
UC Riverside
UC Riverside Electronic Theses and Dissertations

Title
Boundary Asymptotics for Convex and Strongly Pseudoconvex Domains

Permalink
https://escholarship.org/uc/item/2rj8k856

Author
Martin, Alec

Publication Date
2021
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/2rj8k856
https://escholarship.org
http://www.cdlib.org/


UNIVERSITY OF CALIFORNIA
RIVERSIDE

Boundary Asymptotics for Convex and Strongly Pseudoconvex Domains

A Dissertation submitted in partial satisfaction
of the requirements for the degree of

Doctor of Philosophy

in

Mathematics

by

Alexander Henri Martin

June 2021

Dissertation Committee:

Dr. Bun Wong, Chairperson
Dr. Yat Sun Poon
Dr. Frederick Wilhelm



Copyright by
Alexander Henri Martin

2021



The Dissertation of Alexander Henri Martin is approved:

Committee Chairperson

University of California, Riverside



Acknowledgments

I would like to thank Rachel for her enduring support through this entire endeavor. I would

also like to especially thank my advisor, Dr. Bun Wong, for his incredible insight and

patience.

iv



ABSTRACT OF THE DISSERTATION

Boundary Asymptotics for Convex and Strongly Pseudoconvex Domains

by

Alexander Henri Martin

Doctor of Philosophy, Graduate Program in Mathematics
University of California, Riverside, June 2021

Dr. Bun Wong, Chairperson

We present two results. The first is a converse to a theorem first proved by Wong

which says the ratio of intrinsic measures approaches 1 near the boundary of a strongly pseu-

doconvex domain; we show that for a particular type of domain the boundary is strongly

pseudoconvex if the ratio of intrinsic measures approaches 1 near the boundary. The argu-

ment is primarily one from Zimmer using the scaling method. What we did is show that

the ratio of intrinsic measures is a function which respects this scaling process. Our second

contribution was done in an attempt to use one particular step of Huang and Xiao’s proof

of the S.-Y. Cheng conjecture to settle the Ramadanov conjecture. While unsuccessful in

this regard, we were able to make this step more direct and we ultimately show that if

the Bergman metric is asymptotically Kähler-Einstein enough near the boundary of a C∞

strongly pseudoconvex domain Ω then the boundary ∂Ω must be spherical. This result is

of interest on its own but it also provides a more direct proof of the S.-Y. Cheng conjecture

and may be used in further work on the Ramadanov conjecture.
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Chapter 1

Overview

There are two main contributions in this work: Theorem 4.6 and Theorem 5.13.

Theorem 4.6 is the subject of chapter 4 and Theorem 5.13 is the subject of chapter 5. In

this overview we give the meaning of these results relative to the rest of the theory, as well

as cover the organizational structure of the current work.

Before talking about Theorem 4.6 we should recall the well-known theorem of Bun

Wong [56]:

Theorem 1.1. Let Ω be a bounded strongly pseudoconvex domain with noncompact auto-

morphism group. Then Ω is biholomorphic to the unit ball.

Theorem 1.1 has had a significant impact on the field of several complex variables,

see [43] for an overview of the many generalizations and different paths stemming from it.

Part of Wong’s original proof of Theorem 1.1 was Theorem 4.1, stated here in chapter 4.

Without getting into too many details, Theorem 4.1 says that a particular intrinsic function

approaches 1 near a particular type of boundary point – a point of strong pseudoconvexity.
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By intrinsic function we mean a function whose value derives from the complex

structure of the domain, i.e. which is invariant under biholomorphisms. As it turns out

there are quite a few intrinsic functions in the field of several complex variables.

The intrinsic function which Wong used – the ratio of the intrinsic measures (Def-

inition 3.17) – is closely related to another intrinsic function called the squeezing function

which has gathered attention in recent years. In particular Theorem 4.1 has an analogue

for the squeezing function. It is worth knowing (see the proof of Example 4.2) that the

squeezing function tending to 1 implies the ratio of intrinsic measures tends to 1. There is

further discussion of how the twointrinsic functions compare in the beginning of chapter 4.

Zimmer [60] proved a partial converse to the anlogue of Theorem 4.1 with respect

to the squeezing function, and he also noted that his proof applies to a wide class of

intrinsic functions. We show that the ratio of intrinsic measures is one such function for

which Zimmer’s proof applies and use it to prove Theorem 4.6, which is Zimmer’s converse

but stated for the ratio of intrinsic measures instead of the squeezing function. Because of

the relationship between squeezing function and ratio of intrinsic measures, Zimmer’s result

follows from Theorem 4.6.

Although Theorem 4.6 presented here is original, it seems that the same result was

arrived at in a very similar manner by Borah and Kar [7] and in particular their referee,

stated there as Theorem 1.3. We conclude this portion by mentioning that the converse is

only partial because it requires Ω to be convex, which is quite a restrictive assumption.

The other main contribution of this work is Theorem 5.13, which was proven in an

attempt at taking on the Ramadanov conjecture (section 5.1). There are actually two related
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conjectures described in that section – the S.-Y. Cheng conjecture and the Ramadanov

conjecture. The work of Fu and Wong [27] shows that the S.-Y. Cheng conjecture would

follow from the Ramadanov conjecture.

Both were open until quite recently, but in [31] Huang and Xiao confirmed the

S.-Y. Cheng conjecture. Part of their proof involved the work of Fu and Wong. In the

present work we investigate their proof of the S.-Y. Cheng conjecture in an attempt to

tackle the Ramadanov conjecture. As it turns out, we were unable to settle the Ramadanov

conjecture. Instead we obtained a more direct proof of the S.-Y. Cheng conjecture which

does not use the result of Fu-Wong connecting the two conjectures, so in a sense we got the

opposite of what we set out for. However we still obtained a more direct route to proving the

S.-Y. Cheng conjecture and another possible route of settling the Ramadanov conjecture,

and this is presented as Theorem 5.13.

In terms of the organization of the current work we start with an overview of the

field of several complex variables in chapter 2, introducing the various concepts which per-

meate the subject. Chapter 3 introduces the more specific features of the subject involving

intrinsic metrics and measures and certain properties enjoyed by them. No new material is

presented in either chapter 2 or 3.

Chapter 4 introduces the background and proof of Theorem 4.6. As mentioned

Theorem 4.6 is a partial converse to Theorem 4.1 of Wong, and an example (due to Fornaess

and Wold) is given to show that a full converse is not possible. Our proof, as we will see,

pulls heavily from that of Zimmer [60]; it is essentially Zimmer’s proof but applied in our

setting. Of particular interest is Proposition 4.13 and Theorem 4.6.
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Chapter 5 introduces the background behind the S.-Y. Cheng and Ramadanov

conjectures, as well as Huang and Xiao’s proof of the S.-Y. Cheng conjecture. Along the

way is a discussion of biholomorphic invariants used in the proof. That chapter concludes

with our proof of Theorem 5.13 and how it provides a more direct proof of the S.-Y. Cheng

conjecture.
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Chapter 2

Background

The unit interval and the real line are diffeomorphic; this can be accomplished with

a scaled version of the tangent function. In higher dimensions, and with a little more work,

any convex open subset of Rn can be shown to be diffeomorphic to Rn (the proof of this

is apparently mathematical folklore – a discussion and proof can be found at [46]). Taking

domain to mean nonempty connected open subset of Cn, it is not particularly interesting

to study convex domains if we only look at the smooth structure.

The situation is much different in complex analysis. There are holomorphic maps

from the unit disc D to the plane which fill the plane, but any holomorphic map from C

to D is necessarily bounded and therefore must be constant by Liouville’s theorem. Thus

the plane and the disc are two distinct convex domains in C, as there is no biholomorphism

between them.

This begs the question, a primary motivator for the present work, of how many

holomorphically distinct convex domains there are in Cn. In the single variable case we
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have a complete answer to this question. Recall the Riemann mapping theorem:

Theorem 2.1 (Riemann Mapping Theorem [16], [41]). If Ω ⊆ C is open, simply connected,

and Ω ≠ C, then Ω is biholomorphic to the disc D.

This remarkable theorem completely answers the question in dimension 1, as any

convex set is either the plane itself or is biholomorphic to the disc.

The proof of the Riemann mapping theorem, at least the version found in [41],

can be considered geometric in nature and actually provides motivation for two intrinsic

metrics discussed in section 3. First we should look at the disc through geometer’s eyes.

The disc should be recognized as fundamental to any geometer because it is the

disc, under the Poincaré metric ds, which serves as a model for hyperbolic geometry. Ex-

plicitly, the infinitesimal metric ds is defined at a point z ∈ D as

ds2
z =

dzdz

(1 − zz)2
.

The Poincaré distance and metric are invariant under rotations and Möbius trans-

formations of the disc. All automorphisms of the disc are compositions of Möbius transfor-

mations and rotations [16], so the Poincaré metric is invariant under automorphisms of the

disc. Geometrically, the disc under the Poincaré metric is highly symmetric for this reason.

In particular, the curvature is constant.

Because of the Rieman mapping theorem there is not much to investigate in one

complex dimension, at least not in the direction we are going. The plane is the plane and

any other simply connected domain is equivalent to the disc.

The Riemann mapping theorem fails catastrophically in higher dimensions. Even

the two canonical ways to extend the notion of the disc – the ball and the polydisc – are
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biholomorphically distinct in any dimension higher than 1. This classical result dates back

to Poincaré [51] and essentially comes from an algebraic study of the automorphism groups

of the two domains, in particular the automorphisms which fix the identity. The ball is

detectably more homogeneous than the polydisc.

A full classification of simply connected domains in Cn as powerful as the Riemann

mapping theorem would necessarily be very complicated, to the point that it is considered

hopeless. We proceed with the task regardless, seeking any way of classifying particular

domains in Cn up to biholomorphism in the effort to better understand them.

2.1 Notations

We write Bε(z) to mean

Bε(z) = {p ∈ Cn ∶ ∣z − p∣ < ε} .

We use A ⋐ B to mean A is compactly contained in B.

If Ω ⊆ Cn is a domain, 1 ≤ α ≤ n, and r ∶ Ω→ C is a C1 function then we write

rα =
∂r

∂zα
.

Likewise we write

rα =
∂r

∂zα
.

If D ⊆ Cm is another domain and f ∶ Ω → D is a C1 function then for each p ∈ Ω

we write

dfp

to mean the differential map at p, where we are considering Cn = R2n and Cm = R2m.
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We say O is C2+ε if there is a defining function ρ (see Definition 2.8) for the domain

Ω such that ρ is C2+ε smooth. That is, ρ is C2 and the double derivatives of ρ are ε-Hölder

continuous, i.e.

∣f(x) − f(y)∣ ≤ C ∣x − y∣ε

where C is a constant and f is any of the second partial derivatives of ρ.

We will be using big O and little o notation, particularly in chapter 5. For com-

pletion we define them here.

Definition 2.2. Let f, g be real valued functions on some domain Ω ⊆ Cn and let p ∈ Ω.

We say f = O(g) if there is some constant C > 0 and some ε > 0 so that

∣f(z)∣ ≤ Cg(z)

for all z ∈ Ω ∩Bε(p).

We don’t need to define f = O(gk) for any k ∈ N since the above definition applies

directly, but we say f = O(g∞) to mean f = O(gk) for all k ∈ N.

Definition 2.3. Let f, g be real valued functions on some domain Ω ⊆ Cn and let p ∈ Ω.

We say f = o(g) if for every C > 0 there is an ε > 0 so that

∣f(z)∣ ≤ Cg(z)

for all z ∈ Ω ∩Bε(p).

Finally we want to define what it means for a function f to be Ck(Ω) where Ω

is a domain and 1 ≤ k ≤ ∞. We take it to mean simply that there is a larger domain Ω′

such that Ω ⋐ Ω′ and such that f extends to a Ck function on Ω′. We don’t need a more
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technical definition which localizes the boundary because we only use it for domains where

the boundary is a smoothly embedded submanifold of Cn.

2.2 Domain of Holomorphy

We start with some examples of domains in C2 with profoundly different behavior

in terms of holomorphic functions.

Example 2.4. Let B2 be the unit ball in C2. Then there is a holomorphic function f ∶ B2 →

C which does not extend beyond the boundary of the ball.

Proof. For each point p ∈ C2 with ∥p∥ = 1 let

fp(z) = ⟨z − p, p⟩.

Then fp(p) = 0 and moreover f−1
p (0) is the plane tangent to the sphere at p. Taking

1
fp

gives a function holomorphic in the ball but which cannot be defined continuously at p.

Take a sequence of points {pn} which is dense in the sphere. Define the function

f(x) =
∞
∑
n=1

1

2nfpn(z)
.

Then f is holomorphic in the ball but f cannot be defined continuously at any

point in the sphere, so f does not extend beyond the boundary of the ball.

This example is not particularly new to C2 as opposed to C: the same trick could

be used on any domain in C to obtain a holomorphic function which does not extend beyond

its boundary. The next example, however, has no analogue in C:
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Example 2.5. Let ∆ ⊂ C2 be the polydisc D×D. Denote by 1
2∆ the scaling of ∆ by 1

2 . Let

Ω be ∆ ∖ 1
2∆. This domain, a kind of higher-dimensional analogue of an annulus, is called

Hartogs’ domain.

Let f ∶ Ω→ C be any holomorphic function. Then there is an extension F ∶ ∆→ C

such that F is holomorphic and F ∣Ω = f . This is called Hartogs’ phenomenon.

Proof. The original proof is due to Hartogs [30], but a proof in English can be found

in [40].

The fact that some, but not all, domains Ω can be enlarged to a larger domain Ω′

in such a way that every holomorphic function on Ω must extend holomorphically to Ω′ is

a strange and fascinating phenomenon in the theory of several complex variables.

These examples motivate the definition of domain of holomorphy. Essentially a

domain of holomorphy is a domain which admits a holomorphic function which does not

extend beyond the boundary. What precisely we mean by extend beyond the boundary

is a bit technical, mostly to ensure that topological obstructions do not interfere with the

ability to extend a function.

Definition 2.6. We say a domain Ω is a domain of holomorphy if there is no domain

D ⊂ Cn where D ∖ Ω ≠ ∅ which admits an open set U ⊆ Ω ∩D with the property that any

holomorphic function f ∶ Ω → C admits an F ∶ D → C which is holomorphic and which has

F ∣U = f ∣U .

Historically, the study of several complex variables has been more or less the

endeavour to understand domains of holomorphy. The question is about extending holo-

10



morphic functions beyond the boundary, so naturally the boundary of a domain is very

important to the study of domains of holomorphy.

2.3 Pseudoconvexity

Convex domains have nice properties; we will get into the particulars later. How-

ever, convexity is not a notion which respects complex structure. It possible for two domains

to be biholomorphic where one is convex and the other is not. This is in particular a con-

sequence of the Riemann mapping theorem. Luckily there is a complex analytic version of

convexity which does respect complex structure: pseudoconvexity.

Definition 2.7. We say a domain Ω ⊆ Cn is pseudoconvex, sometimes specified as Hartogs

pseudoconvex, if there is a continuous plurisubharmonic exhaustion function φ ∶ Ω→ R.

We do not delve deeper because we will not need this version of pseudoconvexity;

details can be found in Krantz [40]. Suffice it to say that Hartogs pseudoconvexity is a

biholomorphic invariant. It is not too difficult to show that a domain of holomorphy is

Hartogs pseudoconvex. It turns out the converse holds as well, though this is much more

difficult. See the discussion after Theorem 2.10.

There is another form of pseudoconvexity, Levi pseudoconvexity, which applies to

C2 domains and for which the inspiration from convexity is more clear. Details can be

found in Krantz [42] and [40] as to how Levi pseudoconvexity derives from convexity. Levi

pseudoconvexity requires the concept of a defining function:

Definition 2.8. Suppose Ω is a C1 domain and let ρ be a defining function for Ω. That

is, ρ is a C1 function from Cn to R with

11



● ρ(Ω) > 0

● ρ (Ω
c) < 0

● ∀x ∈ ∂Ω,∇ρx ≠ 0.

Note that nonvanishing of the gradient of ρ at ∂Ω means that ∂Ω is a C1 embedded

submanifold of Cn. If ρ can be chosen to be Ck smooth for some 1 ≤ k ≤∞ then we say Ω

is a Ck domain.

For a C2 domain Ω and a point p ∈ ∂Ω we define whether p is a point of (Levi)

pseudoconvexity or not as follows: let w be a holomorphic tangent vector to ∂Ω at p. That

is, w = (w1,⋯,wn) ∈ Cn and

n

∑
k=1

( ∂ρ
∂zk

)
p

wk = 0.

Definition 2.9. We say p is a point of (Levi) pseudoconvexity if for all holomorphic tangent

vectors w we have

n

∑
j,k=1

−( ∂2ρ

∂zj∂zk
)
p

wjwk ≥ 0.

If all p ∈ ∂Ω are points of pseudoconvexity then we say Ω is pseudoconvex. Levi

pseudoconvexity and Hartogs pseudoconvexity are equivalent for C2 domains. There are in

fact several concepts which turn out to be equivalent for a domain Ω to be pseudoconvex,

these are given later in Theorem 2.10.

2.4 Other Statements for Pseudoconvexity

We mention some more holomorphic interpretations of geometric convexity in this

section and then state Theorem 2.10 which says all these concepts are equivalent.
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Suppose Ω ⊆ Cn is a domain. Let K ⊆ Ω. Denote K̂ to be all those x ∈ Ω such that

for all holomorphic f ∶ Ω→ C we have

∣f(x)∣ ≤ sup
z∈K

∣f(z)∣.

