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ABSTRACT OF THE DISSERTATION

The Importance of Thermal Expansion in the Simulation of Molecular Crystals

by

Jessica Lynee McKinley

Doctor of Philosophy, Graduate Program in Chemistry
University of California, Riverside, June 2019

Dr. Gregory J. O. Beran, Chairperson

Molecular crystals are commonly used in pharmaceuticals, organic semi-conductor

materials, explosives, and many other areas of Chemistry. Molecular crystal packing inter-

actions are governed by subtle balances between intra- and intermolecular interactions, pro-

viding a severe challenge for theoretical crystal structure modeling. Additionally, molecular

crystals can expand appreciably upon heating due to both zero-point and thermal vibra-

tional motion, yet this expansion is often neglected in molecular crystal modeling studies.

Quasi-harmonic (QHA) approaches provide an economical route to modeling the tempera-

ture dependence of molecular crystal structures and properties but can be cost-prohibitive

when evaluated at higher levels of theory.

In this thesis, we introduce a hierarchy of models (tiered-QHA) in which the ener-

gies, geometries, and phonons are computed either with correlated methods (such as second-

order Møller-Plesset perturbation theory (MP2)) or density functional theory (DFT). We

examine which combinations produce useful predictions for properties such as the molar

volume, enthalpy, and entropy as a function of temperature. Compared to performing the
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entire calculation using pure MP2, this leads to a modest loss in chemical accuracy and

provides a necessary increase in the speed of computation. Additionally, employing this

method increases the system size we can feasibly simulate to over 100 atoms per central

unit cell, allowing us to simulate pharmaceutically-relevant molecular crystals. We apply

this new tiered-QHA method to examine the phase-transition properties of α− and β−

resorcinol.

Finally, neglecting thermal expansion can significantly affect simulated spectro-

scopic properties. In particular, nuclear magnetic resonance (NMR) chemical shift pre-

dictions will suffer since a small change in atomic position translates to a large change in

the chemical shift spectra. We investigate how accounting for thermal expansion in molec-

ular crystals via the QHA refines isotropic 68 13C and 28 15N predicted chemical shifts

on a number of molecular crystals. We demonstrate that chemical shifts computed using

quasi-harmonic room-temperature structures rival those based on the experimental unit cell

parameters. We also show increased discrimination between candidate structures amongst

five theophylline structures that were generated via crystal structure prediction.
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Chapter 1

Introduction

Molecular crystal polymorphism, or the ability for molecules to adopt many dif-

ferent packing motifs in the solid state, is a challenging topic in chemistry today. Molec-

ular crystal polymorphs are quite common due to the varity of intermolecular interac-

tions that can occur, including hydrogen bonding, dispersion, electrostatics, induction,

and occasionally π − π stacking interactions. Due to the delicate balance of interactions

that must be maintained, more complex molecules in particular tend to exhibit polymor-

phism. One particularly difficult system to study is 5-methyl-2-[(2-nitrophenyl)amino]-3-

thiophenecarbonitrile, affectionately known as ROY due to the red, orange, and yellow hues

the polymorphs exhibit.13–16 It has been found that these polymorphs can have both differ-

ent intermolecular packing configurations and different intramolecular configurations (via a

rotation of two intra-molecular torsion angles).17–20 These small changes in crystal packing

can lead to changes in physical properties, such as the aforementioned color changes.

However knowledge of crystal structure polymorphism has been surprisingly slow
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to propagate through the general public. In as early as 1965 W. C. McCrone can be quoted

saying “It is at least this author’s opinion that every compound has different polymorphic

forms, and that, in general, the number of forms known for that compound is proportional

to the time and money spent in research on that compound.”21 Recently, the question has

begun to change from which molecular crystals have polymorphs to which do not.22 This

problem of unknown polymorphs and disappearing polymorphs23,24 can have significant

effects especially in patent law.25

It is important for pharmaceutical companies to know which polymorphs are stable

under various conditions. Polymorphs have been found to undergo phase transitions at

elevated temperatures.26–37 In the production phase of pharmaceutical drugs the crystals

often experience high pressures when being ground into tablets. This process is also well

known to induce a phase transition, something that can often go undetected.38–41 For

example, one well-known case is the anti-HIV drug Ritonavir which was previously thought

to only have one stable polymorph.27,42 However, upon mass-production a second insoluble

polymorph was accidentally produced which forced the drug’s removal from market. This

cost the company Abbot Laboratories an estimated $250 million and left patients without

their medication.43

The work presented in this thesis focuses on computational efforts to distinguish

between molecular crystal polymorphs and, at times, predict their stability under ther-

modynamic conditions. The remainder of this chapter will establish what is currently

considered to be state of the art for modeling molecular crystals. The next two chapters

will explore the uses of crystal structure prediction and how simulated nuclear magnetic
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resonance (NMR) chemical shifts can be utilized to enhance discrimination between crystal

candidates. Finally, the last two chapters will focus on what level of theory is needed to

accurately simulate molecular crystals under thermodynamic conditions.

1.1 Crystal Structure Prediction

While there is a clear desire to map out all the stable polymorphs for every molec-

ular crystal, this has proved challenging to do experimentally. Alternatively one could

instead pursue computational crystal structure prediction.44–51 Crystal structure predic-

tion can provide a powerful and increasingly reliable candidate structures, as evidenced by

recent blind tests of crystal structure prediction.52–54 Especially in areas where it can be

difficult to perform experimental techniques, computational techniques are being sought as

a viable solution to this problem.

Ideally crystal structure prediction algorithms should require only knowledge of

the stick diagram of the molecule and the desired level of theory the energies should be

evaluated at. From this information the goal would be to generate all stable polymorphs

and correctly predict their relative stabilities and thermodynamical observables.22 While

each crystal structure prediction approach has subtleties in their exact differences a general

procedure can be derived: 1. Generate all viable crystal candidates and 2. Rank the

stability of these candidates correctly.
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1.1.1 Generating Candidate Structures

While the concept of crystal structure prediction is simple, thoroughly searching

the configurational space remains challenging in practice. The search space of the crystal

structure grows combinatorially as a function of the number of molecules in the cell and the

internal degrees of freedom of the molecule itself. Molecules with many degrees of freedom

remain some of the most challenging species to model to this day.17–20 Due to the large

search space that needs to be covered, exhaustive searching approaches are ineffective for

all but the simplest of crystals.

Crystal structure generation has largely become somewhat of an art form. Some

algorithms take a simple approach to generating crystals by enforcing a basic “crystal logic”

on the structure generation. For example the ab-initio random structure search (AIRSS)55

generates crystal structures primarily from space group symmetry operations. Other more

sophisticated software attempt to assign a penalty for adopting less optimal configurations,

however this requires some knowledge of the energy landscape.48,56 Genetic and evolution-

ary algorithms build up the search space by “breeding” successive generations of crystal

candidates.57,58 This is done by defining a fitness criteria (typically lowest-energy) and the

crystals of the current generation that best satisfy that criterion are chosen to undergo a

series of mutations and distortions to generate a new daughter species. There have also been

a number of promising ventures into incorporating machine leaning and other data-driven

learning models into the structure search routines.59,60 This problem of search coverage

remains a major source of active research in the field today.
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Despite the challenges that exist most structure searching algorithms are capable of

providing a well-sampled search space after generating thousands to millions of structures.

This itself creates another major problem as not every candidate structure is useful. It

is quite often the case that candidate structures will differ by slight rotations of internal

degrees of freedom in the molecule or of the relative packing motifs. While these changes

are enough to constitute a new polymorph, the differences in lattice energies between these

structures are often quite small, making it difficult to predict which of these polymorphs

will be observed experimentally.

1.1.2 Polymorphic energy rankings

Rapid and efficient sampling of configurational space often necessitates the use

of computationally inexpensive methods such as semi-empirical61 or force-field methods.

However, neither force fields nor semi-empirical methods provide the requisite accuracy

required for resolving the energetics of crystal polymorphs. In order to have confidence in

the discrimination of candidate structures, the model must be capable of resolving errors

less that 1 kcal/mol relative to experiment (referred to as chemical accuracy). A common

strategy to address this deficiency is to perform an initial pass with a “cheap” level of theory

and later refine the candidate structures using a more accurate level of theory.

There is a question as to how many crystal structures should be refined. Struc-

ture searches commonly generate hundreds to thousands of candidate structures even after

eliminating redundant candidates. A previous study done by Nyman and Day had found

that half of experimentally observed molecular crystal polymorphs differ by less than 2

kJ/mol and the majority of all crystal polymorphs lie within 10 kJ/mol of the most stable
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form.62,63 Occasionally polymorphs can be found whose lattice energy differences exceed

this window but those cases are rare.62,64 Hence it is currently common practice to limit

the energy refinement pass to only those structures which lie within 10 kJ/mol of the current

lowest-energy candidate.22

This pruning reduces the number of structures that need to be refined to the

range of tens or hundreds of molecular crystals. Because it provides generally accurate

energetics at reasonable computational cost periodic Kohn-Sham density functional theory

(DFT)65,66 is the most commonly employed method for refinement. Oftentimes this will be

supplemented with another method for describing the van-der Waals dispersion interaction

such as Grimmes’s dispersion correction (D,67 D2,68 D3,69 and D470), the exchange-hole

dipole moment model (XDM4), Tkatchenko-Scheffler (TS),71,72 or many-body dispersion

(MBD).73–75 DFT has previously been used to predict the lattice energies of the X23 bench-

mark set76–78 with a mean absolute deviation (MAD) of 3.8 kJ/mol. It has also been shown

that DFT is capable of describing relative polymorphic stabilities of oxalic acid,78 glycine,79

and coumarin80 with an accuracy of about 1 kJ/mol with respect to experiment.

However, DFT also suffers from its own limitations. Although there are clear

cases where DFT has proven useful, it has been unable to consistently achieve chemical

accuracy.81–83 Furthermore the performance is functional-dependent and while there are a

hierarchy of methods that can be used to improve the calculation (“Jacob’s ladder”)84–87

this can quickly become computationally intractable especially in a planewave basis. Recent

studies have shown even the more expensive hybrid density functionals have failed to pro-

vide enhanced discrimination of candidate structures due to underestimation of dispersion
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interactions between conformational polymorphs (despite employing the aforementioned

corrections),83 and excessive electron delocalization in candidate structures of ROY.14,16

Problems with delocalization error have also caused spontaneous proton transfer in salt

co-crystals.88

Ideally one would use large-basis dispersion-corrected second-order Møller-Plesset

perturbation theory (MP2C or MP2D) and/or coupled clusters singles and doubles with

perturbative triples (CCSD(T)) to rank the relative stability as these methods have been

found to give accurate performance.89–93 However, the computational cost associated with

these methods makes it feasible to apply this to only a few tens of atoms which greatly

limits the systems that can be studied.

1.2 The Hybrid Many-Body Interaction Model

One way to circumvent the high computational cost associated with evaluating the

energetics of a periodic crystal with highly-accurate electronic structure methods is to use

fragment-based methods. Fragment-based methods decompose the problem into a series of

interacting subsystems. When modeling molecular crystals, a natural definition of these

subsystems is to assign them to increasing orders of molecular interactions. The hybrid

many-body interaction (HMBI)94–97 model decomposes the total energy of the system into

a many-body expansion

Etotal =
∑
i

Ei +
∑
ij

∆2Eij +
∑
ijk

∆3Eijk + ... (1.1)

where Ei represents the energy of the isolated molecule (monomer), ∆2Eij is the pairwise
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interaction energy between molecules i and j (dimer), and ∆3Eijk is the three-body inter-

action energy between molecules i, j, and k (trimer). Due to the high computational cost

associated with calculating trimer interactions, the three-body and higher interactions are

approximated with an inexpensive polarizable force field.

HMBI treats individual molecules in the unit cell and their short-range pairwise

interactions quantum mechanically (QM), while the longer-range and many-body interac-

tions are typically approximated using a classical molecular mechanics (MM) polarizable

force field.

UHMBI
el = EQM1−body + EQMSR 2−body + EMM

LR 2−body + EMM
many body (1.2)

In some cases, the MM terms will be computed from periodic Hartree-Fock (HF) instead,

in which case HMBI is equivalent to the method of increments.98–100

There are a number of advantages to this method. For one, the calculations now

scale linearly with respect to the number of molecules in the periodic cell rather than

N5−N7 with respect to the number of atoms in the crystal. This also encodes a natural

way of systematically improving the quality of prediction, either through the use of highly-

accurate electronic structure methods or by explicitly calculating higher-order interactions.

Since these calculations are broken up, they are highly parallelizable. This allows the use

of more expensive calculations that were previously infeasible including MP2 or CCSD(T)

and large basis sets.

A number of studies have demonstrated the power of HMBI. It has previously

been shown to predict the lattice energy of small molecule clusters within 1-2 kJ/mol of

benchmark calculations and crystal lattice energies within 2-4 kJ/mol of experiment.100–102
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Spectral properties can also be accurately reproduced allowing for the prediction of nu-

clear magnetic resonance chemical shifts and Raman spectra.12,26,103,104 HMBI also allows

for accurate prediction of thermodynamic properties including stability ordering of small-

molecules, accurate reproduction of equation of state, bulk-moduli, and entropies and en-

thalpies of sublimation.26,105–107 Even more impressively it has been shown that complicated

phase behavior such as the phase boundaries of crystalline methanol can be reliably modeled

with this method.108,109

1.3 The Harmonic Approximation

As previously stated accurate discrimination of crystal candidates requires the use

of electronic structure modeling. However, the majority of rankings are done using the

lattice energy of a crystal structure which can lead to an overly large configurational space.

Free energy calculations are often required to provide accurate thermodynamic modeling at

ambient conditions.

From statistical thermodynamics,110 the Gibbs free energy combines the electronic

internal energy Uel, the Helmholtz vibrational free energy Fvib, and a pressure-volume (PV )

contribution,

G(T, P ) = Uel + Fvib(T ) + PV (1.3)

In crystals at ambient pressure, the PV term contributes negligibly and hence is often

neglected which reduces the Gibbs free energy to the Helmholtz free energy:

F (T ) = Uel + Fvib(T ) = Uel +Hvib − TSvib (1.4)
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The Helmholtz vibrational free energy is computed from standard harmonic oscillator vi-

brational partition functions where the vibrational enthalpy (Hvib) is defined as

Hvib(T ) = Na

∑
i

(
h̄ωi
2

+
h̄ωi

exp( h̄ωi
kbT

)− 1
) (1.5)

and the vibrational entropy (Svib) as

Svib(T ) = Na

∑
i

(
h̄ωi

T (exp( h̄ωi
kbT

)− 1)
− kb ln

[
1− exp

(
− h̄ωi
kbT

)]
) (1.6)

where Na is Avogadro’s number, h̄ is Plank’s constant, kb is the Boltzmann constant, and

ωi is the vibrational frequency of mode i. Summing these vibrational contributions together

yields the Helmoltz vibrational energy.

Fvib(T ) = Na

∑
i

(
h̄ωi
2

+ kbT ln

[
1− exp

(
− h̄ωi
kbT

)])
(1.7)

The first term corresponds to the zero-point vibrational contribution, while the second gives

the thermal vibrational contribution.

The harmonic approximation is a fixed-volume correction which does not account

for thermal-vibrationally driven expansion of the cell. However the inclusion of harmonic

phonons can be important for accurate modelling of relative stabilities.62,63 Harmonic vi-

brational contributions impact the polymorph stability ordering in glycine,111,112 oxalyl

dihydrazide,102 aspirin,113 and modern drug targets,114 for example.

However, the inclusion of these vibrational effects cannot overcome the choice of

less accurate energy landscapes. Take for example a study done on two different molecular

crystal polymorphs, acetamidobenzamide and oxalyl dihydrazide (See Figure 1.1). When

these systems are modeled using periodic/planewave density functional theory the harmonic
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approximation only narrows the energy gap between the polymorphs. Upon the inclusion of

correlated wavefunctions (MP2) and correcting the inherent dispersion correction with one

that can correctly model both intra- and inter-molecular dispersion (the D-correction115)

the stability ordering of both crystals re-rank.
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Figure 1.1: Relative stability ordering of a) acetamidobenzamide and b) oxalyl dihydrazide.
Energies were calculated using Quantum Espresso1 with the B86bPBE functional2,3 and
the XDM dispersion correction.4

1.4 The Quasi-Harmonic Approximation

While the harmonic approximation does capture a significant fraction of the vi-

brational contribution, it neglects the thermal expansion of the crystal. Molecular crys-

tals typically expand its molar volume by ∼3–4% between the electronic minimum energy

structure and the experimental room temperature structure, systems dominated by weaker

intermolecular interactions such as van der Waals or π − π stacking can exhibit volume
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expansion of nearly ∼9%. Surveys by Nyman and Day found that accounting for these free

energy effects can re-rank the relative energetic stabilities of molecular crystal polymorphs

in up to 21% of cases.62,63

Molecular dynamics techniques provide a natural means of treating these effects.116–125

However, obtaining force fields capable of describing the subtle energetic balances that occur

in molecular crystal polymorphs is not always possible. The quasi-harmonic approximation

(QHA) provides a computationally practical strategy for improving on the purely harmonic

model and capturing this thermal expansion and its impact on crystal properties. The QHA

models how the Gibbs free energy depends on temperature and pressure by incorporating

a dependence of the harmonic phonons with volume. A number of studies have shown use

of the QHA with DFT and other correlated-wavefunction approaches allows the prediction

of small-molecule structures and their associated properties in excellent agreement with

experiment.61,105–107,126–130

There are a few ways to build in this volume-dependence of the phonons, but all

methods start by optimizing the crystal structure. The crystal structure which minimizes

the electronic energy Uel (i.e. those obtained from relaxing both atomic positions and unit

cell parameters) is referred to as the reference structure. Harmonic phonons for the reference

crystal (ωrefi ) are typically calculated to ensure the optimized structure lies at a minimum

on the potential energy surface.

How the remainder of the phonons are evaluated is where the different flavors of

the quasi-harmonic approximation come into play. In principle, one ought to re-evaluate the

phonons at every volume along the potential energy surface, but that is computationally
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impractical given the cost of typical electronic structure theory calculations. Instead one

could employ mode-specific Grüneisen parameters γi to estimate how individual phonon

modes vary with unit cell volume,

γi = −
(
∂ lnωi
∂ lnV

)
(1.8)

Integrating Eq 1.8 yields,

ωi = ωrefi

(
V

V ref

)−γi
(1.9)

which allows the reference phonons ωrefi to be scaled to any given new volume V .

Heit et al approximates that the differential in eq 1.8 can be accurately represented

as a finite difference of the phonons at two different structures. To compute these Grüneisen

parameters, the reference structure is isotropically expanded and contracted by a known

change in volume typically chosen to be about±10 Å3 away from the reference volume.105,106

Harmonic phonons are then computed at each of these volumes and the mode-specific

Grüneisen parameter is then obtained via finite difference.

While this method is significantly cheaper than evaluating the mass-weighted hes-

sian at every volume, there are two major drawbacks. First, an accurate mode-matching

scheme is required otherwise the reference phonons could be incorrectly scaled across the

modes. Secondly, the molecular crystal must undergo a full optimization at every desired

temperature and pressure along the free energy surface. Especially when using high-level

electronic structure theory calculations (MP2 or higher) this can quickly become computa-

tionally intractable.

One could attempt to estimate the change in the electronic energy surface ahead

of time by mapping out electronic energy versus volume curves E(V ). While it is relatively
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straightforward to do this with isotropic expansion and contraction of the lattice volume,

crystals containing larger molecules or more layered systems typically expand in a more

anisotropic manner. Instead, the E(V) curves can be mapped out by minimizing the elec-

tronic energy of the reference cell under positive (cell compression) or negative pressure (cell

expansion). This approach allows the cell to deform anisotropically along the lowest-energy

path, which can be important for reliable modeling of the free energies.108,109,131

Rather than addressing the mode-matching problem one might instead side-step

the problem altogether by evaluating additional harmonic phonons at a number of volumes

spaced around the reference structure. The Helmholtz vibrational energy (Fvib) at a given

temperature can then be fitted with either a linear108,109 or a polynomial fit.132 Summing

the Helmholtz vibrational energy curves together with the electronic energy curve again

produces the free energy. Since the particular volume which minimizes the free energy for a

given temperature is unlikely to correspond to one of the sampled volumes, each free energy

curve is fitted to a weighted double-Murnaghan equation of state. The Murnaghan equation

of state is given by,

F (V ) = F0 +
B0V

B′0

[
(V0/V )B

′
0

B′0 − 1
+ 1

]
− B0V0

B′0 − 1
(1.10)

where F0, V0, B0, and B′0 are the fit parameters. F0 gives the free energy at the minimum,

V0 is the molar volume at the minimum energy, B0 is the bulk modulus, and B′0 is the first

derivative of the bulk modulus with respect to pressure. This method identifies the free-

energy minimum effectively while avoiding artifacts that can be caused by simpler equation

of state fits or splines.108,109
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While this alternative approach allows one to readily back out the volume which

minimizes the free energy surface at any temperature and pressure, it does so at significant

computational cost. It requires five to seven phonon evaluations, compared to only three

for the Grüneisen approach. As the evaluation of harmonic phonons are a rate-limiting step

in all modeling, this is particularly undesirable. Additionally, ten to fifteen optimizations

are required to produce a smooth electronic energy surface versus the Grüneisen approach

required three optimizations plus additional optimizations for each desired pressure and

temperature. Chapter 4 introduces a new tiered quasi-harmonic approach that attempts to

address some of these deficiencies that are present in both these methods.

1.5 Solid State Nuclear Magnetic Resonance

Experimentally a number of techniques exist for molecular crystal structure elu-

cidation. Single crystal neutron diffraction methods remains the gold standard. However,

it can be difficult to obtain large single crystals which are free of impurities. Diffraction

methods characterize the long-range order effectively, but they can sometimes have diffi-

culty resolving local features such as protonation states. Alternative strategies are needed

for cases where suitable single crystals are not obtainable.

Nuclear magnetic resonance (NMR) crystallography represents one such alterna-

tive approach. It combines solid-state NMR, powder x-ray diffraction, and ab initio chem-

ical shielding predictions to solve crystal structures.133–137 Solid-state NMR complements

powder x-ray diffraction by providing detailed information about the local chemical envi-

ronments. However, mapping from the chemical shifts in an NMR spectrum to a three-
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dimensional crystal structure can be difficult. Computational chemical shift predictions

can facilitate NMR-driven structure determination. However, doing so requires one or more

candidate crystal structures on which to perform the chemical shift predictions. Crystal

structure prediction can provide a powerful and increasingly reliable candidate structures,

as evidenced by recent blind tests of crystal structure prediction.52–54 Given a set of candi-

date structures, the central computational challenge in NMR crystallography becomes the

discrimination between correct and incorrect structures. The more accurately the chemical

shifts can be predicted, the greater the discrimination between structures.

1.5.1 Ab-Initio Fragment-based Shielding Calculations

Periodic density functional theory (DFT) has come to play a central role in NMR

spectral assignment and structure elucidation of crystalline systems. In particular the

planewave DFT-based gauge-inducing projector augmented wave (GIPAW)138,139 is one

of the more commonly used models and has shown great success in NMR crystallogra-

phy.140,141

Despite their widespread success, planewave DFT methods commonly suffer from

two main limitations. First, they are limited in practice to generalized gradient approxima-

tion (GGA) functionals. Hybrid density functionals improve the accuracy of the chemical

shifts but they typically require at least an order of magnitude more computational effort

to evaluate in a planewave basis. Secondly, the mapping of absolute chemical shifts ob-

tained from calculations to experimentally determined chemical shifts are generally done

using a linear regression model. These regression parameters are specific to the given func-

tional/basis set combination.104 Regression models obtained from GIPAW are not transfer-
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able to chemical shielding calculations computed from all-electron models in non-periodic

systems.

Modern fragment-based methods provide a competitive alternative to planewave

methods for chemical shift prediction.142 Fragment-based methods have been shown to

improve the accuracy of predicted chemical shifts by ∼20-30% relative to GIPAW. Addi-

tionally, due to the many-body breakdown, each calculation has a lower computational cost

and are highly parallelizable which enable the chemical shifts of even complicated crystals

to be computed within a few hours.12,143,144

The chemical shielding tensor is defined as the second derivative of the electronic

energy with respect to the α-th component of the external magnetic field (Bα) and the β-th

component nuclear magnetic moment experienced on atom A (µAβ ).

σAαβ =
δ2E

δBαδµAβ
(1.11)

Applying eq 1.11 to the many-body decomposition of the electronic energy in eq 1.1 yields

σ̃A =
∑
i

σAi +
∑
ij

∆2σAij +
∑
ijk

∆3σAijk + ... (1.12)

This expression corresponds to expressing the chemical shielding of atom A in the crystal, σ̃A

in terms of the chemical shielding σA computed for the isolated monomer plus a series of cor-

rections to that shielding due the monomers interactions with other molecules in the lattice.

Given the high computational cost of computing three-body (trimer) interactions, Eq 1.12

is truncated after the two-body terms. To account for the polarization/electrostatic effects

that are neglected by this truncation, the monomer and dimer calculations are electrostat-
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ically embedded in a set of self-consistent point charges designed to mimic the crystalline

lattice,

σ̃i
A =

∑
i

σA,embi +
∑
ij

∆2σA,embij (1.13)

1.5.2 The SCRMP model

Truncation to two-body fragments can introduce errors in the form of missing long-

range and many-body polarization effects arising from the crystalline environment. One way

to address this is to embed the system with electrostatic point charges that are fitted to

mimic the crystalline environment. For example the embedded-ion method (EIM)145,146

and the surface charge representation of the electrostatic potential (SCREEP)147 mimic

the Madelung potential experienced by a given molecule inside an infinite crystal lattice by

embedding the molecule of interest in an optimized set of point charges. The self-consistent

reproduction of the Madelung potential (SCRMP) model adapts ideas from the EIM and

SCREEP in order to construct a point charge array which more accurately mimics the

many-body electrostatic environment in the infinite crystal.

Atom-centered charges are first computed for each isolated monomer in the unit

cell using charges from electrostatic potentials using a grid-based method (CHELPG).148

CHELPG avoids errors associated with truncated multipolar expansions that are more com-

mon with charges computed with gaussian distributed multiple analysis (GDMA).149–151

A number of probe points (N) are then placed on replicated atom centers within a radius

RQM around the region of interest. For the two-body fragment calculations the region of

interest consists of the monomers located within the unit cell. The CHELPG charges are
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then used to compute the Madelung potential (VMP (ri)) at each of these N probe point

according to Ewald152 formalism under tinfoil boundary conditions

VMP (ri) =
∑
n

N∑
j

qj
erfc(

√
κ|ri − rj + n|)

|ri − rj + n|
+
∑
k 6=0

N∑
j

qj(
4π

Ck2
)eik·(ri−rj)e−k

2/4κ (1.14)

where qj is the partial charge of the jth atom located at rj, C is the volume of the unit cell,

n is the real space vector, and k represents the reciprocal space vector.

Beyond the RQM radius a two-layer point charge array is then constructed. In

the first layer the CHELPG point charges are placed on all atoms within a radius Rfix of

the asymmetric unit (Rfix is typically chosen to be 30 Å due to empirical testing).12 Next

an additional shell of N point charges (∆Ropt) are placed around the first layer of fixed

CHELPG charges (Rfix). These outer N charges are optimized such that the sum of the

potentials from the fixed charges (Vfix) and the optimized charges (Vopt) approximates the

Madelung potential (VMP ) at every probe point ri:

VMP (ri) ≈ Vfix(ri) + Vopt(ri) (1.15)

The charge fitting of the outer shell is done using a least-squares minimization of

the objective function

||VMP (ri)− Vfix(ri)−
1

|ri + rj |
qj ||2 = ||b−Ax||2 (1.16)

where rj is the position of the charge qj in the outer shell.

New CHELPG calculations are then carried out on each monomer in the unit cell

with the optimized charge array embedded. The new charges are then compared to the
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previously computed charges to see if the root-mean-square (RMS) deviations are less than

10−3 atomic charge units. If not, the Madelung potential is re-evaluated using the new

CHELPG charges, the CHELPG charges are translated onto the all atom centers within

Rfix, and charges in Ropt are refitted to mimic the new Madelung potential. This process

will continue until self-consistency is achieved. See Ref 12 for further details.

While the SCRMP method can be used to address some of the missing long-

range many-body and polarization effects, the fragment method can fail to capture more

local many-body effects. Typically these are addressed by doing a more expensive hybrid

fragment/cluster approach. For 13C and 15N chemical shielding calculations this has been

shown to have negligible effect on the chemical shift predictions.143,144 The SCRMP model

has been found to be particularly important for treating 17O chemical shifts and for crystals

with polar unit cells. Previous studies have shown that combining SCRMP-embedded

fragment or cluster/fragment calculations with the hybrid PBE0 functional allows one to

predict chemical shifts with accuracy that matches (17O) or exceeds (1H, 13C, and 15N) the

accuracy of the widely used GIPAW PBE model.12,153

1.6 Outline of the Dissertation

Controversy has long surrounded the high-pressure phase diagram of carbon diox-

ide. Obtaining high-quality diffraction data for phase III has proved challenging, and the

currently accepted structure was extracted from powder X-ray diffraction on a sample be-

lieved to contain a mixture of phases I and III. However, high-level ab initio calculations

suggest that phases III and VII are actually the same. In Chapter 2, I will show an applica-
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tion of the crystal structure prediction program USPEX to investigate whether an unknown

structure can plausibly explain the phase III powder X-ray diffraction pattern.

Accurate NMR chemical shift calculations often requires knowledge of experimen-

tal crystal structures. However it is not always guaranteed that the structure for a given

spectrum will be known. While it is possible to get candidate structures from a crystal struc-

ture prediction search, these structures will not fully reproduce the experimental structure.

Specifically, whereas typical solid state NMR experiments are performed at room temper-

ature, most crystal structure prediction studies are performed with classical force fields or

electronic structure models that predict the electronic energy, rather than the free energy.

These calculations neglect the vibrationally-induced thermal expansion of the crystal which

would introduce inherent error in an NMR chemical shift simulation. Chapter 3 gives an

evaluation of the errors in 13C and 15N chemical shifts obtained by neglecting this thermal

expansion. We demonstrate how one can improve the accuracy of the chemical shifts by

computing them on quasi-harmonic room-temperature structures, obtaining results that

rival those computed with the experimental unit cell parameters.

As previously mentioned in Section 1.4, the quasi-harmonic approximation is well

known to give good agreement with experiment for predicted equation of states, bulk moduli,

entropy and enthalpies of sublimation, and other related thermodynamic properties for small

molecules. However, oftentimes computing the energies, structures, and phonons dispersion-

corrected MP2 or CCSD(T) is required to reach this level of agreement. At this level it

quickly becomes infeasible to model anything beyond 20 atoms per molecule, which greatly

limits the systems that can be studied. In Chapter 4, I will discuss how we can use periodic
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density functional theory to expedite the evaluation of the quasi-harmonic approximation

with an acceptable loss in accuracy. In Appendix D, I outline how we can use this new

procedure to obtain the thermally-expanded structures.

