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Abstract

Supported lipid membranes are versatile biomimetic coatings for the chemical functionalization of 

inorganic surfaces. Developing simple and effective fabrication strategies to form supported lipid 

membranes with micropatterned geometries is a long-standing challenge. Herein, we demonstrate 

how the combination of chemical lift-off lithography (CLL) and easily prepared lipid bicelle 

nanostructures can yield micropatterned, supported lipid membranes on gold surfaces with high 
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pattern resolution, conformal character, and biofunctionality. Using CLL, we functionalized gold 

surfaces with patterned arrays of hydrophilic and hydrophobic self-assembled monolayers 

(SAMs). Time-lapse fluorescence microscopy imaging revealed that lipid bicelles adsorbed 

preferentially onto the hydrophilic SAM regions while there was negligible lipid adsorption onto 

the hydrophobic SAM regions. Functional receptors could be embedded within the lipid bicelles, 

which facilitated selective detection of receptor-ligand binding interactions in a model 

streptavidin-biotin system. Quartz crystal microbalance-dissipation measurements further 

identified that lipid bicelles adsorb irreversibly and remain intact on top of the hydrophilic SAM 

regions. Taken together, our findings indicate that lipid bicelles are useful lipid nanostructures for 

reproducibly assembling micropatterned, supported lipid membranes with precise pattern fidelity.

Graphical Abstract
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Introduction

Microscale patterning of solid-supported lipid membranes is a challenging task that involves 

controlling the self-assembly pathway of adsorbing lipid molecules on a material surface 

along with precise chemical functionalization of the target interface. While it is possible to 

tether patterned arrays of three-dimensional (3D) lipid vesicles on solid supports,1 most 

studies focus on two-dimensional (2D) lipid membrane architectures, such as supported lipid 

bilayers (SLBs), because they provide conformal coatings that are well-suited for a wide 

range of sensor and biotechnology applications.2–5

Early work on SLB micropatterning focused on silica-based surfaces on which solution-

phase lipid vesicles typically adsorb and rupture spontaneously to form SLBs.6–8 These 

strategies dealt with pre-installing material barriers to inhibit vesicle adsorption and/or SLB 

formation in specific locations on the target surface.9 For example, Groves et al. used 

photolithographic methods to form grids of photoresist, aluminum oxide, or gold on 

oxidized silicon substrates where adsorbing vesicles would fuse and rupture on oxidized 

silicon while the grid regions inhibited vesicle adsorption and/or SLB formation.10,11 Kung 

et al. expanded on this concept to micropattern SLBs on glass surfaces by applying soft 

lithographic approaches with protein-based coatings.12 Other work has also shown that 

functionalizing silica-based surfaces with hydrophilic polymers can enable selective SLB 

patterning across the nano- to micron scales by employing the vesicle fusion method.13–16
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In marked contrast to silica surfaces, vesicles typically adsorb but do not rupture on gold 

surfaces,6,17 thereby limiting opportunities to form micropatterned SLBs based on the 

aforementioned design principles. Rather, Jenkins et al. demonstrated how microcontact 

printing of hydrophilic self-assembled monolayers (SAMs) on gold surfaces promoted 

tethered SLB formation from adsorbing vesicles.18,19 The structural conversion of adsorbed 

vesicles into a SLB on hydrophilic SAMs entails complex formation processes that depend 

on the pattern geometry.20 Using microcontact printing, Strulson and Maurer demonstrated 

the formation of patterned SLBs on tetra(ethylene glycol) SAMs from adsorbing vesicles 

whereby lipid monolayers formed on reinserted hydrophobic SAM regions.21 Notably, the 

SLB formation process depended on vesicle adsorption at the interface between the 

hydrophilic and hydrophobic SAM regions.22 Altogether, these findings support that 

micropatterning of supported lipid membranes on gold surfaces is possible, and open the 

door to exploring new patterning strategies and lipid membrane architectures that can be 

used for a variety of applications. For example, patterned arrays of SLB-functionalized gold 

surfaces would be useful detection platforms for electrochemical or plasmonic 

characterization of important biomembrane-related processes such as lipid-receptor 

interactions involved in cell signaling and the mimicking of T-cell immunological synapses.
23,24 Moreover, control of the physicochemical properties of patterned membranes can 

enable selective cell capture for cell-based assays and the monitoring of cell behavior in 

controlled microenvironments such as cellular differentiation.25.26

Herein, we report a robust and efficient strategy to micropattern a well-packed, adsorbed 

layer of 2D lipid bicelles on chemically functionalized gold surfaces. Our approach 

combines chemical lift-off lithography (CLL) – a soft-lithographic method to pattern 

hydrophilic and hydrophobic SAMs on gold and other surfaces using plasma-activated 

polydimethylsiloxane (PDMS) stamps27–32 – and lipid bicelles, which are easily prepared, 

