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Abstract

BACKGROUND: Although shorter telomeres have been associated with Alzheimer’s disease 

(AD), it is unclear whether longitudinal change in telomere length is associated with AD 

progression.

OBJECTIVE: To investigate the association of telomere length change with AD diagnosis and 

progression.

METHODS: In 653 individuals from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) 

cohort, T/S ratio (telomere vs. single copy gene), a proxy of telomere length, was measured for up 

to five visits per participant (N=1918 samples post-QC) using quantitative PCR (qPCR). T/S ratio 

was adjusted for batch effects and DNA storage time. A mixed effects model was used to evaluate 
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association of telomere length with AD diagnostic group and interaction of age and diagnosis. 

Another mixed effects model was used to compare T/S ratio changes pre- to post-conversion to 

MCI or AD to telomere change in participants with stable diagnoses.

RESULTS: Shorter telomeres were associated with older age (Effect Size (ES)=−0.23) and male 

sex (ES=−0.26). Neither baseline T/S ratio (ES=−0.036) nor T/S ratio change (ES=0.046) differed 

significantly between AD diagnostic groups. MCI/AD converters showed greater, but non-

significant, telomere shortening compared to non-converters (ES=−0.186).

CONCLUSIONS: Although AD compared to controls showed small, non-significant effects for 

baseline T/S ratio and T/S ratio shortening, we did observe a larger, though still non-significant 

effect for greater telomere shortening in converters compared to non-converters. Although our 

results do not support telomere shortening as a robust biomarker of AD progression, further 

investigation in larger samples and for subgroups of participants may be informative.

Keywords
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INTRODUCTION

Telomeres, chromosomal end caps composed of thousands of hexameric DNA repeats and 

their associated proteins, insulate the ends of the chromosomes from damage and fusion, and 

prevent coding DNA loss during DNA replication [1]. Germline telomere length is heritable, 

influenced by factors including genetic variants, paternal and maternal age, paternal 

telomere length, and paternal birth year [2–8]. Telomere length decreases by 50-100 bp with 

every cell division in vitro [9]; this effect can be offset by the action of telomerase, which 

increases telomere length. Telomeres have been shown to decrease approximately 20-30 bp a 

year in human leukocytes in vivo [10–12]. In addition to genetic factors, telomere length has 

been shown to be influenced by environment and behavior. Many different variables appear 

to associate with somatic telomere length, from stress and diet to drug use and 

environmental pollution [13–22]. Many of these factors are also associated with risk for 

Alzheimer’s disease (AD). Additionally, many different disorders have been reported to be 

associated with shorter or longer telomeres, including disorders which can be comorbid with 

AD and related disorders (ADRD), such as sleep apnea, cardiovascular disease, and diabetes 

[23, 24]. Thus, it appears that many factors associated with shorter telomeres or longitudinal 

telomere shortening have also been associated with ADRD and comorbid disorders, 

suggesting that telomere shortening and cellular pathways potentially activated by genomic 

instability and cellular aging may play a role in mediating environmental/behavioral impact 

on AD risk.

A number of previous studies have provided mixed evidence for the impact of telomere 

length on AD risk [25–29]. A recent, well-powered meta-analysis of 13 of these studies 

(N=2,882) supports an association of shorter telomeres with AD (standardized mean 

difference of −0.984; 95% confidence interval: −1.433 to −0.535; p value<0.001; Effect size 

(ES)=−1.213) [30]. However, interpretation of this effect size is difficult, as there were many 

significant differences between studies included in this analysis including tissue type, 

Nudelman et al. Page 2

J Alzheimers Dis. Author manuscript; available in PMC 2020 September 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



measurement method, geographic location, and age. A concern is that several of the included 

studies, including the largest, have much higher median age for AD participants compared to 

controls; it would be difficult to successfully adjust for such a difference when studying 

telomere length, which is intrinsically linked to aging. Furthermore, these studies do not 

indicate whether this association is driven by inherited telomere length, greater telomere 

shortening over time, or a combination of these effects. Studies using Mendelian 

randomization provide support for a causal relationship between shorter telomeres and AD 

[31, 32]. Furthermore, an association of SNPs in telomerase genes with AD risk also 

suggests a role for differential telomere shortening in AD risk [33]. However, to date, the 

contribution of telomere length and telomere longitudinal change to late onset AD risk and 

progression is unclear. Of note, data from related diseases also suggests the potential role of 

telomere shortening in AD risk/progression. Studies of older adults with Down Syndrome 

suggest that telomere shortening may play a role in these adults’ progression to mild 

cognitive impairment (MCI), a prodromal phase of AD [34, 35].

