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The Split Ring Resonator

By Stefan G. Llewellyn Smith and Anthony M. J. Davis

Department of Mechanical and Aerospace Engineering,

Jacobs School of Engineering, UCSD,

9500 Gilman Drive, La Jolla CA 92093-0411, USA.

We obtain band diagrams for a two-dimensional periodic structure consisting of
an infinite square array of infinitely thin concentric circles (split rings) with nar-
row gaps. Our approach exploits the narrowness of the gaps and yields algebraic
equations relating the frequency to the Bloch wavenumber and geometric proper-
ties of the array. Further asymptotic analysis indicates that the gravest mode has
a frequency that scales in an inverse logarithmic fashion with the size of the gap
and that exhibits anomalous dispersion. Near the origin of the Brillouin zone this
‘acoustic’ mode is dispersionless. Numerical solution of the eigenvalue problem in
the single-gap case confirms these conclusions. The two lowest modes of the split
ring can be interpreted as a splitting of the gravest propagating Rayleigh mode.

Keywords: photonics; band gaps; anomalous dispersion; asymptotics

1. Introduction

The study of the propagation of waves through periodic structures has a long and
distinguished history going back to Lord Rayleigh (1892), including classic books
such as Brillouin (1953). Interest in the field continues today, given that it un-
derpins modern technological applications that exploit of the frequency-dependent
filtering and bandgap properties of periodic structures. This rapidly growing area
is sometimes referred to as photonics and the devices called photonic crystals. The
photonics literature is now vast; we limit ourselves to citing Sakoda (2005) as a
helpful introduction and Maynard (2008) for a very elementary description of wave
propagation in arrays of scatterers.

Pendry et al. (1999) first suggested how to construct ‘left-handed’ media (i.e. with
a negative refractive index) by using a split-ring resonator structure. This was the
beginning of efforts to design tailored materials exhibiting properties not found in
naturally occurring materials. Subsequently Smith et al. (2000) built a split-ring
resonator, demonstrating that such materials could in fact be constructed. Sub-
sequently Movchan & Guenneau (2004) analyzed a double ‘C’ resonator design
analogous to the split-ring resonator for a two-dimensional cylindrical structure in
an elastic medium. Guenneau et al. (2007) further examined this structure using a
discrete approximation and predicted the lowest stop and dispersion bands.

We study a very similar geometry in which each resonator is made up of two
perfectly insulating split rings, each with a hole in it, as illustrated in Figure 1.
In the single-gap case, we remove the inner ring. We consider just the scalar wave
equation. The rings are in a square lattice with periodicity d. The gaps are centered
at θ1 and θ2 and hence in general are not aligned. We combine the asymptotic
technique of (Davis & Llewellyn Smith, 2007, hereafter DLS) with the method
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Figure 1. Geometry for the split ring resonator.

originally introduced by Lord Rayleigh, which is clearly explained in Movchan et al.

(2002). In the problem studied by Rayleigh, the dispersion relation for plane waves
propagating through an infinite array of scatterers is obtained as a function of the
Bloch wavenumber k0.

The approach of the present paper requires proceeds by obtaining and matching
potentials inside the inner ring, between the rings, and outside the outer ring. We
hence calculate the dispersion relation when the gaps are narrow. Our result is
the dispersion relation for frequency as a function of the Bloch wavenumber k0

and of the geometric parameters of the problem. The Rayleigh modes are present
as resonances of the system when the gap size vanishes. Guizal & Felbacq (2002)
examine scattering by a cylinder with gaps, but the problems are very different since
in that work there is a single cylinder, the medium is infinite rather than periodic
and the results are purely numerical rather than asymptotic. Our approach is not
limited to the specific shape considered (see DLS). More complicated shapes require
solving numerically for the interior Green’s function. The present geometry allows
explicit results to be given in terms of Bessel functions, which are length but simple
to use.

We present the solution in the two interior regions inside the inner ring and
between the two rings in § 2. The solution in the array is obtained in § 3. The two
are matched to obtain an eigenvalue problem in § 4. Limiting cases of the dispersion
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3

relation for small k are found in § 5, while solutions to the full eigenvalue problem
in the single-gap case are obtained in § 6. We conclude by summarizing in in § 7.

