the REF climate. In contrast, the WAW climate or PHO climate
expected with poleward migration considerably reduced this sea-
sonal differentiation. As a consequence, the PHO and WAW cli-
mates showed a relatively fast initial decline in genetic diversity
(Fig. 4) and the smallest fitness difference between replicates, il-
lustrating how slight changes in climate can profoundly modify the
genetic response of plant populations to seasonal variation. Dif-
ferentiated season-specific populations of annual plants have rarely
been reported in the wild (52, 53, but refer to 54), in contrast to
algae, insects, or birds (55–57). Our results suggest that seasonal
genetic differentiation should be considered in understanding how
annual plant populations will respond to climate change.
Without strong evidence of seasonal adaptation at the fitness level

or a clear pattern of seasonal reproductive isolation, the mechanism
promoting seasonal differentiation remains unclear. An uneven rate
of adaptation across seasonal cohorts (SI Appendix, Fig. S7), differ-
ences in the accessibility of molecular variation (SI Appendix, Fig.
S10), or differences in the covariance between seasons (SI Appendix,
Table S2) could provide some degree of explanation. However,
when genetic differentiation between seasons was reduced (SI Ap-
pendix, Table S1), we observed fitness trade-offs as between early
summer and fall in the gradual Migration scenario (Movie S1) and
as between summer and fall cohorts in the WAW climate (Movie

S2). In contrast, when genetic differentiation occurred across seasons
(REF and TEM), seasons become the time analog to heterogeneous
niches or resources (58), with seasonal cohorts potentially behaving
as time-isolated subpopulations and avoiding potential genetic trade-
offs. Interbreeding with genotypes migrating from other seasonal
cohorts would expose them to a “time-shift meltdown,” analogous to
the migrational meltdown commonly thought of in the context of
spatial variation (59), as in the case of the WAW climate in fall,
where mean fitness decreases between 2010 and 2050 (Fig. 3). A
consequence is that populations from climates promoting seasonal
genetic differentiation are less affected by trade-offs than pop-
ulations from climates with smoother seasonal contrasts, and may
retain more genetic diversity over the adaptation process.

Plasticity of Traits and Genetic Architectures Across Seasons and
Climates. Phenotypic plasticity may facilitate evolutionary rescue
and adaptation to rapid climate change, allowing novel phenotypes
to be expressed and selected in new environments (60, 61). For short-
lived organisms, seasonal environmental variation may favor
plasticity within populations, and thus contribute to the potential
for an evolutionary response to changing climate. Annual plants,
such as A. thaliana, display substantial plasticity of traits and fitness
to seasonal environments, as well as genotype × season interaction
(19, 46, 48). Climate variation across seasons is generally greater
than variation between alternative climate change scenarios, so we
also expect genotype × season interactions to be important for the
evolutionary response under climate change (SI Appendix, Fig. S2).
Plasticity in performance emerged from changes both in the cor-
relation between traits (traitnet.adaptive-evolution.org/DynAdapt/
TraitNetwork.html) and in the genetic architecture of individual
traits across environments (SI Appendix, Fig. S11). The multigener-
ational simulated resurrection experiments revealed that population
mean seasonal fitness could indeed evolve, with adaptation to dif-
ferent seasons creating distinct outcomes for each climate scenario.
When adaptation depended upon disruption of linked genetic

variants through recombination, the initial frequency of beneficial
alleles in the population critically affected the fate of the overall
genetic diversity. The WAW climate showed the fixation of a set of
high- to intermediate-frequency alleles, whereas the PHO climate
led to the fixation of lower frequency alleles. After the fixation of
adaptive alleles, the level of molecular diversity was only restored
in the WAW climate following selection for intermediate-frequency
alleles (Fig. 4). For low-frequency adaptive alleles in the PHO cli-
mate, linked selection led to a dramatic loss of molecular diversity
through hitchhiking. Thus, adaptive selection on intermediate-
frequency alleles is much more likely to preserve molecular
variation in largely self-fertilizing plants compared with de novo
mutations starting as unique copies.