If K̂ is compactly contained in Ω whenever K is compactly contained in Ω then

we say Ω is holomorphically convex. This is a holomorphic variant of the real case where a

domain is convex if and only if it is convex with respect to the family of real-valued affine

linear functions.

Another way we can obtain a holomorphic version of the definition of convexity

is by looking at the analytic version of line segments on the unit ball. Suppose we have a

nonconstant holomorphic map d ∶ D→ Cn. We call d an analytic disc and we use d to refer

to both the map d and the image d(D). If d ∶ D → Cn extends continuously to D then we

say d is a closed analytic disc and we call d(∂D) the boundary of d.

Suppose Ω is a domain and we have a family {dα}α∈A of closed analytic discs in

Cn, indexed by some set A. Suppose ∪α∈A∂da is compactly contained in Ω. If ∪α∈Adα is

also contained in Ω, we call Ω closed with respect to {δa}. The form of pseudoconvexity

associated to this phenomenon is called Kontinuitätssatz and it means that Ω is closed

with respect to all families of analytic discs with the aforementioned boundary containment

condition. This property is in one sense the most immediate extension of the real version

of convexity since it involves the complex analogue of the unit interval.

Now that we have a few notions of pseudoconvexity, we should see why they are

important.

Theorem 2.10. Let Ω ⊂ Cn be a domain. Then the following are equivalent:

13



● Ω is a domain of holomorphy

● Ω is holomorphically convex

● The Kontinuitätssatz is satisfied for Ω.

● Ω is Hartogs pseudoconvex

If Ω happens to have C2 boundary then we can add one more item to the list of

equivalences:

● Ω is Levi pseudoconvex

By far the most difficult part of Theorem 2.10 to prove is that a pseudoconvex

domain is a domain of holomorphy, whatever notion of pseudoconvexity we mean. This is

known as the Levi problem, posed in 1911 by E. E. Levi. It was proven in 1954 by Oka [49].

Pathways to proving it involve sheaf cohomology or L2 estimates of the ∂ operator, neither

of which we need to get into in the current work. A full proof of Theorem 2.10 can be

found in Krantz [40], where a major portion of that book is dedicated to proving the Levi

problem.

2.5 Strong Pseudoconvexity

Definition 2.11. Suppose Ω is a C2 pseudoconvex domain defined by ρ and suppose p ∈ ∂Ω.

Suppose we have strict inequality in the pseudoconvexity condition, i.e. for all nonzero

holomorphic tangent vectors w we have

n

∑
j,k=1

−( ∂2ρ

∂zj∂zk
)
p

wjwk > 0.

14



Then we call p a point of strong pseudoconvexity. If Ω is bounded and if all points

in ∂Ω are points of strong pseudoconvexity then we say Ω is strongly pseudoconvex.

The notions of tangent vector, pseudoconvex point, and strongly pseudoconvex

point are independent of the choice of defining function.

A natural question is whether strong pseudoconvexity is a biholomorphic invariant.

This turns out to be more difficult than the equivalent question for pseudoconvexity. The

question was answered in the affirmative by Bell [5] for smoothly bounded domains:

Theorem 2.12. Suppose D ⊂ Cn is a bounded, smoothly bounded, strongly pseudoconvex

domain, that Ω ⊂ Cn is a bounded, smoothly bounded domain, and that D and Ω are biholo-

morphic. Then Ω is must be strongly pseudoconvex.

The equivalent question for convex domains was answered by Zimmer in [60], and

we will give much more details and a slightly alternate proof in chapter 4.

Theorem 2.13. Suppose Ω ⊂ Cn is a bounded C2 strongly pseudoconvex domain and sup-

pose D ⊂ Cn is a C2+ε convex domain for some ε > 0. Suppose Ω and D are biholomorphic.

Then every point in ∂D is a point of strong pseudoconvexity.

Note that Theorem 2.13 does not require D to be bounded. The difference between

Zimmer’s proof and ours is minor – Zimmer based his argument on one particular intrinsic

function and we show that the same proof holds for a different intrinsic function.

If Ω ⊂ Cn is a Levi pseudoconvex domain and p ∈ ∂Ω, we have a test for if p is a

point of strong pseudoconvexity given in Krantz [40]:
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Theorem 2.14. Suppose Ω ⊂ Cn (n > 1) is a Levi pseudoconvex domain. Suppose p ∈ ∂Ω

is a point of strong pseudoconvexity. Then there is no analytic disc d in Cn centered at p

such that

lim
z→0

dist(d(z), ∂Ω)
∥d(z) − p∥2

= 0.

2.6 Convexity

Let Ω be a convex domain in Cn. By convex we mean geometrically convex, i.e.

for all x, y ∈ Ω the (real) line segment connecting x to y is completely contained in Ω.

We will be studying convex domains in detail, specifically bounded convex do-

mains. Convex domains are simpler than general domains for several reasons. We list

below some tools available while studying convex domains which do not apply for general

nonconvex domains.

One technical trick which we use repeatedly in chapter 4 involves a particular way

of writing Ω as an increasing union of compactly-contained subdomains, each of which is

biholomorphic to Ω. Given any convex domain Ω, we can translate so that 0 ∈ Ω. Then

for any number r with 0 < r < 1 we can rescale Ω by r to obtain rΩ. Given such an r the

domain rΩ is compactly contained in Ω and z ↦ rz is a biholomorphism between Ω and

rΩ. Moreover, the family {rΩ}0<r<1 is an increasing family which exhausts Ω. This trick is

foundational to many of our intermediate steps along the way of proving Theorem 4.6.

Another useful property of convex domains involves a projection process for a

point in the boundary:

Proposition 2.15. Let Ω ⊂ Cn be a convex domain which is not the whole of Cn and let
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p ∈ ∂Ω. Then there is a holomorphic map f ∶ Cn → C such that f(p) = 0 and f(Ω) ⊆ H

where H is the right half plane {z ∶ Re(z) > 0}. This map f is called the affine projection

at b.

Proof. Through translation z ↦ z − b we can assume b = 0.

By virtue of being convex, there is a real affine hypersurface L passing through 0

which does not intersect Ω. Take x1,⋯, xn−1 ∈ Cn such that the complex span of {xi} lies

in L. Then there is an xn ∈ Ω such that ⟨xi, xn⟩ = 0 for all 1 ≤ i ≤ n − 1.

Let f(z) = ⟨z, xn⟩. Then f(Ω) lies in the right half plane and f(0) = 0 by con-

struction.

The half plane is biholomorphic to the disc, so a corollary of Proposition 2.15 is

that any convex domain except the whole of Cn admits a nonconstant bounded holomorphic

function.

A third tool involves distance to the boundary. Let Ω ⊂ Cn be a convex domain.

For any z ∈ Ω we define the distance to the boundary as

δΩ(z) = inf{∥z −w∥ ∶ w ∈ ∂Ω}.

Additionally given a v ∈ Cn with v ≠ 0 we define the directional distance to the

boundary as

δΩ(z, v) = inf{∥w − z∥ ∶ w ∈ ∂Ω ∩ (z +Cv)}.

These distance functions give useful analytic tools to study convex domains, and

the convexity gives these functions strength to classify the domain in ways not so easily found

in the nonconvex case. For example, we can use them to detect strong pseudoconvexity:
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Proposition 2.16. Let Ω ⊂ Cn be a C2 domain and let p ∈ ∂Ω. Then p is not a point of

strong pseudoconvexity if and only if there is a v ∈ TpΩ so that

lim
r→0

r

(δΩ(p + rnp; v))2
= 0.

Here n is the inward normal to ∂Ω at p.

If Ω is slightly smoother than C2 then there is a stronger result available, stated

in Zimmer [60]:

Proposition 2.17. Let Ω be a C2+ε domain and let p ∈ ∂Ω. Then p is not a point of strong

pseudoconvexity if and only if there is a C, δ > 0 and a unit vector v ∈ TpΩ so that

δΩ(p + rnp; v) ≥ Cr
1

2+ε

for every 0 < r ≤ δ. By np we mean the unit inward normal vector at p.

Proof. Choose a unit vector v ∈ TpΩ such that

lim
r→0

r

(δΩ(p + rnp; v))2
= 0. (2.1)

Such a v exists because Ω is convex and weakly pseudoconvex at p. The C2+ε

boundary condition combines with (2.1), which is essentially the second derivative of the

defining function at p in the direction of v, to give that for all r > 0 small enough

r

(δΩ(p + rnp; v))2
≤ C (δΩ(p + rnp; v))ε .

But this is exactly the condition we are looking for.

We conclude this section with Narasimhan’s lemma (as given in Krantz [40]),

connecting strong pseudoconvexity to convexity:
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Lemma 2.18. Let Ω be a bounded C2 domain and let p ∈ ∂Ω be a point of strong pseudo-

convexity. Then there is a neighborhood U of p and a biholomorphic mapping φ on U so

that φ(U ∩Ω) is strongly convex at p.

In fact, Narashimhan’s lemma can be refined to state that a strongly pseudoconvex

point p is one where local coordinates can be chosen so that ∂Ω near p agrees with the sphere

up to order 2. Fefferman showed this can be improved to order 4 agreement. Those points

for which this agreement is not merely up to some order but is in fact holomorphic are

special, hence:

Definition 2.19. Let M be a real hypersurface in Cn, i.e. the boundary of a domain. We

say M is spherical if at every point p ∈ M there is a choice of holomorphic coordinates

z1,⋯, zn so that near p M is locally described by

∣z1∣2 + ∣z2∣2 +⋯ + ∣zn∣2 = 1.

Spherical boundary means that the boundary can be holomorphically locally rep-

resented by pieces of the ball. This is a local property, though: it does not mean Ω is

biholomorphic to the ball or that ∂Ω is holomorphically equivalent to the sphere in a global

sense.

We state the following theorem from Burns and Schnider [10] to illustrate that

there are domains Ω such that ∂Ω is spherical but Ω is not biholomorphic to the ball.

Moreover, not only do such domains exist but also they are not particularly rare.

Theorem 2.20. There exist continuous families of domains Ω ⊂ Cn with spherical bound-

aries each such that the fundamental group π1(∂Ω) is the free group on m generators, where

m is arbitrary.
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2.7 Normal Families

Suppose Ω ⊆ Cn,D ⊆ Cm are domains, meaning connected open subsets. Let D(Ω)

denote the set of holomorphic functions from Ω to D. The set D(Ω) is a topological space

under the compact open topology. That is, holomorphic functions fk ∈ D(Ω) converge to

some holomorphic f ∈D(Ω) if fk → f uniformly on compact subsets of Ω. It may be worth

noting that if f ∶ Ω → D is merely continuous and fk ∈ D(Ω) with fk → f uniformly on

compact sets then f must be holomorphic.

Let fk be a sequence of functions in D(Ω). We say fk is compactly divergent if

for all compact K ⊂ Ω and K ′ ⊂ D there is an N ∈ N such that for all k > N we have

fk(K) ∩K ′ = ∅.

We only really need to know one thing about compact divergence: if fk has a fixed

point – a z ∈ Ω and p ∈ D with fk(z) = p for all k – then fk is not compactly divergent.

The same holds even if z is not a fixed point but an almost fixed point in the sense that

fk(z)→ p as k →∞.

Definition 2.21. Suppose F is a family of holomorphic functions from Ω to D, i.e. F ⊆

D(Ω). We say F is a normal family if for every sequence fk ∈ F either fk is compactly

divergent or there is some f ∈D(Ω) and a subsequence j of k such that fj → f .

A major result involving normal families is Montel’s theorem. In preparation for

its statement, we must define what it means for a family F ⊆ Cm(Ω) to be locally uniformly

bounded. This means that for all z ∈ Ω there is a neighborhood U ⊆ Ω with z ∈ U and some

constant MU > 0 such that for all f ∈ F and all w ∈ U we have ∥f(w)∥ ≤MU .
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Theorem 2.22 (Montel). Let Ω ⊆ Cn be a domain and let F be a family in Cm(Ω). Suppose

F is locally uniformly bounded. Then F is a normal family.

In particular, Montel’s theorem gives us the phenomenon that if D ⊂ Cm is a

bounded domain and F ⊂ Cm(Ω) consists only of holomorphic functions from Ω to D

then F is a normal family, and any sequence cannot be compactly divergent because D

is compact. Thus there are always limiting functions for sequences in F (after taking a

subsequence), though the limiting functions are only guaranteed to map into Cm and not

necessarily D.

Corollary 2.23. Suppose Ω ⊆ Cn and D ⊂ Cm where D is a bounded domain. Suppose for

each k we have a holomorphic fk ∶ Ω→D. Then there is a holomorphic function f ∶ Ω→D

such that some subsequence of fk converges to f uniformly on compact sets.

It would be nice if Corollary 2.23 could simply state that D(Ω) is a normal family

whenever D is bounded, but this is not always the case. First we should acknowledge

that compact divergence is relative to the codomain, for Corollary 2.23 never results in a

compactly divergent sequence with respect to the codomain Cm but does not mention the

same with respect to the codomain D:

Example 2.24. For each k ∈ N let fk ∈ D(D) be the transformation

fk(z) = 1 + 1

k
(z − 1).

Corollary 2.23 guarantees that the sequence fk is normal when considered as func-

tions in C(D), and clearly fk approaches the constant function 1. However, although each
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fk maps into D the limit function does not because 1 ∉ D. In fact {fk} is a compactly

divergent family in D(D).

Perhaps more interestingly we may have a sequence which is not compactly diver-

gent but which still requires the closure condition in corollary Corollary 2.23:

Example 2.25. Let Ω ⊂ C2 be the set

{(z1, z2) ∶ ∣z1∣ < 1, ∣z2∣ < 2, z1 ∉ [0,1)}.

For each k let fk ∶ D→ Ω be the function

fk(z) = (−1

k
, z) .

Again Corollary 2.23 applies but the limiting function is f(z) = (0, z) and f(0) ∉ Ω.

The main idea behind Example 2.25 is that the domain is not pseudoconvex. In

fact, this example shows the Kontinuitätssatz fails in this particular domain.

Under a mild boundary smoothness conditions we get the following result due to

Kerzman [32] involving maps from the disc into a domain:

Theorem 2.26. Suppose Ω ⊂ Cn is pseudoconvex with C1 boundary. Then Ω(D) is a

normal family.

We can show a similar result involving convex domains which makes no boundary

regularity assumptions:

Theorem 2.27. Suppose Ω ⊂ Cn is a domain and suppose D ⊂ Cm is a bounded convex

domain. Then D(Ω) is a normal family.
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Proof. Let {fk} be a sequence of holomorphic functions from Ω to D. Suppose that {fk} is

not compactly divergent. By Corollary 2.23 we know that, after passing to a subsequence

k′ of k, there is a holomorphic function f ∶ Ω → D which is the limit of {fk′}. We need to

show that either f(Ω) ⊆ ∂D or f(Ω) ⊆D.

Suppose for the sake of contradiction that f(Ω) is only partially contained in the

boundary of D. Take an ε > 0 and points p, a ∈ Ω such that ∣p−a∣ = ε
2 , Bε(p) ⊆ Ω, f(p) ∈ ∂Ω,

and f(a) ∈ Ω. Let g ∶ D→ Ω be the map

g(z) = p + 2z(a − p).

Choose the affine projection π from Proposition 2.15 relative to p. The map

π ○ g ∶ D→H is holomorphic and h(g(0)) = 0. By the open mapping theorem π ○ g must be

constant. But π (g (1
2
)) ∈H, so π ○ g is not constant. Thus we have our contradiction.
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Chapter 3

Intrinsic Metrics and Measures

The theory of several complex variables has the interesting phenomenon that the

complex structure of a manifold induces several metrics called the intrinsic metrics. These

intrinsic metrics derive from the complex structure of a domain or manifold and as such are

invariant under biholomorphisms, linking geometry to the subject in a more natural way

than is possible in the real setting.

There are two intrinsic metrics which we are interested in: the Bergman metric

and the Kobayashi metric. The Bergman metric arises from functional analysis and the

Kobayashi metric can be considered a construction which arises as a key step in the standard

proof of the Riemann mapping theorem. In essence the Kobayashi metric measures how

large a disc can holomorphically fit inside a domain.
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3.1 Bergman Metric

We describe the construction of the Bergman metric on bounded domains in Cn,

although the construction is more general. It just happens that there are fewer difficulties

in the case when the domain is bounded and this is the case we are focusing on anyway.

We are following Kobayashi [36] and Krantz [40] for this construction.

Suppose Ω ⊂ Cn is a bounded domain. Let H2 denote all L2 holomorphic functions

on Ω, i.e.

H2 = {f ∶ Ω→ C ∶ f is holomorphic and ∫
Ω
∣f ∣2dµ <∞} .

The integral here is taken with respect to the Lebesgue measure. Note that,

because we have restricted Ω to be bounded, all the polynomials are in H2 so H2 is an

infinite dimensional vector space. We have the inner product ⟨⋅, ⋅⟩ on H2 given by

⟨f, g⟩ = ∫
Ω
fgdµ.

Then H2 is an infinite dimensional (separable) Hilbert space. As a consequence of

Cauchy’s integral formula the evaluation map f ↦ f(z) is a bounded linear functional for

any z ∈ Ω, so by the Riesz representation theorem there is an element Rz ∈H2 such that for

all f ∈H2,

f(z) = ⟨f,Rz⟩ = ∫
Ω
fRzdµ.