2D lipid nanostructures that readily adsorb onto hydrophilic surfaces.33–35 Importantly, the 

subtractive patterning process of CLL enables high-resolution patterning with sharp borders 

while avoiding the challenges of conventional soft lithographic methods (e.g., microcontact 

printing) such as lateral diffusion of molecular inks.36–39 Using fluorescence microscopy 

imaging and quartz crystal microbalance-dissipation (QCM-D) measurements, we 

demonstrate how bicelles are versatile lipid nanostructures for assembling supported lipid 

membranes with conformal character and high pattern fidelity, along with excellent utility 

for studying membrane-associated biomacromolecular interactions such as ligand-receptor 

binding.

Results and Discussion

Lipid self-assembly on solid supports is strongly linked to the physicochemical properties of 

the target material surface.8,40 When lipid nanostructures (e.g., bicelles and/or vesicles) 

interact with hydrophilic surfaces, lipid adsorption typically occurs while hydrophobic 

surfaces can inhibit lipid adsorption, depending on the surface free energy41 and lipid-

surface adhesion strength.42 The adhesion is mainly affected by the energetic mismatch 

between the hydrophobic surface and hydrophilic lipid headgroups and also depends on the 

adsorption footprint of a contacting lipid nanostructure.42 Thus, we developed a CLL-based 

micropatterning strategy that utilizes a combination of hydrophilic and hydrophobic SAMs 
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to control supported lipid membrane formation on gold surfaces spatially. The fabrication 

steps are outlined in Figure 1. Bare gold surfaces were incubated with an ethanolic solution 

of mercaptoundecanol (HSC11-OH) to form a hydrophilic SAM. Selective removal of 

HSC11-OH monolayer regions was then conducted by contacting and then removing a 

patterned oxygen plasma-activated PDMS stamp from the functionalized gold surface. The 

treated surface was next incubated with an ethanolic solution of octadecanethiol (HSC18) so 

that these hydrophobic molecules are covalently attached within the lifted-off regions. The 

resulting surface is composed of a patterned combination of hydrophilic and hydrophobic 

SAMs of HSC11-OH and HSC18 molecules, respectively. The hydrophilic molecule, 

HSC11-OH, possesses suitable chemical properties for chemical lift-off while the 

hydrophobic molecule, HSC18, can form well-packed SAMs and can backfill void regions 

while preserving the target pattern regions of covalently attached HSC11-OH molecules.29 

Successful lift-off of HSC11-OH SAMs and backfilling with HSC18 SAMs in target 

patterned regions was tested and confirmed by atomic force microscopy (AFM) 

characterization in height and adhesion force modes (Figure S1). Based on this platform 

design, we were able to achieve selective adsorption of the lipid bicelle nanostructures onto 

the hydrophilic SAMs in order to form a micropatterned supported lipid membrane.

As a first step, we conducted fluorescence microscopy experiments to investigate the 

adsorption of fluorescently labeled bicelles and vesicles – two widely studied classes of lipid 

nanostructures – onto functionalized gold surfaces with different pattern geometries (Figure 

2). While gold surfaces can quench fluorescent molecules in close proximity to the substrate, 

the quenching effect is distance dependent and SAMs have been shown to mitigate 

fluorescence quenching significantly, as spacers from the surface.43,44 Thus, we were able to 

observe bicelle and vesicle adsorption onto SAM-functionalized surfaces with time-lapse 

monitoring. The bicelles were composed of a mixture of long-chain 1,2-dioleoyl-sn-

glycero-3-phosphocholine (DOPC) and short-chain 1,2-dihexanoyl-sn-glycero-3-

phosphocholine (DHPC) lipids with a q-ratio of 0.25 (i.e., ratio of long-chain to short-chain 

phospholipids). Vesicles used in these studies were composed of an equivalent concentration 

of the DOPC lipid alone. Both types of lipid mixtures also contained a small amount of 1,2-

dipalmitoyl-sn-glycero-3-phos-phoethanolamine-N-(lissamine rhodamine B sulfonyl) lipid 

to facilitate fluorescence visualization. Both bicelles and vesicles were prepared in 10 mM 

