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Abstract

Purpose—Resting heart rate variability (HRV) is an important biomarker linking mental health 

to cardiovascular outcomes. However, resting HRV is also impaired in autonomic neuropathy, 

a common and underdiagnosed complication of common medical conditions which is detected 

by testing autonomic reflexes. We sought to describe the relationship between autonomic reflex 

abnormalities and resting HRV, taking into consideration medical comorbidities and demographic 

variables.

Methods—Participants (n = 209) underwent a standardized autonomic reflex screen which was 

summarized as the Composite Autonomic Severity Score (CASS) and included measures of 

reflexive HRV, e.g., heart rate with deep breathing (HRDB). Resting HRV measures were: pNN50 

(percentage of NN intervals that differ by > 50 ms) and cvRMSSD (adjusted root mean square of 

successive differences).

Results—In univariate analyses, lower resting HRV was associated with: older age, higher 

CASS, neuropathy on examination, hypertension, diabetes, chronic obstructive pulmonary disease, 

chronic kidney disease, and psychiatric disease. Adaptive regression spline analysis revealed that 

HRDB explained 27% of the variability in resting HRV for participants with values of HRDB in 

the normal range. Outside this range, there was no linear relationship because: (1) when HRDB 

was low (indicating autonomic neuropathy), resting HRV was also low with low variance; and (2) 
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when HRDB was high, the variance in resting HRV was high. In multivariate models, only HRDB 

was significantly independently associated with cvRMSSD and pNN50.

Conclusion—Subclinical autonomic neuropathy, as evidenced by low HRDB and other 

autonomic reflexes, should be considered as a potential confounder of resting HRV in research 

involving medically and demographically diverse populations.

Keywords

Heart rate variability; Autonomic function; Composite autonomic severity score; CASS; 
Neuropathy; Neurovisceral integration

Introduction

Heart rate variability (HRV) is the variation in time between sequential heart beats, 

measured as the R-R interval [1]. It is a reflection of the complex interaction of the 

heart, brain, and autonomic nervous system, and low resting HRV has been associated 

with poor cardiovascular outcomes[2-6], vascular disease[7, 8], and psychiatric disorders 

such as schizophrenia, depression, anxiety, post-traumatic stress disorder, and obsessive–

compulsive disorder [9-15]. Within a given individual, resting HRV is also state-dependent, 

for example, worsening during panic attacks [9], and with increased severity of depression 

[16]. A model of neurovisceral integration has been developed to explain these relationships, 

whereby dysregulation of parasympathetic efferent pathways originating from the pre-frontal 

cortex results in a reduced ability to adapt to environmental, physiological, behavioral, and 

emotional challenges [11, 17].

Extensive experimental evidence supports the validity of the neurovisceral integration model 

[11, 17, 18]. However, it is currently unknown how dysfunction in autonomic pathways from 

other non-psychiatric causes, for example, subclinical autonomic neuropathy due to common 

systemic diseases, such as diabetes mellitus or HIV [19, 20] [21], might confound the 

relationship between resting HRV and psychiatric disorders and symptoms. If undiagnosed 

autonomic neuropathy explains a significant amount of the variance in resting HRV in 

medically complex populations, then this would reduce the utility of resting HRV as a state-

sensitive biomarker, unless such confounders are properly accounted for. In both clinical 

and research settings, autonomic neuropathy is typically quantified by an autonomic reflex 

screen, which includes measures of reflexive HRV and sympathetically-mediated reflexes 

quantified by changes in blood pressure and sweat output in response to standardized 

stimuli [22]. Such testing is necessary to convincingly confirm or refute a diagnosis of 

autonomic neuropathy, given that autonomic neuropathy is commonly asymptomatic, and 

that symptoms, when present, are often non-specific. However, autonomic reflexes are rarely 

assessed in studies utilizing resting HRV as a biomarker.