To date, there is a dearth of data on longitudinal telomere length in older cohorts, which has 

not allowed direct investigation of the impact of telomere shortening rate on AD risk and 

progression in older adults. We hypothesized that accelerated telomere shortening would be 

observed in individuals with AD, and that telomere shortening rate may be associated with 

risk for conversion to a more advanced stage of disease (i.e., from normal cognition to MCI 

or MCI to AD).

METHODS

Alzheimer’s Disease Neuroimaging Initiative (ADNI)

Data used in the analysis were obtained from the Alzheimer’s Disease Neuroimaging 

Initiative (ADNI) database (adni.loni.usc.edu). ADNI, a multi-year public/private 

partnership founded in 2003 by Principal Investigator Michael W. Weiner, at UCSF, is a 

collaboration including the National Institute of Aging (NIA), the National Institute of 

Biomedical Imaging and Bioengineering (NIBIB), the Food and Drug Administration 

(FDA), pharmaceutical companies, and non-profit organizations. This multi-phase ongoing 

longitudinal study includes more than 1800 participants who are cognitively normal (CN), 

have mild cognitive impairment (MCI), or AD, from over 50 sites in the United States and 

Canada. Further information on the ADNI study design, protocols, and diagnostic criteria as 

well as the data and measurements used in these analyses can be found at http://

adni.loni.usc.edu/; the cohort has also been extensively described in numerous publications 

[36–38].

Institutional Review Board approval was obtained by each ADNI site, and informed consent 

was obtained from each study participant or authorized representative. This study was done 

in accord with the ethical standards of the Helsinki Declaration of 1975.

To study telomere length longitudinally in this cohort, a subset of individuals with 

longitudinal DNA samples available were selected who were enriched for conversion from 

CN to MCI or CN/MCI to AD during the study. Each individual had between one and five 

visits with DNA selected for measurement; since the first visit for each individual was not 
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necessarily the baseline visit, and might differ between individuals (i.e., for individual 1, 

visit 1 is baseline, but for individual 2, assayed visit 1 is the twelve month visit), visits are 

referred to as visit 1-5.

Telomere Length Measurement

Telomere length was measured from DNA obtained from blood. Blood was drawn and either 

shipped at room temperature to NCRAD (typically within 1 day) for DNA extraction and 

storage at −80 degrees Celsius, or processed to buffy coats, frozen, then shipped to NCRAD 

for extraction and storage at −80 degrees Celsius. DNA was shipped from NCRAD to the 

Telomere Biology Core Lab (University of California, San Francisco) for telomere length 

measurement via quantitative PCR (qPCR), with a protocol adapted from the published 

original method by Cawthon [39, 40].

Control DNAs were included in each run on each plate and were used to normalize batch 

effects. Every sample was run in triplicate to generate a T/S ratio; this process was repeated 

to obtain another T/S ratio, and these were averaged to obtain the final T/S ratio. When the 

duplicate T/S ratio and the initial ratio varied by more than 7%, the sample was run in 

triplicate a third time and the two closest values were averaged to obtain the final T/S ratio. 

All assays for the entire study were performed using the same lots of reagents. Baseline and 

follow-up samples from the same participant were always measured in the same assay plate 

to control for batch variations. Detailed information about this assay is available in the 

ADNI telomere methods document on LONI (http://adni.loni.usc.edu/), and is also included 

in the Supplemental Methods section (S1) of this report.