Finally, a previous study has shown that the quasi-harmonic approximation can

be used to model the phase-transition of crystalline methanol accurately. While that phase

diagram prediction was highly successful, it required some 300,000 CPU hours. Performing

similar predictions in a larger organic molecule would be cost prohibitive. Chapter 5 presents

an effort to utilize the new, lower-cost QHA approach developed in Chapter 4 to predict

the phase transition properties of α− and β− resorcinol.
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Chapter 2

Theoretical Predictions Suggest

Carbon Dioxide Phases III and VII

are Identical

In the previous chapter we discussed how one might go about performing a crystal

structure prediction search. In this chapter we demonstrate one example of a crystal struc-

ture prediction search which attempts to generate candidate structures to confirm whether

phase III of carbon dioxide can be produced using electronic structure theory methods. The

work presented in this chapter was originally included in Ref 26 as part of a study trying

to understand the strong structural and spectroscopic similarities between carbon diox-

ide phases III and VII. This chapter focuses primarily on the crystal structure prediction

component of the full study.
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2.1 Introduction

Carbon dioxide is one of the most fundamental chemical species on earth, yet

its solid-phase behavior at high pressures continues to confound. Starting with the 1994

powder X-ray diffraction (PXRD) structure of phase III,10 researchers have mapped out

a rich phase diagram with 8-10 crystalline phases that range from molecular crystals at

lower pressures to extended covalent and ionic phases at high pressures.154 Experimental

characterization of these crystal structures and their solid-solid phase boundaries has of-

ten proved challenging, with considerable kinetic path-dependence and hysteresis in the

phase transitions, difficulty in obtaining high-quality diffraction data, and sharp pressure

gradients within samples that complicate spectroscopic measurements. As a result, the

literature on high-pressure carbon dioxide contains numerous contradictory experimental

interpretations. Fortunately, substantial advances in computational modeling of molecular

materials100 mean that ab initio calculations can help resolve such controversies and play

an integral role in molecular crystallography. Using high-level electronic structure calcu-

lations, the present study investigates several molecular crystal phases of carbon dioxide

and demonstrates quantitative agreement between predicted and experimentally observed

structural, mechanical, and spectroscopic properties for several of them. However, the same

theoretical evidence indicates that the long-accepted structure of phase III carbon dioxide

is inconsistent with spectroscopic data, and that phases III and VII are likely identical.

Controversy has long surrounded the high-pressure phase diagram of carbon diox-

ide (Figure 2.1). Substantial research developed a framework in which lower pressure molec-

ular crystal phases I, III, and VII transition to “intermediate bonding” phases II and IV
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Figure 2.1: Phase diagram of carbon dioxide up to 40 GPa, and structure overlay of the
experimental crystal structures for phases III (blue) and VII (gray). Root-mean-square
deviation5 = 0.24 Å.

at moderate pressures (∼20–40 GPa), before eventually forming extended covalent or ionic

phases at higher pressures.154 The intermediate bonding phases purportedly exhibit elon-

gated and/or bent carbon dioxide molecules and abnormally large bulk moduli.155–157 How-

ever, subsequent experiments7,8 and density functional theory (DFT) calculations158,159

have challenged this interpretation, suggesting instead more traditional molecular crystal

structures at intermediate pressures, with linear carbon dioxide molecules and typical bulk

moduli.

Phases III and VII represent another conundrum. X-ray diffraction studies suggest

that both phases adopt similar Cmca space group structures (Figure 2.1).9,10 The primary

differences lie in effectively swapping the a and b lattice constants and slightly altering

the angle the molecule forms relative to the c crystallographic axis. Phase III can be

formed at room temperature by compressing phase I (dry ice) to pressures above ∼12 GPa,
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though the precise phase boundary remains unclear due to the sluggish martensitic phase

change.154 Obtaining high-quality diffraction data for phase III has proved challenging, and

the currently accepted structure was extracted from powder X-ray diffraction on a sample

believed to contain a mixture of phases I and III.10 Despite routinely being included in the

low-temperature region of the phase diagram, phase III is actually believed to be metastable

and monotropic relative to phase II. It converts to phase II upon annealing to ∼500 K at

12 GPa or above.7,155

Phase VII occurs in a narrow pressure and temperature region around 15–17 GPa

and 750 K,154 and producing it experimentally can also be challenging.9,160 Nevertheless, its

structure was determined via X-ray diffraction on single crystals grown from the melt. Given

the difficulty of obtaining quality diffraction data for phase III and the correspondingly poor

constraints on its structure,6,9,161 the possibility that phases III and VII were actually the

same phase was raised immediately.9 However, the non-contiguous existence domains for

III and VII in the phase diagram and subtle differences in the Raman spectra were cited in

favor of there being two distinct phases.9

Resolving these issues experimentally has proved challenging. Ab initio crystal-

lography plays an increasingly important role in molecular crystals, materials, and even

biological systems. Computational refinement of experimental crystal structures has long

been integral in many studies, and advances in crystal structure prediction162,163 have

made ab initio structure determination even more viable. Unfortunately, energy alone is

often an insufficient descriptor—one commonly predicts multiple potential structures whose

energies are sufficiently close so as to prevent clear discrimination. By predicting and com-
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paring additional spectroscopic observables such as infrared, Raman, or nuclear magnetic

resonance spectra, however, one can markedly increase confidence in the structural assign-

ments.100,133,164–166

Several molecular crystalline phases of carbon dioxide were revisited with large

basis, quasi-harmonic second-order Møller-Plesset perturbation theory (MP2) electronic

structure theory calculations.26,105,106 These high-level calculations quantitatively repro-

duce structures, mechanical properties, and Raman spectra across most of the phases con-

sidered. However, these models do not predict a distinct phase III structure whatsoever.

Moreover, even if the experimental structure were correct, the predictions indicate that its

Raman spectrum would differ from the experimentally observed spectra. In contrast, the

predictions for phase VII are highly consistent with those observed experimentally for phase

III.
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Figure 2.2: Errors in the predicted lattice constants versus experiment. The shaded band
indicates ±1% error.

Both conventional electronic and quasi-harmonic MP2 free energy relaxation of the
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experimental phase III structure always converge to the phase VII structure, regardless of

temperature or pressure. As shown in Figure 2.2, the errors in the a and b lattice parameters

relative to the experimental crystal structure are 5–10 fold larger than those for the other

phases. In fact, no reported electronic structure calculation on phase III predicts a distinct

phase III structure.158,159,167–169 Even if phase III is only metastable relative to phase II as

inferred experimentally, it should exist as a local minimum on the free energy surface that

is distinct from phase VII.
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Raman spectroscopy provides further evidence for problems with the phase III

structure26. Figure 2.3 compares room-temperature experimental Raman spectra against

those computed at the MP2/aug-cc-pVDZ level using unit cell parameters from the quasi-

harmonic MP2/CBS-limit calculations. Predicted Raman peak positions and intensities

generally agree very well with experiment for several different molecular phases of carbon

dioxide. For phases I and II, the predicted peaks lie within ∼10 cm−1 of experiment. For

phase VII, agreement between the predicted and experimental structures is also reasonably

good, with the predicted frequencies ∼10–15 cm−1 too high. The positions and intensities of

these peaks in the MP2/CBS phase VII structure are consistent with both the experimental

phase III and VII spectra. Of course, that consistency alone is insufficient to rule out the

phase III structure.

Although the phase III structure is not a stationary point on the free energy sur-

face, one can start with the purported experimental structure of phase III, freeze the lattice

constants, relax the atomic positions, and predict the Raman frequencies and intensities.

The phase III structure optimized with fixed experimental lattice constants reproduces the

claimed experimental structure very well but shifts the highest frequency band ∼50 cm−1

higher than experiment which is several-fold larger than the disagreements observed be-

tween theory and experiment for any of the other phases examined here. For comparison,

performing the same procedure on the 726 K experimental phase VII structure9 results in

a predicted spectrum that is in excellent agreement with both the MP2/CBS cell Raman

spectrum at the same temperature and the experimental room-temperature Raman at ∼11-

13 GPa. In other words, while the experimentally reported phase VII structure is consistent

29



with the predicted one in terms of both structure and Raman activity, the putative phase

III structure is neither a stationary point on the free energy surface, nor is its predicted

Raman spectrum compatible with the experimentally observed one.

One obvious alternative is that phase III and VII are in fact the same, as was

first raised (and subsequently discounted) by Giordano and Datchi.9 Raman spectroscopic

evidence supports this hypothesis. The phase VII predictions quantitatively reproduce

the pressure dependence of the phase III Raman spectra over tens of GPa (Figure 2.3c).

However the possibility that another unknown structure exists which can account for the

experimental data can be explored using crystal structure prediction.

2.2 Computational details

To investigate the possibility that an unknown structure can account for the phase

III experimental data, evolutionary algorithm-driven crystal structure prediction was per-

formed using USPEX170. Each of six runs was seeded with ten random structures from

randomly chosen space groups, containing either two or four molecules in the unit cell (the

unit cell sizes for phases I, II, and III/VII). Structures were relaxed at ambient pressure

and energies computed using Tinker171 and the OPLS-AA force field.172 New structures

were constructed for 15–20 generations via heredity, coordinate/rotational mutations, or

lattice mutation.170 This process generated 660 structures with Z = 2 and 1083 structures

with Z = 4 were generated, though many of these were redundant or clearly energetically

unfavorable.
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After removal of obvious duplicates, the most stable 91 structures were then refined

under 11.8 GPa of pressure (the pressure for the experimental powder X-ray diffraction of

phase III) using density functional theory (DFT)1. Structures were analyzed in terms of

energy, unit cell volume, root-mean-square deviations in atomic positions, and by compar-

ing simulated powder X-ray diffraction patterns (wavelength 0.6888 Å) generated by Mer-

cury.173 These were then compared against the experimental phase III diffraction pattern

and the simulated pattern for the experimentally reported phase III crystal structure.10

2.3 Results and Discussion

The crystal structure prediction generated Phase I, II, and VII, along with 22

other potential structures within 10 kJ/mol of the most stable one (Figure 2.4). The known

experimental structures for phase IV was not found in the search since it has more than four

molecules in the unit cell. However, none of the other structures has a simulated powder

X-ray diffraction pattern that is plausibly consistent with the experimental phase III one

(Figure 2.5). Simulated powder X-ray diffraction patterns were also examined for the stable

91 structures that were generated on the OPLS-AA landscape however no plausible match

with the experimental phase III was found here either.

The 1994 PXRD experiment that was originally used to solve the structure of

phase III was performed on a sample believed to consist of a mixture of phase I and III.10

Examination of all the diffraction patterns reveals that none of the structures which are

not experimentally known provides a good match to the experimental PXRD. The best

matches come from either the claimed phase III structure or the phase VII one (with
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some mixture of phase I). Of course, the potential for structures with a different number

of molecules in the cell or otherwise missed by this crystal structure prediction cannot

be ruled out. Nevertheless, in the absence of other viable phase III structures, the most

obvious alternative is that phase III and VII are in fact the same, as was first raised (and

subsequently discounted) by Giordano and Datchi.9
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Figure 2.5: Simulated powder X-ray diffraction patterns for the 25 predicted crystal struc-
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2.4 Conclusion

To summarize, large-basis, quasi-harmonic MP2 electronic structure calculations

accurately reproduce experimentally observed structural, mechanical, and spectroscopic

properties for several different molecular crystal phases of carbon dioxide across broad

pressure range. However, theoretical optimization of the purported structure for phase III

relaxes directly to phase VII. Even if phase III is only metastable, the existence of two

distinct phases should translate to two separate free energy basins, but only one is found

computationally. Furthermore, the claimed experimental phase III structure would produce

a Raman spectrum in the librational region that disagrees with the experimentally observed

ones. In contrast, Raman spectra predicted for phase VII agree well with the experimentally
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observed phase III and VII ones over a broad pressure range. Crystal structure prediction

was employed to investigate whether an unknown structure could plausibly reproduce the

experimental phase III powder X-ray diffraction pattern. Despite successfully finding phases

I, II, and VII, no structure was found that could plausibly explain phase III other than phase

VII.

Based on the above results and the failure to identify a plausible alternative struc-

ture, we propose that phases III and VII are in fact the same. Although this hypothesis

accounts for the data discussed above, questions remain. While the subtle differences in the

experimental phase III and VII Raman spectra might be attributed to the variations arising

from microstrain or other experimental complications, the apparent disconnect between the

phase III and VII regions in the phase diagram is more difficult to rationalize. On the one

hand, there is no contradiction in having phase III/VII be kinetically accessible in the phase

III region and thermodynamically stable in the phase VII region. Instead of phase III being

monotropically related to phases II and/or IV, phase III/VII would be enantiotropically

related to them.

On the other hand, if the two phases are the same, why is phase VII seemingly

difficult to form from phase I (it is typically formed from the melt instead),160 while phase

III forms readily? Perhaps given the sluggish nature of the phase I→III/VII transition and

the narrow region of phase VII stability, the transformation from I→VII upon isothermal

compression near 725 K is incomplete before one enters the region of phase IV stability.

Similarly, why can one not form phase III kinetically via isothermal compression of phase I,

then heat it to the phase VII region of thermodynamic stability without it transforming to
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phase II? If the kinetic barrier to transforming phase III→II is relatively small, maybe heat-

ing metastable phase III/VII from ambient temperatures provides sufficient thermal energy

to convert to the more stable phase II before one reaches the regime of phase III/VII ther-

modynamic stability. Interestingly, one can quench phase VII down to room temperature,

suggesting that the rate of heating may be significant. New experiments that investigate

the crystal structure of phase III and its relationship to phase VII are clearly needed.
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Chapter 3

Improving Predicted Nuclear

Magnetic Resonance Chemical

Shifts Using the Quasi-Harmonic

Approximation

Crystal structure prediction (CSP) is increasingly being used in conjunction with

solid state nuclear magnetic resonance (NMR) spectroscopy for molecular crystal struc-

ture determination. A typical CSP run will produce anywhere from tens to hundreds of

candidate structures that must be distinguished between. The more accurately the chem-

ical shifts can be predicted, the greater the discrimination between candidate structures.

Whereas typical solid state NMR experiments are performed at room temperature, most

CSP studies are performed with classical force fields or electronic structure models that

36



neglect the zero-point vibrational and finite temperature effects which lead to thermal ex-

pansion. Since molecular crystals can expand appreciably between their electronic minima

and room temperature, this introduces an error in the predicted chemical shifts. In this

chapter we will quantify the errors that are accrued by neglecting thermal expansion of the

crystal and investigate how accounting for thermal expansion in molecular crystals via the

quasi-harmonic approximation (QHA) refines isotropic 13C and 15N NMR chemical shift

predictions. The work presented in this chapter has been submitted for publication.174

3.1 Introduction

Structural characterization of molecular crystals is fundamental in chemistry. Single-

crystal diffraction techniques represent the gold standard for structure determination, but

alternative strategies are needed for cases where suitable single crystals are not obtain-

able. Nuclear magnetic resonance (NMR) crystallography represents one such alternative

approach. It combines solid-state NMR, powder x-ray diffraction, and ab initio chemi-

cal shielding predictions to solve crystal structures.133,135,140,141,175–179 Diffraction methods

characterize the long-range order effectively, but they can sometimes have difficulty resolv-

ing local features such as protonation states. Solid-state NMR complements powder x-ray

diffraction by providing detailed information about the local chemical environments. How-

ever, mapping from the chemical shifts in an NMR spectrum to a three-dimensional crystal

structure can be difficult.

Computational chemical shift predictions can facilitate NMR-driven structure de-

termination. However, doing so requires one or more candidate crystal structures on which
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to perform the chemical shift predictions. One might obtain such structures from partial

solutions from ambiguous powder x-ray diffraction data.180 Alternatively, crystal structure

prediction can also provide a powerful and increasingly reliable candidate structures, as

evidenced by recent blind tests of crystal structure prediction.52–54 Given a set of candi-

date structures, the central computational challenge in NMR crystallography becomes the

discrimination between correct and incorrect structures. The more accurately the chemical

shifts can be predicted, the greater the discrimination between candidate structures. For

example, switching from a generalized gradient approximation (GGA) density functional

like PBE to a hybrid functional like B3LYP or PBE0 reduces the chemical shift errors by

20–30%12,104 and increases the structural discrimination.144

The electronic structure model used to predict the chemical shifts is not the only

source of error, however. The quality of the predicted geometry also matters. If the exper-

imental structure is known, DFT refinement of the atomic positions (both hydrogen and

heavy atoms) while constraining the experimental lattice parameters frequently leads to

better agreement with neutron diffraction structures181 and smaller differences between the

measured and predicted chemical shifts.104,143 The situation becomes more challenging when

the experimental structure is unknown and has been predicted via crystal structure pre-

diction or other similar lattice energy minimization modeling techniques. Whereas typical

solid state NMR experiments are performed at room temperature, most crystal structure

prediction studies are performed with classical force fields or electronic structure models

that predict the electronic energy, rather than the free energy. By doing so, they neglect

the zero-point vibrational and finite temperature effects that lead to thermal expansion.
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Figure 3.1: Total volume expansion of 44 molecular crystals. On average the unit cell will
expand by 4.3% of its total volume. See Appendix A section 8 for the structures used in
this graph.

While a typical molecular crystal might expand its molar volume by ∼3–4% between the

electronic minimum energy structure and the experimental room temperature structure,

systems dominated by weaker intermolecular interactions such as van der-waals or π − π

stacking can exhibit volume expansion of nearly ∼9% (Figure 3.1). Surveys by Nyman and

Day found that accounting for these free energy effects can reorder the relative energetic

stabilities of molecular crystal polymorphs in up to 21% of cases.62,63

Various strategies exist for incorporating the free energy effects into the simulation.

Molecular dynamics techniques naturally accounts for finite-temperature effects (though

standard classical dynamics omits zero-point vibrational contributions). However, force

fields do not always provide the requisite accuracy required for resolving the energetics of

crystal polymorphs. Free energy estimates based on harmonic phonon calculations account

for a significant fraction of the vibrational contribution, but they neglect thermal expan-

sion of the crystal. The quasi-harmonic approximation (QHA) provides a computationally

practical strategy for improving on the purely harmonic model and capturing this thermal
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expansion and its impact on crystal properties. The QHA models how the Gibbs free en-

ergy depends on temperature and pressure by incorporating a dependence of the harmonic

phonons with volume. A number of studies have shown use of the QHA with DFT and other

correlated wavefunction approaches allows the prediction of small-molecule structures and

their associated properties in excellent agreement with experiment.61,105–107,126–130,132,182

Of course, the QHA model has its own limitations. Its static harmonic approach can be too

simplistic to describe more flexible molecules and dynamical motions in a crystal, and it is

expected to break down at higher temperatures.

Here we investigate how accounting for thermal expansion in molecular crystals

via the quasi-harmonic approximation refines isotropic 13C and 15N NMR chemical shift

predictions. First, using a set of twenty small-molecule molecular crystals, we demonstrate

that accounting for thermal expansion effects increases the accuracy of the chemical shift

predictions moderately, and that the chemical shifts computed using quasi-harmonic room-

temperature structures rival those based on the experimental unit cell parameters. While

the statistical reductions in error are modest on the whole, selected cases are found where

the improvements to individual chemical shifts are significant. In other words, properly

accounting for thermal expansion may be helpful in NMR crystallography applications

where discriminating between different candidate structures proves challenging. Second, the

capabilities of this QHA technique are demonstrated by applying the approach to several

pharmaceutical crystals. Finally, we conclude by examining how QHA-based chemical shift

refinement helps in the context of discriminating among different candidate structures of

theophylline, which represents a challenging case for NMR crystallography.
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3.2 Theory

3.2.1 Quasi-Harmonic Approximation

To model molecular crystals at finite temperatures and pressures the Gibbs free en-

ergy must be computed. The Gibbs free energy is composed of the electronic internal energy

Uel, the Helmholtz vibrational free energy Fvib, and a pressure-volume (PV ) contribution,

G(T, P ) = Uel + Fvib(T ) + PV (3.1)

At ambient pressure, the PV term contributes negligibly to the total energy and hence will

be neglected in this work. In that situation, the Gibbs free energy reduces to the Helmholtz

free energy F .

The internal electronic energy Uel is computed here via dispersion-corrected planewave

DFT. The Helmholtz vibrational free energy is computed from standard harmonic oscillator

vibrational partition functions as,

Fvib(T ) = Na

∑
i

(
h̄ωi
2

+ kbT ln

[
1− exp

(
− h̄ωi
kbT

)])
(3.2)

where Na is Avogadro’s number, h̄ is Plank’s constant, kb is the Boltzmann constant, and

ωi is the vibrational frequency of mode i. The first term corresponds to the zero-point

vibrational contribution, while the second term describes the temperature dependence. For

computational expedience, the phonons are computed only at the Γ point in the present

work.

The crystal structures which minimize the electronic energy Uel (i.e. those obtained

from relaxing both atomic positions and unit cell parameters) are referred to as the reference

structure. We compute harmonic phonons for the reference crystal (ωrefi ) to ensure the
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optimized structure lies at a minimum on the potential energy surface. Electronic energy

versus volume curves Uel(V ) are then mapped out by minimizing the DFT energy of the

reference cell under positive (cell compression) or negative pressure (cell expansion). This

approach allows the cell to deform anisotropically along the lowest-energy path, which can

be important for reliable modeling of the free energies.108,109

In principle, one ought to re-evaluate the phonons at every volume along this

potential energy surface slice, but that is computationally impractical given the cost of

typical electronic structure theory calculations. Instead we employ mode-specific Grüneisen

parameters γi to estimate how individual phonon modes vary with unit cell volume,

γi = −
(
∂ lnωi
∂ lnV

)
(3.3)

Integrating Eq 3.3 yields,

ωi = ωrefi

(
V

V ref

)−γi
(3.4)

which allows the reference phonons ωrefi to be scaled to any given new volume V .

To compute these Grüneisen parameters, harmonic phonons are computed at one

expanded and one compressed volume selected from those geometries obtained along the

E(V ) curve. The selected structures were typically chosen to be about ±10 Å3 away from

the reference volume here.105,106 The Grüneisen parameter for each mode is then obtained

via finite difference of these phonons computed on the expanded and compressed structures.

Using the calculated reference phonons and the mode-specific Grüneisen param-

eters, the Helmholtz vibrational free energy is evaluated at each volume in the electronic

energy curve over a range of temperatures. Summing these two curves together gives the

free energy. Since the particular volume which minimizes the free energy for a given tem-
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perature is unlikely to correspond to one of the sampled volumes, each free energy curve

is fitted to a weighted double-Murnaghan equation of state. The Murnaghan equation of

state is given by,

F (V ) = F0 +
B0V

B′0

[
(V0/V )B

′
0

B′0 − 1
+ 1

]
− B0V0

B′0 − 1
(3.5)

where F0, V0, B0, and B′0 are the fit parameters. F0 gives the free energy at the minimum,

V0 is the molar volume at the minimum energy, B0 is the bulk modulus, and B′0 is the first

derivative of the bulk modulus with respect to pressure. This method identifies the free-

energy minimum effectively while avoiding artifacts that can be caused by simpler equation

of state fits or splines.108

Once the free energy equation of state F (V ) has been obtained at a chosen tem-

perature, the free energy can be minimized to find the optimal molar volume. The lattice

constants and atomic positions at this optimal volume are interpolated based on the explic-

itly optimized structures that were obtaining in generating Uel(V ). The atomic positions

are then relaxed subject to those lattice constants being fixed to ensure the structure is at

a minimum on the QHA free energy surface.

The computational cost of these QHA structure determinations is considerably

higher than that of the conventional approach, which would typically involve only a single

relaxation of the crystal structure followed by a single chemical shift prediction. In the QHA

approach used here, the crystal was relaxed at ∼15-20 different pressures to map out Uel(V ).

Furthermore, the harmonic phonon frequencies were computed three volumes. Each Hessian

was evaluated via finite difference of the forces, and it effectively has a computational cost

of ∼2-5 times that of a geometry optimization (depending both on the size and internal
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symmetry of the molecule). Lastly, one final optimization is employed on the optimal

structure at each given temperature. Overall, the computational cost of this QHA approach

is ∼20–40 times higher than a conventional structure optimization. It might be possible to

reduce the number of structure optimizations performed to construct Uel, but the QHA costs

will remain at least an order of magnitude higher than that of a conventional calculation

regardless.

3.2.2 Ab-Initio Fragment-based Shielding Calculations

Periodic density functional theory (DFT) has long been used for modeling chemical

shift calculations as they are well suited to describe extended crystal systems. In partic-

ular the planewave DFT-based gauge-inducing projector augmented wave (GIPAW)138,139

is one of the more commonly used models and has shown great success in NMR crystallog-

raphy.140,141 Modern fragment- and cluster-based methods142,183,184 provide a competitive

alternative to planewave methods for chemical shift prediction. Due primarily to their abil-

ity to use hybrid density functionals with much lower computational cost, fragment methods

can frequently out-perform the more commonly used GIPAW method.12,143,144 Switching

from the GGA functional PBE to the hybrid PBE0 improves the accuracy of the chemical

shifts by ∼20-30%.

Fragment-based methods decompose the total energy of the system into a many-

body expansion,

Etotal =
∑
i

Ei +
∑
ij

∆2Eij +
∑
ijk

∆3Eijk + ... (3.6)

where Ei represents the energy of the isolated molecule, ∆2Eij is the pairwise interaction
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energy between molecules i and j, and ∆3Eijk is the three-body interaction energy between

molecules i, j, and k. Differentiating this expression with respect to the α-th component of

the external magnetic field B and the nuclear magnetic moment µ produces a many-body

expansion for the chemical shielding tensor σ on atom A,

σ̃A =
∑
i

σAi +
∑
ij

∆2σAij +
∑
ijk

∆3σAijk + ... (3.7)

This expression corresponds to expressing the chemical shielding of atom A in the crystal,

σ̃A, in terms of the chemical shielding σA computed for the isolated monomer plus a series

of corrections to that shielding due that monomer’s interactions with other molecules in the

lattice. Given the high computational cost of computing three-body (trimer) interactions,

Eq 3.7 is truncated after the two-body terms. To account for the polarization/electrostatic

effects that are neglected by this truncation, the monomer and dimer calculations are electro-

statically embedded in a set of self-consistent point charges designed to mimic the crystalline

lattice,

σ̃i
A =

∑
i

σA,embi +
∑
ij

∆2σA,embij (3.8)

See Ref 12 for details. The fragment approach generally captures the impact of the crys-

talline environment on chemical shieldings well.12,104 Furthermore, it reduces the overall

computational cost of the chemical shift calculation and can take advantage of highly paral-

lel software implementations which enable the chemical shifts of even complicated crystals

to be computed within a few hours.104
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3.3 Computational details

3.3.1 Systems studied

To evaluate the effect thermal expansion has on predicted chemical shifts, 20 molec-

ular crystals with 68 13C and 28 15N experimentally measured chemical shifts were chosen

(Figure 3.2). These represent a subset of crystals from our earlier benchmark sets.104,143

The CSD reference codes and experimental isotropic chemical shifts for these two test sets

are:

• Carbon (12 structures, 68 shifts): HXACAN13,185 GLYCIN03,186 LALNIN12,187

LSERIN01,188 LTYROS11,189 SUCROS04,190 NAPHTA36191 ADENOS12,189 LTHREO01,189

GLUTAM01,189 ASPARM03,192 and LCYSTN21.189

• Nitrogen (14 structures, 28 shifts): HXACAN13,193 GLYCIN03,194 ALUCAL04,104

LSERIN01,104 GLUTAM01,104 ASPARM03,192 LCYSTN21,104 FUSVAQ01,195 URACIL,195

BAPLOT01,134 LHISTD02,196 BITZAF,197 CYTSIN,195 and THYMIN01.195

Several updates/modifications were made to these structures compared to the ear-

lier works. First, the previous acetaminophen (paracetamol) benchmarks used the room-

temperature HXACAN26 structure instead of the 20 K HXACAN13 one. However, it turns

out that even after geometry optimization, HXACAN26 retains an imaginary vibrational

frequency that is associated with the hydrogen bonding. The hydrogen bonding network

in HXACAN26 differs from that in all other form I structures in the CSD. To rectify this,

we instead choose HXACAN13 as the starting structure for the fully optimized crystal and

the subsequent QHA expansions. The resulting vibrational frequencies for HXACAN13 are
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Figure 3.2: The twenty molecular crystals studied here, indicated by their species name and
the CSD RefCode.

all real. For the fixed cell optimization on the room-temperature structure, we created a

new structure by combining the unit cell parameters from HXACAN26 with fractional co-

ordinates from HXACAN13 and then relaxed the atomic positions. The resulting structure

exhibits small root-mean-square deviations relative to other experimental structures in the

CSD, indicating that the correct overall packing was preserved.

Second, adenine tri-hydrate currently has two crystal structures reported in the

CSD: FUSVAQ at room temperature and FUSVAQ01 at 105 K. These structures differ

in their water molecule orientations, with the orientations found in the low-temperature
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FUSVAQ01 structure leading to better agreement in the predicted 15N chemical shifts.

To update the room-temperature structure, a new structure was created by combining

the unit cell parameters from FUSVAQ with fractional coordinates from FUSVAQ01 and

then relaxing the atomic positions. The resulting structure yielded good root-mean-square

deviations relative to the original FUSVAQ01 structure and appreciably smaller errors in

the 15N chemical shifts relative to experiment.

Third, experimental 13C isotropic chemical shifts for ADENOS12, GLUTAM01,

LCYSTN21, LTHREO01 and LTYROS11 were recently re-measured by Drač́ınský et al,189

correcting errors found in previously published literature that included incorrectly using the

racemic instead of enantiopure crystal, chemical shift assignment errors, and referencing

issues. Using the revised experimental values improved agreement with the theoretical

calculations in all cases, reiterating the importance of obtaining high-quality experimental

data when benchmarking theoretical models.

Finally, we investigate five pharmaceutical crystals more closely: acetaminophen

(HXACAN13)185, ibuprofen (IBPRAC16)198, theophylline (BAPLOT01)134, carbamazepine

(CBMZPN23)199, and naproxen (COYRUD12)200. Fixed-cell geometry optimizations and

chemical shift calculations were performed for benchmark comparison on room temper-

ature structures IBPRAC06, BAPLOT01, CBMZPN14, and COYRUD. Again, the ac-

etaminophen room temperature structure was generated as described above. Theophylline

candidate structures generated via crystal structure prediction for Section 3.4.5 were ob-

tained from the authors of Ref 134.