The Adaptive Trajectory in Response to Climate Variation. A successful
adaptive trajectory is achieved by selecting the appropriate standing
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Fig. 6. Absolute mean seed number per plant over the year for 100 y of simulation for three scenarios transitioning from the current REF climate to a novel
climate under climate change. Solid lines represent the seed number for the initial population in 2001 under the current climate (black/gray) and for the final
population in 2100 after experiencing the future climate (red/pink). Dashed lines represent the reciprocal transplant of the 2001 population directly to the
future climate without adaptation (blue/cyan) and of the 2100 population back to the current climate (green/emerald). For each scenario, the thin light lines
represent each of the 500 replicated runs and the thick dark lines represent the mean.
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genetic variation to realize the optimal trait combination for each
season. Starting from a base population of MAGIC lines that
broadly sampled genetic variation across the A. thaliana species
range, we observed substantial adaptive fitness gain in most of the
simulations. Altogether, the model pointed to the relative robust-
ness of fitness adaptation in this base population despite varying
population size, outbreeding rate, and the number of founder
genotypes. In contrast, molecular variation showed a greater sen-
sitivity to these factors. Such a discrepancy in the rate and intensity
of the molecular response to selection compared with phenotypic
evolution is widely observed (62). This can be explained by selec-
tion acting on fitness and targeting specific loci, whereas the rest of
the genome is also submitted to drift, making the neutral molecular
variation inherently more sensitive to the stochastic consequence of
environmental change. Also, different molecular combinations can
result in the same phenotype (63), often leading to a more complex
pattern at the molecular level. Phenotypic evolution due to genetic
adaptation was generally limited compared with phenotypic plas-
ticity to rapid climate change in the resurrection experiments. If
populations are adapted to local climate (e.g., 20), it may be im-
portant to enhance evolutionary response to a novel climate by
assisting gene flow from other parts of the species range (e.g., 64).
The heterogeneity of the seasonal fitness landscape also led to

heterogeneity in the rate of adaptation over the seasons and the
years. The race for evolution to keep pace with climate change in-
volves tracking the multiple seasonal fitness optima. Adaptation to
multiple optima implies breaking the linkage responsible for geno-
mic interference between beneficial alleles, which depends on the
initial frequency of these alleles. In a highly polygenic context, ge-
netic interferences may blur the effect of selection on specific alleles
with respect to genomic background variation (65). Our analysis
suggests that in a complex environment with high seasonal differ-
entiation, such as the TEM climate, targeting multiple optima with a
complex genetic basis is hazardous and suffers a stochastic outcome,
as measured by the fitness variation across replicates in Fig. 2.
Seasons are a common source of intraannual environmental

variation that may result in complex dynamics of adaptation in
annual plant populations. High seasonality could preserve more
genetic variation by increasing the dimension of the evolutionary
landscape as in the REF and TEM climates. However, the distance
between the seasonal optima may become too large to enable
consistent evolutionary gain (TEM). In return, low seasonal genetic
divergence promotes straightforward adaptation to a specific set
of conditions as in the PHO and WAW climates. Nonetheless, in
the context of environmental change, if the new conditions, and
therefore the new fitness optima, are too far removed from the
initial conditions, selection is likely to target low-frequency alleles,
which may lead to a dramatic depletion in genetic diversity (PHO).
An important general finding from our experiments is that cli-

mate change modifies the genetic basis of fitness. The observations
of low overlap between selected loci across climates (SI Appendix,
Fig. S11) and of no maladaptation to the past climate after adapta-
tion to a novel environment (Fig. 6) both suggest the importance of
conditional neutrality, with different loci contributing to adaptation in
different climates (20, 66). Consequently, phenotypic adaptation to a
given type of climate change is critically sensitive to the availability of
appropriate molecular variation, and anticipating which alleles will be
adaptive under future climate change will be difficult. Therefore, if
phenotypic plasticity across climate interacts with adaptation in an
unpredictable fashion, maintaining the maximum of standing varia-
tion within populations will be key to preserve the adaptive potential
of predominantly selfing temperate annual plants.

Materials and Methods
Design of the Experimental Population. A core collection of 52 genotypes from
theMAGIC population (29) was selected to maximize phenotypic diversity for
four life history traits (67) and genotypic diversity ensuring the equal repre-
sentation of the 19 founder genomes based on kinship relationships. The kin-

ship relationships between parents and MAGIC offspring accessions were
calculated based on the haplotype-tagging 1,260 SNP markers scattered over
the genome and using the “Weighted Alikeness in State” method as imple-
mented in CoCoa software (68). The core collection was designed using the
“M-method” as implemented in MSTRAT software (69), giving 12.5% loading
to each of the life history traits (days to bolting and leaf length at bolting in
both long and short days) (67) and 50% loading to the kinship coefficients.