Definition 3.1. Given z,w ∈ Ω define the Bergman kernel K to be

K(z,w) = ⟨Rz,Rw⟩ = Rz(w).

Then K is holomorphic in z, antiholomorphic in w, and for all f ∈H,

f(z) = ∫
Ω
f(w)K(z,w)dµw.
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That is, the Bergman kernel is a reproducing kernel for H2. We can compute the

Bergman kernel if we are given an orthonormal basis of H2. Suppose ek is an orthonormal

basis of H2. Then

K(z,w) =
∞
∑
k=0

ek(z)ek(w).

This series in independent of choice of orthonormal basis. The Bergman kernel

respects a particular transformation law: if φ ∶ Ω → Ω′ is a biholomorphism and z,w ∈ Ω

then

KΩ(z,w) =KΩ′(φ(z), φ(w))detdφ(z)detdφ(w). (3.1)

Note the diagonal K(z, z) is strictly positive for all z ∈ Ω.

Definition 3.2. We obtain the Bergman metric B from the Bergman kernel K by setting

B = ∂∂ lnK(z, z).

That is, the (αβ)th component of the Bergman metric, denoted Bαβ, is given by

Bαβ = (logK)αβ =
∂2

∂zα∂zβ
logK(z, z).

For ξ ∈ Cn we denote by ∣ξ∣B,z the norm of ξ under the Bergman metric at z,

∣ξ∣B,z =
n

∑
i,j=1

Bαβ(z)ξiξj .

The Bergman metric is a Kähler metric which is invariant under biholomorphisms.

Specifically, if φ ∶ Ω→ Ω′ is a biholomorphism and z ∈ Ω, ξ ∈ Cn then

∣ξ∣B,z = ∣dφ(ξ)∣B,z.

Every bounded domain admits the Bergman metric, i.e. the metric is nonde-

generate. The first question involving the Bergman metric is whether it is complete for
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a bounded domain Ω. Here complete means that Cauchy sequences (with respect to the

distance induced by B) necessarily converge to a point in Ω.

Bremmerman [9] showed that a domain which is complete with respect to the

Bergman metric is necessarily a domain of holomorphy, but that the converse is not true.

That is, there are domains of holomorphy which are not complete with respect to the

Bergman metric. However, Kerzman [33] and Greene and Wu [29] showed that a C2 strongly

pseudoconvex domain is complete with respect to the Bergman metric.

As an example of the utility of the Bergman metric, observe the following theorem

of Lu [45]:

Theorem 3.3. Let Ω be a bounded domain in Cn with complete Bergman metric and

suppose the Bergman metric has holomorphic sectional curvature constantly equal to −c2

where c > 0. Then Ω is biholomorphic to the ball Bn and

c2 = 2

n + 1
.

It is worth mentioning that Ω in Theorem 3.3 does not need to be assumed to be

simply connected.

We conclude this section with an example; the unit ball in Cn. As a starting point

we take the formula for the Bergman kernel on the ball, calculated in full detail in [40]:

Proposition 3.4. The Bergman kernel on the unit ball B in Cn is given by

KB(z,w) = n!

πn
1

(1 − z ⋅w)n+1
.

On the one hand we can compute the Bergman metric directly from this formula:
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Proposition 3.5. The Bergman metric B on the unit ball B in Cn is given by

Bαβ(z) = (n + 1)
δαβ(1 − ∣z∣2) + zβzα

(1 − ∣z∣2)2
.

Proof. This is a routine calculation. The diagonal Bergman kernel on the ball is

K(z, z) = n!

πn
1

(1 − z ⋅ z)n+1

so

logK(z, z) = log ( n!

πn
) − (n + 1) log(1 − z ⋅ z)

= log ( n!

πn
) − (n + 1) log(1 −

n

∑
i=1

zizi) .

Taking the derivatives,

(logK(z, z))α = (n + 1) zα
1 −∑ni=1 zizi

(logK(z, z))αβ = (n + 1)
δαβ(1 − z ⋅ z) + zβzα

(1 − z ⋅ z)2
.

On the other hand, it will help us later to rewrite these formulas in terms of the

canonical defining function for the ball:

ρ(z) = 1 − ∣z∣2.

Clearly ρ is a C∞ (indeed real analytic) function which defines the unit ball in Cn.

The diagonal Bergman kernel and metric can be written quite succinctly in terms of ρ:

Proposition 3.6. The diagonal Bergman kernel on the ball with defining function ρ(z) =

1 − ∣z∣2 is given by

K(z, z) = n!

πn
ρ−(n+1)(z)
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and the Bergman metric by

Bαβ(z) = (n + 1)
zβzα + δαβρ(z)

ρ2(z)
.

3.2 Kobayashi Metric

The constructions of the Kobayashi metric and its properties can be found in

Kobayashi [38] and Krantz [41]. We describe the construction here as well.

Suppose Ω ⊆ Cn is a domain. The differential Kobayashi pseudometric dKΩ eval-

uated at (x, v) ∈ Ω is defined as

dKΩ(x, v) = inf {∣t∣ ∶ t ∈ C and ∃f ∶ D→ Ω s. t. f(0) = x, df0 (t
∂

∂z
) = v}

= inf {α > 0 ∶ ∃f ∈ Ω(D) s. t. df0 (
∂

∂z
) = 1

α
v} .

Proposition 3.7. Suppose Ω1 ⊆ Cn,Ω2 ⊆ Cm are domains and we have a holomorphic map

f ∶ Ω1 → Ω2. Then for all z ∈ Ω1 and v ∈ Cn ∖ {0} we have

dKΩ2(f(z), dfz(v)) ≤ dKΩ1(z, v).

Proof. Any holomorphic function on Ω2 pulls back to one on Ω1, so this is a consequence

of the definition.

We call this the distance decreasing property of the Kobayashi metric. One may

wonder whether the Kobayashi metric can be infinite or zero at a certain point in some

domain. One the one hand we have:

Proposition 3.8. Suppose Ω ⊆ Cn is a domain, z ∈ Ω, and v ∈ Cn ∖ {0}. Then

dKΩ(z, v) ≤ ∥v∥
δΩ(z, v)

.
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Proof. If δΩ(z, v) <∞ then there is an affine map a ∶ D→ Ω with a(0) = z and

da0 (
∂

∂z
) = δΩ(z, v)

∥v∥
v.

If δΩ(z, v) =∞ then for any r > 0 we can find an affine b ∶ D→ Ω with b(0) = z and

db0 (
∂

∂z
) = rv

and hence dKΩ(z, v) = 0.

This in particular shows the Kobayashi metric is always finite. Moreover the

Kobayashi metric can vanish in some domains. In particular the Kobayashi metric con-

stantly vanishes on the domain C, and it vanishes in the z2 direction in the product domain

D ×C ⊂ C2.

Definition 3.9. We say the Kobayashi metric is nondegenerate if for all x ∈ Ω, v ∈ Cn∖{0}

we have that dKΩ(x, v) > 0. We say the domain Ω is hyperbolic if the Kobayashi metric is

nondegenerate, and complete hyperbolic if Ω is hyperbolic and complete with respect to the

Kobayashi metric.

Kobayashi [39] showed that any domain which is complete hyperbolic is a domain

of holomorphy. Among the many other results found in [39] is enough to prove the following

in particular:

Theorem 3.10. Let Ω ⊂ Cn be a bounded domain. Then Ω is hyperbolic.

If additionally Ω is convex, or if Ω has C2 boundary and is strongly pseudoconvex,

then Ω is complete hyperbolic.
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It would be nice if the Kobayashi metric value were actually attained by an analytic

disc. Clearly this cannot happen for any domain – particularly any time the Kobayashi

metric vanishes – but we can provide a situation where it must be attained:

Proposition 3.11. Suppose Ω ⊂ Cn is convex and bounded. Let x ∈ Ω and v ∈ Cn ∖ {0}.

Then there is a holomorphic map f ∶ D→ Ω with f(0) = x and df0 ( ∂
∂z

) = 1
dKΩ(x,v)v.

Proof. Let α = dKΩ(p, v). Then for every k ∈ N there is an fk ∶ D→ Ω with fk(0) = x and

(dfk)0 (
∂

∂z
) = 1

tk
v

where α ≤ tk ≤ α + 1
k . Then

1

α + 1
k

∥v∥ ≤ ∥(dfk)0 (
∂

∂z
)∥ ≤ 1

α
∥v∥.

Because Ω is convex and fk(0) = x for all k Theorem 2.27 states that, after passing

to a subsequence, there is a holomorphic function f ∶ D→ Ω with fk → f . Then ∥df0 ( ∂
∂z

)∥ =

1
α∥v∥. Precomposing by a rotation in the disc if necessary, we can assume that df0 ( ∂

∂z
) = 1

αv,

so we have obtained the function we seek.

We can drop the convexity assumption above if we impose a mild boundary

smoothness condition:

Proposition 3.12. Suppose Ω is a bounded C1 pseudoconvex domain in Cn. Then for all

z ∈ Ω and v ∈ Cn ∖ {0} there is a holomorphic f ∶ D→ Ω with f(0) = z and

df0 (
∂

∂z
) = 1

dKΩ(z, v)
v.

31



Proof. The proof is identical to that of Proposition 3.11 except we use Theorem 2.26 in

place of Theorem 2.27.

The Kobayashi distance KΩ between two points x, y ∈ Ω is defined over chains of

holomorphic maps from the disc which link x to y. Specifically, suppose we have finitely

many points zi ∈ Ω for 0 ≤ i ≤ k such that x = z0 and y = zk. Suppose also we have fi ∈ FK(Ω)

and ai, bi ∈ D for 1 ≤ i ≤ k with fi(ai) = zi−1, fi(bi) = zi. We call this a chain connecting x to

y, and we define its Kobayashi length as

k

∑
i=1

s(ai, bi).

Recall s is the Poincaré distance on the disc D. The Kobayashi distance between

x and y is then defined to be the infemum of the Kobayashi lengths of all chains which

connect x to y.

Royden [54] showed that the Kobayashi distance is the integrated form of the

differential Kobayashi metric. Royden’s result combines with Proposition 3.7 to show

Proposition 3.13. Suppose Ω1 ⊂ Cn,Ω2 ⊂ Cm are domains and suppose f ∶ Ω1 → Ω2 is

holomorphic. Then for all x, y ∈ Ω1

KΩ2(f(x), f(y)) ≤KΩ1(x, y).

We call this the distance decreasing property of the Kobayashi distance. Much

of the utility of the Kobayashi metric and distance come from their distance decreasing

properties, particularly with respect to the set inclusion map with respect to subdomains.

In particular the Kobayashi metric is a biholomorphic invariant:
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Proposition 3.14. Let Ω1,Ω2 ⊂ Cn be domains and suppose f ∶ Ω1 → Ω2 is a biholomor-

phism. Then for all x, y ∈ Ω1 and v ∈ Cn ∖ {0}

dKΩ1(x, v) = dKΩ2(f(x), dfx(v))

and

KΩ1(x, y) =KΩ2(f(x), f(y)).

Proof. The distance decreasing properties applied to f give that

dKΩ1(x, v) ≥ dKΩ2(f(x), dfx(v))

and

KΩ1(x, y) ≥KΩ2(f(x), f(y)).

The same properties applied to f−1 give

dKΩ1(x, v) ≤ dKΩ2(f(x), dfx(v))

and

KΩ1(x, y) ≤KΩ2(f(x), f(y)).

Proposition 3.15. The Kobayashi distance on the disc is equal to the Poincaré distance,

i.e. for all x, y ∈ D,

KD(x, y) = s(x, y).

Proof. Let x, y ∈ D and take any f ∶ D → D holomorphic. By the Schwarz-Pick lemma

(which says s is distance decreasing on D),

s(f(x), f(y)) ≤ s(x, y).
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Choosing the identity function and the single-link chain connecting x to y gives

dK,D(x, y) ≤ s(x, y). Now suppose we have any chain in D connecting x to y. That is,

suppose we have ai, bi ∈ D and holomorphic fi ∶ D → D such that fi(bi) = fi+1(ai+1),

f1(a1) = x, and fk(bk) = y. The triangle inequality of s provides that

s(x, y) ≤
k

∑
i=1

s(fi(ai), fi(bi)).

Because KD(x, y) is the infemum over all such sums, s(x, y) ≤ KD(x, y) proving

our result.

3.3 Intrinsic Measures

The intrinsic metrics have related measures. The Kobayashi-Eisenman measure

ME
Ω was introduced by Eisenman in [20] and it measures how large a ball can be holomor-

phically fit inside a domain. The Carathéodory measure MC
Ω measures how small a ball in

which Ω can be holomorphically fit inside. We are following Wong [57] for the notations.

The two instrinsic measures are given in terms of the coordinates (z1,⋯, zn) cen-

tered at a fixed point x. They are given by

ME
Ω (z) = ∣ME

Ω (z)∣dV

MC
Ω (z) = ∣MC

Ω (z)∣dV.

Here dV is the euclidean volume and

∣ME
Ω (x)∣ = inf { 1

R2n
∶ ∃f ∶ BR(0)→ Ω, f(0) = x,det[df0] = 1}

= inf {(det[df0])−1 ∶ f ∶ Bn → Ω, f(0) = x,det[df0] > 0} ,
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∣MC
Ω (x)∣ = sup{ 1

R2n
∶ ∃f ∶ Ω→ BR(0), f(x) = 0,det[dfx] = 1}

= sup{det[dfx] ∶ f ∶ Ω→ Bn, f(x) = 0,det[dfx] > 0} .

If Ω is bounded then Ω can be fit into the ball by a combined translation/scaling

and hence ∣MC
Ω (x)∣ > 0.

The Carathéodory measure bounds the Kobayashi measure from below, i.e.

∣MC
Ω (z)∣ ≤ ∣ME

Ω (z)∣ .

The Carathéodory and Kobayashi-Eisenman measures enjoy the same distance

decreasing property under holomorphic maps (in the same dimension) as the Kobayashi

metric and hence are both biholomorphic invariants.

Proposition 3.16. Let Ω ⊂ Cn be a domain and let x ∈ Ω. If D ⊂ Cn is a domain and

f ∶ Ω→D is holomorphic then

∣ME
D (f(x))∣ ∣det[dfx]∣ ≤ ∣ME

Ω (x)∣

and

∣MC
D (f(x))∣ ∣det[dfx]∣ ≤ ∣MC

Ω (x)∣ .

In particular, if f is a biholomorphism then

∣ME
D (f(x))∣ ∣det[dfx]∣ = ∣ME

Ω (x)∣

and

∣MC
D (f(x))∣ ∣det[dfx]∣ = ∣MC

Ω (x)∣ .
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Moreover, in the case that f is a biholomorphism and if the Carathéodory measure

does not vanish at x,

∣ME
D (f(x))∣

∣MC
D (f(x))∣

=
∣ME

Ω (x)∣
∣MC

Ω (x)∣
.

This last function is the one Wong used in [57] (stated here as Theorem 4.1), and

we name it:

Definition 3.17. For a domain Ω, the function

f(z) =
∣ME

Ω (z)∣
∣MC

Ω (z)∣

is called the ratio of intrinsic measures.

We can gather some information about the Kobayashi-Eisenman measure from the

Kobayashi metric, namely:

Proposition 3.18. Let Ω be a hyperbolic domain, meaning the Kobayashi metric is nonde-

generate. Then the Kobayashi-Eisenman measure coefficient does not vanish. That is, for

all x ∈ Ω we have ∣ME
Ω (x)∣ > 0.

Proof. Kobayashi [38], Chapter IX (Miscellany), Theorem 1.10, page 118.

We can obtain representative functions for the measure as in the case with the

metrics.

Proposition 3.19. Suppose the domain Ω ⊂ Cn is convex and bounded. Let x ∈ Ω. Then

there is a holomorphic map f ∶ Bn → Ω with f(0) = x and

(det[df0)])−1 = ∣ME
Ω (x)∣ .
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There is also a holomorphic map g ∶ Ω→ Bn with g(x) = 0 and

det[dgx] = ∣MC
Ω (x)∣ .

Proof. By Theorem 3.10 Ω is hyperbolic. Then Proposition 3.18 forces ∣ME
Ω (x)∣ > 0 for all

x ∈ Ω. Let α = ∣ME
Ω (x)∣−1

. Then for every k ∈ N there is an fk ∶ Bn → Ω with fk(0) = x and

(det[(dfk)0])−1 = tk

where α−1 ≤ tk ≤ α−1 + 1
k . Then

α ≥ det[(dfk)0] ≥
kα

k + α
.

Now Montel’s theorem gives a holomorphic f ∶ Bn → Ω with, after passing to a

subsequence, fk → f . Because Ω is convex, Theorem 2.27 states that f is actually a map

from Bn to Ω because f(0) = x ∈ Ω. Then det[df0] = α.

Let β = ∣MC
Ω (x)∣. For each k there is a gk ∶ Ω→ Bn with gk(x) = 0 and det[(dgk)x] =

sk where β − 1
k ≤ sk ≤ β. By Theorem 2.27, there is a map g ∶ Ω → Bn such that some

subsequence of gk converges to g. Then g(x) = 0 and det[dgx] = β.

3.4 Intrinsic Metrics and Measures on a Fixed Domain

In this section we collect some behavior about how the intrinsic metrics and mea-

sures behave as we vary the base point in a fixed domain.

Proposition 3.20. Suppose Ω ⊂ Cn is a convex domain which is not Cn and suppose for

each k we have a subdomain Uk ⊆ Ω. Assume that Uk ⊆ Uk+1 and that Uk exhaust Ω. Then

for each x ∈ Ω,

∣ME
Ω (x)∣ = lim

k→∞
∣ME

Uk
(x)∣
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and

∣MC
Ω (x)∣ = lim

k→∞
∣MC

Uk
(x)∣ .