Tris buffer [pH 7.5] with 150 mM NaCl by the freeze-thaw-vortexing method and had 

similar hydrodynamic diameters of around 400 nm (Figure S2).45

The lipid nanostructures were incubated with the functionalized gold surface for 45 min 

before a buffer washing step, followed by fluorescence microscopy imaging. As shown in 

Figure 2A, the lipid bicelles formed high-resolution micropatterns whereby the fluorophore-

enriched red regions correspond to supported lipid membranes on top of hydrophilic SAM 

regions while the fluorophore-deficient black regions depict hydrophobic SAM regions 

where the bicelles did not adsorb. Supported lipid membranes formed according to the 

underlying patterned SAM features with dimensions as small as 5 μm. Well-packed lipid 

bicelle adlayers with a conformal appearance were observed on patterns with different scales 

and geometries. By contrast, the lipid vesicles were less effective at forming micropatterned, 

supported lipid membranes (Figure 2B). The lipid vesicles appeared to adsorb preferentially 

onto the hydrophilic SAM regions, however, the deposition process resulted in more 
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disordered adlayers with non-uniform coating appearances, and there was also a moderate 

level of nonspecific vesicle adsorption on the hydrophobic SAM regions as well.

Using time-lapse fluorescence microscopy imaging, we further investigated the adsorption 

kinetics of lipid bicelles onto chemically functionalized gold surfaces (Figure 3). Within the 

first 2 min, the fluorescently labeled bicelles adsorbed preferentially onto the hydrophilic 

SAM regions, while some defects were initially present along with some nonspecific bicelle 

adsorption onto the hydrophobic SAM regions. Over time, the defects vanished and there 

was also increased resolution such that the bicelle pattern mirrored the underlying pattern of 

hydrophilic and hydrophobic SAM regions. The fluorescence intensity becomes more 

uniform within the bicelle-patterned hydrophilic regions, indicating that bicelle adsorption 

on the hydrophilic SAM regions continued until reaching saturation after ca. 20 min. 

Importantly, the pattern resolution remained stable for at least 24 h and the hydrophobic 

SAM regions acted as barriers to keep the supported lipid membranes contained within the 

hydrophilic SAM regions.

In addition to characterizing the formation process, we also investigated the functionality of 

the micropatterned, supported lipid membranes by incorporating 1 mol% of 1,2-dioleoyl-sn-

glycero-3-phosphoethanolamine-N-(cap biotinyl) (Biotin-PE) lipid into the bicelle mixture 

in order to study ligand-receptor interactions (Figure 4). In this case, the supported lipid 

membranes were fabricated without fluorescently labeled phospholipid and the subsequent 

binding of fluorescently labeled streptavidin to the biotinylated lipids was detected by time-

lapse fluorescence microscopy imaging, as outlined in Figure 4A. The binding scheme was 

highly specific as negligible streptavidin binding occurred on chemically functionalized gold 

surfaces without supported lipid membrane coating and on bicelle-patterned surfaces that 

did not contain biotinylated lipid (Figures 4B,C). In the case of the bicelle-patterned surface 

that included biotinylated lipid, streptavidin binding to the bicelle pattern was detected 

within 10 min – as indicated by the fluorescence signal emitted by labeled streptavidin 

molecules (Figure 4D). Streptavidin binding was concentrated in the bicelle-coated regions 

on top of the hydrophilic SAM regions. Even without a blocking protein layer (e.g., bovine 

serum albumin) on top of the hydrophobic SAMs, nonspecific streptavidin binding was 

minimal. Within 20 min, the amount of bound streptavidin within the bicelle-coated areas 

reached stable levels, demonstrating that membrane-associated receptors can be included in 

the bicelle mixtures and functionally incorporated within the micropatterned, supported lipid 

membranes.