2. Mathematical Model of the Cell

We first suppose that, in terms of polar coordinates (r, θ), the potential φ(r, θ)
satisfies the Helmholtz equation

∇2φ + k2φ = 0 (2.1)

inside and outside the cavities 0 ≤ r < R1, R1 < r < R2 that are connected by
gaps at r = R1, |θ − θ1| < δ1 and r = R2, |θ − θ2| < δ2. We assume that the
concentric boundaries are hard and, following DLS, we incorporate the square root
edge singularities by writing the boundary conditions at r = R1, R2 in the form

∂φ

∂r
(R1, θ) =











1

R1δ1

√
1 − s2

∞
∑

N=0

aN1TN(s) (θ = θ1 + δ1s, |s| < 1)

0 otherwise,

(2.2)

∂φ

∂r
(R2, θ) =











1

R2δ2

√
1 − s2

∞
∑

N=0

aN2TN(s) (θ = θ2 + δ2s, |s| < 1)

0 otherwise,

(2.3)

where TN denotes the Chebyshev polynomial of order N and the an1 and an2 are
coefficients that will be obtained as part of the solution.

In the central cavity, r < R1, we need a Green’s function, G1(r, θ; r
′, θ′) that

satisfies (2.1) in the primed coordinates and the hard condition ∂G1/∂r′ = 0 at
r′ = R1. This is given by

G1(r, θ; r
′, θ′) =

1

4

{

Y0[k
√

r2 + r′2 − 2rr′ cos(θ − θ′)] −
∞
∑

n=0

ǫnJn(kr)Jn(kr′)
Y ′

n(kR1)

J ′
n(kR1)

cosn(θ − θ′)

}

,

(2.4)
where ǫn denotes Neumann’s symbol. We apply Green’s Theorem to φ(r′, θ′) and
G1(r, θ; r

′, θ′) in r, r′ < R1 and obtain

φ(r, θ) = −
∫ π

−π

∂φ

∂r′
(R1, θ

′)G1(r, θ; R1, θ
′)R1 dθ′ (r ≤ R1), (2.5)

in which, according to (2.4),

G1(r, θ; R1, θ
′) = − 1

2πkR1

∞
∑

n=0

ǫn
Jn(kr)

J ′
n(kR1)

cosn(θ − θ′)

=
1

π
ln

√

1 − 2r

R1
cos(θ − θ′) +

r2

R2
1

+
1

2πkR1

J0(kr)

J1(kR1)

− 1

π

∞
∑

n=1

[

Jn(kr)

kR1J ′
n(kR1)

− 1

n

(

r

R1

)n]

cosn(θ − θ′). (2.6)
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The first expression for G1 enables (2.5) to be obtained directly by inserting a
delta-function in (∂G1/∂r)r=R1

(see DLS). The second expression for G1 displays
explicitly the logarithmic singularity.

In the annular cavity, R1 < r < R2, we need a Green’s function, G2(r, θ; r
′, θ′)

that satisfies (2.1) in the primed coordinates and the hard conditions ∂G2/∂r′ = 0
at r′ = R1, R2. We note that its structure must be given by

G2(r, θ; r
′, θ′) =

1

4

{

Y0[k
√

r2 + r′2 − 2rr′ cos(θ − θ′)]

+
∞
∑

n=0

ǫn[An(kr)Jn(kr′) + Bn(kr)Yn(kr′)] cosn(θ − θ′)

}

,(2.7)

where An and Bn are constants to be determined. The analogues of (2.6) are then

G2(r, θ; R1, θ
′) =

1

2πkR1

∞
∑

n=0

ǫn

{

Yn(kr)

Y ′
n(kR1)

+

[

Yn(kr)

Y ′
n(kR1)

− Jn(kr)

J ′
n(kR1)

]

× Y ′
n(kR2)J

′
n(kR1)

Y ′
n(kR1)J ′

n(kR2) − Y ′
n(kR2)J ′

n(kR1)

}

cosn(θ − θ′).(2.8)

G2(r, θ; R2, θ
′) =

1

2πkR2

∞
∑

n=0

ǫn

{

− Jn(kr)

J ′
n(kR2)

+

[

Yn(kr)

Y ′
n(kR2)

− Jn(kr)

J ′
n(kR2)

]

× Y ′
n(kR2)J

′
n(kR1)

Y ′
n(kR1)J ′

n(kR2) − Y ′
n(kR2)J ′

n(kR1)

}

cosn(θ − θ′).(2.9)

As in (2.6), the logarithmic singularity in (2.8) is displayed by writing

1

2πkR1

∞
∑

n=0

ǫn
Yn(kr)

Y ′
n(kR1)

cosn(θ − θ′) =
1

π
ln

√

1 − 2R1

r
cos(θ − θ′) +

R2
1

r2

− 1

2πkR1

Y0(kr)

Y1(kR1)
+

1

π

∞
∑

n=1

[

Yn(kr)

kR1Y ′
n(kR1)

+
1

n

(

R1

r

)n]

cosn(θ − θ′). (2.10)

We now apply Green’s Theorem to φ(r′, θ′) and G2(r, θ; r
′, θ′) in R1 < r′ < R2 and

obtain

φ(r, θ) =

∫ π

−π

[

R1
∂φ

∂r′
(R1, θ

′)G2(r, θ; R1, θ
′) − R2

∂φ

∂r′
(R2, θ

′)G2(r, θ; R2, θ
′)