Moreover if we have v ∈ Cn ∖ {0} then

dKΩ(x, v) = lim
k→∞

dKUk(x, v).

Proof. We follow the proof of a similar statement found in Royden, P. M. Wong, Krantz [55].

In particular, the statement about the Kobayashi metric is contained in [55] and we adapt

the argument to the measure case here.

Let x ∈ Ω. Reindex by skipping the first few terms if necessary so that x ∈ U1.

Also translate if necessary so that x = 0. This loses no generality.

Let αk = ∣ME
Uk

(0)∣ and α = ∣ME
Ω (0)∣. By monotonicity of the measure with respect

to set inclusion, αk ≥ αk+1 ≥ α. Then αk is a bounded monotone sequence, so there is some

c ≥ α with αk → c.

If we have strict inequality where c > α then there is some holomorphic g ∶ Bn → Ω

with g(0) = 0 and det[dg0] = λ > 0 where λ−1 < c. Then there is some ε > 0 so that

λ−1 < (1 − ε)2nc. Define h ∶ Bn → Ω as

h(z) = g((1 − ε)z).

Then h(0) = 0 and det[dh0] = (1 − ε)2nλ > c−1, so det[dh0]−1 < c. However, the

(1 − ε) ball is compactly contained in Bn, so its image under g (which is the image of

the whole ball under h) is compactly contained in Ω. Then there is some k0 such that

h(Bn) ⊆ Uk0 . Now by definition of αk0 we have

αk0 ≤ det[dh0]−1 < c.
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Recall that αk is a decreasing sequence which converges to c, so this is a contra-

diction. Thus c = α and we have proven the claim for the Kobayashi-Eisenman measure.

The proof for the Carathéodory measure is similar but we provide it for complete-

ness, particularly to showcase why Ω is assumed to be convex. Define βk to be ∣MC
Uk

(0)∣

and let β = ∣MC
Ω (0)∣. The Carathéodory measure is also decreasing under inclusions, so we

have that βk approaches some d with d ≥ β. Note βk ≥ d.

If d > β then we can find some ε > 0 so that

(1 − ε)2nd > β.

Note that (1 − ε)Ω is compactly contained in Ω because Ω is convex. Hence there

is some k0 large enough that (1 − ε)Ω ⊆ Uk0 . Choose a holomorphic function g ∶ Uk0 → Bn

with g(0) = 0 and det[dg0] = βk0 . Define the function h ∶ Ω→ Bn as

h(z) = g((1 − ε)z).

Then h(0) = 0 and

det[dh0] = (1 − ε)2nβk0 ≥ (1 − ε)2nd > β.

This contradicts the definition of β as supremum. Thus βk → β as claimed.

Proposition 3.21. Let Ω ⊂ Cn be a bounded convex domain. If xk ∈ Ω and xk → x ∈ Ω then

∣ME
Ω (xk)∣→ ∣ME

Ω (x)∣

and

∣MC
Ω (xk)∣→ ∣MC

Ω (x)∣ .
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Proof. Let αk = ∣ME
Ω (xk)∣ , α = ∣ME

Ω (x)∣, and βk = ∣MC
Ω (xk)∣ , β = ∣MC

Ω (x)∣.

First we show α ≤ lim inf αk. Take a subsequence j of k so that lim inf αk = limαj .

Using Proposition 3.19 let fj ∶ Bn → Ω such that

fj(0) = xj

det[(dfj)0] = α−1
j .

By Theorem 2.27 there is a holomorphic f ∶ Bn → Ω which is the limit of a

subsequence of fj . Then f(0) = x and det[df0] = limα−1
j .

By definition of α we therefore have α ≤ (det[df0])−1, so α ≤ lim inf αk.

Now we want to show α ≥ lim supαk. Let f ∶ Bn → Ω be holomorphic with f(0) = x

and det[df0] = α−1, using Proposition 3.19 again. Let r be a number with 0 < r < 1. Let

sr ∶ Cn → Cn be the scaling

sr(z) = x + r(z − x).

Let Ωr = sr(Ω). Note that Ωr ⋐ Ω because Ω is convex. Define the function gk as

gk(z) = sr(f(z)) + xk − x.

For k large enough, the image of gk will lie in Ω. Observe gk(0) = xk and

det[(dgk)0] = r2n det[df0] = r2nα−1. Therefore

αk ≤ (det[(dgk)0])−1 = r−2nα.

Then lim supαk ≤ r−2nα. This holds as r → 1, so lim supαk ≤ α. Thus we have

shown the Kobayashi-Eisenman measure to be continuous.

Now we show the Carathéodory measure is continuous for a fixed domain. We

begin by showing β ≥ lim supβk. Choose a subsequence j of k so that lim supβk = limβj .
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For each j let fj ∶ Ω → Bn be holomorphic such that fj(xj) = 0 and det[(dfj)xj ] = βj . This

uses Proposition 3.19.

Passing to a subsequence if necessary, let f ∶ Ω → Bn such that fj → f , this is

possible by Theorem 2.27. Then f(x) = 0 and det[dfx] = lim det[(dfj)xj] = limβj . Then by

definition of β we have

β ≥ limβj = lim supβk.

Now we show β ≤ lim inf βk. Suppose ε > 0 is small. Define rε ∶ Cn → Cn as

rε(z) = x + (1 − ε)(z − x).

Let Ωε = rε(Ω). Note that because Ω is convex, Ωε ⋐ Ω. For each ε there is some

Kε > 0 so that the translation Ωε − xk + x ⋐ Ω for k ≥Kε, this is because xk → x. Let Uε be

defined as

Uε = ⋃
k≥Kε

Ωε − xk + x.

Note that Kε can be chosen so that Uε ⋐ Ω as well. By the decreasing property of

the Carathéodory measure

∣MC
Uε (x)∣ ≤ ∣MC

Ωε−xk+x (x)∣ = ∣MC
Ωε (xk)∣ .

Both families {Ωε} and {Uε} are increasing as ε→ 0 and both exhaust Ω.

Again by the decreasing property,

β = ∣MC
Ω (x)∣ ≤ ∣MC

Uε (x)∣ .

Fixing ε > 0 for now we obtain a Kε so that for all k ≥Kε,

∣MC
Uε (x)∣ ≤ ∣MC

Ωε (xk)∣ .
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Therefore

β ≤ lim inf
k→∞

∣MC
Ωε (xk)∣ .

Letting ε→ 0 in this estimate gives, again by Proposition 3.20,

β ≤ lim inf βk.

This shows the Carathéodory measure is continuous as well.

42



Chapter 4

Asymptotically Equivalent

Measures

We start by recalling the following theorem of Bun Wong [57]:

Theorem 4.1. Let Ω be a C2 bounded strongly pseudoconvex domain. Then ∣ME
Ω (z)∣ and

∣MC
Ω (z)∣ are asymptotically equal, meaning for each ε > 0 there is a δ > 0 such that if z ∈ Ω

with δΩ(z) < δ then
RRRRRRRRRRR

∣ME
Ω (z)∣

∣MC
Ω (z)∣

− 1
RRRRRRRRRRR
< ε.

Technically [57] assumes that Ω is smoothly bounded but the C2 case is very

similar.

Naturally we are interested in studying the converse. In that direction, note the

following example due to Fornæss and Wold [24]:

Example 4.2. There is a C2 weakly pseudoconvex domain with asymptotically equivalent

intrinsic measures.
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Proof. In the aptly titled paper [24] Fornæss and Wold construct a bounded convex C2

domain Ω which is weakly pseudoconvex and which has the property that the squeezing

function sΩ tends to 1 on the boundary. We will not use the definition of the squeezing

function directly, but we will give it below (after the conclusion) for completeness.

Deng, Guan, and Zhang in [17] showed the following estimate:

s2n
Ω (z) ≤

∣ME
Ω (z)∣

∣MC
Ω (z)∣

≤ s−2n
Ω (z).

Clearly if sΩ → 1 near the boundary then the measures are asymptotically equiva-

lent. Therefore Ω is a bounded C2 convex domain with asymptotically equivalent intrinsic

measures but which is not strongly pseudoconvex.

Definition 4.3. The squeezing function is defined over the family fz(Ω) of holomorphic

function from Ω into Bn taking z to 0:

sΩ(z) = sup
fz

{SΩ,fz(z)}

where

SΩ,fz(z) = sup{r > 0 ∶ Br(0) ⊆ fz(Ω)}.

In essence the squeezing function measures how big a ball can fit inside Ω while

simultaneously forcing Ω to fit inside the unit ball. It is similar to, but different from, the

ratio of intrinsic functions.

There are other similarities between the squeezing function and the ratio of in-

trinsic measures. For example, both the squeezing function and the intrinsic measures are

defined over families of holomorphic functions to/from the ball. For both, attaining 1 at
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some point in the domain means Ω is biholomorphic to the ball. And both approach 1 near

strongly pseudoconvex boundary points.

In [60] Zimmer proved the following:

Theorem 4.4. Let Ω ⊂ Cn be a C2+ε convex domain for some ε > 0. Suppose p ∈ ∂Ω and

suppose

lim
Ω∋z→p

sΩ(z) = 1.

Then p is a point of strong pseudoconvexity.

He actually proved a gap theorem related to Theorem 4.4:

Theorem 4.5. For any n ≥ 2 and ε > 0 there is some δ, depending only on n and ε, so that

if Ω ⊂ Cn is a bounded convex domain with C2+ε boundary and such that

sΩ(z) ≥ 1 − δ

outside a compact subset of Ω then Ω is strongly pseudoconvex.

Although stated for the squeezing function, he also mentioned that the same proof

holds for a wide class of functions found in the theory of several complex variables. In the

present work we will have shown that the function of Theorem 4.1, the ratio of the intrinsic

measures, is one such function. In the current chapter we will give the necessary details for

applying the argument and then present Zimmer’s proof as it applies to the following:

Theorem 4.6. Let Ω ⊂ Cn be a C2+ε convex domain for some ε > 0. Suppose p ∈ ∂Ω and

suppose

lim sup
Ω∋z→p

∣ME
Ω (z)∣

∣MC
Ω (z)∣

= 1.

Then p is a point of strong pseudoconvexity.
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Note that, by nature of the relationship between the squeezing function and the

ratio of intrinsic measures, Theorem 4.4 follows from Theorem 4.6.

Zimmer’s proof actually implies the stronger gap version of Theorem 4.6 (e.g.

Theorem 4.5) as well. It may be of interest to see if there is a comparison between the

gap parameter δ from Theorem 4.5 and the corresponding parameter for the gap version of

Theorem 4.6, and such a correspondence could be considered another comparison between

the squeezing function and the ratio of intrinsic measures. It would also be of interest to

see more explicitly how this gap parameter depends on the boundary parameter ε, in the

hopes of somehow taking ε to 0, but we have no results in this direction to present at the

moment.

An immediate consequence of Theorem 4.6, also noted by Zimmer in [60], is that

Theorem 2.13 is a corollary of Theorem 4.6. Technically Zimmer showed that Theorem 2.13

is a corollary of Theorem 4.4, but the same argument holds:

Corollary 4.7. Theorem 2.13 follows from Theorem 4.6.

Recall Theorem 2.13 states: Suppose Ω ⊂ Cn is a bounded C2 strongly pseudocon-

vex domain and suppose D ⊂ Cn is a C2+ε convex domain for some ε > 0. Suppose Ω and D

are biholomorphic. Then every point in ∂D is a point of strong pseudoconvexity.

Proof. Let Ω ⊂ Cn be a bounded C2 strongly pseudoconvex domain and let D ⊂ Cn be a

C2+ε domain which is biholomorphic to Ω under the biholomorphism φ. Pick a point p ∈ ∂D.

The function
∣ME

Ω (z)∣
∣MC

Ω (z)∣
is a biholomorphic invariant, so

lim sup
D∋z→p

∣ME
D (z)∣

∣MC
D (z)∣

= lim sup
D∋z→p

∣ME
Ω (φ−1(z))∣

∣MC
Ω (φ−1(z))∣

.
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But Theorem 4.1 says this limit is 1 because φ−1(z) → ∂Ω. Thus by Theorem 4.6

p is a point of strong pseudoconvexity.

The proof of Theorem 4.6 relies on the scaling method. Originally introduced by

Frankel [26] and Pinchuk [50], the scaling method has proven to be a powerful tool in the

field of several complex variables. The scaling method requires a notion of convergence of

sets which is simplest when the sets are convex – hence the convexity assumptions – but it

does not rely much on boundary regularity. In particular C∞ boundaries are often no more

useful in the scaling process than those of particular finite-order regularity.

The scaling method consists of a sequence of biholomorphisms fk from Ω to do-

mains Ωk. In a successful application there is a domain Ω∞ which is the limit of the domains

Ωk; these details will be given shortly. Whereas Frankel and Pinchuk both constructed the

maps fk to that they converge to a biholomorphism f∞ ∶ Ω → Ω∞, Zimmer’s scaling se-

quence does not result in biholomorphism. Instead Ω∞ will be constructed so as to preserve

a certain boundary condition at a particular point.

Before discussing the scaling method in detail we first need to describe the topology

on the domains we are using.

4.1 Convergence of Convex Domains

The scaling process always results in unbounded domains, so we begin by studying

a nice class of unbounded convex domains. Specifically we are interested in hyperbolic (not

necessarily bounded) convex domains. There is a simple classification to distinguish convex

domains which are hyperbolic due to Barth [1]:
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Theorem 4.8. A convex domain Ω ⊂ Cn is hyperbolic if and only if Ω contains no complex

affine lines.

That is, the Kobayashi metric KΩ is a complete proper metric if and only if for

all z ∈ Ω and 0 ≠ v ∈ Cn,

{w ∈ C ∶ z +wv ∈ Ω} ≠ C.

Consider the space Xn of all hyperbolic convex domains, which is equivalently all

convex domains which do not contain any affine complex lines. We describe a topology on

Xn via the Hausdorff distance between domains.

Define the distance from a point to a set as, for x ∈ Cn and A ⊆ Cn,

d(x,A) = inf
a∈A

d(x, a).

For any ε > 0 and A ⊆ Cn, define the neighborhood Nε(A) to be

Nε(A) = {x ∈ Cn ∶ d(x,A) < ε}.

Given two sets A,B ⊂ Cn, recall that the Hausdorff distance between A and B,

denoted d(A,B), is defined as

d(A,B) = inf{ε > 0 ∶ A ⊆ Nε(B) and B ⊆ Nε(A)}.

This distance is a complete and proper metric on the space of nonempty compact

subsets of Cn [52], and we are interested in compact subsets because any bounded convex

set is uniquely determined by its closure (and that closure is compact). If we take the

metric topology induced by the Hausdorff distance, this gives us a notion of convergence of

compact subsets of Cn. That is, now we know what it means for Ak to converge to A where

Ak,A are all bounded convex domains in Cn.
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Given some A ∈ Xn (possibly unbounded), for any R > 0 define the compact set

AR as

AR = A ∩BR(0).

Here BR(0) is the euclidean ball of radius R centered at 0.

This defines a topology on the space Xd of hyperbolic convex domains by declaring

what is meant by the statement Ak → A for Ak,A ∈ Xd. We say Ak → A if for all R > 0

which are large enough (i.e. ∃R0 > 0 s.t. ∀R > R0),

ARk → AR

where this convergence is with respect to the Hausdorff distance on compact sets. We call

this topology on Xn the local Hausdorff topology.

We are going to end up proving results about how the intrinsic metrics and mea-

sures interact with this topology. We begin with a lemma which greatly aids us in that

endeavor:

Lemma 4.9. Suppose Ωk → Ω for Ωk,Ω ∈ Xn. Then for every compact set K ⊂ Ω eventually

K ⊂ Ωk, i.e. there is an N > 0 such that for all k > N , K ⊂ Ωk.

Proof. Uniformly translate if necessary so that Ω contains the origin. To be clear, we are

translating each domain the same amount.

Let K ⊂ Ω be compact. Then there is some R > 0 so that K ⊂ BR(0). Increasing

R if necessary, we get ΩR
k → ΩR using the notation above. Thus we can assume that Ω

and each Ωk are contained in BR(0), the unbounded case follows from the simple fact that

ΩR
k ⊆ Ωk.
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Given a number r with 0 < r < 1 define rΩ to be the scaling of Ω by r, i.e.

rΩ = {rz ∶ z ∈ Ω}.

Then rΩ ⊂ Ω because Ω is a convex set which contains the origin. Moreover, the

family {rΩ}0<r<1 covers Ω so in particular it covers K. Then, because K is compact, there

is a finite subfamily which also covers K. This is an increasing family so that means we can

fix a single value for r between 0 and 1 for which K ⊂ rΩ.

Now the Hausdorff distance from rΩ to ∂Ω is strictly positive because r is strictly

less than 1. Because Ωk → Ω and each domain is convex, it must be that Ωk eventually

contains rΩ and therefore K as well.

The following normal family lemma will be helpful later on:

Lemma 4.10. Suppose D ⊂ Cm is a domain and fix some x ∈D.

Suppose Ωk,Ω, are uniformly bounded convex domains with Ωk → Ω. That is, there

is some R > 0 such that Ωk,Ω are all contained in BR(0). Suppose we also have holomorphic

functions fk ∶D → Ωk and an x ∈D such that fk(x)→ p where p ∈ Ω.