The aforementioned results demonstrate that lipid bicelles selectively adsorb onto 

hydrophilic SAM-functionalized gold surfaces, which correspond to C11-OH monolayers 

based on our platform design, and form well-packed adlayers. In order to characterize the 

bicelle adlayer properties, we conducted QCM-D experiments in order to track bicelle and 

vesicle adsorption onto bare and HSC11-OH-functionalized gold surfaces (Figure 5). In the 

QCM-D measurements, resonance frequency (Δf) and energy dissipation (ΔD) shifts arising 

from lipid adsorption reflect changes in the mass and viscoelastic properties of the adlayer, 

respectively.46 On bare gold surfaces, lipid bicelles and vesicles exhibited similar adsorption 

kinetic profiles that are consistent with adsorption of intact bicelles or vesicles in the two 

respective cases (Figure 5A). Equivalent Δf shifts of ca. −15 Hz were observed, while 3× 
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larger ΔD shifts were observed for vesicles (3 × 10−6 vs 1 × 10−6) (Figure 5B,C). The larger 

ΔD shift of adsorbed vesicles is likely due to the geometrical differences between the nearly 

planar, 2D bicelles and 3D spherical vesicles that have more hydrodynamically coupled 

solvent per adsorption and, hence, contribute to a larger viscoelastic response than bicelles.
47 Time-independent analyses48 of the Δf vs ΔD signals for the bicelle and vesicle 

adsorption cases are consistent with bicelles attaching more rigidly to the bare gold surface 

(Figure S3). Together, the data support that bicelles adsorb to a greater extent than vesicles 

when taking into account the respective hydrodynamic factors.

On HSC11-OH-functionalized gold surfaces, it was also observed that lipid bicelles and 

vesicles adsorb and remain intact without rupturing (Figure 5D). Similar results have been 

reported for vesicle adsorption onto hydrophilic SAM surfaces,18 while the QCM-D 

measurements in our case further revealed that bicelle adsorption was appreciably quicker 

than vesicle adsorption, which did not reach equilibrium on the measurement time scale. In 

addition, bicelle adsorption onto HSC11-OH-functionalized gold surfaces was more 

favorable than on bare gold surfaces, as indicated by larger Δf and ΔD shifts of ca. −30 Hz 

and 4 × 10−6, respectively (Figures 5E,F). The adsorption kinetics and final QCM-D shifts 

indicate that the adsorbed bicelles remain intact on the HSC11-OH monolayer to form a 

well-packed adlayer.

In contrast, vesicle adsorption onto HSC11-OH-functionalized gold surfaces yielded 

significantly larger Δf and ΔD shifts of around −120 Hz and 40 × 10−6, respectively, than on 

bare gold surfaces. The ΔD shift for vesicle adsorption in this case was more than 10× larger 

than the corresponding signal on bare gold surfaces. The large measurement responses 

associated with vesicle adsorption are indicative of weak vesicle adhesion to the HSC11-OH 

monolayer whereby adsorbed vesicles experience minimal substrate-induced deformation 

and hence contribute to a larger viscoelastic response.49 This finding helps to explain why 

lipid vesicles were less effective than bicelles in forming micropatterned, supported lipid 

membranes.

We also characterized lipid bicelle and vesicle adsorption onto HSC18-functionalized gold 

surfaces. The QCM-D data showed that there was minimal bicelle adsorption onto the 

HSC18-functionalized gold surface (−1.25 ± 2.5 Hz), which is consistent with the 

fluorescence microscopy results. Of note, DOPC/DHPC bicelles are equilibrium-phase 

structures that co-exist with free DHPC molecules in bulk solution,50 so we also measured 

free DHPC lipid adsorption onto the HSC18-functionalized gold surfaces and observed 

similar Δf shifts as in the bicelle case (Figure S4). Taken together, the data support that 

DHPC lipid molecules are the main component in the bicelle system that adsorbs to the 

HSC18 monolayer and the complex, two-step interaction kinetics further indicate that DHPC 

molecules intercalate within the HSC18 monolayer. Thus, in the bicelle case, the DHPC 

molecules appear to play an important role in passivating nonspecific adsorption on the 

HSC18 monolayer regions, as evidenced by the negligible levels of bicelle and streptavidin 

adsorption described above (cf. Figures 2–4).

