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An N5-scaling excited-state-specific perturbation theory
Rachel Clune,1 Jacqueline A. R. Shea,1 and Eric Neuscamman1, 2, a)
1)Department of Chemistry, University of California, Berkeley, California 94720, USA
2)Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720,
USA

(Dated: 3 September 2020)

We show that by working in a basis similar to that of the natural transition orbitals and using a modified zeroth order
Hamiltonian, the cost of a recently-introduced perturbative correction to excited state mean field theory can be reduced
from seventh to fifth order in the system size. The (occupied)2(virtual)3 asymptotic scaling matches that of ground
state second order Møller-Plesset theory, but with a significantly higher prefactor because the bottleneck is iterative:
it appears in the Krylov-subspace-based solution of the linear equation that yields the first order wave function. Here
we discuss the details of the modified zeroth order Hamiltonian we use to reduce the cost as well as the automatic
code generation process we used to derive and verify the cost scaling of the different terms. Overall, we find that
our modifications have little impact on the method’s accuracy, which remains competitive with singles and doubles
equation-of-motion coupled cluster.

I. INTRODUCTION

Although mean field methods like Hartree-Fock (HF) the-
ory often succeed in making qualitatively correct predictions
about how electrons distribute themselves within a molecule,
making quantitative energetic predictions at the precision nec-
essary to aid in designing and interpreting experiments usu-
ally requires grappling with the finer-grained wave function
details that arise from electron correlation. In many con-
texts, especially when considering ground states in closed-
shell molecules, density functional theory (DFT) fills this role
at a relatively low computational expense. However, even in
these DFT-friendly systems, there are areas – such as the treat-
ment of weak intermolecular interactions1 – where more ex-
pensive wave-function-based methods remain essential to, for
example, help choose which empirical functional to trust. In
electronically excited states, open-shell character is the norm,
and in practice DFT faces serious challenges and is less pre-
dictive than in ground states. These challenges include both
the inability of time-dependent DFT (TD-DFT) to relax the
shapes of orbitals not directly involved in the excitation2–4 and
the tendency of self-consistent DFT, as used for example in the
restricted open-shell Kohn Sham (ROKS)5,6 method, to over-
delocalize7,8 unpaired electrons or holes. Although the latter
issue can be mitigated by using hybrid and range-separated
functionals,9 it nonetheless persists.10 If wave-function-based
methods are to help make up for DFT’s difficulties in this
area, it is highly desirable that they overcome these chal-
lenges while retaining electron correlation corrections that are
as computationally affordable as possible. In this study, we
take a step in this direction by reformulating a second-order
perturbative correction to excited state mean field (ESMF)
theory10–12 so that its asymptotic cost scaling can reach parity
with its ground state counterpart.

In the world of closed-shell ground states, the simplest and
usually the most affordable approach to electron correlation
aside from DFT is second-order Møller-Plesset perturbation

a)Electronic mail: eneuscamman@berkeley.edu

theory (MP2).13 In a canonical implementation, the asymp-
totic scaling of this method is N2

o N3
v , where No and Nv de-

note the number of occupied and virtual orbitals in the HF
reference, respectively.14 Note that, for simplicity, we will
throughout this paper consider Nv to be interchangeable with
N, the total number of molecular orbitals, when discussing
asymptotic scaling. Although significantly higher than the
cost scaling of many widely used density functionals, the cost
of MP2 is significantly lower than the sixth-order cost of cou-
pled cluster theory with singles and doubles (CCSD), posi-
tioning it as the least expensive wave-function-based ground
state correlation method in wide use. The excited-state-
specific ESMP2 theory11 that we focus on in this study was
designed to closely mirror MP2 theory, correcting ESMF in
the same way that MP2 corrects HF, achieving rigorous size
intensivity, and working in an uncontracted first order inter-
acting space. Unfortunately, the fact that the ESMF reference
already contains single excitations means that this interact-
ing space now includes both the doubles and triples excita-
tions. Acting the zeroth order Hamiltonian in this space thus
involves contracting a two-index Fock operator with a six-
index amplitude tensor, leading to seventh order scaling with
the system size and a theory that is decidedly less practical
than the ground state theory that it seeks to mimic.

To overcome this difficulty, we exploit the fact that a wave
function that is a linear combination of singles excitations,
such as configuration interaction singles (CIS), can be written
as a sum of just No configuration state functions (CSFs) under
a particular occupied-occupied and virtual-virtual rotation of
the orbital basis. Working in this basis — which for CIS itself
is the natural transition orbital basis15 but for ESMF will be
slightly different due to its excited-state-specific orbital relax-
ations — the coulomb operator no longer connects the singly
excited reference function to the whole triples space. Separat-
ing the triples in to those that connect with the reference and
those that do not, one expects the unconnected triples (which
are by far the larger group) to be less important, and so a more
aggressive approximation of the zeroth order Hamiltonian in
that space is somewhat justified. In particular, we will ap-
proximate the Fock operator in the unconnected space by its
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diagonal (note that, unlike for a HF reference, the Fock oper-
ator derived from the ESMF one-body density matrix is not
diagonal) at which point the unconnected triples no longer
contribute to the theory at all, as they have no direct con-
nection to the reference through the coulomb operator and no
connection to the first order wave function through the ze-
roth order Hamiltonian. As we will discuss, this step imme-
diately drops the scaling to sixth order. To drop the scaling
further, we note that, in the vast majority of low-lying exci-
tations in weakly correlated molecules, only a small number
out of the No singly excited CSFs in the ESMF reference are
expected to have large coefficients. By extending the diagonal
approximation of the zeroth order Hamiltonian into the space
of all triples that only connect to small parts of the reference,
a reduction to N2

o N3
v cost scaling is achieved. Again, as these

triples are less important, this approximation is not expected
to make much difference, and indeed this expectation is con-
firmed by a comparison to results from the seventh-order par-
ent method. Thus, by working in a particular orbital basis and
slightly modifying the zeroth order Hamiltonian, the cost scal-
ing of ESMP2 can be brought in line with that of MP2, even
if the prefactor remains higher due to the off-diagonal zeroth
order Hamiltonian and thus a need to iteratively solve a linear
equation.