Then there is a holomorphic f ∶D → Ω such that some subsequence of fk converges

to f .

Proof. By uniform translation we can assume that p = 0. Then 0 ∈ Ωk for all k large enough

by Lemma 4.9.

Our uniform bounded assumption means that, by Montel’s theorem, there is a

holomorphic f ∶ D → Ω such that fk → f after passing to a subsequence. We take this

subsequence, so fk → f uniformly on compact sets where the codomain is Cn and f ∶D → Ω

is holomorphic. We want to show f(D) ⊆ Ω, missing the boundary.
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Let 0 < r < 1 and look at the scaled domain rΩ. It is compactly contained in Ω, so

for k large enough rΩ ⊂ Ωk by Lemma 4.9. Moreover, rΩk → rΩ in the Hausdorff topology

so for k large enough rΩk ⊂ Ω.

Then the functions rfk ∶D → rΩk map into Ω and rfk → rf . Moreover rfk(x)→ 0.

By Theorem 2.27 rf is a map into Ω, so rf(D) ⊆ Ω. This holds for all 0 < r < 1, and rf → f

as r → 1, so by Theorem 2.27 again f ∶D → Ω as required.

4.2 Continuity of the Intrinsic Metrics and Measures

There are several topologies at play here and we want to investigate how the

intrinsic metrics and measures respect these topologies. We have seen in Proposition 3.21

that the Kobayashi and Carathéodory measures are continuous if the domain is fixed. We

investigate now what happens as the domain varies. These proofs were motivated by Bracci,

Gaussier, and Zimmer [8]; in particular they presented a proof of the statements for the

Kobayashi metric and we adapt the argument for the intrinsic measures. We state the

following without proof, since the proof is contained in [8]:

Proposition 4.11. Suppose Ωk,Ω are domains in Xn with Ωk → Ω and xk ∈ Ωk, x ∈ Ω, and

xk → x in Cn. Moreover suppose vk, v ∈ Cn with vk → v. Then

KΩk(xk, vk)→KΩ(x, v).

We will have to modify slightly the argument of [8] to show the equivalent state-

ment for the intrinsic measures. First we address the Kobayashi-Eisenman measure:
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Proposition 4.12. Let Ωk,Ω be in Xn and suppose Ωk → Ω. Let xk ∈ Ωk, x ∈ Ω, and

suppose xk → x in Cn. Then ∣ME
Ωk

(xk)∣→ ∣ME
Ω (x)∣.

Proof. Let αk = ∣ME
Ωk

(xk)∣ and α = ∣ME
Ω (x)∣. First we show α ≤ lim inf αk.

Fix some R > 0. Define ΩR
k ,Ω

R to be Ωk,Ω intersected with BR(0). Suppose R

is large enough so the domains contain their corresponding points and then define αRk =

∣ME
ΩR
k

(xk)∣ and αR = ∣ME
ΩR

(x)∣. Note ΩR
k → ΩR in the Hausdorff topology by definition of

Ωk → Ω. Also, by Proposition 3.20,

lim
R→∞

αRk = αk

and

lim
R→∞

αR = α.

Choose a subsequence j of k so that limαRj = lim inf αRk . For each j let fj be

a holomorphic map from Bn to ΩR
j so that fj(0) = xj and (det[(dfj)0])−1 = αRj . By

Lemma 4.10 we can pass to a subsequence and obtain a holomorphic map f ∶ Bn → Ω with

fj → f . Then f(0) = x and (det[df0])−1 = limαRj . Thus

αR ≤ limαRj = lim inf αRk

Letting R →∞ gives, by Proposition 3.20, that α ≤ lim inf αk.

Now we show α ≥ lim supαk. For each 0 < r < 1 define Kr to be

Kr = {f(z) ∶ f ∶ Bn → Ω, ∥z∥ < r}.

Because Ω is hyperbolic Kr is compactly contained in Ω. Skip the first few terms

if necessary so that Kr is contained in each Ωk, this is possible by Lemma 4.9. Also skip

some terms if necessary so that each xk is in Kr.
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For each k let fk ∶ Bn → Ω be so that fk(0) = xk and (det[(dfk)0])−1 = ∣ME
Ω (xk)∣.

Define the function fk,r as

fk,r(z) = fk(rz).

Then the image of fk,r lies in Kr, so in particular fk,r is a holomorphic map from

Bn to Ωk. Also fk,r(0) = xk and

(det[(dfk,r)0])−1 = r−2n ∣ME
Ω (xk)∣ .

Therefore αk ≤ r−2n ∣ME
Ω (xk)∣. Taking the lim sup of both sides gives, by Proposi-

tion 3.21, that

lim supαk ≤ r−2nα.

Letting r → 1 gives that lim supαk ≤ α, making αk → α.

Working with the Carathéodory measure is a little different because instead of

changing the codomain we are changing the domain.

Proposition 4.13. Suppose Ωk,Ω ∈ Xn, that xk ∈ Ωk, x ∈ Ω, and xk → x. Then

∣MC
Ω (x)∣ = lim ∣MC

Ωk
(xk)∣ .

Proof. Let βk = ∣MC
Ωk

(xk)∣ and β = ∣MC
Ω (x)∣. First we show β ≥ lim supβk.

Let R > 0 be big and set ΩR
k = Ω ∩ BR(0), ΩR = Ω ∩ BR(0). Skip the first few

k if necessary so that xk ∈ ΩR
k for all k. Let βRk = ∣MC

ΩR
k

(xk)∣ and βR = ∣MC
ΩR

(x)∣. By

Proposition 3.20 βRk → βk and βR → β as R →∞.

Take a subsequence j of k so that limβj = lim supβk. For each j let fj ∶ ΩR
j → Bn

be holomorphic so that fj(xj) = 0 and det[(dfj)xj ] = βRj , possible via Proposition 3.19.
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Let 0 < r < 1. Then rΩR ⋐ ΩR
k for all k large enough so each fj restricts to rΩR.

Moreover βR = r2n ∣MC
rΩR

(0)∣ and

∣MC
rΩR

(0)∣ ≥ βRj .

Therefore

βR ≥ r2nβRj .

Take j →∞, R →∞, and r → 1 and we have

β ≥ limβj = lim supβk.

For the other direction, to show β ≤ lim inf βk, take r,R,ΩR
k ,Ω

R, βRk , and βR as

before. Uniformly translate so that x = 0.

As k gets large enough, rΩR
k ⋐ ΩR. Let the domain Sk be Ωk translated so that

xk becomes 0 ∈ Sk and take SRk = Sk ∩BR(0). Then rSRk ⋐ ΩR for k large enough as well,

since xk → 0. Let f ∶ ΩR → Bn be such that f(0) = 0 and det[df0] = βR, possible via

Proposition 3.19. Define the function fr,k ∶ SRk → Bn by

fr,k(z) = f(rz).

Note the value for fr,k does not depend on k, but the domain does. Clearly

fr,k(0) = 0 and

det [(dfr,k)0
] = r2nβR.

By definition of βRk , because fr,k is defined on SRk (which is just a translation of

ΩR
k ) we have

βRk ≥ r2nβR
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for all k large enough. Take R →∞, lim inf over k, and r → 1 to get

lim inf βk ≥ β.

Thus limβk = β.

This concludes the continuity properties of the intrinsic metrics and measures

which we will utilize. Next we will see how to obtain convergent sequences of domains.

4.3 What is Blowing Up?

Blowing up a domain Ω consists of obtaining a sequence of affine transformations

Ak such that the domains Ak(Ω) converge to some domain Ω∞ and a sequence of points

xk ∈ Ω so that Ak(xk) → x∞ where x∞ ∈ Ω∞. The domain Ω∞ is in general simpler than

Ω in some way, and the points xk typically approach the boundary ∂Ω so that only the

boundary asymptotic behavior in Ω affects Ω∞. Before getting into how the blowup maps

are chosen for the proof of Theorem 4.6, we should address how we deal with convergence

of domains.

The nature of the local Hausdorff topology on Xn means that it is actually quite

common for a sequence of domains to have a convergent subsequence. We state this precisely

in Theorem 4.15, but first recall the Blaschke selection theorem, a proof of which can be

found in Price [52]:

Theorem 4.14 (Blaschke Selection Theorem). The family of nonempty compact subsets

of BR(0) ⊂ Cn is compact with respect to the Hausdorff topology, i.e. every sequence of
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compact subsets of BR(0) has a subsequence which converges to some compact subset of

BR(0).

With the Blaschke selection theorem we can show that a quite simple condition

suffices for some sequence of domains to contain a convergent subsequence:

Theorem 4.15. Suppose p ∈ Cn and fix a bounded neighborhood U of p. Suppose Ωk is a

sequence of convex domains in Cn, each of which contains U . Then there is a domain Ω

and a subsequence k′ of k so that Ωk′ → Ω in the local Hausdorff topology.

Proof. Let Ωk be given. For each m ∈ N define

Ωm
k = Ωk ∩Bm(0).

Recall Bm(0) is the ball of (euclidean) radius m centered at 0. By the Blaschke

selection theorem, the sequence Ω1
k has a limit point Ω1. Let k1,j be a subsequence of k so

that

Ω1
k1,j

j
Ð→ Ω1.

Assume that for m ≥ 1 we have constructed domains Ωi ⊆ Bi(0) for each 1 ≤ i ≤m

and subsequences ki,j such that for all 1 ≤ i ≤m we have

Ωi
ki,j

j
Ð→ Ωi.

Suppose also that for 1 ≤ i <m, the sequence ki+1,j is a subsequence of ki,j . Then

look at the sequence

Ωm+1
km,j

.
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By the Blaschke selection theorem again, this sequence has a limit point Ωm+1 ⊆

Bm+1(0). Define km+1,j to be a subsequence of km,j so that

Ωm+1
km+1,j

→ Ωm+1.

Repeat for all m ∈ N.

Now we have a convenient increasing property, and that is that Ωm ⊆ Ωm+1. To

see this, start with the convergence

Ωm+1
km+1,j

→ Ωm+1.

Intersecting all with Bm(0) gives

Ωm+1
km+1,j

∩Bm(0) = Ωm
km+1,j

→ Ωm+1 ∩Bm(0).

However, km+1,j is a subsequence of km,j and we know

Ωm
km,j

→ Ωm.

Therefore Ωm = Ωm+1 ∩Bm(0) because they are both limits of the same sequence

Ωm
km+1,j

, showing Ωm ⊆ Ωm+1.

Define Ω to be the union of all Ωm. Then the diagonal subsequence kj,j gives us

convergence

Ωkj,j → Ω

in the local Hausdorff topology. As the limit of convex sets, Ω is convex. For m large enough

each Ωm contains the neighborhood U , so U ⊂ Ω. That is, the interior Ω of Ω is nonempty

because it contains at least U . Also

Ωkj,j → Ω
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because convex domains are uniquely determined by their closures.

For the actual blowup process we will utilize affine transformations. To be explicit,

an affine transformation is an affine linear map on Cn which is bijective. Affine transfor-

mations are biholomorphisms and Xn is closed under affine transformations; we can check

this with the condition in Theorem 4.8.

4.4 Convex Domains Biholomorphic to the Ball

We would like to obtain a condition which particular convex domains biholomor-

phic to the ball must share. These domains are special because they arise as the limits of

the blowup process. This condition is presented by Zimmer in [60]. Suppose Ω ⊂ Cn is

convex. We say Ω ∈Hn if the following two conditions are satisfied:

● Ω ∩ Span{e2,⋯, en} = ∅

● Ω ∩ (C ⋅ e1) = {z1e1 ∶ z1 ∈H}

Here H is the right half plane in C, H = {z ∈ C ∶ Re(z) > 0}, and {e1,⋯, en} is the

standard basis of Cn.

In [60] is a proof of the following Lyapunov exponent result for the unit ball Bn:

Lemma 4.16. Suppose γ1, γ2 ∶ [0,∞) → Bn are two geodesic rays under the Kobayashi

metric. If

lim inf
s,t≥0

KBn(γ1(s), γ2(t)) <∞

then there is a T ∈ R such that

lim
t→∞KBn(γ1(t), γ2(t + T )) = 0.
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Moreover, if γ1 and γ2 lie in the same complex geodesic then

lim
t→∞

1

t
logKBn(γ1(t), γ2(t + T )) = −2.

Otherwise

lim
t→∞

1

t
logKBn(γ1(t), γ2(t + T )) = −1.

This result, Lemma 4.16, is used in Zimmer [60] to prove the following asymptotic

characteristic of domains in Hn which are biholomorphic to the ball:

Theorem 4.17. Suppose Ω ∈Hn is biholomorphic to the ball Bn. Let V = Span{e2,⋯, en}∖

{0}. Then for any v ∈ V

lim
r→∞

1

r
log δΩ(ere1, v) =

1

2
.

4.5 Blowing Up to Prove Theorem 4.6

We begin by recalling the statement: Let Ω be a C2+ε convex domain in Cn.

Suppose p ∈ ∂Ω and

lim sup
Ω∋z→p

∣ME
Ω (z)∣

∣MC
Ω (z)∣

= 1.

Then p is a point of strong pseudoconvexity. We present the proof next, again

mentioning that this is essentially the proof from Zimmer [60] applied to our situation.

Proof of Theorem 4.6. We begin by saying that Ω cannot contain an affine complex line, for

if it did then the Carathéodory measure would identically vanish and hence the assumption

of asymptotically equivalent measures could not hold. Thus our assumption only applies to

hyperbolic convex domains and hence Ω ∈ Xn.
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Through an affine isometry we can assume that p = 0 and that n, the inward

normal to ∂Ω at 0, is e1 = (1,0,⋯,0).

Suppose for the sake of contradiction that 0 is not a point of strong pseudocon-

vexity. Recall that by Proposition 2.17 we can then find a C, δ > 0 and a unit vector v ∈ TpΩ

so that δe1 ∈ Ω and

δΩ(re1; v) ≥ Cr
1

2+ε (4.1)

for every 0 < r ≤ δ. With an affine isometry we can further assume that v = e2.

We will later want an explicit cone in Ω with vertex at the origin to aid in the

blowup process. The boundary is C2 and the point is not strongly pseudoconvex, so if we

focus more to the origin by shrinking δ if necessary we can ensure

re1 + rDe1 ⊂ Ω (4.2)

for all 0 < r ≤ δ.

Now to obtain a sequence which forms the basis of our blowup sequence. By (4.1),

for all α > 0

lim
r→0

r
1

2+ε+α

δΩ(re1; e2)
= 0.

Pick αk, rk both going to 0 so that

lim
k→∞

r
1

2+ε+αk
k

δΩ(rke1; e2)
= 0.

Let Ck be so that

δΩ(rke1; e2) = Ckr
1

2+ε+αk
k .

Note Ck →∞. We want to compare

δΩ(re1; e2),Ckr
1

2+ε+αk
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for rk ≤ r ≤ δ. We know the two are equal when r = rk, and we can extrapolate what

happens as r increases because ∂Ω is convex. In particular the boundary term δΩ(re1, e2)

can only grow more slowly as r gets bigger, for if its growth accelerated too much then the

boundary would have a region of concavity. That is, if we increase rk a little then we can

ensure

δΩ(re1; e2) ≤ Ckr
1

2+ε+αk

for all rk ≤ r ≤ δ while still preserving equality for r = rk.

After increasing rk, we want to be sure that rk still goes to 0 as k →∞. If the {rk}

no longer went to 0 then, because Ck → ∞, the boundary distances δΩ(re1; e2) would be

unbounded and hence Ω would contain an affine complex line. This cannot happen because

Ω is hyperbolic, so {rk} still goes to 0.

By construction δΩ(rke1; e2) = Ckr
1

2+ε+αk
k , so let λk ∈ C be such that rke1+λke2 ∈ ∂Ω

and

∣λk∣ = Ckr
1

2+ε+αk
k .

We will use λk as a correctional rotation. Now to construct the affine maps. Let

Ak(z) ∶ Cn → Cn be defined as

Ak(z1, z2,⋯, zn) = (z1

rk
,
z2

λk
, z3,⋯, zn) .

With Ωk = Ak(Ω), we have by (4.2) that e1 +De1 ⊂ Ωk. Moreover,

(iR ×Cn−1) ∩Ωk = ∅

e1 + e2 ∈ ∂Ωk

e1 +De2 ⊂ Ωk.
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Thus, by Theorem 4.15, Ωj → Ω∞ for some domain Ω∞ and some subsequence j

of k.

We claim that Ω∞ ∩ (C ⋅ e1) consists of the right half plane {z ∈ C ∶ Re z > 0} ⋅ e1.

To see this, choose 0 < r ≤∞ and η > 0 and let S(r, η) be the truncated cone

S(r, η) = {z ∈ C ∶ 0 < ∣z∣ < r and ∣ Im(z)∣ < ηRe(z)}.

For any η there is an r > 0 so that S(r, η) ⋅ e1 ⊂ Ω. Then for any η > 0 we have

S ( r
rj
, η) ⋅ e1 ⊂ Ωj

and hence the whole cone S(∞, η) ⊂ Ω∞. This holds for all η > 0 so our claim that

Ω∞ ∩ (C ⋅ e1) = {z ∈ C ∶ Re z > 0} ⋅ e1

holds.

Now we are ready to state the boundary behavior so desired of Ω∞: we claim that

δΩ∞(re1; e2) ≤ r
1

2+ε (4.3)

for r < 1. This boundary behavior will be half of the contradiction driving our proof. To

see why (4.3) holds, observe for 0 < r < 1

δΩj(re1; e2) =
1

∣λj ∣
δΩ(rjre1; e2) ≤

1

∣λj ∣
Cj(rjr)

1
2+ε+αj = r

1
2+ε+αj .