On the other hand, for vesicle adsorption onto HSC18-functionalized surfaces, we observed 

larger Δf shifts of around −11 ± 2 Hz that did not reach equilibrium over a 30-min time 
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interval. This observation agrees well with our fluorescence microscopy results, which 

showed a moderate degree of nonspecific vesicle adsorption onto HSC18-functionalized 

surfaces. It has also been reported that lipid vesicle interaction processes with hydrophobic 

SAMs can take a long time to reach equilibrium, up to several hours and depend on the 

specific system (e.g., SAM molecular packing, vesicle preparation, vesicle size), while our 

incubation protocol occurs on much shorter time scales.51–53 Taken together, the QCM-D 

data support that both types of lipid nanostructures – bicelles and vesicles – adsorb onto bare 

and hydrophilic HSC11-OH-functionalized gold surfaces. The bicelle system enables the 

formation of well-packed adlayers on the hydrophilic SAM region while also inhibiting 

nonspecific adsorption on the HSC18-functionalized gold surface (hydrophobic SAM 

region) due to DHPC molecular passivation along with the large contacting surface area of 

an adsorbing bicelle.

Conclusions and Outlook

In this work, we have demonstrated that, when combined with CLL fabrication capabilities, 

lipid bicelles are useful lipid nanostructures for preparing supported lipid membranes with 

micropatterned geometries. From a materials design perspective, the bicelles have three key 

advantages: First, they are easily prepared, requiring only aqueous hydration followed by a 

few cycles of freeze-thaw-vortexing. Second, the bicelles have 2D disk architectures that are 

well-suited for forming non-fouling, conformal layers without requiring SLB formation. 

Third, the high surface-area-to-volume ratios of adsorbed lipid bicelles facilitate large 

contact areas that support firm, irreversible attachment to hydrophilic SAMs while helping 

to minimize attachment to hydrophobic SAMs in tandem with DHPC molecular passivation. 

By contrast, the packing constraints and smaller surface-area-to-volume ratios of adsorbing 

vesicles result in non-conformal layers and less discrimination between hydrophilic and 

hydrophobic SAMs. As such, our findings provide strong experimental evidence supporting 

the merits of lipid bicelles as macromolecular building blocks for the fabrication of 

micropatterned, supported lipid membrane platforms. Considering that lipid bicelles are 

widely used to reconstitute transmembrane proteins in membranous environments, we 

anticipate that these fabrication capabilities could be broadly useful for developing 

micropatterned arrays of supported lipid membranes that incorporate membrane proteins and 

other membrane-associated entities for applications such as pharmacological drug testing 

and high-throughput screening assays.

Materials and Methods

Chemical Lift-Off Lithography.

Siloxyl groups were formed on PDMS stamps by exposure of molded features to oxygen 

plasma (Harrick Plasma, Ithaca, NY, USA) for 40 s at a power of 18 W with a chamber 

pressure of 10 psi. By contacting the oxygen plasma-treated PDMS stamps to an underlying 

HSC11-OH SAM, a condensation reaction occurs, yielding covalent binding between the 

distal hydroxyl groups of HSC11-OH SAM molecules and the siloxyl groups on the 

patterned PDMS surface. When the PDMS stamp was retracted from the gold surface, strong 

bonding between these two interfaces led to the subsequent lift-off of HSC11-OH molecules 
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and gold atoms. The exposed regions of bare gold surface were subsequently functionalized 

by incubating the substrate in a 5 mM ethanolic solution of HSC18 molecules for 1 h, 

resulting in the formation of a functionalized gold surface with well-defined regions of 

hydrophilic and hydrophobic SAMs.

Lipid Nanostructure Preparation.

To fabricate lipid bicelles, 1 mg each of DOPC and DHPC phospholipids in chloroform 

were dispensed individually into separate glass test tubes and the chloroform solvent was 

evaporated by rotating the tubes under a gentle stream of nitrogen gas to form dry lipid 

films, followed by placing the tubes in a vacuum desiccator overnight. Then, the dry DOPC 

lipid film was hydrated in an aqueous buffer (10 mM Tris [pH 7.5] with 150 mM NaCl) in 

order to prepare a 63 μM DOPC lipid stock solution. The DOPC lipid solution was then used 

to hydrate the DHPC lipid film so that the final concentration of DHPC lipid was 252 μM. 

As a result, the molar ratio (“q-ratio”) between DOPC long-chain phospholipids and DHPC 

short-chain phospholipids was 0.25. After preparing the DOPC/DHPC lipid mixture, the 

solution was plunged into liquid nitrogen for 1 min, followed by 5 min incubation in a 60 °C 

water bath and subsequent vortexing for 30 s. This freeze-thaw-vortex cycle was repeated a 

total of five times. The DOPC lipid vesicles were also prepared using lipid hydration and 

freeze-thaw-vortex cycling as described above with DOPC lipid concentration fixed at 63 

μM. To prepare fluorescently labelled bicelles and vesicles, the initially prepared DOPC 

lipid stock solution contained 0.5 mol% of fluorescently labelled RhoPE lipid. To prepare 

biotinylated lipid-containing bicelles, the initially prepared DOPC lipid stock solution 

contained 1 mol% of Biotin-PE lipid.