Climate and Growing Conditions. Climate data based on the Geophysical Fluid
Dynamics Laboratory Coupled Model, version 2.X (GFDL CM2.1), under the
IPCC Special Report on Emissions Scenarios (SRES) A1B_X1 climate scenario
were obtained from the National Oceanic and Atmospheric Administration
Geophysical Fluid Dynamics Laboratory (30) (data1.gfdl.noaa.gov/CM2.X/).
Minimum and maximum daily temperatures for 2001 and 2099 were
extracted from the grid file for a 2.5 × 2.5-km cell located on land over
Norwich. Minimum and maximum daily temperatures were interpolated to
hourly measures and translated from air to surface temperatures as described
by Wilczek et al. (19). Finally, the mean weekly climate was obtained by aver-
aging the daily hourly temperatures and dusk/dawn time over 1 wk, and cli-
mate conditions in the growth chambers were updated on a weekly base. The
REF conditions were based on the model data for Norwich for 2001; the PHO
conditions were recomputed using the same model, with Norwich minimal and
maximal temperatures for 2001 and the time of dusk and dawn of a location
12° northward, corresponding to central Scandinavia; the WAW conditions
were identical to the REF conditions from simulated February 1 until November
7; and the TEM conditions were based on the IPCC A1Bmodel data for Norwich
for 2099. For the REF and PHO conditions, winter was simulated by transferring
plants to constant 4 °C chambers from subjective November 7 until February 1,
maintaining the Norwich and Scandinavia day lengths, respectively. For the
WAW and TEM conditions involving no cold winter, the temperatures of the
week of November 30 were looped until February 1 and only the day length
changed, keeping the daily mean temperature above 6 °C. Weekly light and
temperature profiles for all conditions are presented in SI Appendix, Fig. S3.
Seeds from The Nottingham Arabidopsis Stock Centre were bulked together
under 16 h of light to homogenize maternal effect. For each seasonal planting,
seeds were cold-stratified at 4 °C in the dark in water and 0.5% agarose media
for 4 d. Five seeds were planted in a 4:1 mix of Promix BX and perlite and kept
under constant moisture for 1 wk in a walk-in growth chamber at 22 °C day and
20 °C night temperatures under 14 h of daylight. Individual pots were 5 × 5 ×
7.5 cm, set in racks of 2 × 5 and randomized twice a week. After 1 wk, seedlings
were thinned to one per pot and transferred into 12 Conviron E7/2 units, with
each climate being replicated three times in an independent growth chamber.
Bottomwatering was applied once a week until saturation with 9 ppm of Scotts
15:5:15 CalMag Special fertilizer per liter of water every other watering.

Traits Measurement, Network, and Genetic Effects Estimation.Once transferred to
the chambers, plantswere censused twiceaweek forboltingand floweringdate.
For the first 3 wk in the chambers (2–4 wk after planting), plants were pho-
tographed using a Panasonic DMC-ZS5 camera on a tripod located 1 m above
the pots. Pictures were scaled, color-filtered, and color-thresholded with a
custom script using ImageJ software (NIH) to determine early growth rate. A
plant was considered bolting when the reproductive meristem could be iden-
tified; the longest leaf was measured on this date, and bolting was systemati-
cally confirmed in the next census. Reproductive branches were inserted as they
grew into thinly perforated plastic sleeves to recover all seeds from each plant.
Plants were harvested when most of the rosette leaves were senesced. Har-
vested plants were kept to dry in paper bags for 1 wk in the actual temperature
of the chamber. A semiquantitative maturity index (MI) was calculated as MI =
2S − (G + F), where S is the degree of senescence of the rosette (0, partially
senesced; 1, mostly senesced; 2, completely senesced), G is the amount of green
tissue on the reproductive organs (0, no green; 1, some green; 2, mostly green),
and F is the amount of fresh flowers (0, none; 1, a couple; 2, more). Plants were
weighed, and total above-ground biomass was recorded; plants were then
crushed, and seeds were manually separated from chaff using a 100-μm sieve to
record total seed weight. Total seedweight was determined on a high-precision
balance, and two batches of ∼100 seeds were then counted and weighed to
calculate individual seed mass and used to estimate total seed number. Seeds
were then stored in plastic vials closed with cotton stoppers and replaced in
their original growth chamber. Three weeks after harvest, seeds were tested for
germination. For each harvested plant, five replicates of 10 seeds were assayed
on plug trays with 1.75 × 1.75 × 2.5-cm cells filled with Promix BX, saturated
with water, and replaced in their original chamber. Germination was scored
twice a week over a month, when a radicle had perforated the seed tegument
and the germinant was removed. Germination trays were saturated with water
and replaced in their chamber. Germination rate (number of seeds germinating