Taking j →∞ gives (4.3).

For the other half of the contradiction, we begin with the sequence qj = rje1 ∈ Ω

such that Aj(qj) = e1. Moreover we know qj → 0 ∈ ∂Ω. Thus by assumption

lim sup
j→∞

∣ME
Ω (qj)∣

∣MC
Ω (qj)∣

= 1.
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The biholomorphic transformation properties of the intrinsic metrics means that

∣ME
Ωj

(e1)∣

∣MC
Ωj

(e1)∣
=

∣ME
Ω (qj)∣

∣MC
Ω (qj)∣

and hence

lim sup
j→∞

∣ME
Ωj

(e1)∣

∣MC
Ωj

(e1)∣
= 1.

We take a subsequence l of j so that

lim sup
j→∞

∣ME
Ωj

(e1)∣

∣MC
Ωj

(e1)∣
= lim
l→∞

∣ME
Ωl

(e1)∣

∣MC
Ωl

(e1)∣
= 1.

This does not change the convergence, i.e. Ωl → Ω∞ as well.

By Proposition 4.12 and Proposition 4.13, these measures respect the convergence

Ωl → Ω∞. That is,

∣ME
Ω∞ (e1)∣

∣MC
Ω∞ (e1)∣

= 1.

By Wong’s Theorem 4.18, Ω∞ is therefore biholomorphic to the ball. But then

Zimmer’s Theorem 4.17 states that

lim
r→∞

1

r
log δΩ(ere1; e2) =

1

2
. (4.4)

We claim (4.4) provides the other half of the contradiction, being incompatible

with (4.3). For by (4.3)

log δΩ∞(ere1; e2) ≤ log ((er)
1

2+ε ) = r

2 + ε
.

Hence

lim sup
r→∞

1

r
log δΩ∞(ere1; e2) ≤

1

2 + ε
< 1

2
.

This is the contradiction from which we can conclude that p must be a point of

strong pseudoconvexity.
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For reference here is Wong’s theorem about intrinsic measures [56]:

Theorem 4.18. Let Ω be a bounded domain and suppose there is some point z ∈ Ω where

∣ME
Ω (z)∣ = ∣MC

Ω (z)∣ .

Then Ω is biholomorphic to the ball.

We do not give the proof here, instead referring the reader to either Wong [57]

or Krantz [40]. The proof is fairly classical but is not nearly as immediate as that of the

corresponding statement for the squeezing function.
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Chapter 5

The Bergman Kernel on Strongly

Pseudoconvex Domains

This chapter is devoted to proving Theorem 5.13, which was done in the hopes of

settling the Ramadanov conjecture. Theorem 5.13 essentially says that if the Bergman met-

ric of Ω is asymptotically Kähler-Einstein enough then ∂Ω is spherical. This is interesting on

its own and it can also be used to make one of the key steps of Huang and Xiao’s proof [31]

of the S.-Y. Cheng conjecture more direct. We start by stating the S.-Y. Cheng and Ra-

madanov conjectures, then study the ball since the conclusions of both conjectures involve

the ball. We then cover the required concepts and finally state and prove Theorem 5.13.

5.1 Conjectures

The ball is the canonical strongly pseudoconvex domain. In some sense, strong

pseudoconvexity is a measure of how much a domain is like the ball near the boundary.
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That is not to say that all strongly pseudoconvex domains are biholomorphic to the ball –

recall Lemma 2.18 and the discussion immediately following. Generic strongly pseudoconvex

domains only agree with the ball up to some order. On the other hand, there are many

holomorphic invariants associated to any smooth strongly pseudoconvex domain; this is in

fact one route by which to show that two such domains are generically holomorphically

distinct. It is natural to question whether a domain which admits the same invariants as

the ball must be equivalent to the ball, and we mention two particular such conjectures

below.

As we will see in section 5.3, the Bergman metric on the ball is Kähler-Einstein.

Cheng [11] and Yau [58] conjectured that any smooth strongly pseudoconvex domain where

the Bergman metric is Kähler-Einstein must be biholomorphic to the ball; we will refer to

this conjecture as the S.-Y. Cheng conjecture in the present work. Burns and Graham [28]

confirmed the S.-Y. Cheng conjecture in C2 circa 1987. Huang and Xiao [31] confirmed the

S.-Y. Cheng conjecture in all dimensions higher than 2 circa 2020. For reference we present

their proof in section 5.7.

There is a related conjecture posed by Ramadanov in [53]. On a C∞ bounded

strongly pseudoconvex domain Ω the two functions φ and ψ in Fefferman’s expansion of

the Bergman kernel (see section 5.4) are invariantly (partially) defined; in particular ψ is

invariantly defined up to O(ρ∞) where ρ is a defining function for Ω. Ramadanov posed:

Conjecture 5.1. Let Ω ⊂ Cn be a C∞ bounded strongly pseudoconvex domain which has

that ψ vanishes to infinite order at the boundary, i.e. ψ = O(ρ∞), in Fefferman’s expansion

of the Bergman kernel. Then Ω has spherical boundary.
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The Ramadanov conjecture has been confirmed for n = 2 for quite some time – see

Theorem 3.2 in Graham [28] where he attributes the solution to personal communication

with Burns. In fact ψ only needs to vanish to O(ρ2) for this conclusion. However, the

Ramadanov conjecture is still open for higher dimensions.

Fu and Wong [27], in particular Proposition 5.9, showed that if the Bergman metric

is Kähler-Einstein then ψ = O(ρ∞). Nemirovski and Shafikov [48] explicitly recognized that

because of Fu-Wong’s result the S.-Y. Cheng conjecture would follow from the Ramadanov

conjecture. As it turns out, the S.-Y. Cheng conjecture was settled first.

The motivation for the present chapter in the present work was to take Huang and

Xiao’s proof of the S.-Y. Cheng conjecture and see how far it can go in terms of prove the

Ramadanov conjecture. Perhaps unsurprisingly their proof of the S.-Y. Cheng conjecture

does not also prove the Ramadanov conjecture. However we were able to weaken the

assumption of the S.-Y. Cheng conjecture and still obtain the spherical boundary conclusion,

see Theorem 5.13.

In particular it is not necessary to assume that the Bergman metric is Kähler-

Einstein on the whole domain, or even that ψ vanishes at all, but only that the Bergman

metric becomes asymptotically Kähler-Einstein enough near the boundary. This is only

if we want to conclude that the boundary is spherical – we are not claiming that Ω is

biholomorphic to the ball under the weaker assumption. That conclusion still requires the

full assumption that the Bergman metric is Kähler-Einstein.
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5.2 Motivation: The Unit Ball

The following Monge-Ampère operator was introduced by Fefferman in [23]:

J(u) = (−1)n det

⎡⎢⎢⎢⎢⎢⎢⎢⎣

u uβ

uα uαβ

⎤⎥⎥⎥⎥⎥⎥⎥⎦

We will discuss its utility shortly but for now we simply compute for on the canon-

ical defining function on the unit ball because this calculation motivates our calculation in

Theorem 5.13.

Proposition 5.2. The canonical defining function for the ball,

ρ(z) = 1 −
n

∑
i=1

zizi,

yields that J(ρ) is constantly 1.

Proof. We begin by computing the derivatives of ρ:

ρα(z) = −zα

ρβ(z) = −zβ

ραβ(z) = −δij .

J(ρ) = (−1)n det

⎡⎢⎢⎢⎢⎢⎢⎢⎣

ρ ρβ

ρα ραβ

⎤⎥⎥⎥⎥⎥⎥⎥⎦

= (−1)n det

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 − ∣z∣2 −zβ

−zα −In

⎤⎥⎥⎥⎥⎥⎥⎥⎦
To compute the determinant we do some row operations. For each 1 ≤ k ≤ n take

the (k + 1)th row, scale it by −zk, and add it to the first row. None of these operations
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changes the determinant:

J(ρ) = (−1)n
⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 0

−zα −In

⎤⎥⎥⎥⎥⎥⎥⎥⎦
We conclude by expanding along the top row, obtaining J(ρ) = 1.

5.3 The Kähler-Einstein Condition

Recall that the Bergman metric is given by (logK)αβ where K is the diagonal

of the Bergman kernel. We have seen that any bounded stongly pseudoconvex domain is

complete with respect to the Bergman metric. We now look at its to curvature, following

the particular approach of Fu-Wong [27].

Let G(z) = det[(logK)αβ]. The Ricci tensor is given by the components

Rαβ = −(logG)αβ = − (log det [(logK)γδ])αβ .

The Bergman metric is Kähler-Einstein if

Rαβ = c(logK)αβ

for some constant c. The Bergman invariant function M is defined as

M(z) = G(z)
K(z, z)

=
det[(logK)αβ]

K
.

In [23] Fefferman introduced a Monge-Ampère operator which detects some invari-

ants of the boundary of a strongly pseudoconvex domain.

For any positive C2 function u defined on the strongly pseudoconvex domain Ω,
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we can form the (n + 1) × (n + 1) square matrix of partial derivatives

⎡⎢⎢⎢⎢⎢⎢⎢⎣

u uβ

uα uαβ

⎤⎥⎥⎥⎥⎥⎥⎥⎦

.

Define the operator J as

J(u) = (−1)n det

⎡⎢⎢⎢⎢⎢⎢⎢⎣

u uβ

uα uαβ

⎤⎥⎥⎥⎥⎥⎥⎥⎦

.

As shown in Fu-Wong [27], Fefferman’s Monge-Ampère operator J is related to

checking whether the Bergman metric is Kähler-Einstein, see Proposition 5.4 below. First

we prove a well-known formula involving J :

Proposition 5.3. For any positive function u, we have

J(u) = un+1 det [(− logu)αβ] .

Note this matrix has dimensions n × n.

Proof. We start by evaluating the derivatives of logu:

(logu)α =
uα
u

(logu)αβ =
uuαβ − uαuβ

u2
= u−1uαβ − u

−2uαuβ.

Now we do some algebra starting from J(u).

J(u) = (−1)n det

⎡⎢⎢⎢⎢⎢⎢⎢⎣

u uβ

uα uαβ

⎤⎥⎥⎥⎥⎥⎥⎥⎦

.

For each 1 ≤ k ≤ n scale the first row by −u−1uk and add to the (k + 1)th row:

J(u) = (−1)n det

⎡⎢⎢⎢⎢⎢⎢⎢⎣

u uβ

0 uαβ − u
−1uαuβ

⎤⎥⎥⎥⎥⎥⎥⎥⎦

.
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Pull a factor of u out of each row:

J(u) = (−1)nun+1 det

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 u−1uβ

0 u−1uαβ − u
−2uαuβ

⎤⎥⎥⎥⎥⎥⎥⎥⎦

.

Bringing a factor of −1 into each of the bottom n rows and expanding along the

first column gives our desired result.

The constant n!
πn occurs naturally while studying the Bergman kernel, see in Propo-

sition 3.4 that it is part of the formula for the Bergman kernel on the ball. Set Cn = πn

n! to

cancel this coefficient in later computations.

We will later use a clever trick presented in Fu-Wong [27] giving alternative de-

scriptions of how the Bergman metric can be Kähler-Einstein.

Proposition 5.4. The following are equivalent:

M = (n + 1)nCn ⇐⇒ ∣J(K)∣ = (n + 1)nCnKn+2 ⇐⇒ J ((CnK)−
1
n+1 ) = 1.

Moreover, these conditions are all equivalent to the Bergman metric being Kähler-

Einstein.

Proof. For the equivalence of the first two,

M =
det [(logK)αβ]

K
= (−1)nJ(K)

Kn+2

by the identity in Proposition 5.3. Their equivalence follows immediately.

Now we compute J ((CnK)
−1
n+1 ) using the same identity.

J ((CnK)
−1
n+1 ) = (CnK)−1 det [(− log(CnK)

−1
n+1 )

αβ
]

= (CnK)−1 det [ 1

n + 1
(logCn + logK)αβ]
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=
det [(logK)αβ]
(n + 1)nCnK

= M

(n + 1)nCn
.

From this we conclude that the third is equivalent to the first and hence all three

are equivalent.

Now to show the equivalence of these conditions to the Bergman metric being

Kähler-Einstein. If M is constant then log of it is constant as well, so its derivatives are

log(
det[(logK)γδ]

K
)
αβ

= 0.

But then

− (log det[(logK)γδ])αβ = −(logK)αβ,

so the Bergman metric is Kähler-Einstein with coefficient -1.

The reverse direction is less elementary. If the Bergman metric is Kähler-Einstein

then we know

− (log det[(logK)γδ])αβ = c(logK)αβ

for some constant c. The Ricci curvature of the Bergman metric on a smooth storngly

pseudoconvex domain approaches −1 as z approaches the boundary; this has been proven

in several contexts, see Cheng Yau [12], Klembeck [35], and even Theorem 5.13 below.

Therefore c is −1. Hence

(log det[(logK)γδ])αβ = (logK)αβ.

Then

0 = (log
det[(logK)γδ]

K
)
αβ

= (logM)αβ.
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By Theorem 2 of Diedrich [18] this means M approaches (n+1)nCn as z approaches

the boundary. But logM is pluriharmonic, so by the maximum principle M is constantly

(n + 1)nCn.

We can now show quite painlessly that the Bergman metric on the ball is Kähler-

Einstein. In fact, this is an immediate consequence of Propositions 3.6, 5.2, and 5.4 because

the function inside J on the third equivalent statement, (CnK)
−1
n+1 , turns out to be precisely

ρ on the ball.

It is worth mentioning the following theorem of Cheng and Yau [12]:

Theorem 5.5. Let Ω be a C∞ bounded strongly pseudoconvex domain. Then Ω admits a

unique complete Kähler-Einstein metric.

We will discuss more about this shortly, but first we need the concept of a Fefferman

defining function.

5.4 Fefferman’s Expansion of the Bergman Kernel

This section focuses on the Bergman kernel K(z,w). Of particular interest is the

diagonal K of the Bergman kernel,

K(z) =K(z, z)

For one, the diagonal function is the potential for the Bergman metric:

Bαβ = − (logK)αβ
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Another reason to focus on the diagonal is that the kernel K(z,w) can be expressed

asymptotically in terms of the diagonal up to infinite order [2]:

K(z,w) =∑
α

1

α!
(∂αK(z, z)) (z)(w − z)α +O((w − z)∞)

Our knowledge of the diagonal of the Bergman kernel on strongly pseudoconvex

domains comes in large part from the work of Fefferman [2], [21], [23]. He showed that if

two strongly pseudoconvex domains Ω1,Ω2 share a piece of their boundary near a common

point p ∈ ∂Ω1∩∂Ω2 then the two Bergman kernel functions differ by a smooth function near

p. Using this fact and the 4th order contact of strongly pseudoconvex domains with the

sphere, he was able to estimate the kernel near the boundary of a strongly pseudoconvex

domain. Fefferman was able to express the kernel as

K(z) = φ(z)
ρ(z)n+1

+ ψ(z) log(ρ(z)).

Here ρ is a defining function for Ω, and φ and ψ are smooth functions on Ω.

Moreover, choosing a different defining function for the same domain will yield a (trivially)

biholomorphic domain and hence induce a smooth change in the Bergman kernel. That is,

φ is determined up to order ρn and ψ is determined up to order ρ∞ regardless of choice of

ρ. By O(ρ∞) we mean O(ρk) for all k.

As an example of the power of this asymptotic expansion, Klembeck used it in [35]

to show that the curvature tensor of the Bergman metric on a smooth strongly pseudo-

convex domain approaches the curvature tensor of the metric with constant holomorphic

sectional curvature −4/(n + 1). He then went on to show that if ρ is the defining function

which is signed distance to the boundary, then the curvature tensor of the Kähler metric
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with components (− log ρ)αβ approaches the curvature tensor of the metric with constant

holomorphic sectional curvature −4.

5.5 Fefferman Defining Function

When Fefferman introduced the Monge-Ampère operator J on a smooth strongly

pseudoconvex domain Ω, he also introduced the corresponding Dirichlet problem of finding

a positive C2 function ρ satisfying the following requirements:

J(ρ) = 1 in Ω

ρ = 0 on ∂Ω

(5.1)

Specifically we require that ρ be defined and C2 on a neighborhood of Ω and that

ρ > 0 in Ω. Such a ρ is necessarily a defining function of Ω:

Proposition 5.6. Any solution to the Dirichlet problem (5.1) is a defining function for Ω.

Proof. Suppose ρ is a solution of (5.1) for the strongly pseudoconvex domain Ω. Then, by

assumption, ρ > 0 in Ω and ρ = 0 on ∂Ω. We merely need to show that ∇ρ does not vanish

on ∂Ω.

For the sake of contradiction suppsose that ∇ρ does vanish at a point p ∈ ∂Ω. Then

⎛
⎜⎜⎜
⎝

det

⎡⎢⎢⎢⎢⎢⎢⎢⎣

ρ 0

0 ραβ

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎞
⎟⎟⎟
⎠
p

= 0

On the other hand,

lim
Ω∋z→p

(ρdet [ραβ])z = 1.

Now ρ vanishes in this limit by assumption because ρ(p) = 0. This is a contradic-

tion because ραβ are all bounded functions on Ω.
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As we calculated in Proposition 5.2, the canonical defining function 1− ∣z∣2 on the

ball is a Fefferman defining function. In fact it is an exact solution to the Dirichlet problem

(5.1), not only an asymptotic partial solution.