Lipid Nanostructure Patterning.

Lipid bicelle and vesicle solutions were incubated with the pre-patterned SAM surface for 

45 min under ambient conditions, and then the surface was rinsed with buffer a total of three 

times to form supported lipid membranes in the hydrophilic SAM regions. The patterned 

lipid-SAM substrates were kept hydrated during rinsing cycles to prevent delamination of 

the lipid layer.

Biotin-Streptavidin Binding Experiments.

After patterning the SAM-functionalized substrate with biotinylated lipid-containing 

bicelles, the solution was carefully exchanged with aqueous buffer (10 mM Tris [pH 7.5] 

with 150 mM NaCl) using a 1000 μL pipette. Next, fluorescently labeled streptavidin 

molecules, at a concentration of 17 nM in equivalent buffer, were incubated with the 

substrate for 45 min at room temperature. Appropriate control experiments without 

biotinylated lipid and without supported lipid membranes were conducted to verify the 

binding specificity of the biotin-streptavidin interaction.

Fluorescence Microscopy.

Epifluorescence microscopy experiments were performed using an AxioZ1 Observer 

fluorescence microscope (Carl Zeiss AG, Oberkochen, Germany) with LD Plan-Neofluar 

10×/0.3 and 20×/0.4 objectives. Images were acquired using a 545/25 bandpass excitation 
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filter, a FT 570 beam splitter, and a 605/70 bandpass emission filter (43 HE DsRed filter 

set).

Quartz Crystal Microbalance-Dissipation (QCM-D).

Lipid adsorption kinetics were monitored using a Q-Sense E4 instrument (Biolin Scientific 

AB, Stockholm, Sweden). Gold-coated QCM-D sensor chips (QSX 301, Biolin Scientific 

AB) were used for all experiments and were washed with ethanol and water, dried with 

nitrogen gas, and then treated with oxygen plasma for 1 min in a plasma cleaner (PDC-002, 

Harrick Plasma, Ithaca, NY). The sensor chips were either used as-is or next functionalized 

with a hydrophilic SAM layer by immersing the sensor chips in a 1 mM ethanolic solution 

of HSC11-OH molecules for 1 h at room temperature. After incubation, the SAM-

functionalized sensor chips were rinsed with ethanol before nitrogen gas drying. After 

assembling bare gold or SAM-functionalized sensor chips within the QCM-D measurement 

chamber, a baseline signal in aqueous buffer (10 mM Tris [pH 7.5] with 150 mM NaCl) was 

first established. Then, lipid bicelles or vesicles (63 μM DOCP lipid concentration) in 

equivalent buffer were injected into the measurement chamber under continuous flow 

conditions at a volumetric rate of 50 μL/min, as controlled by a peristaltic pump (Reglo 

Digital, Ismatec, Cole-Parmer GmbH, Wertheim, Germany). Experimental data were 

collected and processed using the Q-Soft and Q-Tools software packages, respectively, from 

Biolin Scientific AB. The reported data were collected at the 5th overtone and the frequency 

shifts were normalized according to the overtone number.

Dynamic Light Scattering (DLS).

The size distribution of lipid bicelles and vesicles was measured by the DLS technique using 

a 90Plus particle size analyzer instrument (Brookhaven Instruments Corporation, Holtsville, 

NY) with a 658-nm monochromatic laser. The scattered light was measured perpendicular to 

the sample. The intensity-weighted size distribution of the vesicles was recorded based on an 

autocorrelation function, which correlates fluctuations in the scattered light intensity with 

respect to time54 and is obtained using Particle Sizing software (Brookhaven Instruments 