]

dθ′ (R1 ≤ r ≤ R2),

(2.11)
Then substitution of (2.2) and (2.3) into (2.5) and (2.11) gives the following ‘gap’
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5

values of the potential, valid for |s| < 1:

φ(R1, θ1 + δ1s) = −
∫ 1

−1

ds′√
1 − s′2

∞
∑

N=0

aN1TN(s′)G1(R1, θ1 + δ1s; R1, θ1 + δ1s
′),(2.12)

φ(R1, θ1 + δ1s) =

∫ 1

−1

ds′√
1 − s′2

∞
∑

N=0

aN1TN (s′)G2(R1, θ1 + δ1s; R1, θ1 + δ1s
′)

−
∫ 1

−1

ds′√
1 − s′2

∞
∑

N=0

aN2TN(s′)G2(R1, θ1 + δ1s; R2, θ2 + δ2s
′),(2.13)

φ(R2, θ2 + δ2s) =

∫ 1

−1

ds′√
1 − s′2

∞
∑

N=0

aN1TN (s′)G2(R2, θ2 + δ2s; R1, θ1 + δ1s
′)

−
∫ 1

−1

ds′√
1 − s′2

∞
∑

N=0

aN2TN(s′)G2(R2, θ2 + δ2s; R2, θ2 + δ2s
′).(2.14)

Inspection of (2.6), (2.8) and (2.9) shows that πG1(R1, θ1 + δ1s; R1, θ1 + δ1s
′),

πG2(R1, θ1 + δ1s; R1, θ1 + δ1s
′) and πG2(R2, θ2 + δ2s; R2, θ2 + δ2s

′) have a singular
term

ln
√

2 − 2 cos δj(s − s′) ∼ ln(δj |s−s′|) = − ln

(

2

δj

)

−2

∞
∑

m=1

1

m
Tm(s)Tm(s′) (j = 1 or 2).

(2.15)
Following DLS, we deduce approximations to the gap potentials in |s| < 1 that are
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given, with errors of order δ1, δ2, by

φ(R1, θ1 + δ1s) ∼ a01

{

ln

(

2

δ1

)

− 1

2kR1

J0(kR1)

J1(kR1)
+

∞
∑

n=1

[

Jn(kR1)

kR1J ′
n(kR1)

− 1

n

]

}

.(2.16)

φ(R1, θ1 + δ1s) ∼ a01

{

− ln

(

2

δ1

)

− 1

2kR1

Y0(kR1)

Y1(kR1)
+

∞
∑

n=1

[

Yn(kR1)

kR1Y ′
n(kR1)

+
1

n

]

− 1

π(kR1)2

[

Y1(kR2)

Y1(kR1)

1

Y1(kR1)J1(kR2) − Y1(kR2)J1(kR1)

+

∞
∑

n=1

Y ′
n(kR2)

Y ′
n(kR1)

2

Y ′
n(kR1)J ′

n(kR2) − Y ′
n(kR2)J ′

n(kR1)

]}

+
a02

πk2R1R2

[

1

Y1(kR1)J1(kR2) − Y1(kR2)J1(kR1)

+

∞
∑

n=1

2 cosn(θ1 − θ2)

Y ′
n(kR1)J ′

n(kR2) − Y ′
n(kR2)J ′

n(kR1)

]

, (2.17)

φ(R2, θ2 + δ2s) ∼ − a01

πk2R1R2

[

1

Y1(kR1)J1(kR2) − Y1(kR2)J1(kR1)

+
∞
∑

n=1

2 cosn(θ1 − θ2)

Y ′
n(kR1)J ′

n(kR2) − Y ′
n(kR2)J ′

n(kR1)

]

+a02

{

ln

(

2

δ2

)

− 1

2kR2

J0(kR2)

J1(kR2)
+

∞
∑

n=1

[

Jn(kR2)

kR2J ′
n(kR2)

− 1

n

]

1

π(kR2)2

[

J1(kR1)

J1(kR2)

1

Y1(kR1)J1(kR2) − Y1(kR2)J1(kR1)

+

∞
∑

n=1

J ′
n(kR1)

J ′
n(kR2)

2

Y ′
n(kR1)J ′

n(kR2) − Y ′
n(kR2)J ′

n(kR1)

]}

.(2.18)

Before matching the ‘gap’ potentials, we must construct the field in r > R2 which
has a doubly-periodic, square array of the annular boundaries described above.