Comprehensive autonomic reflex screens and markers of resting HRV have been employed 

together infrequently in the psychiatric literature. For example, in schizophrenia, a condition 

in which autonomic dysfunction has been a topic of significant focus [23], to our 

knowledge other than our own work [24], only two studies by Liu and colleagues have 

included measurement of an autonomic reflex (heart rate response to deep breathing) 
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[14, 25], and none have included a comprehensive autonomic reflex screen. To our 

knowledge, comprehensive autonomic screens and markers of resting HRV have been 

explicitly compared only in healthy controls and people with diabetes [22, 26-28], excluding 

those with known neurologic disease, or other common medical co-morbidities [29, 30]. 

Moreover, these relationships have not been examined in racially and ethnically diverse 

populations, which is likely important given prior literature indicating disparities in resting 

HRV [31, 32].

We undertook the present study to understand the importance of autonomic reflex 

abnormalities and demographic, medical, and neurologic factors as potential confounds in 

the interpretation of resting HRV as a biomarker. We hypothesized that markers of reflexive 

HRV would be associated with markers of resting HRV, but that the relationship might 

vary depending on the amount of reflexive HRV. We further hypothesized that age, medical 

comorbidities, evidence of peripheral nervous system (PNS), or central nervous system 

(CNS) dysfunction on neurologic examination, and dysfunction of sympathetic autonomic 

reflexes might contribute significantly to variance in resting HRV.

Methods

Participants

Data for this analysis were pooled from two studies with a total of 209 adult participants. 

All procedures to collect these data were performed under protocols approved by the 

Institutional Review Board of the Icahn School of Medicine at Mount Sinai, and all 

participants provided written informed consent. A total of 114 participants were people 

living with HIV who were enrolled in a study examining the prevalence of autonomic 

dysfunction in this patient population, and 95 participants were enrolled from a general 

neurology clinic for a study examining the relationship between autonomic symptoms, 

medical comorbidities, and autonomic function testing [33-35]. Both studies were conducted 

contemporaneously using identical recruitment techniques, enrolling sequential willing and 

eligible participants from clinic waiting rooms in the same building at an urban academic 

center. Both clinics serve the same communities; however one clinic specializes in primary 

care for people living with HIV and the other in general neurology. The inclusion criteria for 

both studies were age greater than 18 years old, English speaking, and able to tolerate the 

autonomic testing; the only difference was that,, for the HIV-clinic-based study, participants 

had to have documented evidence of HIV. The exclusion criteria for both studies were 

identical, and pertained to the safety of performing the autonomic function testing and 

the ability to interpret the results. They included history of uncontrolled glaucoma, aortic 

stenosis, myocardial infarction within 6 months, retinopathy, unclipped cerebral aneurysm, 

cardiac arrhythmias, or pacemaker implantation.

Autonomic testing procedures

A standardized autonomic reflex screen (WR Medical Electronics, Maplewood, MN, USA) 

was performed, including: quantitative sweat testing (Q-Sweat), heart rate response to deep 

breathing (HRDB), heart rate (HR), and blood pressure (BP) response to the Valsalva 

maneuver (VM), and HR and BP response to tilt table testing [27, 36, 37]. For Q-Sweat, 
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sweat output is measured in four standardized locations, in response to iontophoresis of 

acetylcholine into the skin. For HRDB, VM, and tilt table testing, BP (Nexfin system; 

www.bmeye.com) and a 3-lead surface electrocardiogram were monitored continuously 

during: VM (participant directed to exhale to a pressure of 40 mmHg for 15 s); a 

standardized deep breathing exercise consisting of six rhythmic breaths paced by an 

electronic metronome; and a tilt table test for which the participant rested in the supine 

position for 5 min before being brought to an upright position for 10 min (as tolerated).

Calculation of autonomic indices

Two markers of reflexive HRV were calculated, HRDB and Valsalva ratio (VR), where 

HRDB is the difference between the highest and lowest HR in each breath cycle averaged 

over six consecutive breaths, and VR is the ratio of the highest to lowest HR measured 

during and immediately after release of VM. The validated Composite Autonomic Severity 

Score (CASS) was used as an overall measure of autonomic reflexive function. The CASS 

is comprised of three subscores (cardiovagal, adrenergic, and sudomotor) [27, 36, 37]. The 

cardiovagal subscore is based on the HRDB and VR; the adrenergic subscore is based on 

BP changes during VM and tilt table testing; and the sudomotor subscore is based on the 

Q-Sweat.