Although ESMP2, in either its original or its more efficient
form, is similar to a number of other excited state perturba-
tion theories, it also possesses important differences. When
compared to CIS(D), which uses the HF orbitals and derives
its triples amplitudes from the ground state MP2 doubles,16

ESMP2 is instead wholly excited-state-specific: the orbitals
are relaxed variationally for the excited state at the ESMF
level, and the triples are derived via the excited state’s first
order wave function equation. In comparison to the recently-
introduced driven similarity renormalization group VCIS-
DSRG-PT2 approach,17 ESMP2 again enjoys orbitals that
are relaxed for the excited state, and it does not require the
choice of an active space, making it easier to apply in a black-
box manner. Finally, in contrast with complete active space
second order perturbation theory (CASPT2),18,19 N-electron
valence perturbation theory (NEVPT2),20 and VCIS-DSRG-
PT2, ESMP2 sticks to an uncontracted and thus orthonor-
mal first order interacting space, which circumvents the need
to address the potential for linear dependencies. That said,
ESMP2 has much in common with CASPT2, and as we will
see in the results, often hews rather closely to CASPT2 when
it comes to predicting excitation energies. Again, ESMP2
achieves this without using an active space, which offers
significant simplicity at the cost of being inappropriate for
strongly correlated systems.

This paper is organized as follows. We begin by discussing
the ESMF reference and how it can be simplified by work-
ing in a particular orbital basis, after which we discuss the
first order wave function and the newly-modified zeroth order
Hamiltonian. We then briefly discuss the automated approach
we employ for term derivation and code generation, which al-
lows us to make a detailed investigation of each term’s scaling,
the outcomes of which we present in the first subsection of the
results. We then delve into the method’s accuracy, first in a

set of small molecules that are mostly single-CSF in character
and then in a collection of ring excitations, in which multi-
CSF character is more prevalent. We end our results section
with an explicit test of size intensivity before concluding with
a summary and a brief discussion of possible future directions.

II. THEORY

A. Zeroth Order Wave Function

To simplify our implementation, we have chosen to work
with a slightly simplified version of the ESMF ansatz

|Ψ0〉= eX̂
∑
ia

Cia
(
â+a↑âi↑± â+a↓âi↓

)
|Φ〉 (1)

in which we have set the coefficient on the un-excited closed-
shell reference determinant |Φ〉 to zero. This simplification
avoids a significant number of terms in the perturbation the-
ory, but it does mean that we are assuming that the closed shell
determinant is unimportant in the excited state, which is not
universally true. Here the ± sign is plus (minus) for singlet
(triplet) states, C is the matrix of single-excitation configura-
tion interaction (CI) coefficients, X̂ is an anti-Hermitian one-
electron operator responsible for excited-state-specific orbital
relaxations, and we adopt the convention of referring to oc-
cupied and unoccupied (virtual) orbitals in |Φ〉 by the indices
i, j,k,l and a,b,c,d, respectively. After relaxing X̂ and C to
find the energy stationary point corresponding to the excited
state in question (which may for example proceed by guessing
the CIS wave function and applying a generalized variational
principle12), we take a singular value decomposition of the
rectangular matrix C

C =UΛV + (2)

where, if we assume that there are more virtual than occupied
orbitals, Λ is the No×No diagonal matrix of singular values.
Now, note that the Hamiltonian can be transformed into an
orbital basis that eliminates U and V and thus renders the
reference wave function in a particularly simple form.

ĤHF→ e−Ẑe−Ŷ e−X̂ ĤHFeX̂ eŶ eẐ (3)

Here we have started in the HF orbital basis (as indicated by
the Hamiltonian ĤHF), rotated via X̂ into the ESMF orbital ba-
sis, and then rotated via the one-electron anti-Hermitian oper-
ators Ŷ and Ẑ, which perform occupied-occupied and virtual-
virtual rotations, respectively. The Ŷ rotation can be chosen so
as to eliminate U , and likewise the Ẑ rotation can be used to
eliminate V , leaving us with a greatly simplified CI expansion

|Ψ0〉 → ∑
i

Λii
(
σ̂
+
i↑ τ̂i↑± σ̂

+
i↓ τ̂i↓

)
|Φ〉 (4)

involving a sum over the singular values of C. The corre-
sponding virtual-orbital creation operators σ̂+ and occupied-
orbital destruction operators τ̂ now come in pairs, one for each
occupied orbital. We refer to each of these pairs as a transition
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orbital pair (TOP), and note that, if the optimal ESMF orbitals
were the same as the RHF orbitals, the TOPs would be equiv-
alent to the natural transition orbital (NTO) pairs.15 It is im-
portant to emphasize that Eqs. (1) and (4) refer to exactly the
same zeroth order wave function, they simply express it in dif-
ferent orbital bases. We now turn to the definition of our first
order wave function, where the TOP basis will allow for use-
ful groupings of the triples excitations into separate categories
that we will exploit in order to achieve a lower asymptotic cost
scaling.

B. First Order Wave Function

To begin, let us specify the language we will use for de-
scribing excitations as well as the the different orbital labels
that we employ when working in the TOP orbital basis. First,
throughout this paper, we will refer to excitation levels relative
to the closed shell. In this language, our reference is a super-
position of single excitations, and our first-order interacting
space consists of double and triple excitations. As for how
we label orbitals, let us adopt an orbital ordering in which the
spatial orbitals are numbered 1 through N. In addition to the
occupied orbitals with destruction operators τ̂i (with i allowed
to range from 1 through No) and the corresponding TOP vir-
tual orbitals whose creation operators are σ̂+

a (with a allowed
to range from No+1 through 2No), there are additional virtual
orbitals (AVOs), whose creation operators we will denote by
ν̂+

a (with a allowed to range from 2No +1 through N). When
necessary, we will denote virtual orbitals that may be either
TOP virtuals or AVOs using the creation operators ŵ+

a , where
a can range from No+1 through N. Finally, when we denote a
TOP virtual orbital using an occupied index, as for example in
the operator σ̂

+
i↑ in Eq. (4), this implies the TOP virtual orbital

with index a = i+No that is the partner of the ith occupied
orbital in the TOP orbital basis representation of |Ψ0〉.