3. Mathematical Model of the Doubly-Periodic Array

The resonator consists of square cells of side d(> 2R2), centered at

Rp = (p1ex + p2ey)d, p = (p1, p2) ∈ Z
2, (3.1)

referred to unit vectors directed along Cartesian axes. Each cell has the structure
detailed in the previous section and the potential φ satisfies (2.1) everywhere. The
quasi-periodicity of the problem is manifested through the Bloch wavenumber k0

by imposition of the condition

φ(r + Rp) = φ(r) exp(ik0 · Rp), p ∈ Z
2. (3.2)

For a given k0, eigenvalues of k2 determine the frequencies of propagating modes
and singular values of k2 determine the resonant frequencies. Evidently, (3.2) suffices
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to determine φ from its values in the cell centered at R0 = (0, 0). In the region
r > R2 of this cell, the fundamental quasi-periodic Green’s function is given by

G(r, r′) =
1

4

∑

p

Y0(k|r − r′ − Rp|) exp(ik0 · Rp), (3.3)

which satisfies the Bloch conditions

G(r + Rp, r
′) = G(r, r′) exp(ik0 · Rp), (3.4)

G(r, r′ + Rp) = G(r, r′) exp(−ik0 · Rp), p ∈ Z
2. (3.5)

(One can also define a Green’s function using Hankel functions rather than Bessel
functions of the second kind.) With the notation r−r′ = ξeiγ , Rp = Rpe

iΘp(p 6= 0),
we follow Movchan et al. (2002) in writing (3.3) as

G(r, r′) =
1

4

[

Y0(kξ) +

∞
∑

l=−∞

SY
l (k,k0)Jl(kξ)e−ilγ

]

, (3.6)

where
SY

l (k,k0) =
∑

p6=0

Yl(kRp)e
ilΘp exp(ik0 · Rp). (3.7)

We now apply Green’s Theorem to φ(r′, θ′) and G(r, θ; r′, θ′) in the region r′ >
R2 of the cell centered at R0 = (0, 0). The quasi-periodicity (3.2) and conjugate
quasi-periodicity (3.5) conditions, as functions of r′, enable us to obtain

φ(r, θ) =

∫ π

−π

[

∂φ

∂r′
(R2, θ

′)G(r, θ; R2, θ
′) − φ(R2, θ

′)
∂G

∂r′
(r, θ; R2, θ

′)

]

R2 dθ′

(r ≥ R2; |x|, |y| < d/2). (3.8)

The boundary values of φ are now introduced and expressed as Fourier series by
writing

φ(R2, θ
′) = a02

∞
∑

n=−∞

[

βn

2kR2

Jn(kR2)

J ′
n(kR2)

− Dn

]

e−inθ′

,

∂φ

∂r′
(R2, θ

′) =
a02

2R2

∞
∑

n=−∞

βne−inθ′

(−π < θ′ ≤ π). (3.9)

The first of these is essentially a restatement of (2.3), while the second one intro-
duces a new set of unknown coefficients Dn. We need a double Fourier series for G
in order to deduce equations for the coefficients Dn from (3.8). Applying the Graf
summation formula (e.g. Abramowitz & Stegun, 1969, equation 9.1.79) to (3.6)
yields

G(r, θ; r′, θ′) =
1

4

∞
∑

n=−∞

Yn(kr)Jn(kr′)e−in(θ−θ′) (r > r′)

+
1

4

∞
∑

m=−∞

∞
∑

n=−∞

SY
m−n(k,k0)Jm(kr)Jn(kr′)e−imθeinθ′

.(3.10)
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Substitution of (3.9) and (3.10) into (3.8) now gives

φ(r, θ) = a02
πkR2

2

∞
∑

n=−∞

J ′
n(kR2)Dn

[

Yn(kr)e−inθ +

∞
∑

m=−∞

SY
m−n(k,k0)Jm(kr)e−imθ

]

(r ≥ R2; |x|, |y| < d/2),(3.11)

which satisfies (3.9) provided

DnY ′
n(kR2) +

∞
∑

m=−∞

SY
n−m(k,k0)J

′
m(kR2)Dm =

βn

π(kR2)2J ′
n(kR2)

(3.12)

for n = 0,±1,±2, . . . . Since R−p = Rp, Θ−p = Θp + π, we deduce from (3.7) that

SY
n−m(k,k0) = [SY

m−n(k,k0)]
∗. (3.13)

Hence the matrix of coefficients in (3.12) is Hermitian. Thus the resonant frequencies
are real and coincide with the propagating frequencies in the absence of the outer
gap (Rayleigh, 1892), that is, when δ2 = 0. Further, the formula (3.10) is real-valued
when θ = θ′ because the double sum is then a Hermitian quadratic form.