T/S Ratio Preprocessing

DNAs used in this assay were plated twice at NCRAD, once for telomere length, and once 

for methylation assays performed independently. The methylation data, which included 59 

SNPs used for quality control, was used to eliminate two of the 1,920 DNA samples as 

potential swaps. Initial quality control identified an instrument calibration bias resulting in 

unequal DNA pipetting. To correct this, we compared the intra-plate coefficient of variation 

(CV) within the triplicate wells in each run for all samples and discarded any second or third 

pipetted well with intra-assay CV>2.5%. The adjusted run data were used to calculate the 

T/S ratios, and inter-assay CV was used to determine the variance between the two 

independently run T/S ratios. Any sample with an inter-assay difference greater than 7% was 

re-run, and the closest two T/S ratios were averaged to obtain the final T/S ratio. The inter-

assay CV for telomere length measurement for the corrected data is 3.0%±3.0%.

Once the additional T/S ratio measurements were integrated into the data set and an 

acceptable inter-assay CV was obtained, calculations were performed with SAS 9.4 software 

to adjust for additional sources of experimental variance. A linear mixed effects model was 

calculated for T/S ratio, including all visits, with plate, row, column, sample type (blood or 

buffy coat), and months of DNA storage between extraction and qPCR as independent 

variables. Repeated effects for replicates nested within participants across time used a 

compound symmetry covariance structure. Results showed that DNA storage and sample 

type (which changed during the course of the study) resulted in longer telomere length in 
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more recently collected samples (i.e. samples from participants at later visits, which we 

would normally expect to be shorter than telomere length measurements from earlier visits) 

Standardized residuals from this model were added to the T/S ratio to obtain an adjusted T/S 

ratio for each DNA sample. Replicates were averaged to obtain one adjusted T/S ratio for 

each participant at each visit. This adjusted, averaged value (hereafter referred to as simply 

T/S ratio) was used for all subsequent analyses.

Statistical Analyses

Statistical analyses were conducted in SAS 9.4. Demographic variables were tested for 

association with AD diagnostic group (CN/MCI/AD) on visit 1 using Pearson Chi-Square 

and analysis of variance (ANOVA) tests as appropriate. These variables included age, sex, 

ethnicity, race, education, Apolipoprotein E (APOE) ε4 carrier status, and smoking (ever 

smoked yes/no).

Mixed effects models were used to determine how AD diagnosis groups (CN/MCI/AD) are 

associated with T/S ratio changes. In the first mixed effects model, diagnostic group is used 

as a time-varying covariate, e.g., an individual who was CN at visit 1-2, then was diagnosed 

MCI at visits 3-4, would have T/S ratio at visit 1-2 in the CN group, and visits 3-4 in the 

MCI group. The mixed effects model accounted for within-subject correlations between 

visits by including a random subject effect. Age at visit, sex, APOE ε4, years of education, 

diagnostic group at visit, and an interaction between age and diagnostic group were included 

in this model. Slope for T/S ratio change over time for each diagnostic group was estimated 

from this model. Effect sizes were derived as the standardized parameter estimates 

representing changes in T/S ratio measured by standard deviations (SD) associated with one 

SD change in the independent variable of interest.

A second mixed effects model was used to determine whether T/S ratio rates of change were 

different between converters and those who remained stable. T/S ratio changes were 

calculated between those obtained at conversion point visit and the visit prior to conversion 

for converters, and between the last two visits for those who remained stable. The model 

included converter status, time interval between preC and postC, sex, APOE ε4, years of 

education, and age at first observation. This mixed effects model allowed for participants to 

be considered for CN converting to MCI or AD and MCI converting to AD (converters with 

disease progression) and multiple conversions from an individual. We chose this method 

with these visits to investigate immediate effects of disease progression on telomere 

shortening rate. Formulae for both mixed effect models are included in Supplemental Mixed 

Effects Model Formulae (S2).

RESULTS

Demographic Variables

Demographic variables by AD diagnostic groups for the N=653 unique individuals with 

telomere data is shown for visit 1 in Table 1. Most individuals in this study are white non-

Hispanic by self-report, with approximately 16 years of education. Of the demographic 
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variables analyzed, APOE ε4 (p<0.001) and older age (p<0.001) were significantly 

associated with AD diagnostic group.