48



3.3.2 DFT structure optimizations

Three different optimizations were carried out for each of the structures mentioned

here. The first is a full electronic energy optimization of both the atomic positions and the

unit cell (labeled “No QHA”). The second uses the QHA to thermally expand the fully

optimized structure to its free energy minimum at 0 K (labeled “0 K”) and 300 K (labeled

“300 K”). For the 0 K structure, the thermal expansion comes solely from zero-point en-

ergy (ZPE) contributions which is known to contribute up to 30% of the total expansion

of the crystal at ambient temperature and pressure.106 Finally, to benchmark against the

known experimental structure, results were taken from a previous study12 which performed

fixed-cell optimizations on these structures (labeled “Expt. Cell”). In the pharmaceutical

crystals for which earlier fixed-cell optimizations were not available, they were performed

here.

For the calculations performed here, the crystals were first optimized with peri-

odic boundary planewave DFT in Quantum Espresso v6.1201, using the B86bPBE density

functional2,3 and the exchange-hole dipole method (XDM) dispersion correction.4 Core

electrons were treated according to the projector augmented wave (PAW) approach, and

PAW potentials for H, C, N, O, S, Cl, Br, and F were produced using A. Dal Corso’s Atomic

code v6.1.202 Optimizations were carried out using a 50 Ry planewave energy cutoff. Recip-

rocal space k-points were placed with a Monkhorst-Pack grid203 with a typical k-point grid

spacing of 0.04 Å−1 between nearest k-points and maximum spacings of no more than 0.09

Å−1. See Appendix A Section 3.3 for the specific k-point grid used for each structure. Γ-
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point harmonic vibrational frequencies were computed using finite difference with Phonopy

v1.11.2.204 Predicted room-temperature molar volumes are compared against the available

experimental volumes from the CSD (Appendix A Section 4).

The structures for the fixed-cell optimizations from Ref 12 were optimized us-

ing the PBE density functional,3 the D2 dispersion correction,205 and ultrasoft pseudopo-

tentials. See Ref 12 for details. Although the specific modeling parameters used there

differ from those here, test calculations suggest that re-optimizing the structures with the

B86bPBE-XDM protocol used here would impact the chemical shifts minimally. Constrain-

ing the optimization to retain the experimental lattice parameters reduces the impact of the

optimization protocol on the resulting structure. See Appendix A Section 2.2 for details.

3.3.3 Chemical shielding calculations

Fragment-based NMR chemical shift calculations were carried out using the Hy-

brid Many-Body Interaction model (HMBI) v2.0 (available on github

https://github.com/gberan/HMBI).94–96 Chemical shielding calculations for individual frag-

ments were carried out using Gaussian 09206 with the PBE0 density functional.207 This

functional was chosen based on its excellent performance in earlier benchmarks.12,104

The chemical shielding calculations were carried out using the gauge-including

atomic orbital (GIAO) approximation208 and a locally-dense basis set.209,210 All calculations

employed a 6-311+G(2d,p) basis for atoms in the asymmetric unit, 6-311G(d,p) basis for

neighboring atoms out to 4 Å, and a 6-31G basis for all atoms beyond 4 Å.211–216 Previous

work showed this mixed basis approach provides a noticeable speed-up on the computational

cost with a minimal loss in chemical shift accuracy.143 As described in previous work, a large
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DFT integration grid consisting of 150 radial and 974 Lebedev angular points was used to

approach rotational invariance and mitigate numerical noise in the fragment calculations.143

The CHELPG atom-centered charges148 used to construct the electrostatic em-

bedding environment were computed using Gaussian 09.206 Atom-centered charges were

computed using the same PBE0 functional a 6-311+G(2dp,p) basis set. Point charges were

placed on all molecules within 30 Å of any atom in the asymmetric unit, and these were

surrounded by an additional set of point charges designed to mimic the Madelung potential

of the full crystal at the nuclear centers in the asymmetric unit, as described in Ref 12.

3.3.4 Chemical shift referencing

The chemical shifts reported here are referenced relative to neat TMS under magic

angle spinning (MAS) conditions for 13C and solid NH4Cl under MAS for 15N. A linear

regression scheme is used to map between the computed absolute chemical shieldings σi

and the experimentally observed chemical shifts δi,

δi = Aσi +B (3.9)

The regression parameters A and B were taken from an earlier study12 which employed

fixed, experimental lattice parameter optimizations on a set that includes all twenty crystals

in the benchmark here plus many additional structures. For 13C, the regression line is

δi = −0.9658σi + 179.48, while for 15N, it is δi = −1.0106σi + 197.46. Note that these same

regression parameters determined using the experimental unit cells were employed for the

No QHA, 0 K, and 300 K QHA structures.
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Figure 3.3: Distribution of errors relative to experiment over 68 13C chemical shifts for 12
molecular crystals. Overall RMS errors are displayed below each violin plot.

3.4 Results and Discussion

Section 3.4.1 examines how structure relaxation and subsequent thermal expan-

sion impact the chemical shifts in the test set as a whole. Section 3.4.2 examines the

performance of the QHA for reproducing experimental room temperature crystal volumes

and how that relates to the accuracy of the chemical shifts. Section 3.4.3 considers the

impact of thermal expansion on chemical shifts associated with different functional groups.

Section 3.4.4 examines the impact of including thermal expansion in five pharmaceuti-

cal crystals: acetaminophen, ibuprofen, theophylline, carbamazepine, and naproxen, and

Section 3.4.5 investigates how thermal expansion alters the ability to discriminate among

several crystral structure prediction candidates for theophylline.
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Figure 3.4: Distribution of errors relative to experiment over 28 15N chemical shifts for 14
molecular crystals. Overall RMS errors are displayed below each violin plot.

3.4.1 Accuracy of predicted chemical shifts

To begin, we first compare the distributions of errors in the predicted chemical

shifts relative to experiment for the fixed-cell optimized (Expt Cell) and fully optimized

(No QHA) geometries shown in Figures 3.3 and 3.4. For the 13C chemical shifts, using

the experimental cell gives an overall root-mean-square (rms) error of 1.42 ppm. The error

distribution exhibits a single maximum near zero error. For 15N, the rms error is larger

at 4.0 ppm, and the error distribution is slightly bimodal. This bimodal shape is retained

across all four sets of structural models and probably reflects the smaller number of data

points in the nitrogen set (28 for nitrogen versus 68 for carbon). The larger errors obtained

for nitrogen shifts than carbon ones are consistent with the larger 15N chemical shift range,

its sensitivity to electrostatic environment, and prior chemical shift benchmarks.104,217,218
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Fully relaxing the unit cells (i.e. without constraining the experimental lattice

parameters) leads to a 3.9% volume decrease on average, with several crystals decreasing

by 6–8% (Tables 3.1 and 3.2). Surprisingly, this full relaxation only increases the 13C

isotropic shift error versus experiment trivially, from 1.42 to 1.46 ppm. However, this small

change in the statistical error relative to experiment belies more significant changes to the

individual 13C shifts. The average individual 13C chemical shift changes by half a ppm upon

cell relaxation, and the largest change is 2.4 ppm. In other words, the statistically similar

13C rms chemical shift errors for the fixed cell and fully optimized structures is fortuitous.

For 15N, full relaxation of the cell increases the errors more noticeably, from 4.0 to 4.8 ppm.

The average individual 15N shift change is 1.1 ppm, with a maximum change of 3.7 ppm.

Accounting for the expansion arising from zero-point vibrational energy (ZPVE)

contributions (0 K) and thermal expansion (300 K) via the QHA expands the crystals

appreciably. It also has noticeable impacts on the chemical shifts. By 300 K, the average

13C chemical shift has changed by half a ppm, and chemical shifts in the upper quartile

have changed by 0.7–1.2 ppm. The average 15N chemical shift has changed by 1.0 ppm, and

those in the upper quartile have changed by 1.5–3.3 ppm. Notably, accounting for thermal

expansion eliminates some of the largest error shifts in Figures 3.3 and 3.4. For example,

whereas 18% of the fully relaxed No QHA 13C shifts exhibit errors greater than 2 ppm, only

10% are greater than 2 ppm in the 300 K QHA structures, and the maximum error drops

from 3.5 ppm to 3.0 ppm. For 15N, the number of shift errors larger than 5 ppm decreases

from 32% in the fully relaxed structures to 18% in the 300 K QHA ones. These improvements

manifest in the smaller rms errors of 1.2 ppm for 13C and 4.1 ppm for 15N at 300 K, which
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(Å
)

(p
p
m

)
ch

an
ge

(Å
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are competitive with or better than the errors obtained with the experimental unit cells.

Even just accounting for the ZPVE expansion captures a sizable fraction of the impact

of the overall chemical shift correction due to expansion, which is consistent with earlier

QHA studies106,107 that found that ZPVE contributes a significant fraction of the overall

expansion that separates the fully relaxed structures with no vibrational contributions and

those modeled at room temperature via the QHA.

The fact that the 300 K QHA 13C rms error of 1.2 ppm is smaller than the fixed

experimental cell error of 1.4 ppm deserves further examination. The largest improvement

in the predicted 13C chemical shifts comes from L-cysteine. The experimental LCYSTN21

crystal structure used omits a hydrogen atom on the thiol group. In our previous work,

this missing hydrogen atom was placed manually, and the structure was relaxed under

fixed experimental cell conditions. However, upon full cell relaxation here, the hydrogen

bonding network reconfigures to a more optimal arrangement. Apparently the combination

of poor manual placement and constraining the unit cell parameters in the earlier relaxation

prevented the necessary relaxation. This new arrangement is maintained in the 300 K QHA

structures, and this reduces the error on the cysteine α and side-chain carbons by 2.5 and

1.5 ppm, respectively.

As described in Section 3.3.4, the regression parameters used here to map from

chemical shielding to chemical shift are those determined from a larger set of fixed-cell 13C

and 15N benchmarks used in an earlier study.12 One might wonder how different the results

would be if the regressions were determined directly by fitting the data for these specific

systems against experiment separately for each structure set (No QHA, 0 K, 300 K and
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experimental cell). Fitting the regressions to fixed-cell structures could conceivably lead to

beneficial error cancellation in the fixed cell structures here that is lost in the fully relaxed

and QHA structure sets. In practice, however, the changes in the 13C rms errors upon

re-fitting the regression parameters specifically for each set are a negligible 0.01 ppm. For

nitrogen, refitting the regression parameters would decrease the chemical shift errors by

a few tenths of a ppm, but it would not significantly affect the general trends. In that

scenario, the rms errors become 4.3, 3.9, and 3.7 ppm for the No QHA, 0 K, and 300 K 15N

sets, respectively, versus 3.6 ppm for the experimental cell data.

3.4.2 Assessment of QHA thermal expansion

Having seen that accounting for thermal expansion improves the quality of the

predicted chemical shifts relative to those obtained from fully optimized crystal structures,

we now investigate the impact of expansion in more detail. In particular, how well do the

room-temperature QHA structures reproduce the experimental ones, and to what extent

are the error reductions correlated with the magnitude of the volume correction between

the No QHA and 300 K structures? Table 3.1 lists the percent volume changes relative

to the experimental structure, the rmsd15 metric, and the rms error in the chemical shifts

relative to experiment for that structure. The rmsd15 metric measures the root-mean square

deviations in the non-hydrogen atom positions between the optimized and experimental

structure using a 15-molecule cluster.5 Plots visualizing the QHA volume changes relative

to the experimental volume are provided in Appendix A Section 5.

As noted earlier, the full No QHA relaxations reduce the molar volumes of the

20 molecular crystals tested here by an average of 3.9%. The unit cell volumes for five
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crystals, naphthalene, acetaminophen, thymine, adenine trihydrate, and adenosine, contract

by 5% or more. The relatively weak, non-specific van der Waals interactions between

naphthalene molecules lead to a large 8.1% volume change between the fully optimized and

experimental naphthalene crystal structures. Acetaminophen (6.3% change) and thymine

(6.3%) form layered structures with low-dimensional hydrogen bond networks that allow

facile expansion between layers. Adenosine exhibits a three-dimensional hydrogen bonding

network, but the highly flexible intramolecular degrees of freedom may allow it to change

volume more readily (5.2%), while the aforementioned issues with the room-temperature

adenine trihydrate crystal structure creates the appearance of a large contraction upon

relaxation.

Employing the QHA approximation allows the fully optimized crystals to expand

back toward the room temperature structures. At 0 K, the predicted crystal volumes are

on average 0.7% smaller than the room-temperature experimental ones (excluding adenine

trihydrate). By 300 K, the predicted volumes have expanded too much, exceeding the ex-

perimental volumes by 1.6% on average. For adenine trihydrate, the QHA structure with

the energetically preferred hydrogen bonding arrangement remains 2.3% smaller than the

experimental FUSVAQ structure at room temperature. The outlier nature of FUSVAQ

suggests that it might be worthwhile to redetermine its room-temperature crystal structure

experimentally. The tendency for the B86bPBE-XDM quasi-harmonic protocol employed

here to over-estimate the molar volume is consistent with our earlier work on several small-

molecule crystals.107 That study also found that further refining the crystal structures

with higher-level wave function models frequently decreased the molar volumes relative to
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the B86bPBE-XDM calculations, bringing them into closer agreement with experiment.

However, such wave function-based calculations are somewhat more computationally ex-

pensive,219 so they are not pursued here.

Looking at the rmsd15 values, one unsurprisingly finds excellent agreement be-

tween the fixed-cell relaxations and the experimental structures (mean rmsd15 value of

0.06 Å). The rmsd15 values are roughly twice as large for the fully optimized, 0 K QHA,

and 300 K QHA structures, with mean values ranging from 0.11-0.13 Å. While these val-

ues represent generally good agreement between the predicted and experimental structures,

the fact that the rmsd15 values do not improve monotonically along the progression from

NoQHA to 0 K and 300 K structures further highlights the systematic over-estimation of

the room-temperature volumes by the QHA model. In other words, employing the QHA

to refine the fully optimized structures clearly improves the packing densities of the crys-

tal structures relative to experiment. However, the improvement one would expect from

heating the QHA model from 0 K to 300 K is not obvious.

Despite the ambiguity about whether the 300 K QHA structures are superior to

the 0 K QHA ones in terms of structural metrics, the 300 K structures are clearly superior

to the 0 K ones in terms of the accuracy of the predicted chemical shifts, as discussed in

Section 3.4.1. Furthermore, the statistical similarity in the accuracy of the chemical shifts

predicted for the 300 K QHA and fixed experimental cell structures suggests that, despite

differences in the crystal structures, the QHA structures are reproducing the local chemical

environments well. Examining the rms errors on a crystal-by-crystal basis in Tables 3.1

and 3.2, one sees that in a number of cases (especially for the 13C), the shift errors for the
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300 K QHA structures are smaller than those for the fixed experimental cells. One might

expect to find a direct relationship between good structural agreement and small errors in

the predicted chemical shifts, but no such obvious correlation exists.

Several factors might contribute to absence of a clear correlation between the

quality of the structure and the quality of the chemical shifts. First, chemical shifts are

inherently governed by local electronic structure which is most sensitive to the local atomic

environment. Perhaps the gross structural metrics employed here fail to capture more subtle

local geometric refinements. Second, the experimental crystal structures may be imperfect.

DFT can help refine or correct X-ray diffraction structures,181,220 for example, and predicted

chemical shifts from even high-quality neutron diffraction structures are improved by re-

laxing the atomic positions beforehand.221 Third, even the reported experimental crystal

unit cell volumes can vary considerably between different diffraction studies. For example,

the CSD contains eight different crystal structures for form I acetaminophen at ambient

temperature and pressure. These molar volumes for these structures span a range of 3%,

with a standard deviation of ±1.2%. Finally, there are of course the errors inherent in den-

sity functional theory and the basis sets used here, including perhaps the use of different

functionals for the geometry optimization (the GGA B86bPBE-XDM) and chemical shift

prediction (the hybrid functional PBE0) steps.

3.4.3 Functional group analysis

For further insight into how accounting for thermal expansion improves the pre-

dicted chemical shifts, Figures 3.5 and 3.6 plot how the error associated with each predicted

chemical shift changes from the fully relaxed structure (arrow tail) to the 300 K QHA
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structure (arrow head) for 13C and 15N chemical shifts, respectively. The shift changes

are color-coded by functional group. See Appendix A Section 3.1 for assignment details.

Ideally, accounting for the expansion would shift the errors toward zero.

Consider first the 13C chemical shifts in Figure 3.5. The magnitude of the average

13C chemical shift changes by 0.5 ppm between the No QHA and 300 K QHA structures.

The smallest changes occur for alkyl and amide carbons (∼0.2-0.3 ppm), while the remaining

functional groups exhibit average changes ranging ∼0.4–0.6 ppm, and the largest individual

shift changes exceed 1 ppm. As can be seen from Figure 3.5, however, the shift changes do

not always correspond to improved agreement with experiment. Defining the (arbitrary)
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threshold of 0.3 ppm for an appreciable change in the error relative to experiment, one finds

that accounting or thermal expansion improves 47% of the 13C shifts by 0.3 ppm or more

relative to experiment, it has little impact on 37% of the shifts (i.e. changes the error by

less than 0.3 ppm), and it increases the errors by more than 0.3 ppm for 16% of the shifts.

With the exception of the methyl carbon in acetaminophen, whose shift is improved

by 1.0 ppm, the changes in the alkyl shifts upon thermal expansion are small and do not

significantly impact the agreement with experiment. These flexible groups are perhaps

more impacted by factors such as dynamical motions that are not captured in the simple

QHA model here. Thermal expansion corrections to the amide carbons have similarly small
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impacts on the agreement with experiment. The test set contains quite a few amino acids,

and interestingly, thermal expansion consistently pushes all of the α-carbon shifts downfield

by an average 0.6 ppm. However, this correction does not always prove beneficial, and the

net agreement with experiment becomes negligibly worse (by 0.1 ppm). Mixed behavior is

also seen for carbons adjacent to ether oxygens and in aromatic rings, but the net effects

are toward improved agreement with experiment. The most interesting impact of thermal

expansion occurs for the amino acid carboxylate carbons, which are uniformly improved by

half a ppm on average. Experience suggests that the chemical shifts of carboxylate carbons

are very sensitive to geometry, and the data here indicates that accounting for thermal

expansion proves helpful.

Figure 3.6 plots the shift and error changes upon thermal expansion for the 15N

chemical shifts. As noted earlier, accounting for thermal expansion has an average 1.0

ppm impact on the nitrogen chemical shifts, double what was observed for 13C. Using the

same 0.3 ppm criterion as above, accounting for thermal expansion improves 50% of the

28 nitrogen shifts relative to experiment, has little impact on 25% of the shifts, and makes

25% of the shifts worse.

Interestingly, the shift changes for ammonium nitrogens are relatively modest and

below average for the set (average 0.7 ppm), and they systematically shift toward worse

agreement with experiment. These functional groups occur in the amino acid crystals and

hydrogen bond with the carboxylate groups, whose 13C shifts were systematically improved

via the inclusion of thermal expansion (though they still remain some of the largest errors

in the 13C set). In reality, these functional groups are likely involved in a fast quantum
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mechanical proton exchange222 between the carboxylate and ammonium groups that is not

captured in the models here. It has also been demonstrated that DFT artificially stabilizes

crystalline salts due to delocalization error,223 and that might also lead to problematic

treatment of these ammonium-carboxylate interactions.

Aside from the ammonium nitrogens, thermal expansion improves the remaining

15N shifts by an average 0.8 ppm relative to experiment. Most of the shifts that change

appreciably with thermal expansion shift toward better agreement with experiment. The

largest gains occur for the terminal amides in L-glutamine and L-asparagine monohydrate

near 72–75 ppm. The two most notable exceptions to the general improvement occur for

the primary amine in cytosine at 50.2 ppm and the imine nitrogen in theophylline at 178.7

ppm.
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Figure 3.8: Impact of QHA structure refinement on the predicted 13 isotropic chemical shifts
for a) acetaminophen, b) ibuprofen, c) naproxen, d) theophylline, and e) carbamazepine.
Spinning side bands in the ibuprofen spectrum are marked with asterisks.
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Figure 3.9: Impact of QHA structure refinement on the predicted 13C isotropic chemical
shifts for five candidate structures of theophylline.

3.4.4 Refining Chemical Shift Predictions in Pharmaceutical Crystals

Next, we examine the impact of accounting for thermal expansion in predicting

the chemical shifts for five pharmaceutical crystals: acetaminophen, ibuprofen, theophylline,

carbamazepine, and naproxen (Figure 3.7). As in the previous sections, the crystal struc-

tures were fully optimized (No QHA) and then subsequentally expanded to 300 K using the

QHA. Fixed-cell geometry optimizations and chemical shift calculations were performed

for benchmark comparison. Note that while acetaminophen and theophylline were both

included in the results presented above, ibuprofen, carbamazepine, and naproxen were not.

Figure 3.8 compares the predicted 13C isotropic chemical shifts to the experimental

solid-state NMR spectra. See Figure 3.7 for the atom numbering in each species. Volume

expansion curves for each structure are available in Appendix A Section 4 and the raw chem-
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ical shift data is available in Appendix A Section 3.2. Root-mean-square errors (RMSE)

between the predicted and experimental shifts are provided in each case. As was found for

the crystals discussed in Section 3.4.2, the RMS error for each crystal generally improves

from No QHA to 300 K. Once again, fully optimizing the crystal structure results in less

accurate chemical shifts than using the fixed experimental cell structure. However more

interesting details can be teased out by examining how each individual predicted chemical

shift changes.

Acetaminophen, ibuprofen, and naproxen all show modest statistical improvement

going from the fully optimized structure down to the fixed cell. For acetaminophen, all shifts

except C3/C5 near 115 ppm improve progressively toward the experimental peaks upon

application of the QHA. The fixed cell resolves the problem with the C3/C5, but it predicts

a much worse shift for C1. Ibuprofen and naproxen exhibit relatively little temperature

dependence in their spectra, though including thermal expansion does slightly improve the

level of agreement between theory and experiment. For theophylline, the agreement is

already quite good with the No QHA structure. However, performing QHA expansion to

300 K reduces the RMS error over half to only an exceptional 0.5 ppm, with every shift

predicted in excellent agreement with experiment.

Finally, carbamazepine represents an interesting case. Most of the chemical shifts

shown are concentrated in the aromatic region between ∼125–140 ppm. In that region, ac-

counting for thermal expansion substantially refines and even re-orders many of the chemical

shifts. This re-ordering could conceivably change how one might assign the experimental

spectrum in this region. Unfortunately, the relatively low resolution of the experimental
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spectrum prevents clear assignment of specific peaks or calculation of an rms error. Never-

theless, it is clear visually that thermal expansion noticeably improves agreement with all

peaks save the amide group (C15). Indeed, the 300 K QHA 13C spectrum is arguably in

better agreement with experiment than the shifts predicted from the fixed cell structure.

Overall these five pharmaceutical species re-iterate how QHA thermal expansion

generally improves the quality of the predicted chemical shifts and brings them to a level

of agreement that is competitive with what is obtained from the experimental fixed-cell

structures. In cases like theophylline or carbamazepine, the QHA expansion has a large

impact on the agreement and even the potential chemical shift assignment. In others such

as ibuprofen or naproxen, the impact is quite small. Since the QHA treatment is compu-

tationally expensive and it is not currently obvious a priori in which cases the effects of

thermal expansion on the chemical shifts will be large, it appears that one should likely con-

sider performing QHA refinement of the structures primarily in cases where the agreement

with the experimental chemical shifts is unsatisfactory or where one is having difficulty

discriminating between structural candidates.

3.4.5 Improved resolution of crystal candidates

Finally, an important potential use case for QHA refinement of structures would

be in the context of NMR crystallography, where one might try to discriminate among a

number of predicted crystal structures. In 2013, Baias et al examined this approach for four

different species, including theophylline.134 While the combination of structure and NMR

chemical shift prediction worked well for most of the crystals, neither 13C nor 1H chemical

shifts provided clear discrimination among the 44 candidate structures of theophylline, with
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many different crystal structures exhibiting similar errors in the predicted chemical shifts

relative to experiment. Given the significant improvement in the theophylline chemical

shifts upon accounting for thermal expansion observed in Section 3.4.4, it is interesting

to revisit this discrimination problem here. Specifically, we perform a proof-of-concept

investigation of how accounting for QHA thermal expansion impacts the chemical shifts for

the five lowest-energy structures from Ref 134.

Table 3.3: Relative electronic and quasi-harmonic Gibbs free energies for the five candidate
theophylline crystal structures after B86bPBE-XDM refinement. Energies are relative to
Structure 1.

Candidate Electronic Energy Relative ∆G(300 K)
Structure (kJ/mol) (kJ/mol)

1 0.0 0.0
2 3.5 2.3
3 -0.6 2.1
4 6.7 5.6
5 0.8 1.1

The structures in Ref 134 were ranked using a hybrid B3LYP/6-31G(d,p) in-

tramolecular energies and a classical intermolecular potential. Relaxing the five lowest-

energy structures with periodic B86bPBE-XDM here leads to a considerable energetic re-

ranking (Table 3.3). Structure 1 corresponds to the experimental structure, with an rmsd15

value of 0.212 Å relative to the experimental structure BAPLOT01. At the electronic en-

ergy level, structure 3 actually becomes slightly more stable than structure 1 after DFT

refinement. However, the QHA Gibbs free energy restores structure 1 as the most stable.

Structure 5 is also stabilized appreciably, becoming the second most stable structure, while

structures 2 and 3 are nearly degenerate in free energy. Structure 4 lies nearly 6 kJ/mol

above structure 1, suggesting it is a less likely candidate.
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Next, consider the chemical shifts. Ideally, accounting for thermal expansion would

improve the accuracy of the chemical shifts predicted for the correct structure, while in-

creasing the errors for those from the incorrect structures. Figure 3.9 shows how the rms

errors in the 13C chemical shifts change with the inclusion of thermal expansion. Without

any thermal expansion, the rms errors on all five structures span a range of only about 0.3

ppm, with structure 1 exhibiting marginally smaller errors than several others. Accounting

for thermal expansion reduces the errors appreciably for structures 1, 2, and 5, while it has

little impact on those for structures 3 and 4. This more than doubles the spread of rms

chemical shift to 0.8 ppm. While the rms error for structure 5 is reduced, the difference

between structures 1 and 5 remains about the same.

Interestingly, however, the 300 K QHA models predict nearly identical rms errors

for structures 1 and 2. Examination of the crystal structures reveals that both crystal

structures exhibit identical stacks of one-dimensional hydrogen bonded chains. The primary

difference between the two structures lies in how these adjacent stacks of one-dimensional

chains are oriented relative to one another in the third dimension. In structure 1, they

are oriented at roughly 45◦ relative to one another, while in structure 2 they are oriented

at 180◦. In both cases, the inter-stack distances exceed 3 Å, suggesting a relatively weak

interaction between the adjacent stacks. In other words, the difficulty in discriminating

those two structures based on 13C reflects the high similarity in crystal packing motifs

and local chemical environments of these two structures. Overall, although identifying the

correct theophylline crystal structure based on 13C chemical shifts alone remains difficult,
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accounting for thermal expansion does generally increase the differentiation among these

structures.

3.5 Conclusions

This work has demonstrated how the quasi-harmonic approximation can be used

to refine isotropic NMR chemical shift predictions for molecular crystals. Employing the

QHA recovers most or all of the chemical shift error accrued by neglecting the thermal

expansion of the crystal. Indeed, the accuracy of chemical shifts computed using quasi-

harmonic room-temperature structures rivals what is obtained for shifts computed with the

experimental unit cell parameters. In select cases, using the QHA to thermally expand a

fully relaxed structure led to slightly better fidelity with experimental chemical shifts than

a fixed-cell simulation.

The impact of QHA thermal expansion on chemical shifts can be quite variable,

however. No clear relationship between the quality of the structural agreement and the

chemical shift errors was found, nor does the magnitude of the change of the chemical shifts

upon thermal expansion seem to correlate strongly with the amount of thermal expansion

that occurs. We did find, however, that certain functional groups appeared to benefit more

from the QHA treatment. In particular, functional groups which exhibit dynamic flexibility

such as methyl or alkyl groups tended to benefit less from the QHA treatment than those

associated with aromatic or other more rigid functionalities.

Although the QHA expansion calculations are considerably more expensive than

traditional optimization and chemical shift prediction approaches, they are feasible for
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small-molecule pharmaceutical crystals and other chemically interesting species. The five

pharmaceutical examples considered here provide a sampling of the diverse behaviors that

can be observed with QHA refinement. In cases like ibuprofen or naproxen, thermal expan-

sion has very little effect on the predicted chemical shifts, while in others like theophylline

and carbamazepine, the QHA expansion significantly improves the accuracy of the shifts

and can even alter how one might assign them. Finally, it was also demonstrated how em-

ploying QHA thermal expansion could help increase the discrimination between candidate

structures in a proof-of-concept examination of several theophylline structures that were

generated via crystal structure prediction.

Given the modest statistical improvements to the chemical shifts resulting from

the QHA thermal expansion models and the higher computational costs compared to con-

ventional approaches, it may not worthwhile performing QHA expansion prior to predicting

the chemical shifts on a routine basis. If the experimental lattice parameters are known, it is

generally preferable to use that information in the chemical shift prediction. However, in sit-

uations where the experimental lattice parameters are unknown and better agreement with

experiment is required, as in the context of crystal structure prediction, QHA refinement

may prove helpful.
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Chapter 4

Identifying pragmatic

quasi-harmonic electronic structure

approaches for modeling molecular

crystal thermal expansion

Chapter 3 demonstrated how the quasi-harmonic approximation (QHA) can pro-

vide an economical route to modeling the temperature dependence of molecular crystal

structures and properties. However, for the majority of the crystals modeled in Chapter 3,

density functional theory (DFT) over-expanded the molecular crystal volume. Ideally one

would like to use a higher-level electronic structure theory such as correlated wavefunction

methods as several studies have demonstrated good performance of these models, at least

for rigid molecules, when using fragment-based approaches. However due to the high com-
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putational cost of computing harmonic phonons the quasi-harmonic approximation quickly

becomes infeasible at this level of theory. In this chapter, we introduce a hierarchy of models

in which the energies, geometries, and phonons are computed either with correlated meth-

ods or DFT are examined to identify which combinations produce useful predictions for

properties such as the molar volume, enthalpy, and entropy as a function of temperature.

The work presented in this chapter was originally published in Ref 107.