From (2.3) and (3.9),

βn =
einθ2

π

∫ 1

−1

ds′√
1 − s′2

∞
∑

N=0

aN2

a02
TN(s′)einδ2s′

= einθ2

∞
∑

N=0

aN2

a02
iNJN (nδ2),

(3.14)
which suffices for the asymptotic estimate

βn ∼ einθ2 , (3.15)

in (3.9) and (3.12). We then deduce from (3.9) that the ‘gap’ value of the potential
is approximated for |s| < 1, with errors of order δ2, by

φ(R2, θ2 + δ2s) ∼ a02

∞
∑

n=−∞

[

1

2kR2

Jn(kR2)

J ′
n(kR2)

− Dne−inθ2

]

e−inδ2s

∼ a02

{

− ln

(

2

δ2

)

− 1

2kR2

J0(kR2)

J1(kR2)
− D0

+

∞
∑

n=1

[

Jn(kR2)

kR2J ′
n(kR2)

+
1

n
− Dne−inθ2 − D−neinθ2

]

}

.(3.16)

To show that this estimate is real, we multiply the conjugate of (3.12) by DnJ ′
n(kR2)

and sum over n. Using (3.13), this gives, without consideration of convergence,

∞
∑

n=−∞

|Dn|2Y ′
n(kR2)J

′
n(kR2) +

∞
∑

n=−∞

∞
∑

m=−∞

SY
m−n(k,k0)J

′
m(kR2)D

∗
mDnJ ′

n(kR2)

=
1

π(kR2)2

∞
∑

n=−∞

Dne−inθ2 , (3.17)

which is real-valued because the double sum is a Hermitian quadratic form.
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4. The Eigenvalue Problem

Admissible values of k2, and hence the frequency at given wavenumber k0, are
determined by matching values of the potential in the two gaps. At r = R1, (2.16)
and (2.17) give

a01

{

2 ln

(

2

δ1

)

+
1

π(kR1)2J1(kR1)Y1(kR1)
+

∞
∑

n=1

[

2

π(kR1)2J ′
n(kR1)Y ′

n(kR1)
− 2

n

]

+
1

π(kR1)2

[

Y1(kR2)

Y1(kR1)

1

Y1(kR1)J1(kR2) − Y1(kR2)J1(kR1)

+
∞
∑

n=1

Y ′
n(kR2)

Y ′
n(kR1)

2

Y ′
n(kR1)J ′

n(kR2) − Y ′
n(kR2)J ′

n(kR1)

]}

∼ a02

πk2R1R2

[

1

Y1(kR1)J1(kR2) − Y1(kR2)J1(kR1)

+

∞
∑

n=1

2 cosn(θ1 − θ2)

Y ′
n(kR1)J ′

n(kR2) − Y ′
n(kR2)J ′

n(kR1)

]

, (4.1)

while, at r = R2, (2.18) and (3.16) give

a01

πk2R1R2

[

1

Y1(kR1)J1(kR2) − Y1(kR2)J1(kR1)

+

∞
∑

n=1

2 cosn(θ1 − θ2)

Y ′
n(kR1)J ′

n(kR2) − Y ′
n(kR2)J ′

n(kR1)

]

∼ a02

{

2 ln

(

2

δ2

)

+ D0 +
∞
∑

n=1

[

Dne−inθ2 + D−neinθ2 − 2

n

]

+
1

π(kR2)2

[

J1(kR1)

J1(kR2)

1

Y1(kR1)J1(kR2) − Y1(kR2)J1(kR1)

+

∞
∑

n=1

J ′
n(kR1)

J ′
n(kR2)

2

Y ′
n(kR1)J ′

n(kR2) − Y ′
n(kR2)J ′

n(kR1)

]}

, (4.2)

with errors of order δ1, δ2.
Since the interior gap orientation θ1 appears only in |θ1−θ2|, we have verification

that in the annular region only the separation of the gaps is significant in this
asymptotic framework. In the periodic array, we note a symmetry with respect to
direction reversal of either k0 or Rp and prefer to consider the latter. We replace
n by −n in the conjugate of (3.12) and use (3.13) to obtain

(−1)nD∗
−nY ′

n(kR2) +
∞
∑

m=−∞

SY
n−m(k,k0)J

′
m(kR2)(−1)mD∗

−m =
(−1)neinθ2

π(kR2)2J ′
n(kR2)

,

(4.3)
which allows us to deduce from (3.12) that the coefficients are related by

(−1)nD∗
−n(θ2) = Dn(π + θ2). (4.4)
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When (4.4) is used to evaluate (3.17) at π + θ2, we find that

∞
∑

n=1

[

Dn(π + θ2)e
−in(π+θ2) + D−n(π + θ2)e

in(π+θ2) − 2

n

]

=
∞
∑

n=1

[

D∗
−n(θ2)e

−inθ2 + D∗
n(θ2)e

inθ2 − 2

n

]

=

∞
∑

n=1

[

Dn(θ2)e
−inθ2 + D−n(θ2)e

inθ2 − 2

n

]

, (4.5)

with the last identity a consequence of the real-valued sum. Thus the last term in
(4.2) is unchanged when θ2 is replaced by π + θ2. So we need consider only the
range −π/2 < θ2 ≤ π/2 in the eigenvalue problem. But this reflective property of
θ2 does not change the sufficient range |θ1 − θ2| ≤ π of the gap offset.