Starting with any smooth strongly pseudoconvex domain Ω, Fefferman described

a process in [23] for modifying a defining function ρ to make it more like a solution to the

Dirichlet problem (5.1). That is, suppose Ω has a C∞ defining function ρ. Fefferman’s

process constructs a sequence of C∞ defining functions ρ0,⋯, ρn+1 such that

ρ0 = ρ

ρ1 = ρ0 +O(ρ), J(ρ1) = 1 +O(ρ)

ρ2 = ρ1 +O(ρ2), J(ρ2) = 1 +O(ρ2)

⋮ ⋮

ρn+1 = ρn +O(ρn), J(ρn+1) = 1 +O(ρn+1)

Fefferman’s original process halts here due to the requirement that ρk remain C∞.

The specific process halts because it encounters division by 0 in this step. He conjectured

that closer approximate solutions could be determined if the steps ρk were allowed to contain

logarithmic terms as well.

Cheng and Yau [12] showed that any C∞ strongly pseudoconvex domain admits a

unique Kähler-Einstein metric given by a function u, i.e.

n

∑
i,j=1

∂2u

∂zi∂zj
dzidzj ,

where u is a real-valued function satisfying

det [ ∂2u

∂zi∂zj
] = e(n+1)u
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and such that u blows up to infinity on ∂Ω.

Let v be the positive function v = e−u. Then v is a solution to the Dirichlet problem

(5.1). Cheng and Yau, recognizing that v cannot be Cn+2 on Ω because of the logarithmic

terms in Fefferman’s process, were able to show that v is Cn+
3
2
−δ on Ω for all δ > 0.

Thus we have two partial solutions to the Dirichlet problem (5.1): If we want a

C∞ solution ρ then we can do so if we weaken the requirement that J(ρ) be constantly 1

to the requirement that J(ρ) = 1 +O(ρn+1). These are called Fefferman defining functions

and any C∞ smooth bounded strongly pseudoconvex domain admits a Fefferman defining

function. Moreover the Fefferman defining function is uniquely determined in the sense that

if ρ and ρ′ are two such defining functions then ρ − ρ′ = O(ρn+1).

If instead we want a solution ρ such that J(ρ) ≡ 1 then we can do so but we have

to weaken the regularity so that ρ is only required to be Cn+
3
2
−δ on Ω for all δ > 0. This

approach gives a Kähler-Einstein metric on Ω and the Kähler-Einstein metric is unique.

5.6 Chern Moser Invariants

Chern-Moser invariants are biholomorphic invariants attached to a domain at a

given boundary point. They were introduced by Chern and Moser in [13] for analytic

hypersurfaces, which apply when the defining function is analytic, but the invariants remain

well-defined for merely C∞ surfaces as well. The material is summarized in [28] and [22] as

well. We start with the analytic case.

Suppose Ω ⊂ Cn is a real analytic strongly pseudoconvex domain, meaning there is

a defining function ρ for Ω which is real analytic and such that Ω is strongly pseudoconvex.
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To consider ρ as a real function we write it as

ρ(z1,⋯, zn, z1,⋯, zn)

where z1,⋯, zn, z1,⋯, zn are real coefficients.

Suppose that 0 ∈ ∂Ω. Normal form requires singling out one coordinate, so we set

zn = x + iy where x, y are real. Then Ω is said to be in normal form if ∂Ω is given by the

equation

2x = ∣z1∣2 +⋯ + ∣zn−1∣2 + ∑
∣α∣,∣β∣≥2,l≥0

Al
αβ
zαzβyl.

Here α,β are multiindexes of length (n−1) and Al
αβ

are complex numbers. There

are some restrictions on these numbers given below. The numbers Al
αβ

are called the

Chern-Moser coefficients.

The restrictions on the Chern-Moser coefficients are that:

● Al
αβ

= Alβα

● Tr(Al
αβ

)∣α∣=∣β∣=2 = 0, i.e. ∑n−1
p=1 A

l
papb

= 0 for all l, a, b

● Tr2(Al
αβ

)∣α∣=3,∣β∣=2 = 0, i.e. ∑n−1
p,q=1A

l
pqapq = 0 for all l, a

● Tr2(Al
αβ

)∣α∣=2,∣β∣=3 = 0, i.e. ∑n−1
p,q=1A

l
pqpqb

= 0 for all l, b

● Tr3(Al
αβ

)∣α∣=∣β∣=3 = 0, i.e. ∑n−1
p,q,r=1A

l
pqrpqr = 0 for all l

If Ω is analytic and p ∈ ∂Ω then there is a normal form domain Ω′ and a biholomor-

phism from a neighborhood of p to a neighborhood of the origin which takes Ω to Ω′. That

is, any analytic strongly pseudoconvex domain can be locally biholomorphically turned into

normal form at any point on the boundary.
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The specific normal form for a given Ω and p ∈ ∂Ω is calculated by computing the

Taylor expansion of ρ at p. This process is well-defined for C∞ domains, giving rise to the

same set of Chern-Moser invariants as for the analytic case.

Chern Moser invariants are not uniquely determined, which we can see from the

symmetry in the normal form. For one, rescaling z1,⋯, zn−1 by ε and zn by ε2 preserves the

normal form. There are other symmetries too, see Graham [28] for a thorough treatment.

In short we call H the group of automorphisms of a domain in normal form which extend

to a neighborhood of the origin and which fix the origin.

The normal form is a biholomorphic invariant, but it must be interpreted in a way

which is well-defined. Hence:

Definition 5.7. Let Ω be a C∞ bounded strongly pseudoconvex domain and let p ∈ Ω. Let

{Al
αβ

} be the normal form coefficients of ∂Ω at p and let N be the hypersurface described

by these coefficients. Let w ≥ 0. An invariant of weight w is a polynomial P in the normal

form coefficients such that for all h ∈H

P (hN) = ∣det[dh0]∣
2w
n+1 P (N).

Graham [28] showed that the only weight 0 invariants are the constants, that there

are no nonzero weight 1 invariants, and that there are no nonzero weight 2 invariants in

C2. In Cn for n ≥ 3 the space of weight 2 invariants is one dimensional and is spanned by

∥A0
22
∥2

, defined as

∥A0
22
∥2 = ∑

∣α∣=∣β∣=2

∣A0
αβ

∣
2
.

This particular invariant ∥A0
22
∥2

vanishes precisely when p is a CR umbilic point.

A neighborhood in the boundary which consists entirely of CR umbilic points is a spherical
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piece of the boundary.

The Bergman kernel transforms according to (3.1) in chapter 3, and hence is related

to Chern Moser invariants. In particular we have the following formula from Graham [28],

which was also shown independently by Christoffers [15] using direct calculation without

the theory of Chern-Moser invariants:

Theorem 5.8. Let Ω be a C∞ bounded strongly pseudoconvex domain and let K be the

diagonal Bergman kernel. Let ρ be a Fefferman defining function for Ω and take φ,ψ to be

C∞(Ω) such that

K = φ

ρn+1
+ ψ log ρ.

Then

φ = n!

πn
+O(ρ2).

Moreover, on the boundary

φ − n!
πn

ρ2
= cn ∥A0

22
∥2

where cn is a universal constant depending only on the dimension and cn ≠ 0 when n ≥ 3.

From Theorem 5.8 we can conclude that ∂Ω is spherical if and only if

φ = n!

πn
+O(ρ3).

5.7 Proof of the Cheng Conjecture

We first present an argument from Fu-Wong [27] that the Kähler-Einstein condition

forces a particular smoothness of the Bergman kernel.
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Proposition 5.9. Suppose Ω is a smooth strongly pseudoconvex domain such that the

Bergman metric is Kähler-Einstein. If ρ is a C∞ defining function for Ω and the diag-

onal Bergman kernel has asymptotic expansion

K = φ

ρn+1
+ ψ log ρ

then ψ is O(ρ∞).

Proof. We first introduce some notation to simplify calculations. For k ≥ 0 let P (k) mean

a function of the form

f0 + f1 log ρ + f2(log ρ)2 +⋯ + fk(log ρ)k

where each fi is C∞(Ω). Then P (k) is a vector space (in fact a C∞(Ω) module) for each

k and if f ∈ P (a) and g ∈ P (b) then fg ∈ P (a + b).

We begin by showing a claim on derivatives. Take the function f ∈ P (k) as above.

We claim ρfα, ρfβ ∈ P (k). In fact,

fα = (f0)α + (f1)α log ρ + ρ−1ραf1 log ρ +⋯ + (fk)α(log ρ)k + kρ−1ραfk(log ρ)k−1.

Then ρfα ∈ P (k). In an identitcal manner ρfβ ∈ P (k) as well.

We will abuse notation for P (k) in a manner analogous to big O notation; i.e. we

will write f = P (k) to mean f ∈ P (k). In this notation, the above conclusion can be stated

that (P (k))α = ρ−1P (k). Moreover, for any j, k we have (ρjP (k))α = ρj−1P (k) because

(ρjP (k))
α
= (jρj−1ρα)P (k) + ρj (ρ−1P (k))

= ρj−1 (jραP (k) + P (k)) = ρj−1P (k).
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The equivalent statement holds for (ρjP (k))β identically.

Back to the task at hand. Recall by Proposition 5.4 that the Bergman metric

being Kähler-Einstein is equivalent to the following identity:

∣J (K)∣ = (n + 1)nCnKn+2

We rewrite K as ρ−(n+1)(φ+ρn+1ψ log ρ) = ρ−(n+1)P (1) for convenience. The right

hand side is fairly straightforward to compute,

(n + 1)nCnKn+2 = (n + 1)nCnρ−(n+1)(n+2)(φ + ρn+1ψ log ρ)n+2

= (n + 1)nCnψn+1(log ρ)n+2 + ρ−(n+1)(n+2)P (n + 1).

For the left hand side we first compute the derivatives of K, utilizing our shorthand

notation P :

Kα = ρ−(n+2)P (1)

Kβ = ρ
−(n+2)P (1)

Kαβ = ρ
−(n+3)P (1).

Looking at ∣J(K)∣, it is

det

⎡⎢⎢⎢⎢⎢⎢⎢⎣

K Kβ

Kα Kαβ

⎤⎥⎥⎥⎥⎥⎥⎥⎦

= det

⎡⎢⎢⎢⎢⎢⎢⎢⎣

ρ−(n+1)P (1) ρ−(n+2)P (1)

ρ−(n+2)P (1) ρ−(n+3)P (1)

⎤⎥⎥⎥⎥⎥⎥⎥⎦

.

We can factor ρ−(n+1) out of the first row, ρ−(n+2) out of the other n rows, and ρ−1

out of each column but the first (so n of them) and get

∣J(K)∣ = ρ−(n+1)ρ−n(n+2)ρ−n det

⎡⎢⎢⎢⎢⎢⎢⎢⎣

P (1) P (1)

P (1) P (1)

⎤⎥⎥⎥⎥⎥⎥⎥⎦

= ρ−(n
2+4n+1) det

⎡⎢⎢⎢⎢⎢⎢⎢⎣

P (1) P (1)

P (1) P (1)

⎤⎥⎥⎥⎥⎥⎥⎥⎦

.
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This is an (n + 1) × (n + 1) matrix, so by the product property of P (1) we have

∣J(K)∣ = ρ−(n
2+4n+1)P (n + 1).

That is, the Kähler-Einstein assumption on the Bergman metric forces

ρ−(n
2+4n+1)P (n + 1) = (n + 1)nCnψn+1(log ρ)n+2 + ρ−(n

2+3n+2)P (n + 1).

Multiplying by a sufficient power of ρ (in particular n2 + 4n + 2) and doing some

simple algebraic manipulations, we have

ρn
2+4n+2ψn+1(log ρ)n+2 = P (n + 1).

Let fn+1 = ρn
2+4n+2ψn+1 and let f0,⋯, fn ∈ C∞(Ω) be such that

fn+1(log ρ)n+1 = −f0 − f1 log ρ −⋯ − fn(log ρ)n.

Then

f0 + f1 log ρ +⋯ + fn+1(log ρ)n+1 = 0.

It then follows from Lemma 2.2 of [27] (Proposition 5.10 below) that each fk is

O(ρ∞), so in particular fk = O(ρ∞). This is only possible if ψ = O(ρ∞).

The argument above and the Proposition below are from Fu-Wong [27].

Proposition 5.10. Suppose f0,⋯, fk are C∞ on (−ε, ε) and suppose

f0(t) + f1(t) log t +⋯ + fk(t)(log t)k = 0.

Then each fi is O(t∞), i.e. each vanishes to infinite order at t = 0.
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Proof. Suppose to the contrary that some of the fi has a finite order. Let m be the

smallest such order, and choose 0 ≤ j ≤ k to be the largest such that fj has order m. Then

fj = amtk + O(tm+1) where am is a nonzero real constant. By multiplying through with

t−m(log t)−j we have

0 =
k

∑
i=0

t−mfi(t)(log t)k−j

=
j−1

∑
i=0

t−mfi(t)(log t)i−j + (am +O(t)) +
k

∑
i=j+1

t−mfi(t)(log t)i−j

All the functions t−mfi(t) are smooth to the boundary, and t−mfi(t)→ 0 for i > j.

Thus letting t→ 0 gives us am = 0, which contradicts the choice of am.

It was shown in Graham [28], who attributed it to a personal communication with

Burns, that if Ω ⊂ C2 is a C∞ strongly pseudoconvex domain such that ψ = O(ρ2) on Ω

then Ω has spherical boundary. This confirms the Cheng conjecture for C2, as was pointed

out by Fu and Wong [27].

We were able to refine Proposition 5.10 to the version presented below. This

was done while investigating how much the asymptotically Kähler-Einstein assumption of

Theorem 5.13 forces ψ to vanish. We didn’t obtain a clean statement in that direction so

we merely present the refined version and move on.

Proposition 5.11. Let n ∈ N, ε > 0 and suppose f0,⋯, fk are Cn+ε on (−ε, ε). Assume

f0(t) + f1(t) log t +⋯ + fk(t)(log t)k = o(tn).

Then each fi is o(tn).

Proof. Suppose to the contrary that some of the fi have

lim
t→0

t−lfi(t) ≠ 0 (5.2)
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where l ≤ n. Let m be the smallest such l and choose 0 ≤ j ≤ k to be the largest such that

(5.2) applies to fj with l =m. Then fj = amtm + o(tm) where am is a nonzero constant. By

multiplying through with t−m(log t)−j we have

o(tn−m) =
k

∑
i=0

t−mfi(t)(log t)k−j

=
j−1

∑
i=0

t−mfi(t)(log t)i−j + (am + o(1)) +
k

∑
i=j+1

t−mfi(t)(log t)i−j (5.3)

All the functions t−mfi(t) are continuous at 0. For the first sum, where i < j,

(log t)i−j → 0 as t → 0. For the second sum i > j so, by choice of m, t−mfi(t) → 0. The

smoothness assumption on fi means that t−m−εfi(t) converges as t→ 0. Then

lim
t→0

t−m−
ε
2 fi(t)(log t)i−j = 0.

This forces t−mfi(t)(log t)i−j → 0 as well. Thus letting t→ 0 in (5.3) means am = 0,

which contradicts our choice of am. Thus each fi is o(tn).

We are now ready to present Huang and Xiao’s proof of the S.-Y. Cheng conjecture

for dimensions higher than 2:

Theorem 5.12. The S.-Y. Cheng conjecture holds in Cn for all n ≥ 3.

Proof. Suppose n ≥ 3 and Ω ⊂ Cn is a C∞ bounded strongly pseudoconvex domain such

that the Bergman metric is Kähler-Einstein. Let ρ be a Fefferman defining function for Ω

and let K be the diagonal Bergman kernel with Fefferman expansion

K = φ

ρn+1
+ ψ log ρ.

Take the function u defined as

u = (π
n

n!
K)

−1
n+1

.
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By Proposition 5.4 J(u) = 1 because the Bergman metric is Kähler-Einstein. More-

over, by Proposition 5.9 ψ = O(ρ∞). Thus u extends to a smooth function on Ω. This makes

u a Fefferman defining function itself. On the one hand, take the Fefferman expansion with

respect to u:

K = φ′

un+1
+ ψ logu.

On the other hand, note that by construction

K =
n!
πn

un+1
.

Because φ and φ′ are invariantly defined up to O(ρn+1), we have shown φ = n!
πn +

O(ρn+1). Therefore for any p ∈ ∂Ω

lim
z→pρ

−2(z) (φ(z) − n!

πn
) = 0.

By Theorem 5.8 p is a CR umbilic point in ∂Ω. This holds for all p ∈ ∂Ω so

∂Ω is spherical. Because every boundary point is spherical it follows from Nemirovskii and

Shafikov [47] that Ω is holomorphically covered by the ball. Descending the Bergman metric

of the ball onto Ω gives a Kähler-Einstein metric with constant holomorphic sectional curva-

ture. The Kähler-Einstein metric on Ω is unique by Theorem 5.5, and the Bergman metric

is Kähler-Einstein, so the Bergman metric has constant holomorphic sectional curvature.

Then Ω must be biholomorphic to the ball by Theorem 3.3.

5.8 Spherical Boundary Asymptotic Condition

We took one key step Huang and Xiao’s proof of the S.-Y. Cheng conjecture

(Theorem 5.12) and tried applying it to the Ramadanov conjecture. As it turns out, we
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were unsuccessful in settling the Ramadanov conjecture. We were, however, able to weaken

the assumption from the Bergman metric being Kähler-Einstein to a particular statement

which essentially says the Bergman metric is asymptotically Kähler-Einstein enough near

the boundary.