T/S Ratio and AD Diagnosis and Conversion

The results of the first mixed model, including diagnosis at visit and an interaction between 

age and diagnosis, are presented in Table 2. Older age (ES=−0.23, p<0.001) and male sex 

(ES=−0.26, p<0.001) were both significantly associated with smaller T/S ratios (shorter 

telomere length; Figure 1). AD participants had shorter telomeres compared to controls (ES=

−0.036), while MCI participants did not show a significant difference in telomere length 

compared to controls (ES=−0.0087); however, diagnosis was not significantly associated 

with telomere length (p=0.657). The interaction term between age and diagnosis also did not 

reach statistical significance (p=0.6805). As seen in Table 3, controls and MCI 

participantsshowed a similar rate of change (annual change for both groups=−0.005; MCI 

vs. CN ES=−0.001), while AD participants showed a slower rate of telomere shortening 

(annual change=−0.004; AD vs. CN ES=0.046); however, this effect does not reach 

statistical significance (p=0.681). For all three diagnostic groups, annual change in T/S ratio 

showed significant shortening (p<0.001 for all).

Numbers of converters and those with stable disease are show in Table 4, broken into rows 

by participants whose first visit had a CN diagnosis, and those who converted from MCI to 

AD. There were eight individuals who converted twice (CN to MCI to AD) during the 

longitudinal visits included in this study; these individuals’ data were included in the model. 

Longitudinal T/S ratio values are shown for these individuals in Figure 2.

To test whether rate of change differed by disease progression, a second mixed model was 

tested with a term for converter status and results are presented in Table 5. Analysis of 

converters vs. those with stable diagnosis showed an effect of telomere shortening in 

converters compared to those with stable diagnosis (ES=−0.186, p=0.083), with converters 

showing a larger decrease in T/S ratio (mean=−0.023, SE=0.012, p=0.050) preC to postC 

compared to controls and those with stable disease (mean=0.0015, SE=0.0071, p=0.833), 

though this effect does not reach statistical significance.

DISCUSSION

This is the first study to perform a longitudinal investigation of change in telomere length in 

relation to late-onset AD risk and progression. While age and sex showed the expected 

relationship with telomere length, we did not observe a significant association of T/S ratio at 

baseline or significant change in T/S ratio with AD diagnostic group. However, examining 

the effect for AD and MCI compared to controls in the mixed effects model, for AD vs. 

controls telomere length is shorter (ES=−0.036), while for MCI vs. controls telomere length 

shows a negligible difference (ES=−0.0087). This supports the existing literature that AD 

participants have shorter telomeres than controls, though the effect is smaller than the 

estimate by the most recent meta-analysis of telomere length in AD compared to controls 

(ES=−1.213) [30]. However, the much larger effect from the meta-analysis may be partly 

due to inflation, given that some of the studies in the meta-analysis showed a larger age gap 

(AD 7 years older than controls in the largest study); it would be difficult to accurately 
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adjust for such a difference when studying telomeres given that telomere length is known to 

decrease with age. Results from the ADNI cohort also extend these findings to suggest the 

same effect is not observed in individuals with MCI, who have telomere lengths similar to 

controls (difference in T/S ratio=0.0002). In examining the longitudinal rate of telomere 

length change across diagnostic groups, the observation that the AD group showed a 

nonsignificant slower rate of change than controls or MCI was unexpected.

Because this model included all visits with a diagnosis regardless of later disease 

progression, we assessed whether rate of change within diagnostic group, might be 

confounded by different rates of change in individuals who convert compared to those who 

are stable. In a mixed effect model including diagnostic conversion status, we observed 

greater T/S ratio change pre- to post-conversion in converters (ES=−0.186, p=0.08) 

compared to non-converters, though this effect did not reach statistical significance, 

suggesting that in a larger study, AD progression might be significantly associated with a 

greater decrease in T/S ratio.