A simpler calculation suffices if we delete the annular region and have a single
gap by setting R1 = R2 = R, θ1 = θ2, δ1 = δ2 = δ. Then (3.13) and (3.15) are
unchanged except for R2 = R and matching of (2.16) and (3.16), with a01 = a02 =
a0, gives

2 ln

(

2

δ

)

+ D0 +

∞
∑

n=1

[

Dne−inθ2 + D−neinθ2 − 2

n

]

= 0, (4.6)

with errors of order δ. The symmetry property (4.4) remains applicable.
Alternative expressions for the lattice sum SY

l are derived in Movchan et al.

(2002). For later estimates, we need (3.101) of Movchan et al. (2002):

Y0(kξ)δl,0 + SY
l (k,k0)Jl(kξ) =

4

d2

∑

h

ilJl(Qhξ)

k2 − Q2
h

eilΓh , (ξ < d) (4.7)

which is obtained by expressing the function SY
l in wavenumber space. The recip-

rocal lattice is defined by Qh = k0 + Kh = QheiΓh and Kh = 2π(h1ex + h2ey)/d,
with h = (h1, h2) ∈ Z

2.

5. Small Eigenvalue Asymptotics

When we seek an estimate of the gravest eigenvalue for the single-gap case by
inserting small-k expansions into (4.6), we deduce from (3.12) that the second term
gives an O[1/(kR)2] contribution, as in the cases discussed by DLS. This leads to
the estimate

(kR)2 ∼
[

2 ln

(

2

δ

)

+ lim
k→0

{

D0 +
1

k2R2
+

∞
∑

n=1

[

Dne−inθ2 + D−neinθ2 − 2

n

]

}]−1

,

(5.1)
with errors of order δ and valid for |k0| ≫ k. Large values of the coefficients in
(4.6), and hence eigenvalues, also occur when k is close to either a Rayleigh mode
or an interior mode in the absence of the gap. This is analogous to the case of an
outer concentric circular boundary, with (3.12) and (4.6) together displaying the
features observed in (3.17) of DLS.
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In seeking similar approximations to the two-gap matching formulas, we first
note that the coefficients {Dn} in (4.2) are still determined by (3.12), because
the array geometry is a common property. In particular, D0 gives an O[1/(kR2)

2]
contribution, which must be taken into account in a small-k estimate of the gravest
eigenvalue. Arranged for the dominant terms to cancel in their determinant, the
generic form of (4.1) and (4.2) is

a01

[

− 1

k2(R2
2 − R2

1)
+ B1

]

∼ a02

[

− 1

k2(R2
2 − R2

1)
+ B3

]

, (5.2)

a01

[

− 1

k2(R2
2 − R2

1)
+ B3

]

∼ a02

[

− 1

(kR2)2
− A−1

k2(R2
2 − R2

1)
+ B2

]

∼ a02

[

− 1

k2(R2
2 − R2

1)
+ B2

]

, (5.3)

where A = (R2/R1)
2 > 1 is the area ratio of the split ring. Evidently B1 must

include −(kR1)
−2, which therefore is at most logarithmically large. On setting

the determinant to zero, the surviving leading terms in the determinant yield the
identity B1 +B2 = 2B3 which enables us to deduce, after much algebra, the small-k
estimate

(kR1)
−2 ∼ 2 ln

(

2

δ1

)

+ 2 ln

(

2

δ2

)

+ lim
k→0

{

D0 +
1

(kR2)2
+

∞
∑

n=1

[

Dne−inθ2 + D−neinθ2 − 2

n

]

}

+
1

4
lnA + 4

∞
∑

n=1

1 − An/2 cosn(θ1 − θ2)

n(An − 1)
, (5.4)

with errors are of order δ1, δ2. Again, eigenvalues also occur when k is close to
either a Rayleigh mode or an interior mode in the absence of the gaps, with the
extra equation accounting for the annular modes.