Corporation). The mean hydrodynamic diameter and standard deviation of the bicelle and 

vesicle sizes are reported for N=5.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Schematic illustration of lipid bicelle micropatterning using chemical lift-off 
lithography.
(1) A gold substrate is cleaned using a hydrogen annealing step to ensure no organic 

impurities are residing on the surface. (2) A hydrophilic mercaptoundecanol (HSC11-OH) 

self-assembled monolayer (SAM) is adsorbed onto the gold surface via incubation. (3) A 

patterned polydimethylsiloxane (PDMS) stamp is brought into contact with the surface, 

forming a covalent bond between the PDMS and the contacted HSC11-OH. (4) The 

contacted molecules are selectively removed by lifting off the PDMS and (5) patterned 

HSC11-OH resides on the gold surface. (6) A hydrophobic 1-octadecanethiol SAM is 

inserted into the exposed gold regions, forming a mixed monolayer with contrasting 

wettability. (7) Bicelles are adsorbed to the patterned hydrophilic regions to form patterned 

bicelle adlayers.
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Figure 2. Micropatterning of lipid bicelles and vesicles on chemically functionalized gold 
surfaces.
Fluorescence micrographs show the results of fluorescently labeled (red) lipid (A) bicelle 

and (B) vesicle adsorption onto micropatterned self-assembled monolayer-functionalized 

gold surfaces consisting of hydrophilic mercaptoundecanol and hydrophobic 1-

octadecanethiol with different pattern geometries (UCLA-CNSI and squares). Micrographs 

are taken after 45 min of incubation and a buffer washing step for each lipid nanostructure.
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Figure 3. Time-lapse fluorescence microscopy imaging of lipid bicelle adsorption onto a 
micropatterned gold surface.
Fluorescence micrographs of fluorescently labeled lipid bicelles incubated with a post-

chemical lift-off lithography mixed SAM-functionalized gold surface consisting of 

hydrophilic mercaptoundecanol and hydrophobic 1-octadecanethiol. The mixed monolayer 

surfaces are incubated in the fluorescently-labeled bicelle solution and images are taken 

sequentially to avoid bleaching the fluorophore. Bicelle patterning was first observed at t = 0 

min, and image snapshots of the surface are presented for every 4 min after incubation 

started. After 20 min of incubation, bicelles are preferentially adsorbed to the hydrophilic 

SAM regions. For all images, there was no wash step in order to observe the bicelle 

adsorption behavior.
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Figure 4. Selective protein binding to micropatterned lipid bicelles.
(A) Schematic illustration of fluorescently labeled streptavidin binding to predefined bicelle 

patterns that were previously adsorbed to mixed-monolayer functionalized gold surfaces. 

The bicelles consist of biotinylated-lipid compositions consisting of 1,2-dioleoyl-sn-

glycero-3-phosphocholine (DOPC), 1,2-dihexanoyl-sn-glycero-3-phosphocholine (DHPC), 

and 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine-N-(cap biotinyl) (Biotin-PE). 

Fluorescence micrographs depict negligible streptavidin binding to (B) chemically 

functionalized gold surface without bicelle coating and (C) micropatterned lipid bicelles 

without biotinylated lipid. (D) Fluorescence micrographs show time-lapse image snapshots 

of streptavidin binding to biotinylated lipid-functionalized bicelle patterns. Streptavidin was 

added at t = 0 min and incubated for 25 min. For all images, there was no wash step in order 

to observe the binding behavior of fluorescently labeled streptavidin.
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Figure 5. Quartz crystal microbalance and dissipation (QCM-D) characterization of lipid bicelle 
and vesicle adsorption onto bare, mercaptoundecanol (HSC11-OH), and 1-octadecanethiol 
(HSC18)-functionalized gold surfaces.
(A) QCM-D Δf and dissipation (ΔD) shifts as a function of time for lipid bicelle and vesicle 

adsorption onto bare gold surfaces. (B) Magnitude of final Δf and (C) ΔD shifts 

corresponding to data in panel (A). (D) QCM-D Δf and ΔD shifts as a function of time for 

lipid bicelle and vesicle adsorption onto HSC11-OH-functionalized gold surfaces. (E) 
Magnitude of final Δf and (F) ΔD shifts corresponding to data in panel. (G) QCM-D Δf and 

ΔD shifts as a function of time for lipid bicelle and vesicle adsorption onto HSC18-

functionalized gold surfaces. Magnitude of final (H) Δf and (I) ΔD shifts corresponding to 

data in panel (G). Data are expressed as mean ± standard error of the mean for n = 4 runs, 
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and statistical significance was determined by using the Student’s t-test (*p<0.05, **p<0.01, 

and ***p<0.001).
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