With these orbital definitions in hand and working in the
TOP orbital basis, we now point out that while the Hamil-
tonian, through its two-electron part, can connect the singly-
excited wave function |Ψ0〉 to the full space of doubly excited
determinants, it only connects |Ψ0〉 to a subset of the triply
excited determinants. In particular, the matrix element

Habc
i jk = 〈Ψ0| τ̂+k τ̂

+
j τ̂

+
i ŵaŵbŵcĤ |Ψ0〉 (5)

will only be nonzero if there is at least one TOP amongst the
occupied and virtual orbitals i, j,k,a,b,c. Put another way, this
matrix element is zero if d 6= l +No for all d ∈ {a,b,c} and
l ∈ {i, j,k}, as a nonzero element is only possible if one of the
three excitations was already present in |Ψ0〉, and |Ψ0〉 only
contains TOP excitations. In contrast, this matrix element can
be nonzero if d = l +No for at least one d,l pair from d ∈

{a,b,c} and l ∈ {i, j,k}. Thus, in our first order wave function

|Ψ1〉= ∑
i jab

T ab
i j ŵ+

a↑ŵ
+
b↑τ̂ j↑τ̂i↑ |Φ〉

+ ∑
i jab

T ab
i j ŵ+

a↓ŵ
+
b↓τ̂ j↓τ̂i↓ |Φ〉

+ ∑
i jab

Sab
i j ŵ+

a↑ŵ
+
b↓τ̂ j↓τ̂i↑ |Φ〉

+ ∑
i jkabc

T abc
i jk ŵ+

a↑ŵ
+
b↑ŵ

+
c↑τ̂k↑τ̂ j↑τ̂i↑ |Φ〉

+ ∑
i jkabc

T abc
i jk ŵ+

a↓ŵ
+
b↓ŵ

+
c↓τ̂k↓τ̂ j↓τ̂i↓ |Φ〉

+ ∑
i jkabc

Sabc
i jk ŵ+

a↑ŵ
+
b↓ŵ

+
c↓τ̂k↓τ̂ j↓τ̂i↑ |Φ〉

+ ∑
i jkabc

Sabc
i jk ŵ+

a↓ŵ
+
b↑ŵ

+
c↑τ̂k↑τ̂ j↑τ̂i↓ |Φ〉 (6)

we set to zero the values of all same-spin (T abc
i jk ) and mixed-

spin (Sabc
i jk ) triples coefficients whose indices do not contain at

least one TOP. As we will choose our zeroth order Hamilto-
nian to be diagonal in the space of triples excitations that con-
tain no TOPs (which we define as the N-triples space), setting
these coefficients to zero is not an approximation, but merely
the natural consequence of their Eq. (5) matrix elements be-
ing zero and Ĥ0 not connecting them to any other parts of
|Ψ1〉. Instead, the new approximation, and the key difference
from our previous N7-scaling excited-state-specific perturba-
tion theory,11 comes in the definition of Ĥ0, to which we now
turn our attention.

C. Zeroth Order Hamiltonian

In our previous N7-scaling version of the theory, we chose
the zeroth order Hamiltonian to have the following form.

Ĥ0 = R̂(F̂− Ĥ)R̂+ P̂ĤP̂+ Q̂F̂Q̂ (7)

Here, we will retain this form, but make some modifications
in the triples space to improve efficiency. As before, we take
F̂ to be the Fock operator constructed from the one-body den-
sity matrix of |Ψ0〉, R̂ = |Ψ0〉〈Ψ0| to be the projector on to
the zeroth order wave function, P̂ to be the projector on to
the span of the closed shell determinant |Φ〉 and all singly ex-
cited determinants, and Q̂ = 1− P̂. The difference between
the present theory and our previous approach is that, in the
present theory, we work in the TOP orbital basis and modify
the Q̂F̂Q̂ term so that it is diagonal in some parts of the triples
space. To see how, let us first organize the triply excited de-
terminants into three groups: the N-triples whose six indices
i, j,k,a,b,c do not contain any TOPs, the L-triples that contain
at least one TOP whose singular value from Eq. (4) is large
(above a threshold η), and the S-triples that contain at least
one TOP but whose TOPs all have small singular values (be-
low η). With the triples organized into these three groups, we
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make the modification

Q̂F̂Q̂ →
(
Q̂D + Q̂L

)
F̂
(
Q̂D + Q̂L

)
+

(
Q̂S + Q̂N

)
F̂(diag) (Q̂S + Q̂N

)
(8)

in which F̂(diag) is the Fock operator with its off-diagonal
terms set to zero and Q̂D, Q̂L, Q̂S, and Q̂N project on to the
doubles, the L-triples, the S-triples, and the N-triples, respec-
tively. As shown in Figure 1, we are making Ĥ0 diagonal for
the presumably less important S-triples and N-triples, whereas
our previous approach left it off-diagonal for all triples.

How much efficiency is gained by this approach depends
on how one chooses to divide the TOP-containing triples be-
tween the large and small L-triples and S-triples spaces. In
the η = 0 extreme, in which all the TOP-containing triples
are placed in the L-triples space, the cost of forming the right-
hand-side of and solving the usual Rayleigh-Shrödinger lin-
ear equation for |Ψ1〉 grows as N6. The reduction from the
N7 scaling of our previous approach comes from eliminating
the N-triples, which as discussed in Section II B have no Eq.
(5) matrix elements and thus can only contribute to the theory
by coupling through Ĥ0 to other parts of |Ψ1〉, which is pre-
vented by our modification in Eq. (8). In the other extreme,
when only triples that contain the TOP with the largest singu-
lar value are placed in the L-triples space and all other TOP-
containing triples are placed in the S-triples space, the cost
of setting up and solving the linear equation for |Ψ1〉 grows as
only N5. Note that, as we explain in Section III B, we have ex-
plicitly verified these scalings (the lower of which is actually
N2

o N3
v ) by log-log regressions on the floating-point operation

counts of each individual term entering in to the setup and
iterative solution of the linear equation.

To put these extremes in to perspective, we note that for a
size-intensive excitation, by which we mean one whose spatial
extent does not grow indefinitely as the system is enlarged, the
number of non-zero singular values in Eq. (4) will be constant
with system size in the large system limit. This implies that
for size-intensive excitations, setting η to a small but non-zero
threshold will result in both a size-intensive excitation energy
(a property we verify explicitly below) and N5 scaling. Note
that this efficiency gain is not due to assuming anything about
the locality of electron correlation (which if exploited as in
some ground state methods21 could perhaps further lower the
method’s scaling) but instead comes from the natural tendency
of molecular excitations to be localized. Of course, in prac-
tice, the length scale needed to see this benefit may be much
larger than the simulation in a particular system, so let us make
a more concrete statement about the scaling. If one limits |Ψ0〉
to have only NTOP nonzero singular values regardless of the
system size, then the method has an N5 scaling. The obvi-
ous practical case where this approach should be useful is for
excitations that are dominated by a single configuration state
function (CSF), and thus for which only one singular value is
nonzero anyways.