(a) k0d = O(1)

The validity of (5.1) and (5.4) depends on the existence of the stated limit. We
rearrange (3.12) to obtain

Dn +

∞
∑

m=−∞

SY
n−m(k,k0)

J ′
m(kR2)

Y ′
n(kR2)

[

Dm +
δm0

(kR2)2

]

=
1

(kR2)2

[

βn

πJ ′
n(kR2)Y ′

n(kR2)
+ SY

n (k,k0)
J ′

0(kR2)

Y ′
n(kR2)

]

= gn − δn0

(kR2)2
(n = 0,±1,±2, . . . ), (5.5)

which defines gn and in which βn is estimated by (3.15). Since (3.7) implies that
SY

l = O((kR2)
−|l|) if l 6= 0, we deduce that, if n 6= 0 in (5.5), gn = O(1) and only

coefficients with m 6= 0 and mn < 0 are O(1). Equation (4.7) shows that

g0 ∼ π

d2

∑

h

J0(QhR2)

Q2
h

+
1

8
, gn ∼ βn

|n| +
2π

d2

∑

h

inJn(QhR2)

Q2
h

einΓh(n 6= 0) (5.6)
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and the equations (5.5) reduce to

D−n +

∞
∑

m=1

[SY
n+m(k,k0)]

∗ J ′
m(kR2)

(−1)nY ′
n(kR2)

Dm = g−n(n > 0)

D0 +

∞
∑

m=1

{

[SY
m(k,k0)]

∗Dm + SY
m(k,k0)(−1)mD−m

} J ′
m(kR2)

Y ′
0(kR2)

= g0 −
1

(kR2)2

Dn +

∞
∑

m=1

SY
n+m(k,k0)

(−1)mJ ′
m(kR2)

Y ′
n(kR2)

D−m = gn(n > 0).(5.7)

Since D0 is absent from the n 6= 0 equations, the middle equation is an O(1)
estimate for D0 that depends on the other, already computed, limit values of the
coefficients.

(b) k0 = |k0| = O(k)

This is the acoustic limit, and we can obtain the asymptotic behaviour by trun-
cating the full system (3.12) to three terms:











Y ′
1

J ′
1

+ SY
0 SY

−1 SY
−2

SY
1

Y ′

0

J′

0

+ SY
0 SY

−1

SY
2 SY

1
Y ′

1

J′

1

+ SY
0















−D−1J
′
1

D0J
′
0

D1J
′
1



 =
1

π(kR)2

















−e−iθ2

J ′
1

1

J ′
0

eiθ2

J ′
1

















∼ − 2

π(kR)3





0

1

0



 .

(5.8)
The required estimates are (Movchan et al., 2002, 3.132–134, 3.155–156)

Y ′
0

J ′
0

+ SY
0 ∼ 4

d2(k2 − k2
0)

− 4

π(kR)2
,

Y ′
1

J ′
1

+ SY
0 ∼ 4

d2(k2 − k2
0)

+
4

π(kR)2
, SY

−1 = [SY
1 ]∗,

SY
1 ∼ 4ieiΓ0

d2(k2 − k2
0)

k0

k
, SY

−2 = [SY
2 ]∗, SY

2 ∼ − 4e2iΓ0

d2(k2 − k2
0)

(

k0

k

)2

. (5.9)

Solving (5.8) shows, as expected, that

D0 +
1

(kR)2
= O

[

1

(kR)2

]

, D±1 = O

(

1

kR

)

, (5.10)

and hence the estimate (5.1) is inapplicable here. Instead, to leading order, the
eigenvalue equation (4.6) for the single-gap case gives from (5.8) and (5.9)

2(kR)2 ln

(

2

δ

)

∼ lim
k→0

(D0k
2R2) =

1+f
1−f − k2

0

k2

k2

0

k2 − (1 + f)
, (5.11)

where f = π(R/d)2 is the area fraction inside the outer ring. This estimate has
errors of order δ and valid for |k0| = O(k) ≪ d−1. As k → 0, both sides of (5.11)
vanish, leading to the acoustic dispersion relation

k ∼
(

1 − f

1 + f

)1/2

k0. (5.12)
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The matrix in (5.8) is singular when k = (1 + f)−1/2k0, which is the Rayleigh dis-
persion relation (Movchan et al., 2002, 3.158) corresponding to modes propagating
through a periodic array of circular cylinders.

6. Numerical Approach and Results

We limit ourselves to the single-gap case in the numerical calculations. Our task is to
solve (4.6), that is find the zeroes of a function of the frequency k, the wavenumber
k0, or rather its angle θ and the geometric parameters of the array: R, δ and D. We
view (4.6) as an equation for k and solve for k on the boundary of the first irreducible
Brillouin zone KGM . To compute the sum in (4.6), we first need to solve for the
Dn in (3.12). We truncate the infinite series at N = 8. This is more than enough,
given the spectral accuracy of the series. Tests showed negligible differences between
N = 4 and N = 8. The lattice sums are computed using the approach of McPhedran
et al. (2000) and Yasumoto & Yoshitomi (1999). Tests matched the digits in these
references. While our interest was focused on the lowest three modes, the possibility
of crossing of higher modes made the computation of some of the dispersion curves
delicate. To deal with this issue, we used the continuation code PITCON66 (a
descendant of the algorithm in Rheinboldt & Burkardt, 1983) to track the curves.
Rather than computing the sum in (5.1) at k = 0 as in (5.6), we use small values
of k and use a parabolic fit to obtain the values at k = 0.