A number of previous studies have shown mixed evidence for cross-sectional telomere 

length association with AD diagnosis with much of the evidence suggesting that shorter 

telomeres are associated with AD risk [30]. However, these cross-sectional studies were not 

able to investigate the association of rate of change of telomere length with disease risk. This 

is an important point, as a variety of behavioral and environmental variables have been 

shown to play important roles in telomere length change during life, from early life stress to 

diet, exercise, and various pharmaceuticals. Thus, while shorter telomeres at birth are not 

currently a viable target for intervention, the rate of telomere shortening could conceivably 

be modified by behavioral, dietary, or pharmaceutical interventions. Further research is 

needed to confirm the observation of a medium effect for disease progression associated 

with telomere length change, to advance this potentially translatable finding.

The present study has several limitations. Although the lack of statistically significant 

findings may suggest that telomere length is not a key factor in the biological mechanisms 

predisposing to AD, methodological issues and adjustments for experimental variation may 

have reduced the power to detect significant relationships in this dataset. Given that the 

sample type bias and storage time effect had an opposite impact on telomere length 

compared to the normal shortening observed with age, it is possible that some of the signal 

was obscured by this experimental variation. Additionally, the trend for greater telomere 

shortening in converters during the conversion period suggests that this may be a biomarker 

of disease progression. Blood sample collection in ADNI was originally designed to ensure 

an adequate supply of genomic DNA but not to minimize sources of variation for analysis of 

longitudinal changes in DNA. A larger, better-powered study explicitly designed to assess 

longitudinal DNA changes with comparable biospecimen collection and handling at each 

time point is needed to investigate these relationships in greater depth.

Interestingly, while a previous study of healthy post-menopausal older women (N=63) 

showed that APOE ε4 carriers had greater odds of exhibiting enhanced telomere shortening 

over a two year period [41], APOE ε4 carrier status was not significantly associated with 

telomere rate of change in the current analysis. This could be due to other differences in 
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demographic factors between these cohorts including mean age (ADNI mean age is 

approximately a decade older than the cancer study). For the purposes of the current study, 

APOE ε4 was included as a covariate in all analyses due to the known AD risk associated 

with APOE ε4, so this is not likely to have confounded the results.

While large compared to many single site studies of telomere length in AD, the present 

study is smaller than the recent meta-analysis showing shorter telomeres associated with AD 

(N=2,882) [30]. We also show an effect of shorter telomeres in AD, though much smaller 

than the meta-analytic ES (−0.036 vs. −1.213). However, it is possible that we might observe 

this cross-sectional effect reaching statistical significance in a larger cohort. Another 

limitation was that ADNI is a relatively well-educated, homogeneous cohort compared to the 

U.S. population, and excluded individuals with serious mental illnesses. This is an important 

consideration, as there is likely to be more variability in telomere length, and potentially also 

in telomere shortening rate, in a fully representative AD population, since telomere length 

and attrition have been linked to factors including early life stressors, mental illness, drug 

use, and alcoholism [13, 17, 18, 42, 43]. This study was also limited by the lack of suitable 

longitudinal replication data. Future directions should also include obtaining more data to 

perform a well-powered analysis of individuals showing faster disease progression for 

differences in telomere attrition. This analysis did not incorporate genetic data (other than 

APOE) to differentiate between genetic predictors of telomere length and differences in 

length from environmental/behavioral factors, as this was beyond the scope of the current 

work. Analyses of gene/environment interaction in related to telomere length associated 

pathways is however an important future direction. Future studies should also obtain more 

telomere measurements at time intervals prior to preC and following postC visits, to evaluate 

at what point prior to conversion accelerated telomere shortening can be detected, and 

whether telomere shortening accelerates following disease progression. This study was not 

powered to evaluate this measure, as only 1/4 of the converters in the subset of ADNI 

participants selected for this assay had a visit with data prior to the preC visit, and even 

fewer individuals had a visit with data following the postC visit. Previous research in Down 

Syndrome has shown that accelerated telomere shortening is detectable up to 18 months 

prior to diagnosis with MCI in this population [34], suggesting that telomere shortening 

prior to conversion may be a useful biomarker of risk for imminent disease progression.