R

D

L

S

N

FIG. 1: Block structure of the zeroth order Hamiltonian. The
matrix is zero in the dotted regions and non-zero in the blue
regions, including on the diagonal of blocks S and N. The
blocks are labeled as R for |Ψ0〉, D for double excitations, L
for triple excitations containing at least one TOP with a large
singular value, S for all other triple excitations containing at
least one TOP, and N for the triple excitations that contain
no TOPs. Note that no singly excited states are included in
our first-order interacting space, on the theory that the effects
of these states have already been included by the variational
optimization of the reference.

D. Automated Implementation

For the construction and solution of the linear equation for
|Ψ1〉, we have written a simple for-loop generator. The ap-
proach is to start with a symbolic representation of the for-
loops belonging to each orbital index, and then to use Wick’s
theorem to derive the different contraction schemes that con-
nect indices and thus eliminate for-loops via the resulting Kro-
necker delta functions. This entire process is automated and
includes the detailed logic needed to a) identify which triples
reside in the L-triples space and thus must be included in the
iterative solution of the linear equation (triples in the S and N
spaces are not part of the iterative solver, as their part of the
linear equation is diagonal and can be inverted directly) and b)
avoid double counting redundant terms, such as T abc

i jk and T bac
jik .

Of course, the result is a code build of “dumb” loops, which
will not be cache-optimal, but does provide us with a correct
reference implementation to start from. Further, it allows us to
automatically implement careful operation counting, such that
each contraction can have its cost scaling analyzed indepen-
dently. Having thus identified the most expensive term (which
turns out to be a contraction between the mixed-spin-L-triples
and the Fock operator) we have verified that by hand-coding
this term in terms of dense linear algebra, the cost can be re-
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duced by more than an order of magnitude. In future, we will
work to convert all other contractions whose cost is not trivial
into dense linear algebra. In the present study, however, our
focus is not on a production-level code, but instead on com-
pleting a detailed analysis of the cost-scaling as well as the
accuracy of the new N5 approach.

For an example of how the code generation works, consider
how the Fock operator might map double excitation coeffi-
cients to L-triples excitation coefficients in the case where all
orbitals are spin up. The corresponding tensor contractions
come from the different ways of contracting the indices in

∑
pq

∑
i′ j′a′b′

FpqT a′b′
i′ j′ 〈Φ| τ̂

+
k τ̂

+
i τ̂

+
j ŵbŵaσ̂câ+p âqŵ+

a′ŵ
+
b′ τ̂ j′ τ̂i′ |Φ〉 ,

(9)

where the L-triple’s indices are i, j,k,a,b,c and we assume,
without loss of generality, that c and k form a TOP such that
c = k+No (at least one TOP must be present as this is an L-
triple). The automatically generated code for one of the con-
tractions resulting from Eq. (9) is seen in Figure 2, where we
see explicitly in the second line of code the simplification and
lower scaling that comes if we fix the number NTOP of large
TOPs. This particular term has N2

o N2
v scaling if the number of

large-singular-value TOPs is fixed, or N3
o N2

v if it grows with
system size (e.g. if all TOPs are considered large). Across all
the different pieces needed to construct the linear equation’s
right-hand-side and to operate by Ĥ0, the automated genera-
tor found 185 contractions with non-zero contributions. When
NTOP is set to one, only 18 of the contractions involving triples
showed fifth-order cost-scaling, and only 9 of those showed
the most expensive N2

o N3
v scaling, suggesting that convert-

ing the worst terms to hand-coded dense linear algebra (i.e.
BLAS) should be feasible in future work. See section III B
below for a more detailed cost scaling analysis.

III. RESULTS

A. Computational Details

For ESMP2, we used the iterative conjugate-gradient algo-
rithm to solve the linear equation for |Ψ1〉. The EOM-CCSD
and δ -CR-EOM-CC(2,3)22–25 calculations were performed
with GAMESS,26,27 whereas CIS and TDDFT calculations
were performed with QChem.28 CASPT2 calculations for the
ring excitations were performed with Molpro.29–31 Note that,
although some CASPT2 calculations relied on state-averaged
CASSCF reference functions, the CASPT2 calculations them-
selves were single-state. In the pyrrole molecule, CASSCF
was performed with a (10o,6e) active space, in which an
equal-weight 4-state state-average was employed, with 2, 1,
and 1 states from the A1, A2, and B2 representations, respec-
tively. Note that pyrrole’s 21A1 excitation was not stable in
CASPT2 without a level shift, and so in this molecule a level
shift of 0.2 Eh was used for all states. In the rest of the ring ex-
citations, CASPT2 was stable without a level shift, and so no
shift was used in other molecules. For pyridine, CASSCF em-

for ( int k = 0; k < nocc; k++ ) {
if ( k >= ntop ) continue;
const int c = (k+nocc);
for ( int i = 0; i < nocc; i++ ) {

if ( i == k ) continue;
for ( int j = i+1; j < nocc; j++ ) {

if ( j == k ) continue;
for ( int a = nocc; a < norb; a++ ) {

if ( a == c ) continue;
if ( a == i + nocc && i <= k ) continue;
if ( a == j + nocc && j <= k ) continue;
for ( int b = a+1; b < norb; b++ ) {

if ( b == c ) continue;
if ( b == i + nocc && i <= k ) continue;
if ( b == j + nocc && j <= k ) continue;
const int ip = i;
if ( ip >= nocc ) continue;
const int jp = j;
if ( jp <  ip+1 ) continue;
if ( jp >= nocc ) continue;
const int ap = a;
if ( ap <  nocc ) continue;
const int bp = b;
if ( bp <  ap+1 ) continue;
const int p = c;
const int q = k;
out(k,i,j,a,b) += fm(p,q) * in(ip,jp,ap,bp);

}  }  }  }  }

FIG. 2: The generated code for the δaa′δbb′δii′δ j j′δkqδcp con-
traction resulting from Eq. (9). Note the second line, where
the scaling is explicitly reduced if the number NTOP of TOPs
that are considered large does not grow with system size.

ployed an (8o,10e) active space and four separate state aver-
aging calculations, one in each representation of its C2v point
group. No level shift was necessary for stability in pyridine,
but each of these four calculations used an equal-weight 3-
state state average, which was necessitated by the fact that at
the CASSCF level the 11B2 and 21B2 states come first and
third in the energy ordering of the 1B2 states. For benzene,
CASSCF employed a (6o,6e) active space for an equal-weight
6-state state-average with two states each in the Ag, B1u, and
B2u representations (the computational point group was D2h).
Finally, for pyrimidine, CASSCF employed an (8o,10e) active
space. As all the states investigated in pyrimidine are ground
states within their own symmetries, state averaging was not
used in this case.