Fournier-Level et al. PNAS | Published online May 2, 2016 | E2819

EV
O
LU

TI
O
N

PN
A
S
PL

U
S

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1517456113/-/DCSupplemental/pnas.1517456113.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1517456113/-/DCSupplemental/pnas.1517456113.sapp.pdf
http://data1.gfdl.noaa.gov/CM2.X/
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1517456113/-/DCSupplemental/pnas.1517456113.sapp.pdf


per day) and dormancy (in days) were inferred using linear regression on
square-root–transformed data. For each trait in each planting, the variance
components were estimated following a mixed-model procedure implemented
in the R/lme4 package, where Climate and Seasonwere defined as fixed effects
and all effects involving Genotype (Geno) were defined as random:

Yij = μ+Climate+ Season+Genoi +Climate*Genoi + Season*Genoi + «ij .

Broad-sense heritabilities were calculated in a simplified model, Yij = μ+
Genoi + «ij, as H2 = σGenotype=σY . The functional relationships between the 12
experimentally measured traits were identified by a network model fitting opti-
mally the data for all 16 plantings (Fig. 1). This model was built iteratively by first
identifying the set of traits that best explained the estimated seed number across
all four seasons and four climates in a linear mixed model (based on the Akaike
information criterion). The procedure was then repeated iteratively with the
newly included set of traits explained by all other traits not already connected to
the network until all traits were included. For each genotype i, the model takes

the form Yijk = μ+
Pn
p= 1

βpjkypjk +gi + «jk, where Y is the trait of interest, yn is a set

of n < 4 correlated traits, and g is the genetic component of the model. For each
genotype, the genetic component g for all 12 traits, as well as the survival rate,
was estimated as a breeding value using a genomic prediction method (7) as
gi = αiX + γiA, where X is the binary SNP matrix and A is the kinship matrix from
the information of 1,260 genome-wide SNPs, and the value of the kinship matrix
between genotypes was computed using the R/emma package. The solution of
the model was obtained using a ridge-regression penalization method as imple-
mented in the R/Bayesian Linear Regression (BLR) package (70). The BLR models
were implemented with 11,000 iterations, a burn-in period of 1,000 iterations,
and a thinning interval of 100. The parameters of the model are thus a matrix of
the regression coefficients, from upstream to downstream traits, and a vector of
genotype effects (or breeding values) for each trait, combining the effect of all
individual SNP and pedigree relationships estimated through the genomic
prediction method. The parameters for the four seasonal plantings were ex-
trapolated into a model of continuous temporal variation through the year by
assuming that the value of the regression coefficients between two actual
planting dates changes linearly over time. The outcome is presented through a
graphic user interface (traitnet.adaptive-evolution.org/DynAdapt/TraitNetwork.
html). The functional model presented in Fig. 1 predicts the value of each of the
12 traits for a given genotype and a given germination date. This model was used
to simulate the evolution of the experimental plant population in the different
climate conditions forward in time. Over the course of the simulation, the two
sources of variation across runs were the selection or drift due to the finite car-
rying capacity of the system, expressed as the population size for the cohorts
germinating every 2 wk, and the recombination rate within each cohort.

Model of Adaptation to Climate. Plant adaptation to climate was modeled by
simulating the evolution of an isolated population with seasonal cohorts con-
tinuously germinating every 2wk fromMarch 1 until November 15.Nplantswere
sampled based on the germination probability G of genotype i conditional on
the frequency of the genotype in the seed bank B and on its survival rate SR
measured in the experiment: For the kth germinating plant in [1:N],
PrðGk = iÞ=PrðBiðtÞÞPrðSRiðtÞÞ. For the first year, each of the initial 52 genotypes
from the original population was set to germinate with an equal proportion
every 2 wk. The values for traits and survival for each date of the year were
computed by linearly interpolating the regression coefficients of the linear model
presented in the previous section (traits, covariations, and breeding values) be-
tween experimental planting dates. Linear interpolation allowed computation of
the trait values over the course of adaptation for each genotype and germination
time based on trait covariation, SNPmarkers, and pedigree information, assuming
the relationships between traits (regression coefficients) remained constant over
the simulated years and traits are not plastic within a season and climate com-
bination (for each genotype, the trait value equals the genotypemean). Tomodel
short-term adaptation to novel conditions, the present study focused on standing
variation rearranged by recombination, with no mutation or migration. The
probability of a specific pair of genotypes to interbreed was computed as the time
of overlap of their flowering times scaled to the longest flowering overlap ob-
served in the cohort multiplied by the frequencies of both genotypes:

for  genotypes  i   and  j,   p
�
Iij
�
=
ΔFTijpðGiÞp

�
Gj
�

maxðΔFTÞ ,

where

ΔFTij =max
�
tmaturingðiÞ; tmaturingðjÞ

�
−min

�
tmaturingðiÞ; tmaturingðjÞ

�
.