4.1 Introduction

Molecular crystals occur in many areas of chemistry, including pharmaceuticals,

organic semi-conductor materials, foods, and explosives. Crystal structure and polymor-

phism, or the tendency for molecules to adopt multiple distinct crystalline packing motifs,

can have substantial impacts on macroscopic properties of these materials. The difficulty

in identifying or engineering crystal forms experimentally has generated considerable inter-

est in predicting crystal structures and properties from first principles.47,224,225 Substantial

progress has been made toward successful crystal structure prediction, as evidenced by the

successes in the last few Blind Tests of Crystal Structure Prediction.52,53,162

Most molecular crystal modeling focuses on the 0 K electronic (internal) energy

rather than the finite-temperature free energy.226 However, temperature can play an im-

portant role in many molecular crystal properties. Crystals typically undergo thermal

expansion, often at a rate of 0.8–2.5% expansion per 100 K.63 Even larger expansion occurs

in weakly bound crystals. As the crystal expands, its mechanical properties change. Bulk
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moduli often decrease by 50% and shear moduli by 30–50% at temperatures approaching

the melting point.63

The Gibbs free energy also varies with temperature, with room-temperature val-

ues typically differing by 1–4 kJ/mol from the 0 K electronic energy.63,106 Thermal ex-

pansion typically softens the lattice vibrations, resulting in a larger Helmholtz vibrational

entropy, while simultaneously decreasing the lattice energy. Early investigations suggested

that entropic effects were seldom large enough to reverse polymorph stability.227 Though

a significant fraction of the finite-temperature contribution cancels when considering poly-

morph energy differences, a more recent survey noted that at least 20% of polymorphs

pairs are enantiotropically related and reverse their relative thermodynamic stabilities upon

heating.63 Many other properties, including vibrational129 and nuclear magnetic resonance

spectroscopic properties vary with the unit cell size, as well.

Various strategies exist for incorporating finite temperature contributions into

the model. Molecular dynamics techniques provide a natural means of treating these ef-

fects.116–125 However, obtaining force fields capable of describing the subtle energetic bal-

ances that occur in molecular crystal problems is not always easy. Alternatively, one can

employ statistical thermodynamic harmonic or quasi-harmonic corrections to static mod-

els.129 Harmonic phonon contributions are increasingly being employed in crystal structure

prediction,162 and they capture a significant fraction of the vibrational contribution to the

free energy.62,63 Harmonic vibrational contributions impact the polymorph stability order-

ing in glycine,111,112, oxalyl dihydrazide,102 aspirin,113 and modern drug targets,114 for

example.
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However, to capture thermal expansion effects, one must address how the phonons

change with crystal volume. The quasi-harmonic approximation provides a straightforward

means for doing so and for therefore predicting how the Gibbs free energy depends on tem-

perature and pressure. The quasi-harmonic approximation has been used long been used

in force field studies.182,228–232 Recent DFT work has examined how free energy impacts

structure rankings in crystal structure prediction.130,233 It has sought to reproduce struc-

tural and thermochemical properties of crystalline ammonia,129 urea,234 and carbamazepine

(using density functional tight binding theory).235

These DFT-based quasi-harmonic studies have been successful, and wavefunction-

based techniques are often too computationally demanding for quasi-harmonic crystal stud-

ies. However, fragment approaches such as the hybrid many-body interaction (HMBI)

model, enable application of high-level, correlated wavefunction techniques that would oth-

erwise be computationally prohibitive to molecular crystal problems. HMBI combines a

quantum mechanical (QM) treatment of the unit cell monomers and their short-range dimer

interactions with a classical polarizable force field treatment of longer-range and many-

body effects.97,101,103,236 We have demonstrated that the quasi-harmonic HMBI237 with

large-basis second-order Møller-Plesset perturbation theory (MP2) and/or coupled clusters

singles and doubles with perturbative triples (CCSD(T)) allows prediction of small-molecule

structures and properties in excellent agreement with experiment. For example, it predicts

the thermal expansion of carbon dioxide phase I to within 2–3%, the sublimation enthalpy

to within 1–2 kJ/mol, and the sublimation temperature to within 3 K.105,106 By comparing

and contrasting the excellent agreement between theory and experimental structures and
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Raman spectra for several different crystalline phases of carbon dioxide, we argued that

the long-accepted structure for phase III carbon dioxide is incorrect, and that phases III

and VII are actually identical.26 Furthermore, these same techniques enabled successful

prediction of crystalline methanol thermochemistry.108 More significantly, they allow ab

initio prediction of the polymorph phase diagram with accuracy corresponding to Gibbs

free energy errors of ∼0.5 kJ/mol or less.109 Other fragment-based studies have similarly

employed the quasi-harmonic approximation to study thermochemical properties in a much

broader range of crystals.127,128

However, even with fragment techniques, the studies employing correlated wave-

function methods are computationally demanding. Predicting the methanol phase diagram

entirely with MP2 and CCSD(T) required several hundred thousand central processing

unit hours, for example. Performing the same level calculations on a typical pharmaceuti-

cal crystal would be impractical. Is there a useful middle ground, which achieves most of

the accuracy found above, albeit at much lower computational cost?

A quasi-harmonic calculation involves three main ingredients: energies, crystal

geometries, and phonon frequencies. This study investigates how accurately one must com-

pute each of those pieces to predict how crystal structures vary with temperature accurately.

Can one, for example, replace a computationally expensive MP2 treatment of the phonon

frequencies with a less-demanding one from periodic DFT? What about the geometries?

Or, taken from the opposite perspective in which dispersion-corrected DFT models are

the baseline: How much do the predicted finite-temperature structures or thermochemistry

benefit by investing the additional computational effort to replace some or all of these quasi-
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harmonic approximation components with results obtained from correlated wave function

methods? Even inexpensive semi-empirical density functional tight binding models repro-

duce the thermal expansion in carbamazepine fairly well,235 for example.

Here, to improve our understanding of how the performance of correlated wave-

function and DFT methods compare and the potential benefits of combining them in differ-

ent ways, we examine the thermal expansion in several small-molecule crystals, systemati-

cally replacing the MP2 (or better) treatment of the energies, structures, and/or phonons

with a dispersion-corrected DFT one. We find that while portions of the calculation can

often be performed with periodic density functional theory, there are clear benefits to in-

cluding contributions from wavefunction techniques. Based on the results from the small

molecule systems, quasi-harmonic calculations are performed on the pharmaceutical ac-

etaminophen (paracetamol) to predict both the thermal expansion and to investigate a

discrepancy between two experimentally reported heats of sublimation.

4.2 Theory

4.2.1 Quasi-Harmonic Approximation

The Gibbs free energy is required to model molecular crystals at finite tempera-

tures and pressures. From statistical thermodynamics, the Gibbs free energy combines the

electronic internal energy Uel, the Helmholtz vibrational free energy Fvib, and a pressure-

volume (PV ) contribution,

G(T, P ) = Uel + Fvib(T ) + PV (4.1)
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In crystals at ambient pressure, the PV term contributes negligibly.

The internal electronic energy Uel is computed here via the fragment-based hybrid

many-body interaction model (HMBI). HMBI treats individual molecules in the unit cell

and their short-range pairwise interactions quantum mechanically (QM), while the longer-

range and many-body interactions are typically approximated using a classical molecular

mechanics (MM) polarizable force field.

UHMBI
el = EQM1−body + EQMSR 2−body + EMM

LR 2−body + EMM
many body (4.2)

In some cases, the MM terms will be computed from periodic Hartree-Fock (HF) instead,

in which case HMBI is equivalent to the method of increments.98–100

The Helmholtz vibrational free energy is computed from standard harmonic oscil-

lator vibrational partition functions as,

Fvib(T ) = Na

∑
i

(
h̄ωi
2

+ kbT ln

[
1− exp

(
− h̄ωi
kbT

)])
(4.3)

where Na is Avogadro’s number, h̄ is Plank’s constant, kb is the Boltzmann constant, and

ωi is the vibrational frequency of mode i. The first term corresponds to the zero-point

vibrational contribution, while the second gives the thermal vibrational contribution. Here,

phonons are evaluated only at the Γ point.

To circumvent the high computational cost of computing the phonons repeatedly

while minimizing G(T, P ) for the given thermodynamic conditions, the vibrational contri-

bution can be approximated via the quasi-harmonic approximation, which estimates how

the phonon frequencies and Fvib vary with unit cell volume. Mode-specific Grüneisen pa-

rameters γi are employed to estimate how each individual phonon frequency varies with
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volume,

γi = −
(
∂ lnωi
∂ lnV

)
(4.4)

Integrating this equation yields,

ωi = ωrefi

(
V

V ref

)−γi
(4.5)

The reference volumes and phonon frequencies are obtained for the crystal structures which

minimize the electronic energy Uel, and the Grüneisen parameters are obtained via finite

difference of the phonon frequencies with respect to changes in unit cell volume about that

reference structure.

4.2.2 Hierarchy of Approximations

Table 4.1: The four model tiers considered in this work. Tier 1 is the most computationally
demanding, and higher tiers subsequently reduce the computational cost by replacing por-
tions of calculations at the “High” HMBI level with faster ones at the “Low” level of theory,
DFT. HMBI corresponds to employing MP2 or other correlated wavefunction methods for
the monomer and dimer treatment plus AMOEBA or periodic HF many-body contributions.

Tier Energies Structures Frequencies

1 HMBI HMBI HMBI
2 HMBI HMBI DFT
3 HMBI DFT DFT
4 DFT DFT DFT

The key question addressed in this study is how accurately one needs to compute

each ingredient in the quasi-harmonic model: the energies, crystal geometries, and the

phonon frequencies. Previous work has demonstrated that evaluating all three ingredients

with HMBI using large-basis MP2 often performs very well (subject to the well-known

limitations of MP2100), and even better results are obtained if the single-point energies are
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refined with a CCSD(T) treatment of the HMBI monomers and dimers. However, large-

basis correlated wave function method calculations can be computationally expensive. Here,

a systematic hierarchy of four different tiers of approximation is adopted, as summarized in

Table 4.1.

In Tier 1, all calculations are performed at the “High” level of theory—optimizing

the structures, computing the phonons, and in some cases refining the single-point energies

with correlated wavefunction methods via HMBI. Single-point energy refinement might in-

clude using larger basis sets, employing CCSD(T) or MP2C instead of MP2, or calculating

the many-body contributions from periodic HF instead of AMOEBA. AMOEBA models

electrostatics with atom-centered multipole moments up to quadrupoles, polarization with

self-consistently induced dipoles and a Thole damping model, and van der Waals via a

buffered 14-7 potential.238 Although Tier 1 performs well,26,105,106,108,109 it is computation-

ally demanding and quickly becomes impractical beyond several dozen atoms per unit cell

(assuming P21/c symmetry or similar).

Tier 2 replaces the single most computationally demanding portion of the calcu-

lation, the HMBI phonon frequency evaluation, with phonons at the “Low” level, periodic

DFT. Because harmonic frequency calculations require that the system geometry be at a

stationary point of the potential energy surface with respect to the atomic positions, Tier 2

structures optimized with HMBI then have their atomic positions relaxed with DFT while

the lattice parameters being held fixed at their HMBI values. This ensures real vibra-

tional frequencies while maintaining the (hopefully) more reliable HMBI unit cell. Because
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the unit cell is constrained, the DFT relaxation typically alters the atomic positions only

slightly.

A similar approach was previously used to predict pressure-dependent Raman spec-

tra for several phases of carbon dioxide in excellent agreement with experiment.26 In that

instance, the unit cell was first predicted at the quasi-harmonic HMBI MP2/CBS limit, and

then atomic positions were relaxed and Raman spectrum predicted at the HMBI MP2/aug-

cc-pVDZ level to reduce the computational cost of the phonon evaluation. Constraining

the cell at the dimensions predicted with the large basis set helped ensure the key lattice

phonon modes were reproduced correctly despite the small basis set.

Tier 3 seeks to reduce the computational costs further, performing all structure

optimizations and phonon frequency evaluations with periodic DFT. Only single-point en-

ergies are computed from wave function methods with HMBI. Depending on the electronic

structure method used for the monomers and dimers in the HMBI single-point energies, the

computational cost of Tier 3 can be only moderately higher than a pure DFT calculation

(Tier 4).

Our recent studies of crystalline methanol,108,109 which considered a complete basis

set (CBS) CCSD(T) HMBI treatment on geometries from either MP2/CBS HMBI (Tier 1)

or periodic PBE-D3 calculations (Tier 3). In the initial work,108 it was unclear how much

better Tier 1 was than Tier 3. For example, the sublimation enthalpy was more accurate

when computed from MP2 structures, while thermal expansion agreed more closely with

experiment when using the DFT structures. Subsequently, we recognized that AMOEBA

was overestimating the many-body contribution. Replacing that AMOEBA contribution
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with one computed from periodic HF in the final single-point energies significantly improved

the quality of the predictions using the MP2 geometries, while those using the PBE-D3

geometries became slightly worse.109 In the present work, examining several additional

crystals will provide further insights into the performance of Tier 3 models.

Finally, Tier 4 performs all calculations with periodic DFT. Many quasi-harmonic

studies in the literature already employ this approach. Here, Tier 4 provides a baseline for

assessing what, if any, improvement one finds upon incorporating energies, structures, or

phonons from correlated wavefunction techniques on top of DFT. Of course, many different

density functionals and dispersion corrections exist, and the results will depend somewhat

on the particular model choices.

Figure 4.1: The crystals modeled in this study.
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Figure 4.2: Comparison of predicted molar volumes from Tiers 1–4 approximations for
(a) carbon dioxide, (b) ice, (c) acetic acid, and (d) imidazole using MP2/aug-cc-pVTZ +
AMOEBA for the high-level calculations and B86bPBE-XDM for the low level ones. The
No QHA data refers to the electronic energy minimum, with no vibrational contribution.

4.2.3 Computational details

To evaluate the performance of the different hybrid tiers described in Section 4.2.2,

we return to the four small-molecule crystals whose thermal expansion was previously inves-

tigated with Tier 1:105,106 carbon dioxide phase I, ice Ih, acetic acid (orthorhombic phase),

and α imidazole (Figure 4.1). Initial crystal structures were taken from a low-temperature

experimental crystal structure of carbon dioxide,239 a zero net dipole 16-molecule supercell

of ice,240 a 278 K single crystal x-ray diffraction structure of acetic acid (Cambridge Crystal

Structure Database (CSD) reference code ACETAC01),241 and a 103 K neutron scattering

structure of imidazole (IMAZOL06).242 To investigate the performance on larger species,
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results are also presented for acetaminophen form I (monoclinic form) starting from a 20 K

neutron scattering structure (HXACAN13)11. Experimental temperature-dependent vol-

ume data was found in the literature for carbon dioxide,243 ice,244 acetic acid,241,245, and

imidazole.242,246,247 Enthalpy and entropy data for carbon dioxide,248–251 ice,252–254 acetic

acid,253,255,256 and imidazole257–259 were taken or derived from experimental data, as de-

scribed previously.106

All Tier 1 results here were taken from our earlier work in Ref 106. Those were

obtained by minimizing the Gibbs free energy (Eq 4.1) on the fly at each temperature with

quasi-harmonic evaluation of the phonon contribution. In that work, the Grüneisen pa-

rameters were computed by isotropically expanding and contracting the lattice by 10 Å3 in

order to approximate the derivative in Eq 4.4 via finite difference. Ice and carbon dioxide do

in fact expand nearly isotropically. The other two crystals exhibit slightly more anisotropic

expansion, so one might prefer an approach that estimates the Grüneisen parameters based

on anisotropic volume changes. Nevertheless, agreement between the predicted and exper-

imental volumes are fairly reasonable. Note that the PV term contributes negligibly at

ambient pressure and was neglected in all cases. Also, slight irregularities occur in some of

the Tier 1 thermal expansion results due to numerical convergence issues on the generally

flat energy surfaces.

For the new Tier 2–4 results here, a slightly different approach is taken. First,

energy versus volume curves E(V ) were mapped out as a function of volume, by minimizing

the HMBI or DFT energy of the cell under positive (cell compression) or negative pressure
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(cell expansion). The resulting E(V ) curve was fitted to the Murnaghan equation of state,

E(V ) = E0 +
B0V

B′0

[
(V0/V )B

′
0

B′0 − 1
+ 1

]
− B0V0

B′0 − 1
(4.6)

where E0, V0, B0, and B′0 are the fit parameters. E0 gives the electronic energy at the

minimum, V0 is the molar volume at the minimum energy, B0 is the bulk modulus, and B′0

is the first derivative of the bulk modulus with respect to pressure.

Next, the reference phonon frequencies and Grüneisen parameters were computed.

Instead of isotropically scaling the crystal volumes in the finite difference estimate of Eq 4.4,

frequencies were computed on the positive and negative pressure structures surrounding the

electronic energy minimum. This anisotropic estimate for the Grüneisen parameters should

provide a better description for how the phonons vary with volume. Using Eqs 4.3 and

4.5, the Helmholtz vibrational free energy Fvib was calculated as a function of volume for

various temperatures and cubically splined. Care was taken to ensure that explicit data

points extend outside the actual volume range to avoid spline artifacts in the region of

interest. Summing the fitted E(V ) and splined Fvib contributions (neglecting the PV term

at ambient pressure) gives the Gibbs free energy as a function of volume and temperature.

Minimizing G(V, T ) with respect to volume provides the optimal unit cell structure at that

temperature. Selected crystalline energy-volume curves, Helmholtz vibrational free energies,

and Gibbs free energies are provided in Appendix B Figures 1–4.

Enthalpy and entropy were computed from the same ingredients using the stan-

dard statistical mechanical expression. See Ref 105 for details. Similarly, standard ideal

gas, rigid rotor, and harmonic oscillator partition function expressions were used to eval-

uate thermochemical contributions for the gas phase species when computing sublimation
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enthalpies and entropies.

For HMBI, density-fitted MP2 were carried out in the Dunning aug-cc-pVXZ basis

sets (X = D, T, or Q, and abbreviated aXZ in some places) using Molpro v2012.1260 Because

MP2 has well-known problems with van der Waals dispersion, we also refined some single-

point energies with MP2C,261,262 also using Molpro. MP2C replaces the uncoupled HF

treatment of dispersion found in MP2 with an improved coupled Kohn-Sham treatment,

and it performs very well for non-covalent interactions.263 Because the MP2C dispersion

correction is less sensitive to basis set than MP2,264 the correction was computed in the

aug-cc-pVTZ basis set and then combined with MP2 in various basis sets (aug-cc-pVTZ

or larger). Extrapolation to the complete basis set limit from the triple and quadruple

zeta basis sets was performed in the usual fashion.265,266 All dimer calculations in HMBI

employed a counterpoise correction for basis set superposition error.

Most of the HMBI calculations used the AMOEBA force field for the long-range

and many-body contributions. These were evaluated using Tinker 7.1.267 Existing force

field parameters were used for water, acetic acid, and imidazole.238 Poltype268 was used

to generate parameters for carbon dioxide105 and acetaminophen. Only the intermolecular

force field parameters are needed in the context of HMBI, since intramolecular contributions

are treated quantum mechanically.

In select cases, single-point energies were refined with periodic Hartree-Fock and

the pob-TZVP basis,269 which is a variant of def2-TZVP adapted for periodic calculations,

and were performed using CRYSTAL09.270,271 Basis set superposition error is a potential

problem in Gaussian basis set calculations on periodic crystals, but addressing it in the
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context of the many-body calculations here is challenging. This basis was chosen here

because an earlier study found that many-body contributions in small molecular clusters

computed in the pob-TZVP basis set without counterpoise correction compared well against

those from in large basis sets.109 A 10−7 a.u. tolerance was used for the Coulomb overlap

threshold, Coulomb penetration threshold, and exchange overlap threshold, and tolerances

of 10−12 and 10−30 a.u. for the pseudo-overlaps (see Ref 271 for details). Monkhorst-

Pack and Gilat shrinking factors of 8 were used for the four smaller crystals, and 4 for

acetaminophen.

DFT calculations on carbon dioxide, ice, acetic acid, and imidazole were performed

using the periodic boundary planewave/pseudopotential and projector augmented wave

(PAW) approaches with an 80 Rydberg energy cutoff and 5×5×5 Monkhorst-Pack k-point

grid. For the larger acetaminophen crystal, a lower plane wave energy cutoff of 60 Ry and

1×3×3 k-point grid were used. DFT energies and gradients were computed with Quantum

Espresso v6.11,272 and Γ-point frequencies were produced by Phonopy v1.11.2.204 The BLYP

and B86BPBE PAW functionals for H, C, N and O were produced using A. Dal Corso’s

Atomic code v6.1. Most DFT results reported here were obtained using the B86bPBE

functional2,273 with the Becke-Johnson’s exchange-hole dipole method (XDM) dispersion

correction,4 which has performed well in earlier molecular crystal studies.130,233,274,275 Se-

lected results with other functionals, such as BLYP276,277 and PBE273 with the D2278 or

XDM dispersion correction are also presented.
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Figure 4.3: Comparison of predicted ice phonon frequencies predicted with MP2/aug-cc-
pVTZ + AMOEBA or from periodic B86bPBE-XDM.

4.3 Results and Discussion

The work here primarily focuses on phase I carbon dioxide, ice Ih, the orthorhombic

phase of acetic acid, and the α form of imidazole. These crystals exhibit diverse non-

covalent interactions, ranging from strongly cooperative hydrogen bonding to π systems

with significant van der Waals dispersion interactions. Ice and acetic acid are dominated

by hydrogen bonded interactions. Ice has the familiar hexagonal pattern and each molecule

accepting two and donating two hydrogen bonds (Bernal-Fowler rules), while the acetic

acid molecules form one-dimensional chains. Carbon dioxide is bound by a mixture of

electrostatics and dispersion, and the π-conjugated imidazole rings form one-dimensional

hydrogen-bonded chains with strong dispersion interactions between them.
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4.3.1 Molar volume and thermal expansion
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Figure 4.4: (a) While different density functionals predict somewhat different molar volumes
for carbon dioxide (Tier 4), the sensitivity of the predicted volumes decreases considerably
when (b) MP2 single-points are used on the DFT geometries (Tier 3), and (c) it decreases
further when only the DFT phonons are used (Tier 2).

To begin, we examine the performance of Tiers 1–4 on carbon dioxide, ice, acetic

acid, and imidazole. We previously examined these crystals with MP2 and various basis sets

(Tier 1).106 With counterpoise corrected dimer energies, smaller basis sets typically under-

estimate non-covalent attractions. For these crystals modeled with HMBI, this translates

to molar volumes being overestimated. In carbon dioxide or ice, for example, systemati-

cally increasing the basis set from aug-cc-pVDZ all the way to the complete basis set limit
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shrinks the molar volume, with the thermal expansion curves in the different basis sets

being relatively parallel to one another.106

The present study focuses on Tier 1 results at the MP2/aug-cc-pVTZ level for

a couple reasons. First, Tier 1 calculations require the energies, geometries, and phonons

all be computed at the MP2 level, which is computationally expensive. The aug-cc-pVTZ

basis set provides a practical compromise between basis-set completeness and computational

efficiency, making Tier 1 calculations feasible on species like acetic acid and imidazole.

Second, as shown in Figure 4.2, this level of theory predicts volumes for carbon dioxide, ice,

and acetic acid that are (fortuitously) in reasonably good agreement with experiment. MP2

performs worse for imidazole, since it exaggerates the van der Waals attractions between

the molecules, which translates to the underestimated volume seen in Figure 4.2. The Tier

1 results also generally reproduce the experimentally observed rate of thermal expansion.

Tier 2 replaces the MP2 phonons with ones calculated from DFT (B86bPBE-XDM

here). The MP2 phonon frequencies tend to differ moderately from the DFT ones, as shown

for ice in Figure 4.3. Most notably, MP2 predicts excessively large intramolecular frequencies

in the O-H stretching region. In inelastic neutron scattering experiments,279,280 these modes

occur in the range ∼3000–3500 cm−1, while MP2 predicts them to be several hundred wave

numbers higher in energy.281 DFT calculations provide a much better description of those

high-frequency modes. On the other hand, the slightly lower 500–1100 cm−1 range of the

MP2 librational modes is in better agreement with experiment than the DFT ones, which

are shifted about 100 cm−1 higher. Both models predict generally similar frequencies for

the HOH bending modes near 1600 cm−1 and pseudotranslational models below 400 cm−1.
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Figure 4.5: Impact of single-point HMBI energy refinement on the DFT predictions for (a)
carbon dioxide, (b) ice, (c) acetic acid, and (d) imidazole. Starting with (1) pure B86bPBE
(Tier 4), we (2) first refine to Tier 3 with MP2/aug-cc-pVTZ + AMOEBA. Further Tier 3
refinements are made by (3) replacing the AMOEBA many-body treatment with a periodic
HF one, (4) extrapolating MP2 to the complete basis set limit, and (5) correcting MP2 with
MP2C.

See Refs 281 and 282 for more discussion of MP2 and DFT prediction of inelastic neutron

scattering spectra in ice. MP2 and DFT phonon frequencies exhibited similar qualitative

behaviors relative to experiment in crystalline methanol.108 Errors in the high-frequency

modes will impact the zero-point vibrational energy contribution, but they have a much

smaller effect on thermal expansion. Differences in low frequency modes will have a bigger

impact on the thermal expansion.

When applied to quasi-harmonic thermal expansion, replacing the MP2 phonon

frequencies with DFT ones in Tier 2 introduces only a modest decrease in the quality of the
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predicted molar volumes. In ice, for example, moving from Tier 1 to Tier 2 with B86bPBE-

XDM phonons shrinks the molar volume by a few tenths of a cm3/mol. Increasing the MP2

basis set further would lead to further volume underestimation.106 For carbon dioxide, 0 K

volumes are similar with Tier 1 and 2, but the thermal expansion is underestimated at Tier

2.

The performance of Tier 3, which uses geometries and phonons computed with

B86bPBE-XDM, is generally very similar to Tier 2. The largest molar volume differences

occur for ice, where the two models differ by up to ∼1 cm3/mol. For acetic acid, they agree

very closely at low temperature, but differ by ∼0.5 cm3/mol near room temperature. The

differences between Tiers 2 and 3 are even smaller in the other two crystals.

However, Tier 3 ice exhibits the unusual feature that adding the zero-point vibra-

tional energy contribution (i.e. from “No QHA” to 0 K in Figure 4.2b) actually leads to a

0.1 cm3/mol lattice contraction, instead of the typical expansion. This does not occur for

Tier 4, which uses the same phonons. As shown in Appendix B Figure 2, the quasi-harmonic

B86bPBE-XDM vibrational free energy exhibits a shallow minimum at 18 cm3/mol. For

Tier 4 B86bPBE-XDM, the electronic energy minimum occurs at smaller volume, where

Fvib has negative slope, so adding the zero-point contribution leads to expansion. On the

other hand, the Tier 3 MP2 electronic energy minimum occurs above 19 cm3/mol, in the

regime where the B86bPBE-XDM vibrational free energy has a positive slope, and adding

zero-point vibrational energy drives an initial contraction. At higher temperatures, the Fvib

minima shift toward larger volumes, allowing expansion to occur in Tier 3. Interestingly,

this minimum in Fvib does not occur for MP2 phonons (Tier 1). In Tier 2, the minimum
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occurs at larger volumes and does not cause the contraction seen in Tier 3. In other words,

this behavior appears to be an unfortunate artifact of the Tier 3 combination of MP2 ener-

gies with DFT geometries and phonons. Nevertheless, the actual predicted molar volumes

are reasonable.

Finally, employing pure B86bPBE-XDM (Tier 4) also predicts the molar volumes

rather accurately. It significantly overestimates the molar volume in carbon dioxide, but

it performs well for the other three crystals. Notably, B86bPBE-XDM reproduces the

experimental molar volume in imidazole fairly well, where MP2 significantly overbinds the

crystal and underestimates the volume due to its well-known problems describing van der

Waals dispersion.283 That MP2 problem will be addressed below.

Interestingly, the Tier 2 and 3 (and to a lesser extent Tier 4) results here tend

to exhibit less thermal expansion than Tier 1. One possible explanation could be that the

former included only Γ-point phonons, while the Tier 1 results from Ref 106 include lattice

dynamical phonon dispersion. We previously showed that including phonon dispersion

increased the predicted rate of thermal expansion.105 Supercell phonon calculations quickly

become computationally demanding in DFT. With the fragment HMBI approach, on the

other hand, they can be performed with very little additional cost over the Γ-point only

calculation, since the unique additional contributions in the supercell are handled at the

MM level. Other more subtle factors involving the interplay between the E(V ) curves

and Fvib contributions likely contribute as well. In acetic acid, for instance, the Tier 2

model expands more rapidly with temperature than Tier 3, despite both neglecting phonon

dispersion.

95



Ice Ih is unusual in that it exhibits negative thermal expansion, with the volume

contracting by around 0.06% between 10 K and 70 K, before expanding. Most of the models

studied here reproduce this trend qualitatively, though fewer are quantitatively correct.

We previously found that Tier 1 MP2/CBS + AMOEBA predicts a slight contraction of

only 0.1% and at at a lower 40 K. Interestingly, a different MP2-based fragment study284

also predicted the contraction in the aug-cc-pVDZ and aug-cc-pVTZ basis sets, though

they found that MP2 exaggerated the contraction and predicted the minimum at higher

temperatures. The discrepancy between those results and our earlier ones might result from

the use of counterpoise correction in our work, which leads to underbinding of the crystal,

versus no counterpoise correction in Ref 284, which will lead to overbinding. Counterpoise

correction will impact the balance between the key hydrogen bonding phonon modes and

hydrogen stretching modes.

Here, we examine how the hybrid approaches behave. Appendix B Figure 5 plots

the relative molar volumes at low temperature for several representative methods from

Tiers 2, 3, and 4. While Tier 2 MP2/aug-cc-pVTZ + AMOEBA demonstrates negligible

contraction of the lattice, the Tier 3 and Tier 4 results perform somewhat better. They

correctly predict the location of the minimum near 60–70 K, but they underestimate the

amount of contraction at only 0.02–0.03%.

Taken together, these results reiterate that dispersion-corrected density functionals

like B86bPBE-XDM can predict thermal expansion well. Tier 1 MP2 molar volumes and

thermal expansion often differ from the DFT ones, but refining the single-point energies with

MP2 already corrects for much of that difference. Such single-point energy refinements can
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be achieved with relatively modest additional computational cost. The further advantages

of Tier 2 or Tier 1 for molar volumes are somewhat smaller, and will not be computationally

worthwhile for predicting structural parameters in many applications.

Of course, these results represent only the B86bPBE-XDM functional. Additional

insight is obtained by considering the behavior of Tiers 2–4 with several different density

functionals and either the XDM or D2 dispersion correction. Figure 4.4a plots the pre-

dicted thermal expansion with four different functionals: BLYP-D2, PBE-D2, PBE-XDM,

and B86bPBE-XDM. The functionals overestimate the 0 K molar volume by ∼10–15%, and

the rate of thermal expansion differs considerably between the D2 and XDM dispersion cor-

rections. Models corrected with D2 generally predict larger thermal expansion than those

employing XDM. Because they derive their dispersion coefficients directly from electronic

structure dispersion models like XDM, Tkatchenko-Scheffler (TS),71 or many-body disper-

sion (MBD),73–75 are generally expected to be superior to a purely empirical correction

like D2.68 The D3 or D4 models,69,70 which adapts the dispersion coefficients based on

the chemical environment would provide a better comparison, but those are not currently

implemented in Quantum Espresso.