B. Cost Scaling Analysis

Before looking at the energetic accuracy of reduced-scaling
ESMP2, let us first inspect how the different components
scale with the number of occupied and virtual orbitals. Us-
ing our automatic code generator, we have inserted operation
counting into all of the terms, allowing for a contraction-by-
contraction scaling analysis. For each contraction, we mea-
sured occupied scaling by fixing the number of virtual orbitals
at 100 and varying the number of occupied orbitals between
30 and 50, after which we perform a log-log linear regression
on each contraction’s operation count. Similarly, for scal-
ing with virtual orbitals, we have fixed the number of occu-
pied orbitals at 30 and varied the number of virtuals between
50 and 100, again feeding the information into log-log lin-
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TABLE I: Scaling data for ESMP2-TOP(1), in which only
one TOP is treated as large and which is thus most appropri-
ate when the reference is dominated by a single CSF. For the
different parts of the PT2 linear equation’s right-hand side
(RHS) and linear transformation, we report how many of that
part’s contractions fall in to the different asymptotic scaling
categories.

N3 N3
o Nv N2

o N2
v N3

o N2
v N2

o N3
v

T ab
i j (RHS) 4 12 6 0 0

Sab
i j (RHS) 2 6 3 0 0

T abc
i jk (RHS) 16 0 4 0 0

Sabc
i jk (RHS) 3 0 5 0 0

T ab
i j ↔ T ab

i j 0 0 1 2 2

Sab
i j ↔ Sab

i j 0 0 1 2 2

T abc
i jk ↔ T abc

i jk 0 0 3 4 4

Sabc
i jk ↔ Sabc

i jk 0 0 2 5 5

T abc
i jk ↔ T ab

i j 0 0 18 0 0

Sabc
i jk ↔ Sab

i j 0 0 8 0 0

Sabc
i jk ↔ T ab

i j 0 0 2 0 0

ear regressions. We present two sets of scaling data, repre-
senting the two cost extremes that one can get from the new
approach. First, Table I shows the scaling data for ESMP2-
TOP(1), in which only one TOP is considered large. Second,
Table II shows the scaling data for ESMP2-TOP(all), in which
all TOPs are considered large and the S-triples space is thus
empty.

This detailed scaling analysis reveals that the worst-scaling
terms all reside in the linear transformation part of solving
the PT2 linear equation, which is to say evaluating the action
of H0 on a vector in the first-order interacting space as re-
quired in each iteration of the conjugate gradient algorithm
we use to solve the linear equation. These terms are fifth
and sixth order in the system size for ESMP2-TOP(1) and
ESMP2-TOP(all), respectively, showing that it is indeed pos-
sible to improve over the seventh order scaling of the origi-
nal formulation of ESMP2. Of course, prefactors matter, and
the fact that ESMP2-TOP(1) carries 13 terms with N2

o N3
v scal-

ing means that, for small systems, it will almost certainly be
slower than EOM-CCSD despite its lower scaling, as EOM-
CCSD has a smaller number of N5 and N6 terms. The scal-
ing does guarantee, though, that ESMP2-TOP(1) will be faster
in larger systems. We now turn our attention to the question
of whether energetic accuracy is maintained when we aggres-
sively limit the number of TOPs that are considered large.

C. Small Molecule Testing

Let us begin by testing the fifth order method on the same
set of small molecules and two charge transfer (CT) examples
that were studied recently with the original seventh order in-

TABLE II: Scaling data for ESMP2-TOP(all), in which all
TOPs are treated as large. For the different parts of the PT2
linear equation’s right-hand side (RHS) and linear transfor-
mation, we report how many of that part’s contractions fall
in to the different asymptotic scaling categories. We omit the
RHS doubles terms and the doubles-only parts (T ab

i j ↔ T ab
i j

and Sab
i j ↔ Sab

i j ) of the linear transformation, as their scaling
is the same as in Table I. Note that in cases where the log-log
scaling regression exponents for occupied or virtual orbitals
were significantly fractional (i.e. differed from integers by
more than 0.3) we took the conservative approach of trans-
ferring enough fractional exponent from occupied to virtual
in order to move the virtual exponent up to the next integer,
and then rounded what remained of the fractional occupied
exponent up or down if it was above or below 0.3. For exam-
ple, N2.6

o N2.5
v is converted to N2

o N3
v , while N2.99

o N1.35
v is con-

verted to N3
o N2

v . Note that, although this conservative round-
ing may slightly rearrange the contractions among the N4

and N5 categories, we have explicitly verified (by inspecting
the code) that each of the N6 contractions has the asymptotic
scaling reported here.