Measures of resting HRV were calculated using the resting heart rate data from the first 

5 min of the tilt table test recording, where the participant was supine and resting quietly. 

Given that the tilt table is the last test performed in this autonomic battery, the participant 

has been supine for at least 40 min at this time. Using the RHRV package in R, the data 

was filtered in two stages, using the package’s standard parameters, which are as follows 

[38-42]. First, all heart rates clearly outside of the physiologic resting range for adults 

are removed (25–180 beats per minute) [39]. Next, non-physiologic changes in heart rate 

are removed, defined as any rate that was greater than 50% above the mean of the 10 

preceding rates. In addition to these standard procedures, a Hampel filter [43, 44] was 

used to remove beats that were 3 median absolute deviations away from the median value 

of a 5-beat window, because visual inspection revealed remaining artifactual heart rates 

following the first two steps. Following this final automated filtering step, the data were 

visually reinspected for any additional artifactual heart rates. Data were then interpolated 

to replace removed values using the method of locally estimated scatterplot smoothing. We 

calculated two summary measures of these data: the heart rate adjusted root mean square 

of successive differences between normal heartbeats (cvRMSSD), which is defined as 100 

× (RMSSD/median RR interval), and the percentage of NN intervals that are different by 

more than 50 ms (pNN50) [45]. There are numerous methods of quantifying resting HRV 

[6], and analysis using frequency domains was initially considered. However, pNN50 and 

cvRMSSD were ultimately chosen as our resting HRV variables, because they do not require 

specialized or proprietary software to compute, and are therefore more generally accessible 

[10].

Additional measures

All participants underwent a comprehensive neurologic examination, including the motor 

portion (part 3) of the United Parkinson’s Disease Rating Scale (UPDRS), which was used 
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as a marker for CNS dysfunction [46]. Additionally, distal sensory polyneuropathy (DSP) 

was diagnosed using clinical criteria of two of the following three signs on neurologic 

exam: (1) ankle reflexes absent or reduced as compared to the knee; (2) reduced distal sharp 

sensation; and (3) reduced distal vibration sensation [47]. The presence of relevant medical 

comorbidities was established by review of the electronic health record using a standardized 

case report form across both studies.

Statistical analysis

Spearman’s rank correlation was performed for the resting HRV measures (cvRMSSD and 

pNN50) and (1) age, (2) the reflexive HRV measures (HRDB and VR), (3) the UPDRS, and 

(4) the CASS. Wilcoxon rank sum tests were used to assess the association of cvRMSSD 

and pNN50 with (1) DSP on neurologic examination, (2) comorbidities, and (3) the presence 

of abnormal CASS adrenergic and sudomotor subscores (the cardiovagal subscore was 

omitted as redundant because it is comprised of HRDB and VR). The test reports the median 

difference between the groups and 95% confidence intervals for significance.

For subsequent analyses, we focused on HRDB as the measure of reflexive HRV. Adaptive 

regression splines were used to analyze the relationship between HRDB and markers of 

resting HRV. This method was chosen because of its ability to model relationships which 

vary based on the value of the independent variable (i.e., HRDB). The method identifies 

threshold values of the independent variables (i.e., knots) which define regions, and then fits 

individual linear regressions (i.e., splines) to each region. This is a recursive process which 

uses cross-validation to optimize the number of knots.

Multivariate models were used to assess whether associations of variables with resting 

HRV found in univariate analyses were independent of one another. Given skewness in 

the data, cvRMSSD was log-transformed prior to use in a linear regression model. Ordinal 

logistic regression was used for pNN50 divided into three groups: zero, and below and 

above the median value. The Brant test (p > 0.05) was used to test the proportional odds 

assumption. Bivariate assessment was conducted using Chi-square, and Fisher’s exact tests 

where necessary before fitting the regression models. Additionally, model diagnostics were 

used to assess overfitting and variance inflation factor for multi-collinearity. The sample size 

was based on the available data. However 209 participants provided 99% power to detect a 

correlation of 0.45 at a 0.05 significance level.