Regardless, focus not on the performance of specific density functionals and/or

dispersion corrections, but rather what happens when ingredients from those functionals

are used in Tier 2 or 3 calculations. As shown in Figures 4.4b, simply refining the cal-

culations with MP2 single point energies (Tier 3) dramatically reduces the sensitivity of

the calculations to the density functional used to optimize the structures and compute the

phonons. At Tier 2, where only the phonons are obtained from DFT, the sensitivity of the
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predicted molar volumes to the functional decreases further. Additional sensitivity data is

provided in Appendix B Figures 6 and 7. These results suggest that although the DFT ge-

ometries defining the E(V ) curve clearly differ from each other and the MP2/aug-cc-pVTZ

ones, single-point energy refinement renormalizes much of the variations among them and

gives E(V ) curves in generally good agreement with one another. In this context, it is also

worth noting that density functional tight binding proved successful in modeling the ther-

mal expansion in carbamazepine, and this could provide another route to low-cost phonons

for Tiers 2 and 3.235

Given the good performance and relatively low computational cost of using HMBI-

refined single-point energies with DFT optimizations and phonons (Tier 3), the next ques-

tion is to see how reliably one can predict the molar volumes by further improving the

quality of the HMBI single-point energies. These energies can be refined in three ways.

First, one might increase the basis set size from aug-cc-pVTZ to the complete basis set

limit via a triple-zeta/quadruple-zeta extrapolation. The counterpoise-corrected energies

tend to underestimate the interactions in small basis sets, leading to overestimation of the

molar volume.106

Second, one could replace the AMOEBA many-body treatment with one from

periodic HF. Recent work found that AMOEBA overestimates many-body polarization

associated with the cooperative hydrogen bonding in crystalline methanol, and refining the

energetics with periodic HF proved important for obtaining the correct phase diagram.109

Similar over-polarization is found for AMOEBA treatments of ion-water interactions.285
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Strong polarization effects are present in several of the crystals here, so there could be

appreciable benefits to periodic HF refinement here as well.

Third, MP2 exhibits well-known problems with the treatment of van der Waals

dispersion.283 Among the four crystals here, this is most apparent for imidazole, where

MP2 substantially overbinds the lattice energy101,103 and underestimates the molar vol-

ume (see Figure 4.2d).106 Ideally, one would correct this problem by replacing MP2 with

CCSD(T). However, dispersion-corrected MP2C261,262 provides a more pragmatic approach

which corrects most of the MP2 error in these crystals at much lower computational cost.264

Figure 4.5 examines this hierarchy of refinements for the four crystals. As seen in

the earlier discussion of Figure 4.2, switching from (1) pure B86bPBE-XDM (Tier 4) to (2)

Tier 3 MP2/aug-cc-pVTZ + AMOEBA single-point energies leads to a substantial change

in the predicted molar volumes, usually toward smaller unit cells (the slight volume increase

in ice is the exception). (3) Replacing the AMOEBA many-body contribution with periodic

HF increases the molar volume. For carbon dioxide, ice, and acetic acid, the effect is fairly

small. For imidazole, on the other hand, it increases the volume by ∼9%. As expected,

(4) increasing the MP2 basis set toward the CBS limit induces a volume contraction of

∼0.4 cm3/mol in ice and around 1 cm3/mol in the other three crystals. With the exception

of imidazole, the MP2/CBS + periodic HF predicted volumes are slightly smaller than

experiment. Surprisingly, in imidazole, the MP2/CBS + periodic HF volumes agree very

well with experiment, despite MP2’s overestimation of the lattice energy. In all four cases,

(5) MP2C weakens the binding and shifts toward larger molar volumes. Unsurprisingly, the
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largest corrections are observed for carbon dioxide and imidazole, while hydrogen bonded

ice and acetic acid are less affected by the dispersion correction.

Overall, the combination of MP2C/CBS + periodic HF energies on B86bPBE-

XDM geometries and phonons predicts the highest-temperature experimental molar volumes

of carbon dioxide, ice, and acetic acid to within 1–2%. For imidazole, the errors are 2% or

3.5%, depending on which high-temperature experimental structure one compares against.

Finally, notice that the different possible Tier 3 single-point energy refinements considered

here all predict similar thermal expansivity (curves (2)–(5) in Figure 4.5 are largely parallel).

The most significant variations manifest as shifts in the 0 K molar volume. This reflects that

while the minimum of the E(V ) curves shifts upon single-point energy refinement, changes

to the potential energy well curvature are apparently minor (see Appendix B Figure 8).

4.3.2 Thermochemical data

Table 4.2: Root-mean-square error (in kJ/mol) between predicted and experimental sub-
limation enthalpies over the temperatures for which experimental data is available (see
in Figure 4.6). Errors were computed by splining the data curves and taking differences
between them at 1 K intervals.

Temperature Tier 3 Tier 3 Tier 4
Crystal Range MP2/CBS+pHF MP2C/CBS+pHF B86bPBE-XDM

Carbon Dioxide 0–195 K 1.7 2.1 4.2
Ice 10–265 K 2.5 1.9 8.9

Acetic Acid 50–278 K 1.3 1.0 5.6
Imidazole 90–283 K 9.2 0.9 2.6

A key reason for modeling thermal expansion in molecular crystals is to predict

temperature-dependence of other crystal properties. Accordingly, we consider the enthalpy

and entropy of sublimation for these four crystals. Experimental values were taken and/or
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Figure 4.6: Comparison of predicted sublimation enthalpies for (a) carbon dioxide, (b) ice,
(c) acetic acid, and (d) imidazole using Tier 1 (T1) MP2/aug-cc-pVTZ + AMOEBA, Tier
4 (T4) B86bPBE-XDM, and Tier 3 (T3) with several different energy refinements.

derived from the literature as described in Refs 106 and 105. Quantitative experimental

uncertainties are not readily available for the thermochemical properties presented here.

The temperature-dependent results were frequently derived using data from a variety of

sources that did not always report uncertainties. Moreover, different studies do not always

agree (e.g. reported room-temperature sublimation enthalpies for imidazole differ by several

kJ/mol286). Crystalline defects in the experimental solids can also play a role. Forming

a point defect is typically an endothermic process, but it also leads to a gain in entropy.

Quantifying the impact of the various factors here is difficult, but one should probably allow

for uncertainties of up to a few kJ/mol in the sublimation enthalpies, for example.
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Figure 4.6 compares sublimation enthalpies as predicted with several of the tech-

niques described in the previous section against experiment. Given the relatively small

improvements in molar volume provided by Tier 2 over Tier 3, the discussion here focuses

primarily on Tiers 3 and 4. Unless otherwise mentioned, all DFT results in this section

employ B86bPBE-XDM.

As temperature increases, the sublimation enthalpy ∆Hsub = Hgas−Hcrystal typi-

cally first increases before reaching a maximum and then decreasing. Heating increases Hgas

via destabilizing translational, rotational, and PV contributions. Hcrystal derives from a

balance between the thermal expansion and the vibrational contributions, but it is typically

dominated by lattice energy destabilization due to thermal expansion. Little thermal ex-

pansion occurs in the crystal at low temperatures, and the ∆Hsub increases due primarily

to the gas contribution in that temperature regime. At higher temperatures, however, the

larger thermal expansion in the crystal eventually leads to the increase in Hcrystal becoming

more significant than the changes in Hgas, which produces the maximum and subsequent

decrease in ∆Hsub seen for carbon dioxide, acetic acid, and imidazole. In ice, this maximum

does not occur below the melting point due to the low thermal expansivity. See Ref 106 for

more detailed discussion of the enthalpy behaviors.

Earlier Tier 1 work105,106 demonstrated that changing the electronic structure

method and basis set shifts the entire sublimation curves vertically but has minor impact

on the curvature. Larger basis sets in particular shift the enthalpy toward larger values.

Obtaining the proper maximum and subsequent decrease of the sublimation enthalpy at

higher temperatures requires capturing thermal expansion correctly. A simple harmonic
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model that neglects thermal expansion agrees well with the quasi-harmonic result at low

temperatures, but it overestimates the enthalpy at higher temperatures by about 1 kJ/mol

in these crystals. Ice proves the exception: since it exhibits comparatively little thermal

expansion, the error introduced in ∆Hsub by neglecting that expansion at 273 K is negligible.

In the present work, the Tier 2-3 results frequently underestimate the amount of

thermal expansion compared to Tier 1. In Figure 4.6, this underestimated thermal expan-

sion manifests in the Tier 3 MP2/aug-cc-pVTZ + AMOEBA sublimation enthalpy (red

curve) being too large at higher temperatures, analogously to what was observed for the

harmonic model.106 Nevertheless, those Tier 3 results generally mimic the Tier 1 ones to

within 1–2 kJ/mol across the full temperature range.

Refining Tier 1 by increasing the basis set size to the CBS limit, applying the

MP2C dispersion correction, and replacing AMOEBA with periodic HF does not resolve

the issue of the erroneous slope in ∆Hsub at higher temperatures. Nevertheless, MP2C/CBS

+ periodic HF results (orange curve) provide excellent agreement with experiment across

the temperature range, with root-mean-square (rms) errors ranging 0.9–2.1 kJ/mol for the

four crystals (Table 4.2). Applying the dispersion correction in MP2C has minimal impact

on hydrogen-bonded ice and acetic acid, but it alters the sublimation enthalpies in carbon

dioxide and imidazole considerably (compare green vs. orange curves). In our earlier work,

Tier 1 MP2/CBS and CCSD(T)/CBS both overestimated the sublimation enthalpy for

carbon dioxide, with CCSD(T) predicting a slightly smaller ∆Hsub.
105,106 Here, it appears

that MP2C over-corrects the MP2 result, with the net result of slightly increasing the rms
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error from 1.7 to 2.1 kJ/mol. On the other hand, MP2C performs very well for imidazole,

reducing the rms error in ∆Hsub from 9.2 kJ/mol (MP2) to 0.8 kJ/mol (MP2C).

Compared to the best Tier 3 MP2C results, the errors for B86bPBE-XDM are 2–3

times larger for carbon dioxide and imidazole, where van der Waals dispersion contributes

appreciably, and 5–6 times larger for acetic acid and ice, which are dominated by hydrogen

bonding interactions (Table 4.2). Notably, B86bPBE-XDM performs very well for imidazole,

which is problematic for MP2. Overall, the sublimation enthalpy data here bolsters the case

for Tier 3 single-point energy refinement with MP2C/CBS + periodic HF on top of the DFT

structures and phonons.
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Figure 4.7: Comparison of predicted sublimation entropies for (a) carbon dioxide, (b) ice,
(c) acetic acid, and (d) imidazole using Tier 1 MP2/aug-cc-pVTZ + AMOEBA, Tier 4
B86bPBE-XDM, and Tier 3 with several different energy refinements. Experimental entropy
data is unavailable for imidazole.
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Next, consider prediction of the sublimation entropy. Whereas Hcrystal is domi-

nated by the lattice energy and therefore sensitive to the final single-point energy, Scrystal

is governed by the phonon frequencies. Tiers 2–4 all compute the phonons with DFT. The

improved energies in Tier 2 or Tier 3 will alter the predicted volume at a given temperature,

which in turn impacts the phonons via their volume dependence (Eq 4.5).

Like for the enthalpy, the temperature dependence of the sublimation entropy

∆Ssub(T ) = Sgas(T ) − Scrystal(T ) arises from a competition between the entropy of the

gas phase and the crystal phase.106 At low temperatures, Sgas(T ) rises more quickly with

temperature. At higher temperatures, the situation reverses, with Scrystal(T ) increasing

more quickly due to the phonon contribution. Together, these produce the overall concave

shape of ∆Ssub(T ). If thermal expansion is not accounted for, the phonon frequencies tend

to be too large, and Scrystal(T ) will be too small. This causes overestimation of the entropy

at high temperatures.

Here, the thermal expansion is frequently underestimated relative both to experi-

ment and Tier 1 calculations. This translates to consistent overestimation of ∆Ssub(T ) by

up to 10–12% relative to experiment at high temperatures (Figure 4.7). In cases like ice

and acetic acid, where the volume is not too sensitive to specific method used for Tier 3

energy refinement, the variation in predicted sublimation entropies is fairly small across the

different energy models. Larger variations are observed among the different Tier 3 models

for imidazole and and carbon dioxide, commensurate with the greater sensitivity of the

molar volumes to the modeling approach in those crystals. Overall, in marked contrast to

the molar volumes and sublimation enthalpies, Tier 3 energy refinement does not clearly
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improve the quality the underlying DFT entropies. The same can be said for Tier 2 (not

shown), since the Tier 2 and 3 sublimation entropies differ by less than 1%.

Calculating phase transition temperatures provides another means of assessing

predicted thermochemistry values, since the transition temperature can be sensitive to sub-

tle changes in the Gibbs free energy.105,106,109 Computing the Gibbs free energy accurately

requires balance between the enthalpic and entropic components, which may or many not

be maintained in the hybrid approaches.

Experimentally, carbon dioxide sublimes at 194.7 K and atmospheric pressure.249

Table 4.3 summarizes predicted sublimation temperatures with several different methods.

Large-basis Tier 1 MP2 and CCSD(T) perform excellently, predicting the sublimation tem-

perature of 5 degrees Kelvin of experiment. In smaller basis sets, it underestimates the

sublimation temperature. At the other extreme, B86bPBE-XDM underestimates the sub-

limation temperature by almost 40 K. Tier 3 refinement at the MP2 level improves the

predicted sublimation temperature somewhat, though the Tier 3 temperatures are ∼10 K

lower than the corresponding Tier 1 ones. As noted earlier, MP2C seemingly over-corrects

MP2, to the detriment of the predicted sublimation temperature. The ∼30 K error in the

MP2C/CBS + periodic HF sublimation temperature is only modestly better than that of

B86bPBE-XDM.
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Figure 4.8: Predicted acetaminophen molar volumes versus temperature. The connected
dark gray points indicate data from a temperature-dependent neutron scattering study,11

while light gray points represent other experimental data points found in the CSD.

4.3.3 Acetaminophen form I

To investigate how well these models perform in a pharmaceutically relevant

species, Figure 4.8 plots thermal expansion data for acetaminophen. Twenty two exper-

imental crystal structures of ambient pressure form I have been reported in the CSD. While

most of the reported molar volumes exhibit reasonable agreement, a wide ∼4 cm3/mol

scatter exists in the reported room temperature values. Seven of the structures (those

connected with a line in Figure 4.8) come from a single temperature-dependent neutron

scattering study.11 The discussion below focuses primarily on this consistent set of neutron

scattering data.

Given the large size of acetaminophen (C8H9NO2 and Z = 4 in form I), calcu-

lations were only performed at Tiers 3 and 4. Tiers 1 and 2 would require substantially
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more computational effort. With a predicted molar volume of 115.6 cm3/mol at 20 K, Tier

4 B86bPBE-XDM overestimates the experimental molar volume of 111.6 cm3/mol (HX-

ACAN1311) by 3.6%. It also significantly underestimates the thermal expansivity, with

the B86bPBE-XDM molar volume increasing only 1.3% versus 3.8% experimentally. The

combination of overestimated volume at low temperature and underestimated thermal ex-

pansivity leads to much smaller errors in the molar volumes at high temperatures, e.g. only

1% error at 330 K (HXACAN1911).

Switching to Tier 3 with MP2/aug-cc-pVTZ + AMOEBA leads to a considerable

reduction in the molar volume to 109.65 cm3/mol, which is in somewhat better agreement

with experiment (1.7% error at 20 K). However, the underestimated thermal expansivity

persists, and the volume at 330 K is underestimated by 4.4%. Moving toward the CBS

limit, replacing MP2 with MP2C and AMOEBA with periodic HF both shift back toward

larger molar volumes, but they have little impact on the thermal expansivity. In the end,

the MP2C/CBS + periodic HF volumes are fairly close to experiment, especially at low

temperatures (0.8% error at 20 K), but they underestimate the volume by 1.6% at 330 K

due to the low thermal expansivity.

Next, we turn to the form I acetaminophen sublimation enthalpy and entropy.

Perlovich and co-workers measured ∆Hsub(298K) = 117.9±0.7 kJ/mol from vapor pressure

measurements,287,288 while Picciochi at al subsequently obtained 129.9±1.4 kJ/mol from a

combination of vapor pressure measurements and microcalorimetry experiments (and they

proposed a slight refinement of Perlovich’s value to 118.9 ± 1.6 kJ/mol).289 The ∼10 kJ/mol

discrepancy between the experimental values is significantly larger than the reported 1–2
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kJ/mol experimental uncertainties. The quasi-harmonic calculations here can address this

discrepancy.

Table 4.4 compares the predicted and experimental room-temperature sublimation

enthalpies. Tier 4 B86bPBE-XDM predicts 131.0 kJ/mol, which lies within the stated

uncertainty in Picciochi et al’s value of 129.9 ± 1.4 kJ/mol. MP2 predicts a sublimation

enthalpy that is up to 23 kJ/mol higher, but employing MP2C/CBS + periodic HF reduces

this enthalpy to 138.0 kJ/mol. This is 8 kJ/mol larger than the Picciochi et al experimental

value. Some of this overestimation may stem from the underpredicted thermal expansion,

as seen for acetic acid and imidazole earlier. In any case, both the MP2C and B86bPBE-

XDM results support the larger 129.9 ± 1.4 experimental sublimation enthalpy instead of

the smaller 117.9 ± 0.7 kJ/mol value.

Finally, Perlovich et al reported a sublimation entropy of 190 ± 2 J/(mol K)

at 298 K. Tier 4 B86bPBE-XDM and various Tier 3 refinements all predict much larger

values of 240–246 J/(mol K). Overestimation of the sublimation entropy is expected based

on the results for the other crystals described above and by how much the predictions

underestimate the thermal expansion. Still, this ∼25% disagreement between theory and

experiment is significantly larger than the ∼10–12% seen in the smaller crystals. On the

other hand, it is not clear how reliable the reported experimental entropy value is, since it

was derived from the sublimation enthalpy measurement287 which is suspect in light of the

Picciochi et al experiments289 and our calculations here.
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4.4 Conclusions

The combination of fragment-based correlated wavefunction electronic structure

techniques and quasi-harmonic approximations can be very successful in predicting thermal

expansion and other properties, at least for rigid-molecule crystals. On the other hand,

dispersion-corrected DFT models also often perform well at appreciably lower computa-

tional cost. By comparing a hierarchy of models ranging from pure DFT to pure MP2,

we have demonstrated that introducing correlated wavefunction energies on top of DFT

geometries and phonons can appreciably improve predicted molar volumes and enthalpies.

One must ensure, however, that the single-point energies are well-chosen, which in practice

means employing large basis sets and accounting for any deficiencies in the models (e.g. by

replacing MP2 with MP2C for the monomer and dimer contributions or AMOEBA with

HF for the many-body contributions).

In the small molecule crystals, the hybrid Tier 3 approach led to predicting molar

volumes to within a few percent and sublimation enthalpies to within 1–2 kJ/mol of exper-

iment over broad temperature ranges. Though more computationally expensive than pure

DFT approaches, such single-point energy refinement can be performed on crystals con-

taining dozens of atoms per molecule, especially when crystal symmetry can be exploited.

Using these techniques, we demonstrated that the predicted sublimation enthalpy for ac-

etaminophen agrees better with the more recent experimental value of Picciochi et al than

the earlier reported value.

Issues remain, however. The hybrid approaches that combine DFT and wavefunc-

tion techniques do not appreciably improve the predicted entropies, since those are largely
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governed by phonon contributions. We also found that the hybrid calculations here gen-

erally underestimate the amount of thermal expansion. In the smaller crystals the impact

was modest, but it becomes more significant in acetaminophen. Acetaminophen also exhib-

ited considerably larger 8 kJ/mol errors in the predicted sublimation enthalpy than for the

smaller crystals. Accounting for phonon dispersion might help, but anharmonicity or other

factors may also play an important role. More testing in larger, more flexible molecules is

needed to assess the performance of the quasi-harmonic approach. Efficient and effective

strategies for addressing anharmonicity would be especially valuable.

Moreover, though the performance of the hybrid approaches is quite good, it may

not always be sufficient. The imbalances between the enthalpy and entropy appreciably

increased the error in the predicted carbon dioxide sublimation temperature, for example.

More dramatically, in our recent study of the methanol phase diagram,109 even a half

kJ/mol error in the relative free energies between two polymorphs shifts the phase transition

temperature by ∼100 K. For such challenging properties, more reliable and computationally

demanding Tier 1 approaches may be needed.
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Table 4.3: Comparison of experimental and predicted sublimation temperatures for carbon
dioxide.

Tier Method Tsub (K)

Experimenta 194.7
Tier 1 MP2/aDZ + AMOEBAb 163.6
Tier 1 MP2/aTZ + AMOEBAb 185.3
Tier 1 MP2/aQZ + AMOEBAb 193.4
Tier 1 MP2/CBS + AMOEBAb 199.2
Tier 1 CCSD(T)/CBS + AMOEBAb 201.0
Tier 3 MP2/aTZ + AMOEBA 174.2
Tier 3 MP2/CBS + pHF 186.6
Tier 3 MP2C/CBS + pHF 165.7
Tier 4 B86bPBE-XDM 157.5

a Ref 249 b Ref 105

Table 4.4: Comparison of experimental and predicted 298 K sublimation enthalpies
(kJ/mol) and entropies (J/(mol K)) for acetaminophen form I.

Method Source ∆Hsub (298 K) ∆Ssub (298 K)

Perlovich et al Ref 287,288 117.9 ±0.7 190 ± 2
Picciochi et al Ref 289 129.9 ± 1.4

B86bPBE-XDM Tier 4 131.0 242.1
MP2/aTZ+AMOEBA Tier 3 146.4 245.6

MP2/aTZ+pHF Tier 3 147.4 244.8
MP2/CBS+pHF Tier 3 154.1 246.3

MP2C/CBS+pHF Tier 3 138.0 243.9
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Chapter 5

Investigating the phase transition

of α− and β− Resorcinol

In Chapter 4 a hierarchy of models for calculating the quasi-harmonic approxima-

tion (QHA) was introduced. It was found that we can compute the geometries and phonons

of the crystal using density functional theory (DFT) and perform single point energy cor-

rections to find the volume of the crystal using a more robust method (most promisingly:

dispersion-corrected second-order Møller-Plesset perturbation theory (MP2) and periodic

Hartree-Fock with large basis sets). Compared to performing the entire calculation using

pure MP2, this leads to minor loss in chemical accuracy and provides a necessary increase

in the speed of computation. Additionally, employing this method increases the system size

we can feasibly simulate to over 100 atoms per central unit cell, allowing us to simulate

pharmaceutically-relevant molecular crystals. In this chapter employ this new tiered-QHA

to predict the phase transition properties of α- and β-resorcinol.
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5.1 Introduction

Resorcinol is a long-studied crystal with the first two phases (α− and β−phase)

resolved by Robinson et al in 1936 using X-ray diffraction.290 Both phases are stable at

ambient pressure and share the same Pna21 space group, with α found to be the ther-

modynamically stable polymorph. The β form, despite being the denser polymorph, is

considered to be meta-stable to the α form, and it and will eventually transform back into

the α polymorph over time. The α → β phase transition occurs upon heating of the α

polymorph at ambient pressure, with the most reliable transition temperature at 369 ±

6 K reported by Ebisuzaki et al in 1987.291 This transition can also be achieved by com-

pressing the α−polymorph at pressures ∼ 0.5 GPa.292 The transition temperature depends

strongly both on the rate of heating and the rate of pressurization implying that kinetics

plays a large role in this transition.291–294 Kichanov et al have reported the existence of

the α−polymorph in pressures reaching up to 4.0 GPa and the β−polymorph as high at

5.6 GPa.292 A plethora of experimental information regarding the Raman spectra exists as

well as a few studies on thermodynamic properties of each polymorph.291–293,295–297 Two

other high-pressure polymorphs had been reported for resorcinol (γ and δ) however neither

of these crystal structures have been resolved.292,294

Until very recently, it was thought that only α− and β− polymorphs could be ob-

served at atmospheric pressure. However, in 2016 Zhu et al published a joint computational

crystal structure prediction and experimental study confirming the existence of one addi-

tional phase of resorcinol at atmospheric conditions (ε−phase) and suggested there might

be a fourth as well.298 They reported that the ε−phase is always grown concomitantly with
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other phases and is always polycrystalline, which made experimental synthesis challeng-

ing. They also reported that, despite the relative simplicity of the molecule, the modeling

was challenging, requiring both a re-parameterized force-field (as was previously needed by

Chatchawalsaisin et al) and harmonic phonons to achieve correct stability ranking of these

polymorphs.299

Recently, Červinka and Beran conducted a first-principles study on the methanol

phase diagram which achieved the best agreement to date between predicted and experimen-

tal phase diagrams.109 However, computing the methanol phase diagram required resolving

free energy differences of ∼0.5 kJ/mol accuracy and had a computational cost of about

300,000 CPU hours. Here we attempt employ the tiered-QHA method that was developed

in Chapter 4 to model the phase-transitions of resorcinol. This system will be an ideal

test of whether we can retain the sub-kJ/mol accuracy required for phase diagram predic-

tion for moderately sized organic molecules. Ideally, our goal would be to model the full

phase diagram including the confirmed ε−phase and the as-yet unconfirmed P21 structure

to establish the stability region of each of these polymorphs. To begin, we first focus on

phase transition of α− and β−resorcinol. As was forewarned by Zhu et al, the system is

surprisingly challenging. We report the most accurate modeling to date (to our knowledge)

of the unit cell volumes for both polymorphs at low pressures. However, inconsistencies in

simulated thermodynamic properties suggests that further work must be done to resolve

the relative free energies of these crystals.
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5.2 Theory

For this study we will use the hybrid Tier 3 QHA approach that was established in

Chapter 4 to simulate the Gibbs free energies. Specifically, we combine DFT structures and

harmonic phonons with and single-point energy (SPE) corrections that refine the electronic

energy surface up to the desired level of theory. In the small molecule crystals, the hybrid

Tier 3 approach led to predicting molar volumes to within a few percent and sublimation

enthalpies to within 1–2 kJ/mol of experiment over broad temperature ranges. Refer to

Chapter 4 for further details.

Previously the electronic energy surfaces were fitted to a Murnaghan equation of

state curve in order to minimize the amount of volumes that are needed to properly sample

the Gibbs free energy. While this approach readily captured the basin of the electronic

energy curve, thermal expansion to high temperatures were found to introduce up to 2

kJ/mol error in the predicted minima of the Gibbs free energy surface. To correct this error,

we instead choose to explicitly sample more of the electronic energy surface, increasing the

volumes that need to be sampled explicitly from 10 to 20-30.

We wrote a MATLAB script to compute the Helmholtz vibrational free energy

at every volume sampled on the electronic energy surface using mode-specific Grüneisen

parameters. The Gibbs free energy curve is computed by summing the electronic energy

curve, the Helmholtz vibrational energy curve, and the PV term at any given pressure and

temperature. Since the volume which minimizes the free energy for a given temperature

and pressure is unlikely to correspond to one of the explicitly sampled volumes, each free

energy curve is fitted to a weighted double-Murnaghan equation of state. The Murnaghan
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equation of state is given by,

G(V ) = G0 +
B0V

B′0

[
(V0/V )B

′
0

B′0 − 1
+ 1

]
− B0V0

B′0 − 1
(5.1)

where G0, V0, B0, and B′0 are the fit parameters. G0 gives the free energy at the minimum,

V0 is the molar volume at the minimum energy, B0 is the bulk modulus, and B′0 is the first

derivative of the bulk modulus with respect to pressure. This method identifies the free-

energy minimum effectively while avoiding artifacts that can be caused by simpler equation

of state fits or splines.108

5.3 Computational details

Structures for both α− and β−resorcinol (RESORA03 and RESORA08 respec-

tively) were taken from the Cambridge structural database (CSD). Each structure was

initially optimized to its electronic minimum using DFT. An electronic energy surface was

then mapped out using isotropic pressure, and single point energy corrections were then

employed to corrected the potential energy surface up to the desired level of theory. Each

structure was then subsequently expanded to a chosen temperature and pressure using the

QHA protocol outlined in section 5.2.

5.3.1 DFT structure optimizations

For the calculations performed here, the crystals were first optimized with peri-

odic boundary/planewave DFT in Quantum Espresso v6.1, using the B86bPBE density

functional and the exchange-hole dipole method (XDM) dispersion correction.2–4,201 Core

electrons were treated according to the projector augmented wave (PAW) approach, and
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PAW potentials for H, C, and O were produced using A. Dal Corso’s Atomic code v6.1.202

Optimizations were carried out using a 50 Ry planewave energy cutoff. Reciprocal space

k-points were placed with a Monkhorst-Pack grid with a 1x1x3 grid for α−resorcinol and

a 3x1x3 grid for β−resorcinol.203 Γ-point harmonic vibrational frequencies were computed

using finite difference with Phonopy v1.11.2.204 Predicted room-temperature lattice pa-

rameters are compared against the available experimental parameters from Reference 292

(Appendix C Section 1).

5.3.2 Single-point energy corrections

Single-point energy corrections were calculated using using the Hybrid Many-Body

Interaction model (HMBI) v2.0 (available on github https://github.com/gberan/HMBI).94–96

Density-fitted MP2 was carried out in the Dunning aug-cc-pVXZ basis sets (X = D, T, or

Q) using Molpro v2012.1260 Because MP2 has well-known problems with van der Waals

dispersion, we also refined the single-point energies with MP2C, also using Molpro.261,262

MP2C replaces the uncoupled HF treatment of dispersion found in MP2 with an improved

coupled Kohn-Sham treatment, and it performs very well for non-covalent interactions.263

Because the MP2C dispersion correction is less sensitive to basis set than MP2, the correc-

tion was computed in the aug-cc-pVTZ basis set and then combined with MP2 in various

basis sets (aug-cc-pVTZ or larger).264 Extrapolation to the complete basis set limit from

the triple and quadruple zeta basis sets was also performed.265,266 All dimer calculations in

HMBI employed a counterpoise correction to account for basis set superposition error.

The long-range and many-body correction in the HMBI energies were calculated

with either the atomic multipole optimized energetics for biomolecular applications (AMOEBA)
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force field or periodic Hartree-Fock (pHF) and the pob-TZVP basis.269 The AMOEBA

contributions were evaluated using Tinker 7.1 and the pHF calculations were done using

CRYSTAL17.267,270,300 Poltype was used to generate force field parameters for both forms of

resorcinol.268 For the AMOEBA calculations only the intermolecular force field parameters

are needed in the context of HMBI, since intramolecular contributions are treated quantum

mechanically. The pob-TZVP basis is a variant of def2-TZVP adapted for periodic calcula-

tions, and was chosen here because an earlier studies found that many-body contributions

in small molecular clusters computed in the pob-TZVP basis set without counterpoise cor-

rection compared well against those from in large basis sets.107,109 Basis set superposition

error is a potential problem in Gaussian basis set calculations on periodic crystals, but

addressing it in the context of the many-body calculations here is challenging. A 10−7 a.u.

tolerance was used for the Coulomb overlap threshold, Coulomb penetration threshold, and

exchange overlap threshold, and tolerances of 10−12 and 10−30 a.u. for the pseudo-overlaps

(see Ref 300 for details). Monkhorst-Pack and Gilat shrinking factors of 6 6 6 were used.