N4 N5
o N4

o Nv N3
o N2

v N2
o N3

v N4
o N2

v N3
o N3

v

T abc
i jk (RHS) 16 0 0 4 0 0 0

Sabc
i jk (RHS) 3 0 0 5 0 0 0

T abc
i jk ↔ T abc

i jk 0 25 8 13 10 7 4

Sabc
i jk ↔ Sabc

i jk 0 2 5 6 1 5 5

T abc
i jk ↔ T ab

i j 0 10 10 20 10 0 0

Sabc
i jk ↔ Sab

i j 0 0 0 8 0 0 0

Sabc
i jk ↔ T ab

i j 0 0 4 2 2 0 0

carnation of ESMP2. To make the comparison direct, we use
the same cc-pVDZ basis and the same molecular geometries
as in the previous study.12 Here, we restrict the L-triples space
as much as possible by treating only the dominant TOP (or, in
the case of N2, the pair of equal-weight dominant TOPs) as
large, relegating triples that do not contain the dominant TOP
to the S-triples space with its diagonally-approximated zeroth
order Hamiltonian. In Table III, we see that for this set of
small molecules, this N2

o N3
v -scaling variant of ESMP2 is, like

its seventh order predecessor, competitive in accuracy with
EOM-CCSD. Thus, by working with excited-state-specific or-
bitals from the ESMF reference and an excited-state-specific
correlation treatment from ESMP2, it is possible, at least in
these test systems, to achieve EOM-CCSD accuracies with
a method that scales as the fifth order of the system size.
As with the original formulation of ESMP2, we find it es-
pecially encouraging that the method is equally accurate for
CT and non-CT states, as practical uses of CT in biological
and energy-related chemistry often involve large system sizes
where lower-scaling methods are essential.

Interestingly, the results here are barely changed compared
to the results from the previous seventh order method, which
displayed mean absolute errors of 0.13 eV and 0.12 eV for
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TABLE III: For the lowest singlet excitations in several small molecules, as well as for two simple CT excitations, we report
the reference δ -CR-EOM-CC(2,3) excitation energy in eV, as well as other methods’ errors relative to the reference. All cal-
culations are in the cc-pVDZ basis. Only the dominant TOPs were considered large in ESMP2, meaning one TOP in all cases
except N2, where by symmetry there are two dominant TOPs with equal weights. Below each method, we report the canonical
cost scaling with respect to system size. At bottom, we report mean and maximum absolute (i.e. unsigned) deviations from the
reference both with and without the CT systems included, as well as the number of deviations larger than 0.3 eV.

δ -CR-EOM-CC(2,3) CIS TDDFT/B3LYP TDDFT/ωB97X EOM-CCSD ESMP2
O(N7) O(N4) O(N4) O(N4) O(N6) O(N5)

Acetaldehyde 11A” 4.36 0.71 0.09 0.14 0.21 0.16
Ammonia 21A1 7.57 0.95 -0.52 -0.07 0.05 0.01
Carbon Monoxide 11Π 8.76 0.61 0.16 0.31 0.30 -0.09
Cyclopropene 21B2 7.97 0.57 -0.83 -0.33 -0.08 -0.07
Diazomethane 11A2 3.01 0.38 0.05 0.09 0.45 -0.00
Dinitrogen 1Πg 10.36 -1.31 -0.03 0.00 0.44 0.09
Ethylene 11B3 8.80 -0.25 0.11 0.10 0.19 -0.30
Formaldehyde 11A2 4.08 0.63 0.07 0.10 0.19 0.15
Formamide 21A” 5.86 0.88 0.04 0.11 0.21 0.15
Hydrogen Sulfide 21B2 7.05 0.58 -0.27 0.20 0.11 -0.07
Ketene 11A2 3.78 0.70 0.22 0.31 0.36 -0.01
Methanimine 11A” 5.35 0.66 0.00 0.11 0.22 -0.00
Nitrosomethane 11A” 1.85 0.27 0.13 0.12 0.25 0.17
Streptocyanine Cation 11B2 7.53 1.55 1.08 1.07 0.28 -0.40
Thiofromaldyhyde 11A2 2.18 0.58 0.13 0.17 0.24 -0.08
Water 11B2 8.30 1.02 -0.57 -0.22 -0.01 0.06

Ammonia→ Diflourine 21A1 9.27 2.38 -6.91 -2.69 0.51 -0.26
Dinitrogen→Methylene 11B2 15.49 1.66 -6.58 -1.79 0.06 0.15

Mean Abs. Dev. (with CT) 0.87 0.99 0.44 0.23 0.12
Max Abs. Dev. (with CT) 2.38 6.91 2.69 0.51 0.40

Mean Abs. Dev. (without CT) 0.73 0.27 0.22 0.22 0.11
Max Abs. Dev. (without CT) 1.55 1.08 1.07 0.45 0.40

Deviations above 0.3 eV 16 6 6 4 1

the full set and the non-CT subset, respectively.12 This finding
suggests that the basic idea here is sound: using a diagonal ap-
proximation to H0 in the space of less-important triples does
not have a significant effect on the accuracy. Note that we
have tested whether having any off-diagonal H0 character in
the triples manifold is necessary by testing what happens if no
TOPs are treated as large. In that case, we find that accuracy
suffers significantly, suggesting that, for the triples that con-
nect directly via the coulomb operator to the large parts of the
zeroth order reference, the fact that the Fock operator is not
diagonal is significant. Thus, it appears that we get away with
the reduction in scaling not because the off-diagonal parts of
the Fock operator are unimportant, but because their effects
are small for the triples that do not connect to the reference
or that only connect to small components (TOPs with small
weights) of the reference.

D. Ring Excitations

We now turn to a set of low-lying excitations in aromatic
ring systems, where it is common to see excited states in
which more than one TOP has a large weight. For these sys-
tems (whose geometries have been taken from the cc-pVDZ
MP2 entries in the CCCBDB NIST database32) we have de-
fined large TOPs as those whose singular values are above 0.1,
resulting in two or fewer large TOPs in each excitation and
thus a method that remains at the fifth-order end of the contin-
uum between ESMP2-TOP(1) and ESMP2-TOP(all). Unlike
the small molecules of the previous section, some of these
ring excitations have at least a modest (although not domi-
nant) degree of doubly excited character. As CASPT2 is of-
ten used to address double excitations, we have also included
a comparison against its results in the table, although we
stress that δ -CR-EOM-CC(2,3) is the better reference in these
states thanks to its ability to handle double excitations and its
higher-order treatment of electron correlation. This compari-
son makes clear that, at least on average, ESMP2 is more simi-
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TABLE IV: Excitation energies (eV) for small ring systems in the cc-pVDZ basis. For the δ -CR-EOM-CC(2,3) reference,
we report the excitation energy, while for other methods we report deviations from the reference. ESMP2 treated TOPs with
singular values above 0.1 as large, which led to two or fewer large TOPs in all states included here. A diagonal H0 was used in
the space of triples that do not contain any large TOPs. At the bottom, we report mean and maximum absolute deviations from
the reference, the number of these deviations that were larger than 0.3 eV, and the mean absolute deviation from CASPT2.