For each pair of outbreeding parents belonging to the same cohort, a
recombinant genotype was created based on the average number of

crossing-over and genome-wide local recombination rates measured in
various F1 populations by Salomé et al. (71).

The seeds produced by each genotype in each cohort were modeled
as having matured uniformly over time from 20 d after flowering until
rosette senescence/harvest and assigned into 2-wk maturation bins over
this period. The seeds of each maturation bin were then distributed into
germination bins based on each genotype seed dormancy level and ger-
mination rate. We first modeled the germination pattern of seeds ger-
minating the same year (without overwintering) from a normal distribution
with a mean equal to the seed dormancy and a variance equal to the
germination rate. The seeds left from the first year (before winter) were
assigned to a germination bin after winter with a germination pattern
modeled as a gamma distribution with a rate equal to the secondary dor-
mancy index, calculated as the dormancy plus the difference between the
dormancy in the spring planting and dormancy in the early fall planting, and
a shape equal to the germination rate. We used a gamma distribution to
model the synchronizing effect of winter chilling so that the probability of
germinating before the end of winter is null.

Simulations. The model was written in the R programming language with
bash scripts to edit the input files and run the computing. Two sets of
simulations were run: either in steady conditions or changing the climate
over the course of the simulation. For the steady simulations, each climate
adaptation scenario was carried for 50 y with 250 independent runs using
different seed values. The climate changed across season over 1 y but remained
identical across years. Different combinations of 2-wk cohort population size
and outbreeding rate were tested: 100 individuals/10% outbreeding, 1,000
individuals/10% outbreeding, 10,000 individuals/10% outbreeding, 1,000 in-
dividuals/5% outbreeding, and 1,000 individuals/20% outbreeding. Sensitivity
to initial level of genetic variationwas also tested by randomly sampling two of
10 founder genotypes for 500 iterations in each climate. For the changing
climate simulations, after a 10-y burn-in period in the REF climate, each climate
adaptation scenario was carried for 100 y with 500 independent runs using
different seed values. The population sizewas fixed to 1,000 individuals in each
two-week cohort and 10% outbreeding. The climate change scenarios were
modeled by updating the regression coefficients between traits and the
breeding values for the genotypes by 1% per year from the values in the REF
climate toward the value in the altered climates.

Data Analysis. The output of the model included the regression coefficient
between traits, together with the breeding value of each genotype for each
trait and season. These breeding values allowed computation of the value of
any trait for any genotype at any moment of the simulation. The change in
mean estimated seed number for each cohort (Δz) was calculated as the
weighted mean of the trait within the population in the final year minus
the mean estimated seed number for the same cohort in 2001 and taken as
the main proxy for fitness. The Δz (18 two-week cohorts × number of repli-
cates matrix) was analyzed using the PCA function of the R/FactoMineR
package. The loadings for each eigenvector were extracted, together with the
contribution of each specific cohort to their construction. This eigenanalysis
allowed determination of the cohort representing the overall evolutionary
trajectory of the populations under a given scenario. The output of the model
also included the genotype identity and frequency for each 2-wk germination
cohort and for each year. Keeping track of the genotype identities and fre-
quencies allowed retrieval of allele frequencies for the 1,260 SNPs character-
izing each genotype and computation of measures of molecular diversity. For
the within-population measure of diversity, the Nei indexwas calculated, where
L is the total number of loci, and p is the frequency of allele k at locus l. For
pairwise population comparison, the closely related RWC genetic distance was

calculated as

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
l

P
k
ðppop1 −ppop2Þ2

2
P

l
ð1−

P
k
ppop1ppop2Þ

r
. The significance of the seasonal differentia-

tion between spring, summer, and fall was assessed by computing the RWC
distance for all pairs of 2-wk cohorts (excluding May 15, June 1, August 15, and
September 1 as intermediate cohorts not unambiguously representative of a
specific season) and testing if the RWC distance was greater between seasons
than among seasons. All scripts are available on the Dryad Digital Repository
(dx.doi.org/10.5061/dryad.jn4qq).
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