Another consideration related to study size is the potential influence of drugs on telomere 

length. As pointed out earlier, there are many different genetic, environmental, and 

behavioral variables that have been shown to contribute to telomere length; among these, 

drugs have been shown to influence telomere length and telomerase function [16, 17, 20, 44, 

45]. This is particularly important in the ADNI sample, and other cohorts of older 

individuals, as aging studies and older cohorts tend to be enriched for individuals taking one 

or more drugs on a long-term basis, as well as individuals with more serious medical 

histories who have been exposed to biologically disruptive drugs with drastic systemic 

effects, such as chemotherapy, some of which have a variety of long-term effects. While 

ADNI does not have complete medical records of past and current medication (data based on 

self-report, not medical record), and thus adjusting for drug exposure is beyond the scope of 

the current analysis, future work leveraging cohorts with full electronic health record access 

should consider how drug use may impact telomere length in the AD population.
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It is unclear whether telomere shortening is contributing to the molecular and systemic 

pathways driving AD progression, though this study presents evidence suggesting that 

telomere shortening may accelerate during disease progression. However, the theoretical 

biological underpinnings of this connection are compelling and deserve further investigation. 

Telomere length has been shown to correlate between tissues, suggesting that shortening in 

the periphery may be a marker for shortening telomeres in brain cell populations [26]. 

Telomere shortening in neuronal, microglial or astroglial populations could potentially lead 

to genomic instability and cell death, particularly if, as postulated in several recent papers, 

deficits in neurogenesis may contribute to AD risk [46]. Shorter telomeres in neural stem 

cells could lead to senescence and deficits in neurogenesis, potentially leading to memory 

problems and AD. Additionally, it is possible that telomere shortening could be playing a 

role in increased cellular senescence in the brain. Short telomeres in microglia could 

potentially contribute to senescence-associated secretory phenotype (SASP), leading to 

increased brain inflammation and increasing AD risk. It is also possible the leukocyte 

telomere length is contributing to AD progression via peripheral systemic effects as well. 

Telomere shortening is a marker of cellular aging, suggesting that accelerated cellular aging 

could play a role in AD progression. Telomere shortening in leukocytes could result in 

SASP in these cells as well, increasing chronic inflammation, a known risk factor for AD 

[47]. While this particular marker of cellular aging is novel for AD, the concept of 

accelerated aging as a potential contributor to AD has been around for decades [48]. 

Interestingly, a senescence-accelerated mouse model (SAMP8) has been suggested as a good 

model of late-onset AD, as it exhibits many features observed in early AD, including 

increased oxidative stress and differences in amyloid beta and tau phosphorylation [49]. 

New data have also suggested that telomerase has functions in the cell in addition to 

extending telomeres. Telomerase has been shown to play roles in bolstering Wnt signaling, 

enhancing cell proliferation and/or resistance to apoptosis (an effect that has been shown in 

response to brain injury in mouse brain cells), and promoting DNA damage repair [50–53] 

which are all biological mechanisms that, if reduced or dysfunctional, could theoretically 

contribute to AD as well. Although there is not yet a causal link between telomere 

shortening and AD progression, multiple biological mechanisms that could hypothetically 

underlie this association including effects of senescence and cellular aging in the periphery 

and/or the brain, and effects of reduced telomerase activity.

While previous studies have shown an association of shorter telomere length with AD, this is 

the first study to investigate longitudinal telomere change with AD diagnostic group and 

disease progression. This study shows a non-significant effect of disease progression on 

telomere shortening rate; further study in a larger cohort would be useful to identify the 

mechanism(s) driving this effect. Future studies are needed to investigate the suitability of 

telomere length change as a biomarker, as well as the potential relationship between 

peripheral telomere shortening and measures of AD pathology.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. T/S Ratio at Visit 1 by Age and Sex.
T/S ratio at visit 1 is graphed with participant age at visit 1. Each participant is indicated by 

a blue circle or orange triangle, representing female or male, respectively, as shown in the 

key. Blue and orange lines indicate the average linear change in T/S ratio by age for females 

and males, showing that lower T/S ratio is associated with older age, and on average, 

females have longer telomeres than males.
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Figure 2. T/S Ratios across Visits of CN→MCI→AD Converters.
T/S ratios at each visit for the eight individuals included in this study who converted twice 

(CN→MCI→AD) are shown. Each is represented by a different shaded line. Squares 

indicate CN→MCI pre-conversion visit; circles indicate MCI→AD pre-conversion visit.
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Table 1.