State δ -CR-EOM-CC(2,3) CIS TDDFT/B3LYP TDDFT/ωB97X EOM-CCSD CASPT2 ESMP2

Pyrrole 21A1 6.15 1.60 0.45 0.84 0.51 -0.18∗ -0.90
Pyrrole 11A2 6.39 0.86 -0.48 0.70 0.36 0.10 0.09
Pyrrole 11B2 6.56 0.37 0.01 0.10 0.47 0.38 -0.21
Pyridine 11B1 4.84 1.33 -0.01 0.36 0.44 0.10 0.11
Pyridine 11B2 4.76 1.44 0.75 0.83 0.52 0.07 -0.25
Pyridine 21B2 6.51 2.05 0.86 1.05 0.45 0.29 0.11
Pyridine 11A2 5.26 2.19 -0.16 0.33 0.44 -0.05 -0.05
Benzene 11B2u 4.69 1.33 0.72 0.83 0.50 0.06 -0.71
Benzene 11B1u 6.35 -0.08 -0.21 -0.06 0.42 -0.35 -0.26
Benzene 21B1u 7.33 0.94 -0.14 -0.01 0.43 -0.69 -0.82
Pyrimidine 11B1 4.50 1.40 -0.21 0.18 0.22 -0.32 -0.82
Pyrimidine 11B2 5.23 1.28 0.52 0.61 0.28 -0.22 -0.28

Mean Abs. Dev. (MAD) 1.24 0.38 0.49 0.42 0.23 0.38
Max Abs. Dev. 2.19 0.86 1.05 0.52 0.69 0.90

Deviations above 0.3 eV 11 6 8 10 4 4
MAD vs CASPT2 1.30 0.44 0.59 0.49 0.00 0.28

∗Level shift was necessary for convergence. See text.

TABLE V: Excitation energies (eV) for small ring systems in the cc-pVTZ basis. For the δ -CR-EOM-CC(2,3) reference, we
report the excitation energy, while for other methods we report deviations from the reference. ESMP2 treated TOPs with sin-
gular values above 0.1 as large, which led to two or fewer large TOPs in all states included here. A diagonal H0 was used in the
space of triples that do not contain any large TOPs. At the bottom, we report mean and maximum absolute deviations from the
reference and the number of these deviations that were larger than 0.3 eV.

State δ -CR-EOM-CC(2,3) EOM-CCSD ESMP2

Pyrrole 21A1 5.95 0.59 -0.89
Pyrrole 11A2 5.93 0.41 0.13
Pyrrole 11B2 6.25 0.15 -0.18
Pyridine 11B1 4.69 0.52 0.15
Pyridine 11B2 6.22 0.51 0.12
Pyridine 21B2 4.61 0.60 -0.21
Pyridine 11A2 5.14 0.51 -0.03
Benzene 11B2u 4.55 0.58 -0.66
Benzene 11B1u 7.01 0.51 -0.76
Benzene 21B1u 6.06 0.48 -0.23
Pyrimidine 11B1 4.14 0.54 -0.60
Pyrimidine 11B2 4.82 0.62 -0.23

Mean Abs. Dev. (MAD) 0.51 0.35
Max Abs. Dev. 0.62 0.89

Deviations above 0.3 eV 11 4

lar to CASPT2 than to δ -CR-EOM-CC(2,3), which is perhaps
not surprising given the fact that ESMP2 and CASPT2 ap-
proach these states via second order perturbation theory from
a qualitatively correct reference, making them methodologi-
cally similar. Of course, the fact that ESMP2 need not specify
an active space is a significant practical advantage.

Across the twelve ring excitations shown in Table IV, we

find that the differences between EOM-CCSD and ESMP2
are more significant than in the small-molecule excitations
of the last section. While EOM-CCSD has a slightly higher
mean absolute deviation from δ -CR-EOM-CC(2,3), its de-
viations are more regular than those of ESMP2. Indeed, in
all twelve cases, EOM-CCSD predicts excitation energies to
be between 0.2 and 0.55 eV higher than does δ -CR-EOM-
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TABLE VI: Results for a few Rydberg states in neon,
formaldehyde, and benzene. Molecular geometries were
taken from the NIST CCCBDB database.32 All values are
reported in eV.

State Basis ESMF N5-ESMP2 Error

Neon (2s→ 3p) cc-pVTZ 65.6781 64.6521 0.35a

Formaldehyde 21A1 d-aug-cc-pVTZ 7.0967 8.3287 0.23b

Formaldehyde 31A1 d-aug-cc-pVTZ 8.1856 9.3947 0.13b

Benzene 1E2g aug-ANO1c 6.7758 7.4583 -0.38c

Benzene 2A1g aug-ANO1c 6.7619 7.4557 -0.39c

Benzene 1A2g aug-ANO1c 6.8013 7.4856 -0.38c

a Compared to EOM-CCSD in the same basis.11

b Compared to the theoretical best estimate for these states.33

c Compared to CCSD calculations in the same basis set.34

CC(2,3), whereas the span of ESMP2’s deviations is signifi-
cantly larger at just over an eV. Table V shows that a similar
story plays out for EOM-CCSD and ESMP2 in a triple-zeta
basis, reassuring us that these tendencies are not specific to
the double-zeta basis, on which we now focus our attention.