5.4 Results and Discussion

Section 5.4.1 examines the effect correcting the potential energy surface up to

different electronic structure theory levels has on the predicted molar volumes for each

structure. Section 5.4.2 investigates the the predicted phase transition and the predicted

thermodynamic properties at ambient pressure. Section 5.4.3 more closely investigates the

predicted free energies of both polymorphs calculated at the MP2C/CBS+pHF level and

the sensitivity of this phase transition.
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5.4.1 Assessment of thermal expansion

To begin, we investigate the quality of the predicted molar volumes for both poly-

morphs relative to experiment at different potential energy surfaces. Upon applying the

quasi-harmonic approximation, both structures can be expanded to any desired pressure

and temperature. First we examine the quality of the predicted volumes at a fixed pres-

sure. Figure 5.1 plots the thermal expansion of both structures. For the α phase, the

volumes are computed at 0.0 GPa which is comparable to ambient pressure (10−4 GPa)

while the β volumes are computed at 0.09 GPa which is consistent with the experimental

conditions.292
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Figure 5.1: Predicted volume-expansion for α− and β-resorcinol. The α−polymorph is
displayed in x’s while the β-polmorph is displayed in dots.

Looking first at the α polymorph, it is clear that all the predicted volumes are

too small. It is well known that Γ−point phonons do not achieve sufficient sampling of the
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low-frequency modes which drives the thermal expansion of the crystal at high tempera-

tures. Accounting for phonon dispersion has been shown previously to help address some of

the systematic underexpansion that is seen in modeling small molecule crystals.106,107 Typ-

ically this is addressed by calculating a supercell of the molecular crystal which increases

the amount of reciprocal space that is evaluated directly. Unfortunately these calculations

are computationally intensive and convergence of the acoustic modes can be challenging to

achieve. Nonetheless, MP2C/CBS+pHF clearly has the best agreement with the experimen-

tal volumes with the largest error only at 0.9%. Volumes computed at the B86bPBE-XDM

level (i.e. no correction to the potential energy surface) also performs acceptably well with

a maximum error only 1.5% relative to experiment. Surprisingly, MP2C/CBS+AMOEBA

performs the worst with a maximum over 2.7% error in the predicted volumes.

For the β-polymorph both DFT and MP2C/CBS+pHF predict volumes that are

too large, while MP2C/CBS+AMOEBA again systematically underestimates molar vol-

ume. This leads to maximum errors in the predicted volumes of 2.1%, 0.7%, and 2.0%

for DFT and MP2C/CBS+pHF, and MP2C/CBS+AMOEBA respectively. While the

MP2C/CBS+AMOEBA volumes would benefit from better sampling of the phonon modes,

it is likely that the DFT and MP2C/CBS+pHF would deviate further away from experi-

ment.

Overall, for both polymorphs the volumes calculated at the MP2C/CBS+pHF level

achieve the closest agreement with experimental volumes. Achieving 0.7%-0.9% accuracy

with experiment is on par with previous studies which employed coupled cluster theory cal-

culations on small molecules.105,106 However, those calculated at the MP2C/CBS+AMOEBA
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level perform poorly. Given that the only difference in these potential energy surfaces is the

many-body contribution this could indicate a failure to capture some of the higher-order

interactions accurately. While the shape of the expansion is qualitatively correct for both

polymorphs the narrow temperature window makes it difficult to say if this was fortuitous

or not.

Next we investigate the quality of the predicted volumes at a fixed temperature.

Figure 5.2 maps out the predicted volumes for both polymorphs in a pressure window from

0 to 5 GPa with the temperature fixed at 300 K. Experimental values are pulled from

reference 292 and we compare our predictions against a previous study done by Drużbicki

et al (Ref 295) which simulated the volumes using planewave PBE-TS. For the work done by

Drużbicki only harmonic corrections were employed, hence their structures can be thought

of as being simulated at 0 K.

 440

 460

 480

 500

 520

 540

 560

 580

 0  1  2  3  4  5

V
o

lu
m

e
 (

A
n

g
3
)

Pressure (GPa)

B86bPBE-XDM
MP2C/CBS + AMOEBA

MP2C/CBS + pHF
PBE-TS Drużbicki
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Figure 5.2: Equation of state curves for a) α-resorcinol and b) β-resorcinol.

Looking first at the overall trends for both polymorphs in the low pressure regime

(0-1 GPa), once again the volumes calculated at the MP2C/CBS+pHF level achieve the
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best agreement with experiment with both polymorphs predicted to be only slightly under-

estimated. The volumes calculated at the B86bPBE-XDM level also perform well, despite

the inconsistent prediction with the α polymorph too small and the β polymorph too large.

The volumes predicted at the MP2C/CBS+AMOEBA level are underestimated with the

β polymorph contracted by almost 15 Å3 at 0 GPa. While these volumes are no worse

than the volumes previously predicted using PBE-TS, the inclusion of thermal expansion

typically yields better performance than the harmonic approximation.

Beyond the 0-1 GPa pressure regime all predicted volumes eventually become too

large. Furthermore, near 4 GPa it is clear that all predicted volumes, regardless of the

method, begin to converge to the same value. This is consistent with previous results

showing that inclusion of thermal expansion matters less in the high-pressure regimes.105

Given how consistent the volume errors are at high pressures, this is either an inherent

limitation of the method or the experimental equation of state curves need to be revisited.

Overall none of the current methods are able to qualitatively preserve the shape of the

equation of state curves. It is possible that inclusion of phonon dispersion could help

correct the volumes for both polymorphs at low pressures. Nonetheless all three of our

current methods achieve better agreement with experiment in the 0-1 GPa than PBE-TS.

Given that the phonon contributions are computed solely at the DFT level, the

primary differences in the predicted volumes shown here come from the electronic energy

surfaces. It is expected that the different potential energy surfaces will shift the electronic

minima and, at times, affect the curvature of the expansion and compression branches.

Figure C.1 plots the electronic energy surface for both polymorphs at all simulated levels of
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theory. Poorly sampled electronic energy surfaces can introduce noise when attempting to

predict the minimum volume on each Gibbs surface. For this reason a fine grid of volumes

was sampled for both polymorphs to ensure that the free energy basin is free of artifacts. In

Appendix C.3, we show for both polymorphs that the Gibbs free energy surface is smooth

and continuous over a wide range of pressures and temperatures.

5.4.2 Predicted thermodynamic properties

Having seen that we have reasonable agreement in our molar-volume predictions

at low pressures, we now investigate the predicted phase-transition in the 0-1 GPa regime.

In Figure 5.3 we plot predicted phase transition temperatures from 0 to 1 GPa at various

levels of theory. Our predicted phase-transition line is compared against experimental

data pulled from reference 292. The phase transition was produced by monitoring the

proton spin-lattice relaxation time using Free Induction Decay (FID) amplitudes. In the

experiment they report the existence of a mixed state where the β−polymorph nucleates

in the α−polymorph due to a temperature or pressure induced transition. Eventually this

seed spreads throughout the rest of the crystal to complete the phase transition. However,

the mixed state is somewhat long-lived with a mixed α + β state existing for 120 minutes

at 315 K. Note that our prediction is purely a thermodynamic transition and hence will

always exhibit a sharp phase boundary. Prediction of the experimentally observed mixed

state would require accounting for the kinetics of the phase transition.

Surprisingly, despite consistently giving the best prediction of the molar volumes,

MP2C/CBS+pHF performs poorly, overestimating the phase transition temperature at 0
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Figure 5.3: Predicted phase-transition between α− and β-resorcinol.

GPa by 150 K. The predicted phase-transition temperature remains surprisingly high at

all pressures, indicating that the free energy of the α polymorph is over-stabilized relative

to the β-polymorph. The predicted phase transition for B86bPBE-XDM is 50 K closer to

experiment with a predicted phase transition temperature of 266 K relative to Ebisuzaki’s

369 K at 0 GPa. Unsurprisingly, MP2C/CBS+AMOEBA gives the worst phase-transition

curve with the β polymorph grossly over-stabilized, causing the phase transition curve to

only exist between 0 and 0.15 GPa. As there have been α to β transitions reported up to

3.2 GPa, this is prediction is clearly inaccurate.

A closer examination of the thermodynamics of transition adds further confu-

sion to this story (see Table 5.1). Looking first at the predicted enthalpy of transition,

MP2C/CBS + AMOEBA surprisingly performs the best relative to experiment despite
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Table 5.1: Thermodynamic data for the α to β phase transition of resorcinol

Method ∆Hα−β ∆Sα−β Temp.
(kJ/mol) (J/(mol K)) (K)

Ebisuzaki et.al.291 1.370 ± 0.007 3.71 ± 0.05 369 ± 6
B86bPBE-XDM 2.353 8.82 266

MP2C/CBS + pHF 7.756 14.93 519
MP2C/CBS + AMOEBA 0.737 4.80 153

having the worst agreement in the transition temperature. B86bPBE-XDM also provides

a reasonable enthalpy of transition with only 1.0 kJ/mol error relative to experiment. Un-

fortunately, MP2C/CBS+pHF appears to be surprisingly wrong with over 6 kJ/mol error.

Given the over-stabilization of the α phase that is seen using this method some error was

expected. However, previous studies have shown MP2C at the complete-basis set limit nor-

mally gives energy descriptions that are on par with coupled cluster benchmarks.301 In the

methanol paper Červinka and Beran reported an error of only 0.23 kJ/mol in the α → β

enthalpy of transition relative to experiment using benchmark calculations.109 A recent

study on acetamidomenzamide using MP2C/CBS+pHF also reported accurate predicted

enthalpies of transitions for the β → α transition (-2.4 kJ/mol, vs -1.9 and -2.9 experimen-

tally).302 Given that acetamidomenzamide is a far more complex system involving intra-

and inter-molecular interactions, this error in the MP2C/CBS+pHF enthalpy of transition

is disconcertingly large.

Looking next at the predicted entropy of transition, MP2C/CBS+AMOEBA again

significantly outperforms the other methods with only a 1 J/(mol K) error relative to ex-

periment. B86bPBE-XDM doubles this error and MP2C/CBS+pHF more than quadruples

it. Since the entropy of transition is governed by harmonic phonons it is expected that this

value can only feasibly be improved by better phonon sampling or a drastic change in the
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predicted volumes. However, given that the entropy of transition at ambient temperatures

(T*dS) is ∼0.3 kJ/mol and chemical accuracy is considered to be 2 kJ/mol, this value is

well below what most methods report confidence in, hence any agreement with experiment

here can be thought of as fortuitous.
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Figure 5.4: Predicted enthalpy of sublimation for α−resorcinol.

Finally, enthalpies of sublimation were computed for α−resorcinol using the stan-

dard statistical mechanical expression (see Figure 5.4). See Ref 105 for details. Experi-

mental values are taken from references 297 and 296. Standard ideal gas, rigid rotor, and

harmonic oscillator partition function expressions were used to evaluate thermochemical

contributions for the gas phase species.

The sublimation enthalpy is derived from ∆Hsub = Hgas − Hcrystal. Upon in-

creasing temperature the sublimation enthalpy typically first increases before reaching a
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maximum and then decreasing. At low temperatures, little thermal expansion occurs in the

crystal and the ∆Hsub increases due primarily to the gas contribution in that temperature

regime. At higher temperatures, the larger thermal expansion in the crystal eventually

leads to the Hcrystal becoming larger than Hgas, which produces the maximum and subse-

quent decrease in ∆Hsub. B86bPBE-XDM once again performs consistently well, achieving

almost 3 kJ/mol error relative to the more recent experimental value found by Goncalves et

al.296 The higher errors seen for MP2C/CBS+pHF and MP2C/CBS+AMOEBA indicate

that the crystal form is being overstabilized relative to the gas phase hence requiring more

energy to force the sublimation to occur.

Overall, B86bPBE-XDM performs consistently better on predicted thermody-

namic properties than MP2C/CBS+pHF despite having a poorer prediction in the molar

volumes. One obvious question is whether this could be a breakdown of the tiered-QHA

method. Put another way, does the tiered-QHA give good prediction of volumes but not

energies due to the mixing of methods. Previous predictions on small molecules using the

hybrid-Tier 3 method have shown that enthalpies of sublimation can be predicted within

1-2 kJ/mol relative to both experiment. Furthermore, direct comparison of calculating the

QHA using pure MP2/aTZ+AMOEBA (Tier 1) with the DFT structures SPE-corrected

up to the same level (Tier 3) showed almost perfect agreement between the methods for

both volumes and enthalpies of sublimation making this option unlikely.107 Instead it seems

more likely that there exists a problem in the MP2C/CBS+pHF electronic energy surface.
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5.4.3 Sensitivity of the MP2C/CBS+pHF phase-transition line

Given that MP2C/CBS+pHF gave the best agreement in the predicted molar

volumes, it is somewhat surprising to see it perform so poorly on the predicted phase

transition temperatures. To examine the cause of this further we plot the relative change

in the Gibbs free energies and enthalpies for both the α and β polymorph at 0.0, 0.5, and

1.0 GPa (see Figure 5.5). All energies are plotted relative to the α polymorph.
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Figure 5.5: Relative free energies at MP2C/CBS+pHF for α− and β-resorcinol at a) 0.0
GPa, b) 0.5 GPa, and c) 1.0 GPa.

At 0 GPa (approximately ambient pressure) there is a large offset of 3.79 kJ/mol

between the Gibbs free energy of the α and β polymorphs. The enthalpies also appear to
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have a large offset which grows increasingly larger as the temperature increases. The en-

thalpies never cross, indicating that it is an entropy-driven phase transition. This explains

the higher temperatures that are needed to overcome both the initial 0 K enthalpy differ-

ences and the branching enthalpies at higher temperatures. At 0.5 GPa the offset in the

free energies between the two polymorphs narrows to 2.08 kJ/mol lowering the predicted

transition temperature from 519 K to 455 K. By 1 GPa there is already almost no difference

in the Gibbs free energy (0.44 kJ/mol) at low temperatures leading to an early transition

temperature of 163 K. The enthalpies are also almost degenerate over the entire temperature

range although they do branch away from each other slightly at higher temperatures.
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Figure 5.6: Sensitivity of the predicted phase-transition between α− and β-resorcinol cal-
culated at the MP2C/CBS+pHF. Indicated values are the amount by which the free energy
of the α polymorph is destabilized.

Given these results it is clear that a more accurate phase transition temperature

would be obtained if the initial 0 K enthalpy difference were smaller. To estimate the level
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of accuracy required to correctly resolve this phase transition we can examine the sensitivity

of the phase transition. In Figure 5.6 we examine the effect of artificially destabilizing the

α-polymorph and the effect this has on the predicted phase transition temperature. We find

that by destabilizing the α polymorph by a mere 1.75 kJ/mol we are able to achieve almost

perfect agreement with the experimental prediction! While this is most-likely achievable

by inclusion of more high-level electronic structure theory, pursuing this route can be cost-

prohibitive.

5.5 Future directions

Unfortunately resorcinol is a challenging system to model as was first noted by Zhu

et al.298 While the results presented here represent a good starting point, inconsistencies in

which methods predict accurate volumes and those that predict accurate thermodynamic

properties relative to known experimental values indicate that more work is needed. DFT

has consistently performed acceptably well, predicting the enthalpy of transition, sublima-

tion enthalpies, and the phase boundary all with reasonable errors relative to experiment.

However, this performance is somewhat fortuitous, with consistent volume errors indicat-

ing a deeper problem in prediction. Furthermore, benchmark dimer calculations show that

MP2C performs considerably better than B86bPBE-XDM (by 2 kJ/mol for one key dimer).

Single-point energy correcting the electronic energy surface up to MP2C/CBS+pHF

gives a better prediction of the molar volumes but a poorer prediction of thermodynamic

properties. The question remains as to what must be done to further correct the elec-

tronic energy surface in the post-DFT models. As the sensitivity analysis in Figure 5.6 has
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shown, accurate prediction of the phase transition temperatures requires a method capable

of resolving <2 kJ/mol errors in the free energy surface.

Ideally one would simply calculate the electronic energy surface using coupled

cluster theory with perturbative triples (CCSD(T)) at the complete basis set limit as this

is currently the gold standard in modeling. However, this is not practical given that the

computational cost of these calculations scale steeply with system size, and the large number

of dimers (5,000+) that would need to be calculated this is undesirable. Instead, predicting

the dimers using MP2.5 (the average of MP2 and MP3) may be more computationally

tractable as this has been found to provide a more balanced treatment of both many-body

polarization and dispersion, reproducing CCSD(T) benchmarks faithfully.262,303,304

As the many-body correction seemed to play a significant role in the predicted

phase transition temperature, further correction of the many-body contribution may be

necessary (i.e. either Hartree-Fock and/or the pob-TZVP basis set may not adequately

capture the many-body interactions). One way to address this issue is to forcibly expand

the amount of interactions that are calculated at the high-level energy surface by includ-

ing trimer interactions. Podeszwa et al used SAPT-DFT to predict the lattice-energy of

crystalline benzene and found that 3-body dispersion interactions contributed ∼3 kJ/mol

to the lattice energies.305 As resorcinol is structurally similar to benzene, it is expected

that this could also be a relevant correction for our system. Work investigating the role of

3-body dispersion interactions is on-going. Initial estimates suggest that the missing 3-body

dispersion contributions could account for much of the remaining discrepancy between the

predicted MP2C/CBS+pHF and experimental sublimation enthalpies. The DFT calcula-
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tions we performed here neglect these contributions, lending further evidence that there is

something fortuitous with the B86bPBE-XDM predictions.

Entropy is expected to play a large role in the predicted phase transition prop-

erties, but the low-frequency phonons which contribute most to this term are currently

under-sampled as we have only computed harmonic phonons for the central unit cell. As

the entropic contribution to the Helmoholtz vibrational energy drives the thermal expan-

sion at high-temperatures this can also help address some of the slightly smaller volumes

that are seen for the α−polymorph. Typically, one accounts for phonon dispersion by per-

forming a lattice dynamics calculation on a molecular crystal supercell which increases the

amount of reciprocal space that is evaluated directly. However, the acoustic modes tend to

become imaginary bands if a supercell of insufficient size is computed. As the relative free

energy differences at finite temperatures are governed primarily by low frequency modes it

is essential to converge these acoustic bands.

Hoja and Tkatchenko had previously found that a supercell of at least 15 Å in each

direction is required to resolve all imaginary bands.306 We attempted the direct-supercell ap-

proach for supercells of size 2x2x2 and 2x2x3 representing a supercell with at least 10 Å and

15 Å. Unfortunately despite the larger size a number of imaginary modes remain. While

it is possible that computing a 3x3x3 supercell would converge these imaginary modes, a

supercell of this size pushes the limit of what can reasonably be modeled and hence has not

been attempted in this study.

Predicting the phase diagram of any system is challenging. There are a number of

factors that go into the prediction (geometries, phonons, electronic energies) and there are
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small tolerances for errors in prediction. The successful prediction of the methanol phase

diagrams required that all these factors come together to give with less than 0.5 kJ/mol

error in the relative free energies. Sensitivity analysis showed that the predicted phase

transition boundaries showed drastic changes with small scaling of the phonons.109 Our

fragment-based calculations have clearly improved key parts of the modeling relative to the

DFT calculations, but in doing so, it appears that some of the error cancellation has been

disrupted. This leads to a worse prediction of the sublimation enthalpy phase transition

temperature.
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Chapter 6

Conclusions

In summary we have demonstrated how crystal structure prediction methods can

be used to support arguments that carbon dioxide phases III and VII are actually the same

phase. The crystal structure prediction USPEX was able to successfully generate phases I,

II, and VII, along with 22 other potential structures within 10 kJ/mol of the most stable

one. However, none of the other structures has a simulated powder X-ray diffraction pattern

that is plausibly consistent with experimental phase III. In fact, the best match amongst the

generated structures came from the phase VII one. While the possibility that the crystal

structure prediction search simply failed to generate phase III cannot be ruled out, the

absence of other viable phase III structures combined with other predicted structural and

spectroscopic data suggest that phase III and VII are in fact the same.

We have also demonstrated how the quasi-harmonic approximation (QHA) can

be used to refine isotropic nuclear magnetic resonance (NMR) chemical shift predictions

for molecular crystals. Employing the QHA recovers most or all of the chemical shift error
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accrued by neglecting the thermal expansion of the crystal. Indeed, the accuracy of chemical

shifts computed using quasi-harmonic room-temperature structures rivals what is obtained

for shifts computed with the experimental unit cell parameters. However, the impact of

QHA thermal expansion on chemical shifts can be quite variable. No clear relationship

between the quality of the structural agreement and the chemical shift errors was found,

nor does the magnitude of the change of the chemical shifts upon thermal expansion seem

to correlate strongly with the amount of thermal expansion that occurs. Certain functional

groups appeared to benefit more from the QHA treatment. In particular, functional groups

which exhibit less dynamic flexibility (such are aromatic or carboxylate groups) tend to

benefit more from the QHA treatment. While it is difficult to know a priori what effect

employing QHA thermal expansion can have, it has been shown in select cases to increase

the discrimination between candidate structures that were generated via crystal structure

prediction and can even alter how one might assign predicted chemical shifts.

We have also introduced a tiered-QHA which compared a hierarchy of models

ranging from pure DFT to pure MP2. We have demonstrated that introducing correlated

wavefunction energies on top of DFT geometries and phonons (Tier 3) can appreciably

improve predicted molar volumes and enthalpies. One must ensure, however, that the

single-point energies are well-chosen, which in practice means employing large basis sets

and accounting for any deficiencies in the models (e.g. by replacing MP2 with MP2C or

MP2D115 for the monomer and dimer contributions or AMOEBA with HF for the many-

body contributions). In the small molecule crystals, the hybrid Tier 3 approach led to

predicting molar volumes to within a few percent and sublimation enthalpies to within 1–2
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kJ/mol of experiment over broad temperature ranges.

Finally, we have attempted to employ this hybrid Tier 3 approach to simulate the

phase-transition properties of α and β−resorcinol. We report the most accurate modeling

to date (to our knowledge) of the unit cell volumes for both polymorphs at low pressures.

However, the thermodynamic properties are inconsistently modeled using this method, in-

dicating that further corrections are required. In order to achieve almost perfect agreement

with the experimental prediction, the phase transition requires a sub-2 kJ/mol energy cor-

rection, indicating that further refinement of the models will be required. Correction of

the method to include trimer interactions and potentially CCSD(T) dimer calculations will

most likely be needed to fully converge the electronic energy surface.

The hybrid approaches that combine DFT and wavefunction techniques do not

appreciably improve the predicted entropies, since those are largely governed by phonon

contributions. We also found that the hybrid calculations generally underestimate the

amount of thermal expansion. Accounting for phonon dispersion has been shown previ-

ously to help address some of the systematic underexpansion that is seen in modeling small

molecule crystals. Typically this is addressed by calculating a supercell of the molecular

crystal which increases the amount of reciprocal space that is evaluated directly. How-

ever, the acoustic modes tend to become imaginary bands if a supercell of insufficient size

is computed. As the relative free energy differences at finite temperatures are governed

primarily by low frequency modes it is essential to converge these acoustic bands. Hoja

and Tkatchenko had previously found that a supercell of at least 15 Å in each direction

is required to resolve all imaginary bands.306 Especially for electronic structure methods a
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supercell of this size pushes the limit of what can reasonably be modeled.

Occasionally it becomes necessary to evaluate effects beyond the quasi-harmonic

approximation. For example, anharmonicity and dynamic sampling of the system may also

play an important role in accurate thermodynamical modeling of these crystals. However,

efficient and effective strategies for addressing anharmonicity are difficult to come by. Hoja

and Tkatchenko have previously estimated anharmonic vibrational free energies by substi-

tuting the harmonic oscillators with Morse oscillators which changed the relative stabilities

by 1 kJ/mol on average.306 More accurate anharmonic free energies can be obtained by us-

ing vibrational self-consistent field approach307–309 or path-integral molecular dynamics.222

As the computational cost for evaluating these effects grows substantially with system size

it is recommend to evaluate said effects only when it is necessary to resolve sub-kJ/mol

energy differences or when attempting to accurately model nuclear quantum effects.

Overall, the new tiered-QHA method has demonstrated excellent performance for

predicting the molar volumes of each crystal at any desired level of theory at a fraction

of the cost.107 This opens up a number of exciting applications in the field of Raman and

solid state NMR studies. While there is still the question as to how well it can predict

thermodynamic properties, the problems with resorcinol appear stem from not predicting

higher order interactions at the quantum mechanical level rather than a problem with the

tiered method. Provided these problems can be resolved, this model should be applied to

systems where the full phase diagram is unknown.

One future application of this method could be to conduct a crystal structure pre-

diction study and use this method to predict the thermodynamic stability of each structure.
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While one such attempt has already been done on the stable polymorphs of nitrogen, appli-

cation to pharmaceutically relevant molecules would be particularly interesting.310 Perhaps

another future application could be participation in a future crystal blind test. One appli-

cation that should be explored is attempting to simulate systems that are expected to break

this tiered-QHA method in order to establish clear boundaries of where and where not to

apply this method. For example, an application on molecules that exhibit large amounts

of intra-molecular bonding interactions and/or conformational flexibility are expected to

break this model.

Like all methods there are areas where improvement is needed. Currently, the

electronic potential energy surface is generated by optimizing the reference structure under

isotropic pressure to allow the unit cell volume to deform naturally. However, as it is difficult

to know a priori what volume each pressure will give generate this often requires a number

of extra calculations which can be wasteful. Future work implementing constant volume

optimization techniques (like the ones that exist in the VASP program) would go a long

way towards addressing this problem.311

Evaluation of harmonic phonons beyond the Γ−point is a clear challenge. Cur-

rently, evaluation of supercells is extremely RAM intensive, making this calculation a sig-

nificant bottleneck in all future endeavors. One possibility that should be explored is the

use of more approximate levels of theory to compute phonons such as density-functional

tight binding (DFTB). While some attention to detail may be needed to ensure a smooth

transition from the phonons computed using DFT and those computed using DFTB, pro-

vided such a method was developed, evaluation of extended supercells at the DFTB level
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would likely still be cheaper than the evaluation of the Γ−point phonons at the DFT level.

However, whether such techniques can retain the sub-kJ/mol accuracy required for phase

diagram prediction remains to be seen.
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[127] C. Červinka, M. Fulem, R. P. Stoffel, and R. Dronskowski, J. Phys. Chem. A 120,

2022 (2016).
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[147] D. Soĺıs, M. B. Ferraro, and J. C. Facelli, J. Mol. Struct, (2002).

[148] C. M. Breneman and K. B. Wiberg, J. Comp. Chem. 11, 361 (1990).

153



[149] A. J. Stone, Chem. Phys. Lett. (1981).

[150] A. Stone and M. Alderton, Mol. Phys. 56, 1047 (1985).

[151] A. J. Stone, J. Chem. Theory Comput. (2005).

[152] P. P. Ewald, Annalen der Physik (1921).

[153] J. D. Hartman and G. J. Beran, Solid State Nuclear Magnetic Resonance 96, 10

(2018).

[154] C. S. Yoo, Phys. Chem. Chem. Phys. 15, 7949 (2013).

[155] V. Iota and C. S. Yoo, Phys. Rev. Lett. 86, 5922 (2001).

[156] C. Yoo, H. Kohlmann, H. Cynn, M. Nicol, V. Iota, and T. LeBihan, Phys. Rev. B 65,

1 (2002).

[157] J.-H. Park, C. S. Yoo, V. Iota, H. Cynn, M. F. Nicol, and T. Le Bihan, Phys. Rev. B

68, 014107 (2003).

[158] S. A. Bonev, F. Gygi, T. Ogitsu, and G. Galli, Phys. Rev. Lett. 91, 065501 (2003).
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Appendix A

Improving Predicted Nuclear

Magnetic Resonance Chemical

Shifts Using the Quasi-Harmonic

Approximation

Section A.1 shows violin plots for the errors obtained by fully optimizing a larger

13C and 15N test set which had been used in previous studies12. Sections A.2.1 and A.2.2

provides sensitivity analysis on the linear regression fit parameters used in this study. Sec-

tion A.3 provides the experimental and predicted chemical shift data that is analyzed in

Chapter 3. Section A.4 displays the thermal expansion curves of every structure that was

thermally expanded using the quasi-harmonic approximation (QHA). Section A.5 provides

a visual analog to the tabular data displayed in Chapter 4.2. Section A.6 gives detailed his-
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tograms which display how individual chemical shifts are improved by thermal expansion.

Section 7A.7 provides the predicted 1H, 13C, and 15 N isotropic chemical shifts, and the

thermal expansion curves related to the 5 theophylline structures that were taken from the

Emsly’s 2013 PCCP paper.134 Section A.8 provides the Mercury RefCodes that are used to

create Figure 3.1.

A.1 Fully optimized crystals vs. Fixed cell optimizations

Previous studies have employed a larger test set than our current study (169 13C

isotropic chemical shifts and 52 15N isotropic chemical shifts compared to our 68 and 28

respectively).104 While it could be possible to test the effects of employing the QHA on

this entire set, the computational cost associated with doing so make this undesirable.

Instead we model only a subset of the systems from the larger test set. The use of smaller

benchmark sets might introduce some biases into the data. To get an idea of the difference

in the errors statistics between the full set from the earlier work and the smaller subset used

here, Figure A.1 compares the full optimization of the structures present in the 13C and

15N sets to their fixed cell optimizations. Like in Chapter 3 the chemical shifts for the full

optimization are taken from a previous study.12 The trends for the full set in Figure A.1

are consistent with the trends seen in the chosen smaller subset in Chapter 3.
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Figure A.1: Distribution of errors relative to experiment over a) 169 13C chemical shifts for
25 molecular crystals and b) 52 15N chemical shifts for 25 molecular crystals. Root-mean-
squared errors relative to experiment are displayed below each distribution.
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A.2 Sensitivity of fits analysis

Throughout Chapter 3 a linear regression scheme is used to map between the

computed absolute chemical shieldings σi and the experimentally observed chemical shifts

δi,

δi = Aσi +B (A.1)

The regression parameters A and B were taken from Ref 12. The specific model parameters

used to calculate the chemical shifts in that work are identical to the ones used here, but the

geometry optimization protocols differed slightly. That work employed fixed experimental

lattice parameter optimizations on a set that includes all twenty crystals in the benchmark

here plus many additional structures. Those crystal structures were optimized in Quantum

Espresso v6.0 with PBE-D2, an 80 Ry kinetic energy cutoff, ultrasoft pseudopotentials, and

a 5x5x5 Monkhorst-Pack k-point grid.