This result (Theorem 5.13) is interesting on its own, as it provides a way of classify-

ing spherical boundaries in terms of asymptotic boundary behavior of the Bergman kernel,

but it also provides a more direct proof of the S.-Y. Cheng conjecture than Huang and

Xiao’s original approach particularly because it does not rely on Fu-Wong 5.10 or require

any vanishing order of ψ.

Recall Proposition 5.4 which says the Bergman metric is Kähler-Einstein if and

only if the Bergman invariant function M is constant, particularly is the constant
(n+1)nπn

n! .

Theorem 5.13. Let Ω ⊂ Cn be a bounded C∞ strongly pseudoconvex domain where n ≥ 3

with Fefferman defining function ρ. Let M be the Bergman invariant function of Ω and let

p ∈ ∂Ω. Then p is a CR umbilic point in ∂Ω if and only if

lim
z→pρ

−2(z)(M(z) − (n + 1)nπn

n!
) = 0. (5.4)

Proof. Let K be the diagonal Bergman kernel and φ,ψ be C∞(Ω) such that K has asymp-

totic expansion

K = φ

ρn+1
+ ψ log ρ = φ + ψρ

n+1 log ρ

ρn+1
.

We know that φ = n!
πn on ∂Ω. We cannot ascertain much about ψ on ∂Ω as there

are smooth strongly pseudoconvex domains for which ψ = 0 on ∂Ω and those for which ψ ≠ 0

on ∂Ω, but we do not actually need to know much about ψ for our calculations.
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Let Φ = φ + ψρn+1 log ρ so that

K = Φ

ρn+1
.

Then Φ is Cn(Ω). Moreover, Φ = φ + o(ρn). Because n ≥ 3, Φ = φ + o(ρ3).

Let a, b be smooth functions on Ω so that

φ = n!

πn
(1 + aρ2 + bρ3 +O(ρ4)) .

This is possible, specifically the part about the vanishing of the ρ1 term, by The-

orem 5.8. Moreover a(p) = 0 if and only if p is a CR umbilic point of ∂Ω.

Because Φ = φ + o(ρ3) we have

Φ = n!

πn
(1 + aρ2 + bρ3) + o(ρ3).

Let P be πn

n! Φ, so P = 1 + aρ2 + bρ3 + o(ρ3), and let the function u be defined as

u = (π
n

n!
K)

−1
n+1

= (π
n

n!
Φρ−(n+1))

−1
n+1

= P
−1
n+1 ρ.

The quantity J(u), which takes the form

J(u) = (−1)n det

⎡⎢⎢⎢⎢⎢⎢⎢⎣

u uβ

uα uαβ

⎤⎥⎥⎥⎥⎥⎥⎥⎦

,

can be considered a measure of how Kähler-Einstein the Bergman metric is – recall Propo-

sition 5.4. Hence we are interested in computing J(u).

We start by computing the derivatives of u. First the α derivative:

uα =
−1

n + 1
P

−(n+2)
n+1 Pαρ + P

−1
n+1 ρα
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= P
−1
n+1 (ρα −

1

n + 1
P −1Pαρ)

= u(ρ−1ρα −
1

n + 1
P −1Pα) .

The β derivative is similar:

uβ = P
−1
n+1 (ρβ −

1

n + 1
P −1Pβρ)

= u(ρ−1ρβ −
1

n + 1
P −1Pβ) .

Now for the αβ derivative:

uαβ = (uβ)α = uα (ρ−1ρβ −
1

n + 1
P −1Pβ)

+u(−ρ−2ραρβ + ρ
−1ραβ +

1

n + 1
P −2PαPβ −

1

n + 1
P −1Pαβ)

= u(ρ−1ρα −
1

n + 1
P −1Pα)(ρ−1ρβ −

1

n + 1
P−1Pβ)

+u(−ρ−2ραρβ + ρ
−1ραβ +

1

n + 1
P −2PαPβ −

1

n + 1
P −1Pαβ)

= P
−1
n+1 ρ(ρ−2ραρβ −

1

n + 1
P −1ρ−1 (Pαρβ + Pβρα) +

1

(n + 1)2
P −2PαPβ)

+P
−1
n+1 ρ(−ρ−2ραρβ + ρ

−1ραβ +
1

n + 1
P −2PαPβ −

1

n + 1
P −1Pαβ)

= P
−1
n+1 ρ(− 1

n + 1
P −1ρ−1 (Pαρβ + Pβρα) +

n + 2

(n + 1)2
P −2PαPβ)

+P
−1
n+1 ρ(ρ−1ραβ −

1

n + 1
P −1Pαβ)

= P
−1
n+1 (− 1

n + 1
P −1 (Pαρβ + Pβρα) +

n + 2

(n + 1)2
P −2PαPβρ + ραβ −

1

n + 1
P −1Pαβρ) .

Back in J(u) we now know

J(u) = (−1)n det

⎡⎢⎢⎢⎢⎢⎢⎢⎣

P
−1
n+1 ρ P

−1
n+1 (ρβ −

1
n+1P

−1Pβρ)

P
−1
n+1 (ρα − 1

n+1P
−1Pαρ) uαβ

⎤⎥⎥⎥⎥⎥⎥⎥⎦

.
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We utilize some determinant tricks to simplify this calculation. Factor P
−1
n+1 out

of each of the n + 1 rows and we have

J(u) = (−1)n

P
det

⎡⎢⎢⎢⎢⎢⎢⎢⎣

ρ ρβ −
1
n+1P

−1Pβρ

ρα − 1
n+1P

−1Pαρ Xαβ

⎤⎥⎥⎥⎥⎥⎥⎥⎦

where

Xαβ = −
1

n + 1
P −1 (Pαρβ + Pβρα) +

n + 2

(n + 1)2
P −2PαPβρ + ραβ −

1

n + 1
P −1Pαβρ.

Add 1
n+1P

−1Pβ times the first column to column β + 1, which does not change the

determinant, to get

J(u) = (−1)n

P
det

⎡⎢⎢⎢⎢⎢⎢⎢⎣

ρ ρβ

ρα − 1
n+1P

−1Pαρ Yαβ

⎤⎥⎥⎥⎥⎥⎥⎥⎦
where

Yαβ = −
1

n + 1
P −1Pαρβ +

1

n + 1
P −2PαPβρ + ραβ −

1

n + 1
P −1Pαβρ.

Add 1
n+1P

−1Pα times the first row to row α + 1 to get

J(u) = (−1)n

P
det

⎡⎢⎢⎢⎢⎢⎢⎢⎣

ρ ρβ

ρα
1
n+1P

−2PαPβρ + ραβ −
1
n+1P

−1Pαβρ

⎤⎥⎥⎥⎥⎥⎥⎥⎦

= (−1)n

P
det

⎡⎢⎢⎢⎢⎢⎢⎢⎣

ρ ρβ

ρα ραβ +
1
n+1ρ (P

−2PαPβ − P
−1Pαβ)

⎤⎥⎥⎥⎥⎥⎥⎥⎦

= (−1)n

P
det

⎡⎢⎢⎢⎢⎢⎢⎢⎣

ρ ρβ

ρα ραβ −
1
n+1ρ

PP
αβ
−PαPβ
P 2

⎤⎥⎥⎥⎥⎥⎥⎥⎦

.

Recall

P = 1 + aρ2 + bρ3 + o(ρ3).
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We now approximate to order o(ρ2). First we use the fact that

1

1 + x
= 1 − x +O(x2).

Let x = aρ2 + o(ρ2) and we have

P −1 = 1 − aρ2 + o(ρ2).

Next we notice that

−(logP )αβ = −(Pα
P

)
β
=
PαPβ − PαβP

P 2
.

The approximation

log(1 + x) = x +O(x2)

helps us here. Let x = aρ2 + bρ3 + o(ρ3) and we get

logP = aρ2 + bρ3 + o(ρ3).

We need the derivatives of this term, so

(logP )α = aαρ2 + 2aρρα + 3bρ2ρα + o(ρ2)

(logP )αβ = 2aαρρβ + 2aβρρα + 2aραρβ + 2aρραβ + 6bρραρβ + o(ρ)

= 2aραρβ + 2(aαρβ + aβρα + aραβ + 3bραρβ)ρ + o(ρ).

Therefore

J(u) = (−1)n (1 − aρ2 + o(ρ2))×

det

⎡⎢⎢⎢⎢⎢⎢⎢⎣

ρ ρβ

ρα ραβ −
2
n+1 (aραρβρ + (aαρβ + aβρα + aραβ + 3bραρβ)ρ

2) + o(ρ2)

⎤⎥⎥⎥⎥⎥⎥⎥⎦

.
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Add 2
n+1

(aραρ + (aα + 3bρα)ρ2) times the first row to row α + 1 to give

J(u) = (−1)n (1 − aρ2 + o(ρ2))×

det

⎡⎢⎢⎢⎢⎢⎢⎢⎣

ρ ρβ

ρα (1 + 2
n+1aρ

2) + o(ρ2) ραβ −
2
n+1 (aβρα + aραβ)ρ

2 + o(ρ2)

⎤⎥⎥⎥⎥⎥⎥⎥⎦

.

Add 2
n+1aβρ

2 times the first column to column β + 1 to get

J(u) = (−1)n (1 − aρ2 + o(ρ2))det

⎡⎢⎢⎢⎢⎢⎢⎢⎣

ρ ρβ

ρα (1 + 2
n+1aρ

2) + o(ρ2) ραβ −
2
n+1aραβρ

2 + o(ρ2)

⎤⎥⎥⎥⎥⎥⎥⎥⎦

= (−1)n (1 − aρ2)det

⎡⎢⎢⎢⎢⎢⎢⎢⎣

ρ ρβ

ρα (1 + 2
n+1aρ

2) ραβ (1 − 2
n+1aρ

2)

⎤⎥⎥⎥⎥⎥⎥⎥⎦

+ o(ρ2).

Pull a factor of (1 + 2
n+1aρ

2) out from the first column and pull a factor of

(1 − 2
n+1aρ

2) out from the n other columns, giving

J(u) = (−1)n (1 − aρ2)(1 + 2

n + 1
aρ2)(1 − 2

n + 1
aρ2)

n

×

det

⎡⎢⎢⎢⎢⎢⎢⎢⎣

ρ (1 + 2
n+1aρ

2)−1
ρβ (1 − 2

n+1aρ
2)−1

ρα ραβ

⎤⎥⎥⎥⎥⎥⎥⎥⎦

+ o(ρ2).

Pull a factor of (1 − 2
n+1aρ

2)−1
out of the first row and we have

J(u) = (−1)n (1 − aρ2)(1 + 2

n + 1
aρ2)(1 − 2

n + 1
aρ2)

n−1

×

det

⎡⎢⎢⎢⎢⎢⎢⎢⎣

ρ (1 − 4
(n+1)2a

2ρ4)
−1

ρβ

ρα ραβ

⎤⎥⎥⎥⎥⎥⎥⎥⎦

+ o(ρ2)

= (−1)n (1 − aρ2)(1 + 2

n + 1
aρ2)(1 − 2

n + 1
aρ2)

n−1

det

⎡⎢⎢⎢⎢⎢⎢⎢⎣

ρ ρβ

ρα ραβ

⎤⎥⎥⎥⎥⎥⎥⎥⎦

+ o(ρ2)
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= (1 − aρ2)(1 + 2

n + 1
aρ2)(1 − 2

n + 1
aρ2)

n−1

J(ρ) + o(ρ2).

Recall ρ is a Fefferman deifnign function, meaning J(ρ) = 1 +O(ρn+1). Thus

J(u) = (1 − aρ2)(1 + 2

n + 1
aρ2)(1 − 2

n + 1
aρ2)

n−1

+ o(ρ2).

Time for one last estimation. We use the fact that

(1 + x)n−1 = 1 + (n − 1)x +O(x2)

to get that

J(u) = 1 + (−1 + 2

n + 1
− 2

n − 1

n + 1
)aρ2 + o(ρ2)

= 1 − 3
n − 1

n + 1
aρ2 + o(ρ2). (5.5)

We want to rewrite (5.5) in a way which more directly involves the Bergman metric.

To do this we rewrite J(u) using Proposition 5.3:

J(u) = J (π
n

n!
K)

−1
n+1

=
det [−(log ((πnn! K)

−1
n+1 ))

αβ
]

πn

n! K

=
n! det [ 1

n+1
(log πn

n! + logK)
αβ

]
πnK

=
n! det [(logK)αβ]

(n + 1)nπnK
.

Therefore

n!

(n + 1)nπn
M = 1 − 3

n − 1

n + 1
aρ2 + o(ρ2),

or

M − (n + 1)nπn

n!
= −3

(n − 1)(n + 1)n−1πn

n!
aρ2 + o(ρ).
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Therefore

lim
z→pρ

−2(z)(M(z) − (n + 1)nπn

n!
) = −3

(n − 1)(n + 1)n−1πn

n!
a(p).

Because a(p) = 0 if and only if p is a CR umbilic point in ∂Ω, we have shown our

claim.
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Chapter 6

Conclusions

We have presented two main results: Theorem 4.6 and Theorem 5.13.

The first of these is a partial converse to Wong’s Theorem 4.1, and we were able to

provide Example 4.2, coming from Fornaess and Wold, to show that a full converse is not

possible. It should not go without mention that the same example was given in Zimmer [60]

for the analogous counterexample with respect to the squeezing function.

Our proof of Theorem 4.6 essentially followed that of Zimmer’s similar statement

for the squeezing function, with the blowup process borrowed directly from Zimmer. Any

discrepencies between our proof of Theorem 4.6 and Zimmer’s proof in [60] are not so much

significant modifications to the argument as much as they are merely artifacts of restating it;

we are applying his argument directly. Our contribution comes from showing that the ratio

of intrinsic measures is one such intrinsic function for which Zimmer’s argument applies.

As it turns out, Theorem 4.6 was independently proved by Borah and Kar in [7]

and was published before our presentation of the current work. Both here and in [7] are

95



results about the continuity of the intrinsic measures for convergent domains, since this is

what is necessary to apply Zimmer’s blowup process.

The relevant continuity proofs (Proposition 4.12 and Proposition 4.13) provided in

the current work are original, being influenced primarily by Zimmer [61] and Royden, Wong

P.M., and Krantz [55]. Of particular interest is our Proposition 4.13, which was apparently

desired in Borah-Kar [7] but which was not given there. Instead a weaker version was stated

and proven there; see their Proposition 3.3.

It would be interesting to drop the convexity assumption in Theorem 4.6. The

proof is by the blowup process, however, and that process currently only applies to convex

domains. An attempt to drop the convexity assumption was made and it led to an attempt to

execute a blowup process on potentially nonconvex domains, but it was ultimately fruitless

and hence not presented here.

Theorem 5.13 is a different story. It came from an attempt to utilize Huang and

Xiao’s proof of the S.-Y. Cheng conjecture to prove the Ramadanov conjecture. Specifi-

cally ψ was traced through a key step of their argument, made under the Kähler-Einstein

assumption, to see what still holds under the weaker ψ = O(ρ∞) vanishing assumption.

As it turns out, ψ ultimately played very little role in the argument. This is

perhaps disappointing for one striving to settle the Ramadanov conjecture, but it did lead

to a refinement of the proof of the S.-Y. Cheng conjecture. Instead of assuming the Bergman

metric is Kähler-Einstein and obtaining that the boundary is spherical, we can weaken the

assumption to a particular way of saying how much the Bergman metric is asymptotically

Kähler-Einstein as z approaches the boundary. This does appear to be previosuly unknown
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and may end up finding utility elsewhere. It does not refine the S.-Y. Cheng conjecture

itself but merely the proof of the conjecture, since the full Kähler-Einstein assumption is

still required in a later step to obtain the conclusion of being biholomorphic to the ball.

Future work on the Ramadanov conjecture can potentially take a few different

directions, each in the hopes of using Theorem 5.13 to obtain the spherical conclusion. For

one, the result of Cheng and Yau that every smooth strongly pseudoconvex domain admits

a unique complete Kähler-Einstein metric is certainly of interest, and it could be hoped

that some connection between the Bergman metric and the Kähler-Einstein metric could

be made under the assumption that ψ = O(ρ∞). But see Proposition 1.9 of Graham [28]

which says there are real analytic strictly pseudoconvex domains Ω such that ∂Ω is not

spherical but for which the solution u to Fefferman’s Dirichlet problem J(u) = 1 is solved

to infinite order for a function u which is C∞(Ω).

Another route could be to study why precisely ψ does not vanish on some domains,

specifically how the vanishing of ψ and that of the higher derivatives of φ are related. A

relationship there along the lines of φ having nonvanishing second ρ-derivative meaning ψ

has some finite order would certainly confirm the Ramadanov conjecture, but it does not

seem apparent that our calculation in Theorem 5.13 is in the right direction for such a

result.

A third potential direction for progress on the Ramadanov conjecture could involve

a blowup process. Recall Lemma 2.18 which says strongly pseudoconvex domains are locally

convex on the boundary. It seems feasible to structure an argument for a contradiction if

the hypothesis of Theorem 5.13 and the nonvanishing assumption ψ ≠ O(ρ∞) are made
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simultaneously, using the vanishing order of ψ to obtain the affine maps used in the blowup

in a way inspired by how Zimmer used the vanishing of the second derivative of ρ in his

blowup process in [60]. This direction was the most appealing to the author while performing

the work presented here. An attempt at this type of blowup process was made, but it also

wound up fruitless and so was not presented.
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