Notably, while Table IV’s ESMP2 results are within 0.3 eV
of δ -CR-EOM-CC(2,3) for eight out of the twelve states, in
the other four states — pyrrole 21A1, benzene 11B2u, benzene
21B1u, and pyrimidine 11B1 — its prediction is low by 0.7 eV
or more. Two of these are errors likely due to doubly excited
character, one an error related to intruder states issues, and one
is not necessarily much of an error at all. Start with the 21A1
state of pyrrole, where CASPT2 displays intruder-state behav-
ior and is not stable without the application of a level shift.
Given that the zeroth order Hamiltonians are similar, and that
the CASSCF reference used by CASPT2 should be a better
starting point than ESMF, ESMP2’s difficulty in this state is
likely related to these intrude state difficulties. In the 21B1u
state of benzene, on the other hand, ESMP2 is energetically
very similar to CASPT2, which is known to be highly accu-
rate for the low-lying excitations of benzene,33,35,36 and so this
appears to be a case where ESMP2 is reasonably accurate, at
least if CASPT2 is used as the reference. Indeed, the MAD of
ESMP2 relative to CASPT2 across all twelve states is signifi-
cantly lower than its MAD relative to δ -CR-EOM-CC(2,3),
which is perhaps not so surprising given that both ESMP2
and CASPT2 are second-order perturbation theories based on
orbital-optimized reference functions (although for CASPT2
the orbital optimization is state-averaged, rather than state-
specific). However, the agreement is certainly not perfect,
and the large deviations between ESMP2 and δ -CR-EOM-
CC(2,3) in the benzene 11B2u and pyrimidine 11B1 states can-
not be explained by either similarity to CASPT2 or by intruder
state issues in CASPT2, which were not present. The errors in
these two states are likely due instead to doubly excited char-
acter that the singly-excited ESMF reference function cannot
capture. Indeed, the doubly excited fractions of the CASSCF
wave functions for benzene 11B2u and pyrimidine 11B1 were
15% and 8%, respectfully. It is interesting to note that, at least

TABLE VII: Size intensivity test, in which we report the
first singlet excitation energy in eV for a water molecule sur-
rounded by a variable number of distant He atoms. Methods’
asymptotic cost scalings are given in parentheses.

He ESMF ESMP2 ESMP2 EOM-CCSD CISD
atoms (N4) (N5) (N7) (N6) (N6)

0 7.7286 8.4508 8.4353 8.1946 10.1593
1 7.7286 8.4508 8.4353 8.1946 10.5369
2 7.7286 8.4508 8.4353 8.1946 10.9118
3 7.7286 8.4508 8.4353 8.1946 11.2841
4 7.7286 8.4508 8.4353 8.1946 11.6537
5 7.7286 8.4508 8.4353 8.1946 12.0207
6 7.7286 8.4508 8.4353 8.1946 12.3852

in these two cases, this modest fraction of doubly excited char-
acter caused less trouble for EOM-CCSD. This raises the in-
teresting question of whether, for cases with modest amounts
of doubly excited character, EOM-CCSD is more robust than
ESMP2, which seems like a question worth studying more
systematically in future work.

E. Rydberg Excitations

To check whether ESMP2 achieves a similar quality in Ry-
dberg excitations, we have tested it on relevant excitations in
neon, formaldehyde, and benzene. Although the comparison
is less straightforward than those of the previous sections due
to a lack of a single high-level benchmark, comparisons to lit-
erature values are shown in Table VI. We find that the overall
accuracy for ESMP2 is similar to that seen in the ring systems
above and that it makes a substantial correction to the uncor-
related ESMF reference, which in most cases underestimates
these excitations (although interestingly not in neon).

F. Size Intensive Excitation Energies

Finally, although ESMP2 is rigorously size intensive — by
which we mean that the excitation energy is unchanged by
adding a second, infinitely-far-away system that does not par-
ticipate in the excitation — it is worth testing that this prop-
erty has been realized in our implementation. To this end, we
treated a water molecule with various numbers of far-away
helium atoms in a 6-31G basis. We performed seven calcu-
lations, one with just the water molecule and then six more,
each with one additional He atom placed 10 Å away from
the water at the different points of an octahedron. As seen
in Table VII, the ESMP2 prediction for the excitation energy
was unchanged by the addition of the He atoms, both for the
original N7-scaling approach and the N5-scaling approach in-
troduced here in which only the dominant TOP is considered
large. While ESMP2’s size intensivity is a formal advantage
over CASPT2, which is only approximately size consistent,37
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CASPT2’s size intensivity error turns out to be less than 10−6

eV in this example. In contrast, the excitation energy of con-
figuration interaction with singles and doubles (CISD), which
is not even approximately size consistent or intensive, changes
significantly upon adding the He atoms, despite the fact that
they have essentially no interaction with the water molecule.
This alarming behavior is a reminder of why size-intensivity
is such a high priority in excited state methods, as artificial en-
ergy shifts of the size displayed here by CISD could spoil pre-
dictions of solvation properties such as solvatochromic shifts.

IV. CONCLUSION

We have shown that, by working in an orbital basis simi-
lar to that of the natural transition orbitals and by making a
small modification to the zeroth order Hamiltonian, the cost
scaling of the ESMP2 correction to the ESMF energy can be
lowered from the seventh to the fifth power of the system size.
In particular, the scaling matches the N2

o N3
v scaling of ground

state MP2 theory, although the prefactor remains significantly
higher due to the off-diagonal nature of ESMP2’s zeroth or-
der Hamiltonian, which necessitates an iterative solution to
the central linear equation. Initial testing of this lower-scaling
incarnation of ESMP2 theory shows that its accuracy remains
competitive with EOM-CCSD in many scenarios, but that it
may break down more rapidly when doubly excited charac-
ter is present. Given that this approach to ESMP2 gives it a
lower cost-scaling than EOM-CCSD, these findings strongly
motivate more systematic and widespread testing in future.
The potential for a low-scaling method that is robust in charge
transfer contexts is especially strong, as DFT still struggles in
this area and modeling these systems reliably often requires
the explicit inclusion of solvent species and can thus easily
entail hundreds of atoms.

Going forward, the immediate priority is to work towards a
production-level implementation of the most expensive terms
within the theory. Happily, our automatic code-generation and
cost-analysis has revealed that the number of terms with fifth
order scaling is relatively small, and so a hand-tuned imple-
mentation employing dense linear algebra should be quite fea-
sible. Once the practical efficiency of the implementation is
addressed, it will be important to test the method in a signifi-
cantly larger and more systematic set of excitations in order to
more firmly establish in which contexts ESMP2 can be used as
a lower-cost alternative to EOM-CCSD and in which contexts
it cannot. Looking a bit farther ahead, it would be interest-
ing to further exploit locality. The new approach here derives
its scaling from the fact that molecular excitations’ spatial ex-
tents typically do not grow indefinitely with system size, but
it does not exploit localities of electron correlation in the way
many ground state methods now do. Finally, the realization
of an excited state analogue of MP2 theory at the same cost
scaling further motivates the study of applying a cluster oper-
ator to the ESMF reference wave function, which would be an
important step towards the type of systematically improvable
hierarchy of correlation methods that Hartree Fock theory has
long enjoyed.
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