As default values we take d = 1, R = 0.35, δ = 0.05 and θ = 0. This produces the
three lowest modes in the band diagram of Figure 2(a). We see that the gravest mode
(mode 1) has the typical V-shape of the acoustic mode and then weak variation
along the rest of the boundary of the Brillouin zone. Hence the group velocity is
low, corresponding to anomalous dispersion. The next two modes are typical of
such period arrays, and in fact the whole diagram is very similar to Figure 2 of
Guenneau et al. (2007). There are band gaps between all three modes.

The other panels in Figure 2 correspond to varying one parameter of the default
values. In (b), θ = π/3; mode 3 has lower group velocity along most of the boundary
of the Brillouin zone, but there are no qualitative changes. In (c), δ = 0.001 while
in (d), δ = 0.2. The small-k0 asymptotic limit decreases as δ decreases and the
group velocity is even smaller, while the opposite happens as δ increases. Mode 2
shows smaller changes than mode 3. In (e) R is reduced to 0.2. Mode 2 now has a
frequency larger than 6 and is no longer visible. The small-k0 limit is larger since
it is inversely proportional to R. In (f) R = 0.48, which has the outer rings almost
touching. The small-k0 limit is lower and shows more structure. Both mode 2 and
mode 3 show weak dependence on k0 with small group velocities.

The features seen in Figure 2 can be interpreted as a splitting of the lowest
propagating Rayleigh mode. In the split ring case, the lowest mode has a universal
shape, with essentially the acoustic mode in the large-wavelength, low-frequency
limit, asymptoting to an anomalous trapped mode along the rest of the boundary
of the Brillouin zone. Mode 1 is then a slightly distorted version of the lowest
Rayleigh mode with a smooth parabolic form near G. This is shown in Figure 3
for the default parameter values of Figure 2(a). The different curves show the split
ring dispersion curves, the Rayleigh dispersion curves and the asymptotic limits.
As δ decreases, the gravest split ring mode becomes flatter with lower frequency,
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K G M K
0

1

2

3

4

5

6
(a)

kd
 =

 ω
d/

c

K G M K
0

1

2

3

4

5

6
(b)

kd
 =

 ω
d/

c

K G M K
0

1

2

3

4

5

6
(c)

kd
 =

 ω
d/

c

K G M K
0

1

2

3

4

5

6
(d)

kd
 =

 ω
d/

c

K G M K
0

1

2

3

4

5

6
(e)

kd
 =

 ω
d/

c

K G M K
0

1

2

3

4

5

6
(f)

kd
 =

 ω
d/

c

Figure 2. Band diagram giving non-dimensional frequency kd on the boundary of the
irreducible segment of the first Brillouin zone (the origin is at G and M is along the
horizontal axis). Parameters given in the text.

and mode 2 resembles the gravest Rayleigh mode even more closely. Mode 2 and
Rayleigh mode 1 do not seem to have any particular resemblance.

7. Summary

We have computed the band diagram for a periodic structure of split ring resonators.
An analysis valid when the gaps are narrow gives an algebraic dispersion relation.
Asymptotic estimates are obtained for low frequencies, showing anomalous disper-
sion. For the single gap we find the acoustic mode with k ∼ [(1 − f)/(1 + f)]1/2k0.
Numerical solutions for the single gap show that these asymptotic predictions are
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Figure 3. Band diagrams for the default case. The lower diagram is an enlargement of
the upper diagram near the origin. Solid curves: non-dimensional frequency kd. Dashed
curves: Rayleigh dispersion curves. Upper diagram. Dot-dash curve: small-k, k0 = O(1)
asymptotics (5.1), not valid near G. Dotted line: the ln 2/δ term alone. Lower diagram:
enlargement of the region near the origin. Dotted curves: small-k, small-k0 asymptotics
for the split ring resonator and for the Rayleigh dispersion relation.

robust. Band gaps are also found between the lowest 3 modes. The lowest 2 modes
can be interpreted as a splitting of the gravest propagating Rayleigh mode.

The only extra complication in the numerical solution for the double-ring case
is the solution of the two linear equations (4.1–4.2) rather than the single equation
(4.6). The asymptotic behaviour for the double-ring case is obtained and is no
more difficult to implement than the single-ring case, which also requires finding
the asymptotic behaviour of the coefficients Dn.

This work shows how asymptotic methods can be used to demonstrate how band
diagrams for periodic structures are changed by the introduction of narrow gaps in
the geometry.

We are grateful to Richard Craster for helpful comments.
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