Demographics by AD diagnosis at Visit 1 (N=653)

Variables CN (N=223) MCI (N=336) AD (N=94) Total (N=653) p-value

Mean Age (SD) 76.2 (6.7) 72.6 (7.8) 77.0 (8.0) 74.5 (7.7) <0.001

Count (%) Male 112 (50%) 189 (56%) 60 (64%) 361 (55%) 0.074

Count (%) non-Hispanic 219 (98%) 328 (98%) 89 (95%) 636 (97%) 0.090

Count (%) White 216 (97%) 331 (99%) 93 (99%) 640 (98%) 0.204

Mean Education (SD) 16.4 (2.7) 16.2 (2.6) 15.9 (3.1) 16.2 (2.7) 0.380

Count (%) APOE ε4 positive
a 58 (26%) 153 (46%) 64 (68%) 275 (42%) <0.001

Count (%) Ever Smoked 92 (41%) 124 (37%) 30 (32%) 246 (38%) 0.268

a
one individual missing APOE ε4 genotype
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Table 2.

Results from Mixed Effects Model on T/S Ratio by AD Diagnosis, Age, Sex, APOE ε4, Years of Education 

and Age and AD Diagnosis Interaction

Variables in Model Parameter Estimate Standard Error p-value

Age at visit −0.005 0.001 <0.001

Male sex −0.044 0.012 <0.001

APOE ε4 carrier 0.014 0.012 0.253

Years of education 0.002 0.002 0.406

Diagnosis at Visit

  AD −0.081 0.126
0.657

  MCI 0.000 0.105

  CN Ref

Interaction between Age and Diagnosis

  AD 0.001 0.002
0.681

  MCI 0.000 0.001

  CN Ref
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Table 3.

Estimated Annual Change in T/S Ratios by AD Diagnosis over All Visits from the Mixed Effects Model in 

Table 2

N participants/N observations Annual Change 95% Confidence Interval p-value
a

CN
232 / 548

b −0.005 (−0.007, −0.003) <0.001

MCI 386 / 824 −0.005 (−0.008, −0.003) <0.001

AD 212 / 337 −0.004 (−0.006, −0.002) <0.001

a
p-value tests whether the slope is equal to 0 and comes from mixed effects model on T/S ratio by diagnosis adjusted by age at visit, sex, APOE ε4, 

years of education, and a diagnosis and age interaction

b
Does not include 1 participant with 3 observations since APOE ε4 status was missing and was thus dropped from modeling
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Table 4.

Conversion Status of Participants

Category Converters Stable Diagnosis

CN at visit 1 148 (74.0%) 52 (26.0%)

MCI at any visit* 118 (36.1%) 209 (63.9%)

Total 170 (32.3%) 357 (67.7%)

*
MCI Includes 13 individuals who were CN converters with at least two post-conversion visits, eight of whom subsequently converted to AD
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Table 5.

T/S Ratio Change by Converter* Status

Variable Parameter Estimate Standard Error p-value

Time Interval (PreC
a
 to PostC

b
)

−0.056 0.018 0.011

Male Sex 0.021 0.012 0.106

APOE ε4 0.018 0.013 0.182

Age at pre-conversion 0.001 0.001 0.134

Education −0.003 0.002 0.168

Converter vs stable −0.025 0.013 0.083

*
Converters in this model include CN→MCI/AD and MCI→AD

a
PreC T/S ratio is measured at the last pre-conversion visit for the conversion groups; for stable groups, ‘preC’ is the second to last 

(chronologically most recent) visit with T/S ratio data available.

b
PostC T/S ratio is measured at the first post-conversion visit for the conversion groups; for stable groups, ‘postC’ is the most recent visit with T/S 

ratio data available.
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