In the present study, those regression parameters were employed for the No QHA,

0 K, and 300 K QHA structures. To ensure the regression parameters are transferable here

we tested two additional linear regression fits (see Table A.1): (1) fitting directly on the

300 K quasi-harmonic (QHA) optimized structures and (2) fitting to structures optimized

with B86bPBE-XDM and fixed cells. Since the previous fit will give optimal performance

at the known experimental volumes, the first fit tests how close to the “optimal volumes”

the 300 K QHA structures are. While there is a slight change in the slope and intercept

when fitting against the 300K structures the effect on the test set remains minimal (See

Figure A.2).

The second fit compares the impact of changing the density functional and asso-
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ciated parameters (dispersion correction, basis set, k-point grid, etc) used to perform the

fixed cell optimizations. Once again, the regression slopes and intercepts change only min-

imally. In other words, the regression models used are appropriate despite changes in the

geometries and structure optimization protocols.

Table A.1: Comparison of regression models for three different fits of Eq A.1.12

Nucleus Geometries Used in Fit Slope Intercept
13C 300 K QHA -0.9617 179.11

B86bPBE-XDM Fixed Cell -0.9645 179.49
PBE-D2 Fixed Cell (Ref 12) -0.9658 179.48

15N 300 K QHA -1.0044 195.07
PBE-D2 Fixed Cell (Ref 12) -1.0106 197.46
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A.2.1 300 K fit
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Figure A.2: Distribution of errors relative to experiment over a) 68 13C chemical shifts for
12 molecular crystals and b) 28 15N chemical shifts for 14 molecular crystals. Root-mean-
squared errors relative to experiment are displayed below each distribution.
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A.2.2 B86bPBE-XDM vs. PBE-D2 Fixed cell opt.
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Figure A.3: Distribution of errors relative to experiment over a) 169 13C chemical shifts
for 25 molecular crystals. Root-mean-squared errors relative to experiment are displayed
below each distribution.
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A.3 Raw Chemical Shift Data

A.3.1 All QHA structures

Table A.2: Comparison of the experimental and predicted

13C isotropic chemical shifts for the Fully optimized

structure (No QHA), QHA-expanded to 0 K (0 K), QHA-

expanded to 300 K (300 K), and the fixed cell optimiza-

tion (Expt. Cell). Calculations were done according to the

method in Sec. 3.3.3 in Chapter 3. The assigned functional

group is displayed before the shifts.

Crystal Functional Expt. Shifts Expt. Cell No QHA 0 K 300 K

Group Isotropic (ppm) (ppm) (ppm) (ppm) (ppm)

HXACAN13 Aromatic 152.30 151.13 150.06 150.63 151.21

Aromatic 116.40 115.25 115.41 115.06 115.05

Aromatic 120.60 119.81 120.54 120.07 119.64

Aromatic 133.10 131.57 131.38 131.59 131.42

Aromatic 123.40 123.16 123.76 123.16 122.94

Aromatic 115.70 115.04 115.10 115.09 114.76

Amide 169.80 169.90 169.61 170.06 170.11

Alkane 23.80 25.59 26.73 26.28 25.74

GLYCIN03 Carboxylate ion 176.20 179.00 178.59 178.21 178.00

α-C 43.50 43.69 43.64 43.76 43.84
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Crystal Functional Expt. Shifts Expt. Cell No QHA 0 K 300 K

Group Isotropic (ppm) (ppm) (ppm) (ppm) (ppm)

LALNIN12 Carboxylate ion 176.80 180.74 180.24 179.90 179.83

α-C 50.90 51.41 51.18 51.68 51.87

Alkane 19.80 20.90 20.60 20.59 20.70

LSERIN01 Carboxylate ion 175.10 177.84 177.09 176.77 176.65

α-C 55.60 55.57 55.41 55.69 55.88

Alcohol 62.90 64.26 64.20 63.99 63.89

LTYROS11 Carboxylate ion 175.42 178.80 178.95 178.53 178.24

Aromatic 131.04 130.61 131.13 130.88 130.69

Aromatic 116.42 116.90 117.72 117.00 116.56

α-C 56.41 56.82 56.68 57.16 57.39

Aromatic 130.34 130.80 130.23 130.27 130.27

Aromatic 118.02 118.73 119.55 118.96 118.59

Aromatic 155.62 155.34 154.51 155.00 155.18

Alkane 36.80 38.09 37.85 37.87 37.91

Aromatic 123.64 122.01 122.42 122.62 122.65

SUCROS04 Ether 93.30 92.75 91.67 92.28 92.54

Alcohol 66.00 64.94 64.69 64.99 65.10

Alcohol 73.70 73.15 72.74 72.98 73.07

Ether 102.40 103.37 102.56 103.11 103.41

Alcohol 72.80 72.08 72.01 72.34 72.45
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Crystal Functional Expt. Shifts Expt. Cell No QHA 0 K 300 K

Group Isotropic (ppm) (ppm) (ppm) (ppm) (ppm)

Alcohol 82.90 81.93 81.13 81.63 81.89

Alcohol 67.90 67.45 66.91 67.07 67.13

Alcohol 71.80 70.63 70.04 70.38 70.57

Ether 73.60 73.44 72.84 73.30 73.54

Ether 81.80 80.39 79.11 79.58 79.80

Alcohol 60.00 58.95 58.83 58.91 58.88

Alcohol 61.00 61.27 60.97 61.12 61.19

NAPHTA36 Aromatic 126.00 125.97 126.38 126.18 125.83

Aromatic 129.30 130.03 130.58 130.18 129.68

Aromatic 134.90 133.31 133.02 132.98 132.87

Aromatic 129.90 130.42 131.08 130.70 130.18

Aromatic 125.40 125.20 125.40 125.23 125.01

ADENOS12 Aromatic Purine 154.09 154.18 154.69 154.50 154.12

Aromatic Purine 147.94 146.06 145.71 145.67 146.11

Aromatic Purine 119.30 119.31 120.26 120.69 120.82

Aromatic Purine 154.69 152.05 152.29 152.87 152.96

Aromatic Purine 137.38 138.05 139.58 139.46 139.26

Ether 91.91 92.27 91.36 91.51 91.57

Alcohol 74.61 75.37 74.95 75.12 75.18

Alcohol 70.86 71.50 71.40 71.87 72.07
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Crystal Functional Expt. Shifts Expt. Cell No QHA 0 K 300 K

Group Isotropic (ppm) (ppm) (ppm) (ppm) (ppm)

Ether 84.45 84.93 84.30 84.39 84.39

Alcohol 62.45 62.62 61.70 62.10 62.19

ASPARM03 Carboxylate ion 176.40 178.03 178.14 177.74 177.51

α-C 51.80 50.93 50.81 51.19 51.42

Alkane 36.10 36.06 35.44 35.27 35.22

Amide 177.10 174.55 174.54 174.49 174.45

LTHREO01 Carboxylate ion 171.92 173.88 173.42 173.22 173.07

α-C 61.17 60.01 59.23 59.66 59.87

Alcohol 66.82 67.16 66.55 66.90 67.15

Alkane 20.40 21.67 20.72 20.94 21.09

LCYSTN21 Alkane 28.77 32.39 30.01 29.99 29.91

α-C 56.67 54.80 55.63 56.07 56.25

Carboxylate ion 174.00 175.23 175.49 174.97 174.84

GLUTAM01 Carboxylate ion 172.97 175.91 175.34 175.14 175.00

α-C 53.30 54.31 54.03 54.49 54.74

Alkane 25.50 26.79 25.98 26.00 26.07

Alkane 28.52 30.75 30.89 30.67 30.60

Amide 176.50 175.81 175.40 175.45 175.50
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Table A.3: Comparison of the experimental and predicted

15N isotropic chemical shifts for the Fully optimized

structure (No QHA), QHA-expanded to 0 K (0 K), QHA-

expanded to 300 K (300 K), and the fixed cell optimiza-

tion (Expt. Cell). Calculations were done according to the

method in Sec. 3.3.3 in Chapter 3. The assigned functional

group is displayed before the shifts.

Crystal Functional Expt. Shifts Expt. Cell No QHA 0 K 300 K

Group Isotropic (ppm) (ppm) (ppm) (ppm) (ppm)

HXACAN13 Amide 97.91 104.98 104.95 105.43 105.22

LSERIN01 Ammonium ion -4.10 -6.18 -6.31 -6.96 -7.22

BITZAF Pyridyl 249.50 244.76 245.02 245.70 246.30

LHISTD02 Pyrrole 132.60 138.14 139.13 138.35 138.10

Pyrrole 210.80 212.52 213.61 213.39 213.47

GLYCIN03 Ammonium ion -6.50 -7.99 -8.71 -9.57 -10.06

FUSVAQ Nucleobase N 183.20 183.15 179.78 180.52 181.31

Nucleobase N 174.20 172.96 170.70 171.67 172.16

Nucleobase N 192.20 193.12 191.54 191.61 191.99

Nucleobase N 120.20 122.92 126.41 125.46 124.77

Amine 50.20 46.75 50.14 48.98 48.46

CYTSIN Nucleobase N 110.20 115.30 114.88 114.93 114.93
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Crystal Functional Expt. Shifts Expt. Cell No QHA 0 K 300 K

Group Isotropic (ppm) (ppm) (ppm) (ppm) (ppm)

Nucleobase N 165.20 162.80 163.42 163.46 163.60

Amine 54.20 56.18 58.64 58.51 58.57

URACIL Nucleobase N 96.20 105.19 106.69 105.75 105.13

Nucleobase N 120.20 122.17 122.04 121.85 121.78

BAPLOT01 Nucleobase N 114.70 121.97 122.69 122.24 121.92

Nucleobase N 72.70 77.70 79.27 78.84 78.65

Nucleobase N 122.70 125.71 128.09 126.76 126.00

Nucleobase N 178.70 178.66 178.81 179.55 180.57

LCYSTN21 Ammonium ion -0.40 -4.96 -2.28 -3.15 -3.53

GLUTAM01 Ammonium ion -1.30 -3.04 -3.64 -3.70 -3.66

Amide 72.10 76.59 80.26 77.99 76.95

ALUCAL04 Ammonium ion 3.00 -0.11 -0.47 -0.73 -0.77

THYMIN01 Nucleobase N 90.20 94.68 95.22 94.72 94.09

Nucleobase N 119.20 121.06 121.53 121.38 121.07

ASPARM03 Ammonium ion 0.70 -2.03 -2.13 -2.48 -2.72

Amide 74.90 78.41 79.57 78.04 77.22
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A.3.2 Pharmaceutical crystals

Table A.4: Comparison of the experimental and predicted

13C isotropic chemical shifts for the Fully optimized

structure (No QHA), QHA-expanded to 0 K (0 K), QHA-

expanded to 300 K (300 K), and the fixed cell optimiza-

tion (Expt. Cell). Calculations were done according to the

method in Sec. 3.3.3 in Chapter 3. The k-points used for each

structure are displayed after the calculated chemical shifts.

Crystal Expt. Shifts Expt. Cell No QHA 0 K 300 K KPOINTS

Isotropic (ppm) (ppm) (ppm) (ppm) (ppm)

HXACAN13 152.30 151.13 150.06 150.63 151.21 1 3 3

116.40 115.25 115.41 115.06 115.05

120.60 119.81 120.54 120.07 119.64

133.10 131.57 131.38 131.59 131.42

123.40 123.16 123.76 123.16 122.94

115.70 115.04 115.10 115.09 114.76

169.80 169.90 169.61 170.06 170.11

23.80 25.59 26.73 26.28 25.74

BAPLOT01 150.80 149.81 150.05 149.95 149.98 5 5 5

146.10 145.62 144.37 145.03 146.08

105.80 105.20 103.60 104.79 106.37
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Crystal Expt. Shifts Expt. Cell No QHA 0 K 300 K KPOINTS

Isotropic (ppm) (ppm) (ppm) (ppm) (ppm)

155.00 154.47 153.68 154.11 154.75

140.80 141.15 141.02 140.79 141.23

29.90 30.46 31.36 30.66 30.11

29.90 29.32 29.78 29.38 29.14

COYRUD12 157.80 157.27 156.72 156.78 156.83 3 3 1

118.90 118.60 118.25 118.28 118.36

129.30 130.94 131.65 131.35 130.88

128.50 126.92 126.56 126.68 126.74

130.10 128.81 129.19 128.95 128.45

134.50 135.04 133.79 134.08 134.04

123.70 124.15 124.29 124.30 124.04

128.50 128.43 129.77 129.35 128.80

134.50 133.21 132.44 132.62 132.61

104.10 104.76 105.18 104.88 104.56

53.10 52.80 52.69 52.81 52.69

46.80 48.91 49.10 49.09 48.98

17.10 17.95 17.99 18.34 18.50

179.20 181.17 181.32 181.25 180.95

IBPRAC16 183.20 186.14 185.83 186.05 186.00 1 3 1

44.20 45.29 44.42 44.92 45.10
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Crystal Expt. Shifts Expt. Cell No QHA 0 K 300 K KPOINTS

Isotropic (ppm) (ppm) (ppm) (ppm) (ppm)

15.40 16.42 17.23 16.99 16.71

137.20 136.02 135.31 136.17 135.45

132.30 132.70 133.63 133.04 133.33

126.70 126.47 127.58 126.83 126.76

129.00 129.34 129.62 129.58 129.35

130.80 131.33 131.82 131.54 131.26

142.00 141.69 141.56 141.91 141.97

46.00 45.74 45.47 45.67 45.84

32.60 35.11 34.46 34.67 34.94

22.00 22.27 23.17 22.64 22.29

25.10 25.17 25.95 25.51 25.24

CBMZPN23 137.30 135.21 134.84 135.68 136.47 3 3 1

131.00 126.99 127.58 127.16 126.85

127.30 130.36 131.15 131.11 130.87

131.00 128.85 129.19 129.05 128.64

129.20 129.05 128.70 128.51 127.88

134.70 133.75 132.75 133.04 133.13

132.00 133.39 134.74 134.34 133.77

132.00 135.06 135.69 135.34 135.01

134.70 134.65 134.25 134.27 134.28
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Crystal Expt. Shifts Expt. Cell No QHA 0 K 300 K KPOINTS

Isotropic (ppm) (ppm) (ppm) (ppm) (ppm)

129.20 133.96 134.35 133.60 133.17

131.00 127.06 126.68 126.80 126.80

127.30 128.06 128.24 127.84 127.50

131.00 129.96 130.35 130.10 130.07

140.40 139.51 137.78 138.48 139.08

159.00 157.80 156.82 156.40 155.69
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A.3.3 Fixed Cell v. Full Cell

Table A.5: Comparison of the experimental and predicted

13C isotropic chemical shifts for the fully optimized struc-

ture (Opt cell) and the fixed cell optimization (Expt. Cell).

The k-points used for each fully optimized structure are dis-

played after the calculated chemical shifts.

Crystal Expt. Shifts Expt. Cell Opt. Cell KPOINTS

Isotropic (ppm) (ppm) (ppm)

GLYCIN03 176.20 179.00 178.59 5 1 5

43.50 43.69 43.64

LALNIN12 176.80 180.74 180.24 5 1 5

50.90 51.41 51.18

19.80 20.90 20.60

LSERIN01 175.10 176.65 177.09 7 3 3

55.60 55.88 55.41

62.90 63.89 64.20

LTYROS11 175.42 178.80 178.95 5 1 5

131.04 130.61 131.13

116.42 116.90 117.72

56.41 56.82 56.68

130.34 130.80 130.23
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Crystal Expt. Shifts Expt. Cell Opt. Cell KPOINTS

Isotropic (ppm) (ppm) (ppm)

118.02 118.73 119.55

155.62 155.34 154.51

36.80 38.09 37.85

123.64 122.01 122.42

LCYSTN21 28.77 32.39 30.01 5 5 5

56.67 54.80 55.63

174.00 175.23 175.49

MGLUCP11 101.00 100.28 99.42 5 5 5

72.30 70.83 70.17

74.60 73.82 73.07

72.50 71.50 70.55

75.30 73.63 73.67

63.80 63.49 62.69

56.50 57.40 56.93

MBDGAL02 105.70 105.02 103.88 5 5 5

71.20 70.73 70.67

72.10 72.18 70.81

69.30 70.34 69.40

75.60 74.50 73.59

62.80 62.43 61.56
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Crystal Expt. Shifts Expt. Cell Opt. Cell KPOINTS

Isotropic (ppm) (ppm) (ppm)

57.60 59.04 58.61

MEMANP11 99.60 99.61 98.52 5 5 5

71.30 71.12 70.06

71.70 71.99 70.83

64.80 64.55 64.09

71.90 72.37 71.25

58.90 58.56 57.94

54.90 56.44 55.88

MGALPY01 100.40 100.09 99.12 5 5 5

67.60 67.06 66.92

72.60 72.86 72.52

70.00 69.57 68.59

72.90 72.47 71.33

61.40 61.27 60.26

55.20 56.15 55.51

XYLOBM01 104.20 103.37 102.76 5 5 5

72.20 71.41 70.38

78.20 77.20 76.81

69.50 69.19 68.70

66.90 66.77 66.54
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Crystal Expt. Shifts Expt. Cell Opt. Cell KPOINTS

Isotropic (ppm) (ppm) (ppm)

57.30 57.60 58.05

FRUCTO02 65.40 65.32 64.47 5 5 5

99.70 101.44 100.46

67.20 67.45 67.72

69.00 67.74 67.50

71.40 72.18 71.13

64.90 65.71 65.08

RHAMAH12 94.50 94.49 93.32 5 5 5

72.20 71.89 70.65

71.00 69.77 69.05

72.50 72.57 71.22

69.80 70.44 70.19

17.80 18.29 18.56

SUCROS04 93.30 92.75 91.67 3 3 3

66.00 64.94 64.69

73.70 73.15 72.74

102.40 103.37 102.56

72.80 72.08 72.01

82.90 81.93 81.13

67.90 67.45 66.91
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Crystal Expt. Shifts Expt. Cell Opt. Cell KPOINTS

Isotropic (ppm) (ppm) (ppm)

71.80 70.63 70.04

73.60 73.44 72.84

81.80 80.39 79.11

60.00 58.95 58.83

61.00 61.27 60.97

GLUTAM01 172.97 175.91 175.34 5 5 5

53.30 54.31 54.03

25.50 26.79 25.98

28.52 30.75 30.89

176.50 175.81 175.40

ASPARM03 176.40 178.03 178.14 5 5 5

51.80 50.93 50.81

36.10 36.06 35.44

177.10 174.55 174.54

LSERMH10 175.60 178.03 177.78 5 5 5

58.30 58.95 58.54

61.80 61.46 61.23

LTHREO01 171.92 173.88 173.42 5 5 5

61.17 60.01 59.23

66.82 67.16 66.55

189



Crystal Expt. Shifts Expt. Cell Opt. Cell KPOINTS

Isotropic (ppm) (ppm) (ppm)

20.40 21.67 20.72

NAPHTA36 126.00 125.97 126.38 3 3 3

129.30 130.03 130.58

134.90 133.31 133.02

129.90 130.42 131.08

125.40 125.20 125.40

ACENAP03 148.10 149.06 149.83 5 5 5

120.30 120.18 120.77

129.40 130.03 131.34

122.30 122.21 122.25

131.90 130.03 130.43

139.90 137.95 138.66

29.50 30.84 31.21

TRIPHE11 126.40 126.36 127.26 5 5 5

129.50 128.68 129.00

124.50 125.01 124.90

125.90 125.59 126.41

127.50 126.94 127.44

122.30 122.11 122.24

130.20 129.35 129.34
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Crystal Expt. Shifts Expt. Cell Opt. Cell KPOINTS

Isotropic (ppm) (ppm) (ppm)

129.50 128.20 127.00

120.90 120.37 120.50

125.90 125.78 125.43

121.70 121.82 122.33

129.50 128.68 127.79

129.50 128.29 127.90

122.30 122.79 123.02

126.90 126.46 126.16

126.90 128.29 128.06

123.80 124.04 124.24

129.80 129.16 129.40

HXACAN13 152.30 151.13 150.06 1 3 3

116.40 115.25 115.41

120.60 119.81 120.54

133.10 131.57 131.38

123.40 123.16 123.76

115.70 115.04 115.10

169.80 169.90 169.61

23.80 25.59 26.73

INDMET 167.70 169.73 169.31 5 5 5
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Crystal Expt. Shifts Expt. Cell Opt. Cell KPOINTS

Isotropic (ppm) (ppm) (ppm)

136.70 132.16 132.35

134.40 132.83 132.63

129.20 130.22 130.29

140.30 143.94 144.09

127.00 126.65 126.43

132.00 132.83 132.80

13.70 16.26 16.84

28.20 30.46 30.34

179.20 184.02 183.74

138.00 137.66 136.58

55.20 55.47 55.21

112.60 113.13 114.20

131.10 129.93 129.17

97.90 97.58 98.88

156.70 155.62 155.48

112.60 111.68 111.12

115.70 115.83 116.81

131.10 129.16 129.26

SULAMD06 127.10 122.87 122.33 5 5 5

129.50 129.62 129.82
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Crystal Expt. Shifts Expt. Cell Opt. Cell KPOINTS

Isotropic (ppm) (ppm) (ppm)

117.10 115.56 116.38

153.40 151.33 151.38

112.30 110.19 110.31

129.50 129.71 130.30

ADENOS12 154.09 154.18 154.69 5 5 5

147.94 146.06 145.71

119.30 119.31 120.26

119.30 119.31 120.26

137.38 138.05 139.58

91.91 92.27 91.36

74.61 75.37 74.95

70.86 71.50 71.40

84.45 84.93 84.30

62.45 62.62 61.70

PERYTO10 50.20 50.64 50.62 5 5 5

58.40 58.37 58.02
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Table A.6: Comparison of the experimental and predicted

15N isotropic chemical shifts for the fully optimized struc-

ture (Opt cell) and the fixed cell optimization (Expt. Cell).

The k-points used for each fully optimized structure are dis-

played after the calculated chemical shifts.

Crystal Expt. Shifts Expt. Cell Opt. Cell KPOINTS

Isotropic (ppm) (ppm) (ppm)

LSERIN01 -4.10 -6.18 -6.31 7 3 3

BITZAF 249.50 244.76 245.02 5 5 5

LHISTD02 132.60 138.14 139.13 5 5 5

210.80 212.52 213.61

LHISTD13 132.40 138.44 138.34 5 5 5

210.60 212.62 212.76

TEJWAG 143.90 146.22 146.27 5 5 5

FUSVAQ01 183.20 180.99 179.78 5 5 5

174.20 171.29 170.70

192.20 192.00 191.54

120.20 123.48 126.41

50.20 47.69 50.14

CYTSIN 110.20 115.30 114.88 5 5 5

165.20 162.80 163.42
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Crystal Expt. Shifts Expt. Cell Opt. Cell KPOINTS

Isotropic (ppm) (ppm) (ppm)

54.20 56.18 58.64

URACIL 96.20 105.19 106.69 5 5 5

120.20 122.17 122.04

BAPLOT01 114.70 121.97 122.69 5 5 5

72.70 77.70 79.27

122.70 125.71 128.09

178.70 178.66 178.81

LCYSTN21 -0.40 -4.96 -2.28 5 5 5

GLUTAM01 -1.30 -3.04 -3.64 5 5 5

72.10 76.59 80.26

HXACAN13 97.91 91.51 91.53 1 3 3

LGLUAC11 -0.40 -2.54 -2.77 5 5 5

CYSCLM11 1.50 0.80 0.85 5 5 5

ALUCAL04 3.00 -0.11 -0.47 5 5 5

GLYHCL01 -1.70 -3.95 -3.49 5 5 5

THYMIN01 90.20 94.68 95.22 5 5 5

119.20 121.06 121.53

LTYRHC10 8.00 6.25 7.12 5 5 5

ASPARM03 0.70 -2.03 -2.13 5 5 5

74.90 78.41 79.57
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Crystal Expt. Shifts Expt. Cell Opt. Cell KPOINTS

Isotropic (ppm) (ppm) (ppm)

GEHHAD 261.80 264.16 263.04 5 5 5

253.60 248.60 247.30

GEHHEH 187.40 177.85 177.38 5 5 5

261.00 253.55 256.86

GEHHIL 268.50 270.63 274.29 5 5 5

261.20 259.31 262.38

CIMETD 130.50 135.51 137.33 5 5 5

213.10 213.83 214.78

56.60 58.50 59.67

43.50 44.66 46.24

45.80 39.10 40.48

149.90 147.44 150.64

Structure 1 223.40 219.79 220.47 3 3 1

202.50 199.48 200.02

76.40 74.07 75.47

285.10 285.38 284.44

81.50 78.51 79.19
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A.4 Thermal expansion curves

The following plots show the predicted QHA thermal expansion for each crystal

and compare them against the experimental data. Experimental volumes were obtained

from the following structures from the Cambridge Structure Database (indicated by their

RefCodes):

• Acetaminophen: HXACAN01, HXACAN02, HXACAN03, HXACAN04, HXACAN05,

HXACAN06, HXACAN07, HXACAN13, HXACAN14, HXACAN15, HXACAN16,

HXACAN17, HXACAN18, HXACAN19, HXACAN20, HXACAN26, HXACAN27,

HXACAN28, HXACAN30, HXACAN34, HXACAN35, HXACAN36

• Adenosine: ADENOS01, ADENOS10, ADENOS11, ADENOS12

α-Glycine: GLYCIN98, GLYCIN96, GLYCIN97, GLYCIN95, GLYCIN94, GLYCIN93,

GLYCIN92, GLYCIN91, GLYCIN89, GLYCIN90, GLYCIN87, GLYCIN88, GLYCIN69,

GLYCIN85, GLYCIN86, GLYCIN09, GLYCIN17, GLYCIN30, GLYCIN02, GLYCIN03,

GLYCIN04, GLYCIN05, GLYCIN08, GLYCIN19, GLYCIN20, GLYCIN28, GLYCIN29,

GLYCIN80, GLYCIN99, GLYCIN21, GLYCIN22, GLYCIN23, GLYCIN07, GLYCIN06,

GLYCIN24

• Carbamazepine: CBMZPN18, CBMZPN21, CBMZPN22, CBMZPN23, CBMZPN,

CBMZPN02, CBMZPN10, CBMZPN14, CBMZPN17, CBMZPN19, and additional

structures taken from Ref 235

• Cytosine: CYTSIN, CYTSIN01

• D-Alanine: ALUCAL05, ALUCAL02, ALUCAL01, ALUCAL04
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• Ibuprofen: IBPRAC, IBPRAC03, IBPRAC16, IBPRAC17, IBPRAC18, IBPRAC19,

IBPRAC06

• L-Adenine trihydrate: FUSVAQ, FUSVAQ01

• L-Alanine: LALNIN03, LALNIN24, LALNIN23, LALNIN52, LALNIN55, LAL-

NIN15, LALNIN14, LALNIN, LALNIN01, LALNIN12, LALNIN22, LALNIN53, LAL-

NIN54, LALNIN56, LALNIN57, LALNIN58

• L-Asparagine monohydrate: ASPARM06, ASPARM08, ASPARM05, ASPARM09,

ASPARM07, ASPARM03, ASPARM, ASPARM02, ASPARM10

• L-Cysteine: LCYSTN22, LCYSTN21, LCYSTN12, LCYSTN23, LCYSTN28, LCYSTN29,

LCYSTN30, LCYSTN31, LCYSTN32, LCYSTN33, LCYSTN34, LCYSTN35, LCYSTN36

• L-Glutamine: GLUTAM02, GLUTAM, GLUTAM03, GLUTAM01

• L-Histidine monoclinic polymorph: LHISTD02

• L-Serine: LSERIN20, LSERIN19, LSERIN01, LSERIN10, LSERIN18

• L-Threonine: LTHREO03, LTHREO, LTHREO01

• L-Tyrosine: LTYROS10, LTYROS11

• Naphthalene: NAPHTA31, NAPHTA23, NAPHTA24, NAPHTA32, NAPHTA25,

NAPHTA33, NAPHTA26, NAPHTA27, NAPHTA28, NAPHTA34, NAPHTA29, NAPHTA30,

NAPHTA35, NAPHTA36, NAPHTA06, NAPHTA15, NAPHTA07, NAPHTA04, NAPHTA16,

NAPHTA08, NAPHTA17, NAPHTA09, NAPHTA18 ,NAPHTA10, NAPHTA11, NAPHTA,

NAPHTA37
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• Naproxen: COYRUD12, COYRUD, COYRUD01, COYRUD11, COYRUD13

• Pyridoxine: BITZAF

• Sucrose: SUCROS14, SUCROS41, SUCROS13, SUCROS01, SUCROS03, SUCROS04,

SUCROS08, SUCROS11, SUCROS12, SUCROS15, SUCROS16, SUCROS42

• Theophylline: BAPLOT01, BAPLOT06

• Thymine: THYMIN, THYMIN01

• Uracil: URACIL
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A.5 Correlating Volumes, RMSD, and RMSE

In this section we provide a visual analog of the data that is displayed in Tables

3.1 and 3.2. What this data attempts to do is relate the overall effect the QHA has on a

molecular crystal to simple gross descriptors of the crystal and its predicted chemical shifts

(See Figures A.5 and A.6). The left plot shows the % change in volume relative to the

chosen experimental volumes at room temperatures. The center plot presents the change

in root-mean-squared deviation relative to a 15-molecule cluster of the experimental crystal

is displayed (rmsd15). Finally, the right figure plots the change in root-mean-squared error

(rms error) of predicted chemical shifts relative to known experimental chemical shift data.
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Figure A.5: Showing the effect QHA has on the 12 structures that contributed 13C chemical
shifts.

204



−8.0

−6.0

−4.0

−2.0

0.0

2.0

4.0

No
QHA

0 K 300 K

%
 V

ol
um

e 
ch

an
ge

Acetaminophen
L−Serine

α−Glycine
D−Alanine

Cytosine
L−Cysteine

0.0

0.0

0.1

0.1

0.1

0.1

0.1

0.2

0.2

0.2

0.2

No
QHA

0 K 300 K Fixed
Cell

R
M

S
D

 (
Å

)

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

No
QHA

0 K 300 K Fixed
Cell

R
M

S
 e

rr
or

 (
pp

m
)

−8.0

−6.0

−4.0

−2.0

0.0

2.0

4.0

6.0

No
QHA

0 K 300 K

%
 V

ol
um

e 
ch

an
ge

Adenine trihydrate
Uracil

Theophylline
Asparagine mh

L−Glutamine
L−Histidine mc

Thymine
Pyridoxine

0.0

0.1

0.1

0.2

0.2

0.2

0.3

No
QHA

0 K 300 K Fixed
Cell

R
M

S
D

 (
Å

)

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

No
QHA

0 K 300 K Fixed
Cell

R
M

S
 e

rr
or

 (
pp

m
)

Figure A.6: Showing the effect QHA has on the 14 structures that contributed 15N chemical
shifts.
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A.6 How QHA affects chemical shifts

Below are histograms displaying how the predicted isotropic chemical shifts change

from the electronic minimum to 300 K for the species studied in Chapter 3.
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Figure A.7: Chemical shift changes from the electronic minima to 300 K for a) 68 13C
chemical shifts for 12 molecular crystals and b) 28 15N chemical shifts for 14 molecular
crystals.
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A.7 Theophylline CSP analysis

A.7.1 Predicted Isotropic chemical shifts

Table A.7: Comparison of the experimental and predicted 1H

isotropic chemical shifts for the Fully optimized structure

(No QHA), QHA-expanded to 0 K (0 K), and QHA-expanded

to 300 K (300 K). Calculations were done according to the

method in Sec. 3.3.3 in Chapter 3.

Crystal Expt. Shifts No QHA 0 K 300 K

Isotropic (ppm) (ppm) (ppm) (ppm)

Structure 1 14.60 14.64 14.17 14.13

7.70 7.60 7.50 7.60

3.40 3.47 3.33 3.35

3.40 3.27 3.19 3.31

Structure 2 14.60 14.61 14.32 14.29

7.70 7.49 7.45 7.58

3.40 3.42 3.29 3.30

3.40 3.18 3.07 3.18

Structure 3 14.60 15.49 15.32 15.07

7.70 8.77 8.86 8.70

3.40 2.46 2.56 2.50
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Crystal Expt. Shifts No QHA 0 K 300 K

Isotropic (ppm) (ppm) (ppm) (ppm)

3.40 3.37 3.45 3.37

Structure 4 14.60 14.75 14.72 14.52

7.70 7.60 7.87 7.77

3.40 3.06 3.19 3.15

3.40 3.38 3.47 3.44

Structure 5 14.60 14.70 14.42 14.33

7.70 8.61 8.43 8.40

3.40 3.36 3.37 3.36

3.40 3.44 3.37 3.44
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Table A.8: Comparison of the experimental and predicted

13C isotropic chemical shifts for the Fully optimized

structure (No QHA), QHA-expanded to 0 K (0 K), QHA-

expanded to 300 K (300 K), and the fixed cell optimiza-

tion (Expt. Cell). Calculations were done according to the

method in Sec. 3.3.3 in Chapter 3. The k-points used for each

structure are displayed after the calculated chemical shifts.

Crystal Expt. Shifts No QHA 0 K 300 K KPOINTS

Isotropic (ppm) (ppm) (ppm) (ppm)

Structure 1 150.80 150.15 150.10 150.30 1 7 5

146.10 144.99 145.72 146.36

105.80 105.26 105.79 106.41

155.00 154.32 154.50 154.85

140.80 141.12 141.22 141.51

29.90 31.87 31.16 30.70

29.90 29.98 29.50 29.33

Structure 2 150.80 150.03 149.90 150.06 7 1 5

146.10 145.01 145.47 146.07

105.80 104.07 105.82 106.81

155.00 153.86 154.52 154.90

140.80 141.33 140.81 141.04
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Crystal Expt. Shifts No QHA 0 K 300 K KPOINTS

Isotropic (ppm) (ppm) (ppm) (ppm)

29.90 31.41 30.41 30.01

29.90 29.39 29.13 29.05

Structure 3 150.80 149.44 149.98 149.94 3 3 3

146.10 145.41 145.90 145.99

105.80 108.09 108.40 108.31

155.00 154.26 154.53 154.49

140.80 141.63 141.72 141.61

29.90 30.05 29.61 28.95

29.90 30.75 30.35 29.57

Structure 4 150.80 149.88 150.21 150.24 1 7 3

146.10 144.69 145.67 146.22

105.80 106.90 107.74 108.06

155.00 153.87 154.08 153.99

140.80 142.88 143.42 143.15

29.90 30.72 30.18 29.49

29.90 30.98 30.44 29.81

Structure 5 150.80 149.40 149.46 149.59 1 3 7

146.10 144.58 144.93 145.45

105.80 105.04 105.37 106.00

155.00 153.22 153.48 153.77
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Crystal Expt. Shifts No QHA 0 K 300 K KPOINTS

Isotropic (ppm) (ppm) (ppm) (ppm)

140.80 142.00 141.54 141.39

29.90 30.74 30.08 29.54

29.90 29.80 29.39 29.21

Table A.9: Comparison of the experimental and predicted

15N isotropic chemical shifts for the Fully optimized

structure (No QHA), QHA-expanded to 0 K (0 K), QHA-

expanded to 300 K (300 K), and the fixed cell optimiza-

tion (Expt. Cell). Calculations were done according to the

method in Sec. 3.3.3 in Chapter 3.

Crystal Expt. Shifts No QHA 0 K 300 K

Isotropic (ppm) (ppm) (ppm) (ppm)

Structure 1 114.70 122.51 122.14 122.08

72.70 79.18 78.71 78.53

122.70 127.80 126.35 125.71

178.70 179.68 180.26 180.93

Structure 2 114.70 121.71 121.34 121.13

72.70 79.30 78.15 77.68
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Crystal Expt. Shifts No QHA 0 K 300 K

Isotropic (ppm) (ppm) (ppm) (ppm)

122.70 128.31 127.27 126.36

178.70 178.91 179.36 180.17

Structure 3 114.70 118.11 118.16 118.18

72.70 79.84 79.56 78.95

122.70 130.02 128.49 127.19

178.70 184.54 185.33 185.27

Structure 4 114.70 120.03 120.08 119.96

72.70 79.70 79.58 79.38

122.70 126.19 125.42 124.97

178.70 178.73 179.78 180.58

Structure 5 114.70 120.63 120.62 120.45

72.70 80.14 79.59 79.27

122.70 127.21 126.53 126.11

178.70 184.18 184.66 184.85
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A.7.2 Thermal expansion curves
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Figure A.8: Displaying the thermal expansion curves for all 5 candidate structures of Theo-
phylline.
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A.8 Volume expansion of 44 molecular crystals

Listed below are the structures whose volume change is displayed in Figure 3.1:

GLYCIN03, LALNIN12, LSERIN01, LTYROS11, LCYSTN21, MGLUCP11, MB-

DGAL02, MEMANP11, MGALPY01, XYLOBM01, FRUCTO02, RHAMAH12, SUCROS04,

GLUTAM01, ASPARM03, LSERMH10, LTHREO01, NAPHTA36, ACENAP03, TRIPHE11,

HXACAN26 (with fractional coordinates from HXACAN13), INDMET, SULAMD06, ADENOS12,

PERYTO10, BITZAF, LHISTD02, LHISTD13, TEJWAG, FUSVAQ01, CYTSIN, URACIL,

BAPLOT01, LGLUAC11, CYSCLM11, ALUCAL04, GLYHCL01, THYMIN01, LTYRHC10,

GEHHAD, GEHHEH, GEHHIL, CIMETD, Structure 1
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Appendix B

Identifying pragmatic

quasi-harmonic electronic structure

approaches for modeling molecular

crystal thermal expansion

B.1 Construction of crystalline Gibbs free energies

The crystalline Gibbs free energies at various temperatures are constructed by

combining the temperature-independent electronic energy curves (e.g. Figure B.1a,d) with

the Helmholtz vibrational free energy Fvib (e.g. Figure B.1b,e) to give the free energy curves

shown in Figure B.1c,f. The optimal volume occurs at the minimum of the free energy

curve. For carbon dioxide, the Tier 1–3 energy-volume curves are nearly identical, but the
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differences in the phonons lead to modest shifts in the position of the minima. At 0 K,

Tiers 1–3 still exhibit almost the same minimum, but by 190 K, the optimal volumes differ

somewhat.

Analogous plots are shown for ice at 0 K and 200 K in Figure B.2. Ice has

the unusual behavior that Tier 3 exhibits volume contraction upon adding the zero-point

vibrational contribution. The reasons for this behavior can be seen in the plots. The optimal

volume for the electronic energy curves of ice varies, with Tier 4 < Tier 1/2 < Tier 3. The

MP2 Helmholtz vibrational free energy contribution decreases monotonically with volume,

while the Fvib derived from B86bPBE-XDM phonons using either MP2 or DFT geometries

is quite flat and exhibits a shallow minimum. In the Tier 2 and Tier 4 cases, the minimum

of Fvib occurs at a volume greater than the E(V ) minimum, so adding Fvib to E(V ) to

form the Gibbs free energy shifts the system toward larger volumes. In Tier 3, on the other

hand, the minimum in E(V ) occurs at a larger volume than that of the B86bPBE-XDM

Fvib, so the zero-point vibrational energy contribution shifts it toward smaller volumes, as

seen in Figure 4.2 in Chapter 4. The large difference in slopes of Fvib largely accounts for

the differences in thermal expansion between Tier 1 and the other Tiers. As the crystal is

heated, the minimum in Fvib shifts toward larger volumes (e.g. see 200 K plots). Therefore,

thermal expansion occurs as usual at higher temperatures.

Figures B.3 and B.4 present similar plots for acetic acid and imidazole. For acetic

acid, the energy-volume and Helmholtz vibrational free energies are quite similar across

the different tiers. For imidazole, the DFT results differ appreciably from MP2 due to the
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problems MP2 has describing the van der Waals dispersion in that crystal.
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Figure B.1: (a) Electronic energy versus volume curves, (b) 0 K vibrational free energies,
and (c) total Gibbs free energies per unit cell with different mixtures of MP2/aug-cc-pVTZ
+ AMOEBA and B86bPBE-XDM. Plots (d)–(f) are the same but at 190 K. Energies
correspond to the full unit cell, and arbitrary vertical offsets were employed to each curve
for ease of viewing. Points indicate minima.
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Figure B.2: (a) Electronic energy versus volume curves, (b) 0 K vibrational free energies,
and (c) total Gibbs free energies per unit cell with different mixtures of MP2/aug-cc-pVTZ
+ AMOEBA and B86bPBE-XDM. Plots (d)–(f) are the same but at 200 K. Energies
correspond to the full unit cell, and arbitrary vertical offsets were employed to each curve
for ease of viewing. Points indicate minima.
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Figure B.3: (a) Electronic energy versus volume curves, (b) 0 K vibrational free energies,
and (c) total Gibbs free energies per unit cell with different mixtures of MP2/aug-cc-pVTZ
+ AMOEBA and B86bPBE-XDM. Plots (d)–(f) are the same but at 200 K. Energies
correspond to the full unit cell, and arbitrary vertical offsets were employed to each curve
for ease of viewing. Points indicate minima.
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Figure B.4: (a) Electronic energy versus volume curves, (b) 0 K vibrational free energies,
and (c) total Gibbs free energies per unit cell with different mixtures of MP2/aug-cc-pVTZ
+ AMOEBA and B86bPBE-XDM. Plots (d)–(f) are the same but at 200 K. Energies
correspond to the full unit cell, and arbitrary vertical offsets were employed to each curve
for ease of viewing. Points indicate minima.
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B.2 Negative thermal expansion in ice Ih

Figure B.5 focuses on the temperature dependence of the molar volume of ice

in the low-temperature region, highlighting the negative thermal expansion. For ease of

comparison, the volumes are plotted relative to the lowest-temperature volume for each

case.

Experimentally, ice contracts by 0.01 cm3/mol (0.06%) upon heating to around

70 K. As shown here, all the models do predict some contraction, though it is barely

noticeable for Tier 2. On the other hand, Tier 3 and Tier 4 predict the temperature of

maximum contraction fairly well, though they underestimate the amount of contraction by

a factor of 2–3.
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Table B.1: Comparison of experimental and predicted % contraction of the unit cell from
10 K - 70 K

Method Source % Contraction

Experiment Ref 244 0.06
B86bPBE-XDM Tier 4 0.029

MP2/aTZ+AMOEBA Tier 3 0.017
MP2/CBS+pHF Tier 3 0.023

MP2C/CBS+pHF Tier 3 0.021
MP2/aTZ+AMOEBA Tier 2 0.003
MP2/aTZ+AMOEBA Tier 1 0.010
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B.3 Sensitivity to choice of density functional

To complement the carbon dioxide results shown in Figure 4.4 in Chapter 4, Fig-

ure B.6 compares the energy-volume curves and Helmholtz vibrational free energies of crys-

talline carbon dioxide at 150 K across several different density functionals. While the DFT

E(V ) curves vary considerably with the choice of functional, the Fvib curves exhibit gener-

ally similar slopes. This helps explain why the Tier 2 and 3 molar volumes less sensitive to

the choice of density functional used to generate the phonons.
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Figure B.6: Variations in (a) the energy-volume curves and (b) 150 K Helmholtz vibrational
free energies of carbon dioxide with several different density functionals. For ease of com-
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energies.
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Figure B.7: Sensitivity of the predicted ice molar volume to the density functional used
for the low level in Tiers 2–4. Density functionals: PBE-XDM (red), BLYP-XDM (blue),
BLYP-D2 (green), and B86bPBE-XDM (purple).

To complement the carbon dioxide data presented in Figure 4.4 in Chapter 4,

Figure B.7 plots how ice molar volumes predicted with Tiers 2-4 vary with the choice of

density functional. As for carbon dioxide, Tiers 2 and 3 are much less sensitive to the

specific density functional used than Tier 4.
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B.4 Tier 3 energy refinement

As discussed in Chapter 4, different Tier 3 single-point energy refinements lead to

molar volume curves that are largely parallel. This indicates that while the refinement does

shift the energy and volume at which the minimum occurs, it does not significantly alter

the well curvature.
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Figure B.8: The Tier 3 single-point energy refinements for carbon dioxide do not signifi-
cantly alter the curvature of the electronic energy well. For ease of comparison, the volumes
are plotted relative to the lowest-temperature volume for each case.
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Appendix C

Investigating the phase transition

of α− and β− Resorcinol

C.1 Electronic energy curve

Figure C.1 plots the electronic energy curves for both alpha and beta resorci-

nol. For the alpha form the expansion branch for the B86bPBE-XDM is similar to the

MP2C/CBS+pHF potential energy surface while the compression branch is similar to the

MP2C/CBS+AMOEBA. The slightly raised expansion branch will cause the predicted vol-

umes for the MP2C/CBS+AMOEBA structures to expand more slowly while the more

aggressive raising of the MP2C/CBS+pHF compression branch will cause the predicted

volumes on this structure to compress more slowly.

In comparison for the beta polymorph the B86bPBE-XDM and the MP2C/CBS+pHF

energy surfaces are practically identical on the compression branch while on the expan-
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Figure C.1: Electronic energy surfaces for α-resorcinol (left) and β-resorcinol (right). The
point which minimizes each structure is shaded in the figure.

sion branch the MP2C/CBS+pHF expands slightly more aggressively. Switching out the

many-body correction for AMOEBA causes a shift in both the expansion and compression

branches indicating that the beta polymorph should be slightly smaller at all volumes than

the B86bPBE-XDM and MP2C/CBS+pHF predicted volumes.

C.2 Lattice parameter prediction

Once the Gibbs free energy equation of state G(V ) has been obtained at a chosen

temperature, the free energy can be minimized to find the optimal molar volume. The

lattice constants and atomic positions at this optimal volume are interpolated based on

the explicitly optimized structures that were obtaining in generating electronic energy sur-

face. Figure C.2 reports the lattice parameters at each level of theory for both α- and

β−resorcinol.
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Figure C.2: Predicted lattice parameters at multiple levels of theory for α-resorcinol (on
the left) and β-resorcinol (on the right).

C.3 How pressure and temperature affects the minima on

the Gibbs surface

For the pressure curve the minima is well-resolved up to 4.0 GPa with clear indi-

cations that the structure could be pushed to higher pressures if need be. At 0.0 GPa the

gibbs minima moves ∼ 25 Å3 from 0 K to 500 K. While it appears the volumes are over-

sampled on the expansion branch molecular crystals can quite often experience aggressive

expansion between the electronic minima and higher temperature so it was necessary to

pad the expansion branch to ensure a minima always existed. The same behavior can be

seen for the beta polymorph.
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Figure C.3: How the minimum gibbs volume for α− and β−resorcinol moves upon a,c)
applying pressure at a fixed temperature of 300 K and b,d) increasing temperature at a
fixed pressure of 0.0 GPa. The minimum volume is marked in gray on each surface and the
relevant temperatures and pressures are labeled in the plot.
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Appendix D

Pedagogical Quasi-Harmonic

Approximation

In this section, I will outline some practical considerations that need to be taken

into account when attempting to use the Tiered Quasi-Harmonic Approximation (QHA)

method that is introduced in Chapter 4. This method was originally developed in an attempt

to address some of the problems associated with using the classical QHA (most importantly

the computational cost). Previously, the full QHA (optimizations, frequencies, and thermal

expansion) would be calculated at the desired level of theory, such as CCSD(T)/CBS,

which quickly became computationally prohibitive. Chapter 4 demonstrates that it is often

acceptable to perform structure optimizations and frequency calculations using a cheaper

theory (e.g. DFT) and single-point energy correct up to the desired level of theory.

Ultimately this method works by breaking up the contributions of the Gibbs free

energy into different levels of theory. From statistical thermodynamics, the Gibbs free
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energy combines the electronic internal energy Uel, the Helmholtz vibrational free energy

Fvib, and a pressure-volume (PV ) contribution.

G(T, P ) = Uel + Fvib(T ) + PV (D.1)

In crystals at ambient pressure, the PV term contributes negligibly and hence is often

neglected. In these cases, the Gibbs free energy would simplify to the Helmholtz free en-

ergy. The Helmholtz vibrational free energy is computed from standard harmonic oscillator

vibrational partition functions as,

Fvib(T ) = Na

∑
i

(
h̄ωi
2

+ kbT ln

[
1− exp

(
− h̄ωi
kbT

)])
(D.2)

where Na is Avogadro’s number, h̄ is Plank’s constant, kb is the Boltzmann constant, and

ωi is the vibrational frequency of mode i. The first term corresponds to the zero-point

vibrational contribution, while the second gives the thermal vibrational contribution.

In principle, one ought to re-evaluate the phonons at every volume, but that is

computationally impractical given the cost of typical electronic structure theory calcula-

tions. Instead we employ mode-specific Grüneisen parameters γi to estimate how individual

phonon modes vary with unit cell volume,

γi = −
(
∂ lnωi
∂ lnV

)
(D.3)

Integrating Eq D.3 yields,

ωi = ωrefi

(
V

V ref

)−γi
(D.4)

which allows the reference phonons ωrefi to be scaled to any given new volume V .
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As the electronic internal energy has the largest contribution to the Gibbs free

energy, this will be calculated at the desired level of theory. Typically, this is done using

the fragment-based hybrid many-body interaction model (HMBI):

UHMBI
el = EQM1−body + EQMSR 2−body + EMM

LR 2−body + EMM
many body (D.5)

HMBI treats individual molecules in the unit cell and their short-range pairwise interac-

tions quantum mechanically (QM), while the longer-range and many-body interactions are

typically approximated using a classical molecular mechanics (MM) polarizable force field.

In some cases, the MM terms will be computed from periodic Hartree-Fock (HF) instead,

in which case HMBI is equivalent to the method of increments.

The following sections will outline how to go about performing these calculations,

problems to look out for, and ultimately what you should expect to see as a result of your

efforts. Section D.1 outlines how to generate an electronic energy curve at the desired

level of theory. Section D.2 explains which structures to calculate harmonic frequencies on

in order to generate the Grüneisen parameters. Section D.3 outlines the various fits and

calculations that are carried out in MATLAB. Finally, Section D.4.1 will outline how to

obtain the volumes which minimized the Gibbs free energy surface at any given temperature

and pressure. While this method currently requires a lot of human supervision we hope in

the future to make this more user-friendly. For a more practical outline of how to run these

calculations using HMBI see the HMBI manual.
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D.1 Calculating the Electronic Internal Energy Curve (Uel)

D.1.1 Obtaining the Reference geometry

To begin, you must optimize the lattice parameters and atomic positions of your

structure. This can be done with any method, but we recommend optimizing using Quan-

tum Espresso and the B86bPBE pseudopotential with the XDM dispersion correction.2–4,201

Prepare the input file and optimize the geometry. This optimized structure will be referred

to as the reference structure from now on. It is recommended that harmonic phonons

are calculated on this structure before generating the electronic potential energy surface

to ensure the reference structure is fully optimized. These reference phonons will also be

used later along with the Grüneisen parameters to generate the Helmholtz vibrational free

energy.

D.1.2 Generating the E(V) curve

Once the reference structure is obtained, an electronic potential energy surface

must be mapped out. There are two ways to accomplish this 1) Isotropically expand and

contract the reference unit cell volume and perform a fixed-cell optimization on each struc-

ture (Isotropic E(V) curve) or 2) Apply external pressure to the reference structure and

allow the structure to optimize (Anisotropic E(V) curve). We recommend using the latter

method as this will allow the lattice parameters to relax naturally. If you are using Quan-

tum Espresso for the quantum calculation then for both methods it is recommended that

the optimization be carried out using the Quantum Espresso optimizer instead of HMBI’s.

When performing these calculations it is ideal to have a minimum of 10-15 volumes
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for E(V) curves. The basin of the electronic energy surface needs to be well sampled as

there can be significant curvature in this region. Additionally, in order to obtain a good

fit of the Gibbs free energy surface it is best to sample volumes that are at least 20-30 Å3

away from your reference volume in both directions. If temperatures are expected to exceed

300 K, then sample at least 40-50 Å3 away from your reference volume in the large volume-

regime. Do the same in the small-volume regime for pressures greater than 2 GPa. For

the calculation of the Fvib(T ) you will need two structures about ±10 Å3 away from your

reference volume. It is recommended that you continue generating points until you achieve

structures within 2-3 Å3 of this target (See Figure D.1). Future work implementing constant-

volume optimization routines such as the ones that exist in VASP and CRYSTAL17 would

greatly speed up the generation of this potential energy surface.300,311
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Figure D.1: An example of an electronic energy curve generated with DFT. The reference
structure is shown with the solid square.
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The anisotropic E(V) curve approach can often require a few iterations to achieve

sufficient coverage of the electronic potential energy surface. While it is relatively straight-

forward to do this with isotropic expansion and contraction of the lattice volume, crystals

containing larger molecules or more layered systems typically expand in a more anisotropic

manner. Oftentimes the final energy reported will include the external pressure that was

applied to the reference volume. To correctly obtain the electronic potential energy surface

this PV term will need to be subtracted from the reported enthalpy. These optimizations

are fairly repetitive so scripting is recommended.

D.1.3 Optional: Perform Single-point Energy Corrections
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Figure D.2: An example of a single-point energy corrected electronic energy curve. The
minima on each potential energy surface are displayed with solid points.

After obtaining an E(V) plot at the cheaper level of theory it is possible to single-
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point energy correct up to the desired level of theory. This involves taking the geometries

at each volume along the E(V) curve, setting up a new HMBI job at the desired theory,

and running the job. While this is simple in concept, in practice this can often take a long

time to accomplish. Oftentimes it is possible to set up the monomer and dimer jobs and

submit these separately rather than attempting to run the entire job on one node. Always

ensure that the jobs are only calculating energies and not gradients as these are not needed

and can take significantly longer to calculate.

Once the single point energy calculations are complete it is necessary to visualize

the change (see Figure D.2). Oftentimes, the energy well will shift since the potential

energy surface has changed. In order to ensure that the bottom of the new energy well is

sufficiently sampled it is recommended that the SPE corrections are performed immediately

after each geometry finishes optimizing. If the original set of geometries does not sufficiently

describe the new energy well then it may be necessary to continue generating structures at

the cheaper level of theory until the new E(V) curve has sufficient coverage.

D.2 Calculating the vibrational frequencies (ωi)

Once the potential energy surface is generated the Grüneisen parameters must now

be calculated. To do this, two structures that were generated on the electronic potential

energy surface are chosen to calculate additional harmonic phonons. Note that this is only

done at the cheaper level of theory and does not need to be re-done even if the energy well

has shifted (it is expected that the Grüneisen parameters will correctly adapt the phonons

to account for the volume shift). At the moment structures are typically chosen to be
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Figure D.3: An example of the structures chosen to calculate harmonic frequencies. The
chosen structures are displayed with solid points.

∼10 Å3 away from the reference volume (see Figure D.3). While the choice of this volume

is based on a previous study, future work investigating a % volume change rather than an

absolute volume threshold would be useful.105 Once the phonons are calculated, HMBI is

used to mode-match these new phonons to the reference phonons. This generates a .freq

file that is used by the MATLAB script.

D.3 Calculations in MATLAB

We have created a MATLAB script to automatically calculate the volume which

minimizes the Gibbs free energy (see https://github.com/jmcki003/ for the MATLAB script).

Once you have obtained the electronic energy surface (E(V)) at the desired energy level you

will need to place the data in a file format that MATLAB can readily read in. A .dat or
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a .txt file works well and will typically contain a commented out header line with useful

reminders of what data the file contains, and the volumes (in Å3) and electronic energies

(kJ/mol). Note that MATLAB is sensitive to tabs, so take care that only one tab or space

exists between the volume and electronic energy data points. It might also be useful to

name the file in a way that you and (hopefully) others can understand 3 months from now.

The MATLAB script also requires the .freq file that was created in Section D.2.

Finally, the desired temperature and pressure range that the Gibbs free energy surface

should be calculated at must be set in the script.

D.3.1 Fitting the E(V) curve

The E(V ) curve will be read by the MATLAB script and fitted to a Murnaghan

equation of state (EOS),

E(V ) = E0 +
B0V

B′0

[
(V0/V )B

′
0

B′0 − 1
+ 1

]
− B0V0

B′0 − 1
(D.6)

where E0, V0, B0, and B′0 are the fit parameters. E0 gives the electronic energy at the

minimum, V0 is the molar volume at the minimum energy, B0 is the bulk modulus, and B′0

is the first derivative of the bulk modulus with respect to pressure. This is done to report

the correct minimum on the electronic energy surface, which is primarily used to calculate

the thermal expansion that is due to the zero-point vibrational energy contribution (ZPVE).

The procedure described in Chapter 4 calls for the fitted electronic energy curve to

be used to calculate the Gibbs free energy surface at any given temperature and pressure.

Previously, this was used to get away with a sparser sampling of the electronic energy
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surface as the MATLAB script can be used to generate a finer grid of volumes to both

interpolate and extrapolate over. While this strategy works well for volumes in the basin

of the electronic energy surface, it was found that the murnaghan EOS fit can introduce

2-4 kJ/mol error in the fitted electronic energy surface at extreme volumes (large/small

volumes). Especially at high pressures (greater than 2 GPa) or high temperatures (greater

than 500 K) this error becomes non-negligible. Subsequent tests with additional EOS fits

(Birch-Murnaghan, Poirier-Tarantola logarithmic, and Vinet EOS fits) showed that this

error was reproducible. Instead, we now recommend explicitly calculating more raw data

points on the electronic energy surface. For all future calculations, the raw data points are

used instead of the fit to ensure no unnecessary error is introduced in the Gibbs free energy

surface.

D.3.2 Calculating the Helmholtz Free Energy Curve (Fvib(T ))

Next, the MATLAB script reads in the frequencies that are provided in the .freq

file that HMBI generated. The Grüneisen parameters are automatically calculated and

these are used to adapt the reference phonons to each volume that exists on the electronic

energy curve. The Helmholtz vibrational free energy is then calculated using Equation D.2

at every temperature that was set in the MATLAB script. This generates the Helmholtz

vibrational free energy curve as a function of volume and temperature (see D.4).
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Figure D.4: An example of the Helmholtz vibrational free energy contribution generated at
each temperature.

D.3.3 Calculating the Gibbs Free Energy Curve (G(T, P ))

Once the electronic energy surface (E(V)) at the desired level of theory is obtained,

and the Helmholtz vibrational free energy surface is generated, these curves are combined

with the PV contribution at the desired pressures to obtain the Gibbs free energy surface

(see Figure D.5). Since the particular volume which minimizes the free energy for a given

temperature is unlikely to correspond to one of the sampled volumes, each free energy curve

is fitted to a weighted double-Murnaghan equation of state. The Murnaghan equation of

state is given by,

G(V ) = G0 +
B0V

B′0

[
(V0/V )B

′
0

B′0 − 1
+ 1

]
− B0V0

B′0 − 1
(D.7)

where G0, V0, B0, and B′0 are the fit parameters. G0 gives the Gibbs free energy at the

minimum, V0 is the molar volume at the minimum energy, B0 is the bulk modulus, and B′0
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Figure D.5: An example of the Gibbs free energy surface generated at 0, 100, and 200 K.
The pressure is set to 0 GPa.

is the first derivative of the bulk modulus with respect to pressure. This method identifies

the free-energy minimum effectively while avoiding artifacts that can be caused by simpler

equation of state fits or splines. The partitioning of the Gibbs free energy surface and

fitting to the weighted double-Murnaghan equation of state is handled automatically by the

MATLAB script (see Figure D.6).

D.4 Processing the results

A number of useful files are generated by the MATLAB script. Briefly, the most

useful files that are generated are the Helmholtz vibrational energy vs. volume, the Gibbs

free energy vs. volume, and a summary file which contains a breakdown of the Gibbs free

energy, Entropy, Enthalpy, and Electronic energy contributions at the minimum volume for
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Figure D.6: An example of a weighted double-Murnaghan equation of state fit applied to
the Gibbs free energy surfacee. On the left is the partitioned free energy surface which are
separately fitted to a Murnaghan EOS fit. On the right is the weighted double-Murnaghan
fit.

each temperature and pressure. The energy breakdown can be extremely useful especially

when determining the relative stabilities of different polymorphs. While heat capacities are

currently not reported, future work implementing this into the MATLAB script could prove

useful.

D.4.1 Obtaining the geometry at a given temperature and pressure

Once the volumes which minimize the Gibbs free energy surface at each temper-

ature and pressure are known, it is now possible to obtain the structure. To do this, the

lattice parameters for the volumes that were used to generate the electronic energy surface

are fitted to a high-order polynomial (see Figure D.7). Unfortunately, not every fit will be

smooth as the lattice angles especially tend to be difficult to fit. It is recommended to use at

least a third-order fit in order to correctly obtain a measure of curvature in the fits. Using

the volume that minimized the Gibbs free energy surface, the lattice parameters can now
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Figure D.7: An example of the fitted lattice parameters fitted to a third-order polynomial.

be obtained. The fractional coordinates of the reference structure are then used to generate

the atomic positions at each volume. Finally, the volumes are frozen and the atomic posi-

tions are optimized using the lower level of theory. There is a question as to whether, for

the structures whose potential energy surface were single-point energy corrected up to the

desired level of theory, if the atomic positions should be optimized at this level of theory.

Future work investigating this problem would be welcome. Implementing constant volume

optimization routines would also be useful as the fitting of the lattice parameters could

be avoided. Once the structure is obtained this can then be used for the evaluation of

secondary properties such as NMR and Raman spectroscopy.
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