Results

Participant characteristics

A total of 105 (50.24%) female and 104 (49.76%) male participants were included in this 

study (see Table 1). The mean age was 50 (IQR 41, 57) years. Participants (n = 209) were 

predominantly Black/African-American (49.76%, n = 104) and Hispanic/Latinx (39.23%, n 
= 82). Medical comorbidities were common (see Table 1), especially hypertension (45.85%), 

chronic liver disease (including hepatitis B or C infection, other chronic hepatitis, and 

cirrhosis) (29.19%), and diabetes (19.14%). There was a high prevalence of psychiatric 

disease (45.5%), including anxiety, depression, and trauma-related, bipolar, and psychotic 
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disorders. Given the recruitment sites, both HIV and neurologic disorders were also highly 

prevalent. On neurologic examination, DSP was found in 38.76%. Of the participants, 43% 

had a UPDRS of zero (i.e., completely normal), and 97% scored < 15 on the UPDRS, which 

correlates with complete independence of activities of daily living [46].

Effects of filtering and correction procedures on indices of resting HRV

The filtering and correction procedures applied to the raw ECG data prior to calculating 

the measures of resting HRV overall resulted in modest changes. For pNN50, the mean 

difference between original and filtered values was 1.11 (SE = 0.28) which represents a 

median percent change of zero (IQR = – 1.81, 0.30%). Similarly for cvRMSSD, the mean 

difference between original and filtered values was 2.78 (SE = 0.70) which represents 

a median percent change of – 0.05% (IQR = – 4.74, 0.11%). Visual inspection of 

the distribution of cvRMSSD and PNN50 data before and after correction revealed two 

participants who had a particularly large change in cvRMSSD and no such outliers for 

PNN50. Examination of the raw ECG data for these two participants revealed that the 

filtering procedure had correctly removed data that was consistent with motion artifact. 

Thus, these individuals were included in the analyses.

Univariate analyses

Univariate analyses are shown in Table 2 for continuous measures and in Table 3 for 

non-continuous measures. As expected, age was negatively correlated with cvRMSSD and 

pNN50. There was no difference in cvRMSSD or pNN50 between sexes. Black/African-

American participants had numerically higher markers of resting HRV, e.g., a pNN50 of 

7.66 versus 3.17 and 2.63, respectively, in the Hispanic/Latinx and White/Asian/Other 

groups; however, this was not statistically significant. With regard to neurologic examination 

findings, cvRMSSD and pNN50 were significantly lower in participants with DSP, and there 

was a trend for lower cvRMSSD and pNN50 among participants with higher (i.e., more 

abnormal) UPDRS scores. However, a chart-derived diagnosis of a neurologic disease (CNS 

or PNS) was not associated with cvRMSSD or pNN50. We also observed significantly lower 

markers of resting HRV in association with most of the medical comorbidities (see Table 3), 

including a marginal association for the presence of psychiatric disease.

Several aspects of the autonomic reflex screen were associated with measures of resting 

HRV (Tables 2, 3); unsurprisingly, the strongest associations were with measures of 

reflexive HRV. In the overall study population, both cvRMSSD and pNN50 had moderate 

correlation with HRDB, in the expected direction (rho = 0.50, p < 0.0001, rho = 0.53, p 
< 0.0001, respectively), and also moderate correlation with VR in the expected direction. 

Additionally, lower RMSSD and pNN50 were associated with the total CASS score. An 

abnormal adrenergic subscore was significantly associated with lower pNN50 and a similar 

non-significant trend was seen for cvRMSSD. The sudomotor subscore was not associated 

with cvRMSSD or pNN50.

Adaptive regression spline model

Adaptive regressive spline models for cvRMSSD (Fig. 1) and pNN50 as functions of HRDB 

produced knots which approximated the range of expected normal HRDB values for the age 
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group in this study, with knots at 11.6 and 32.2 for cvRMSSD and at 12.3 and 33.5 for 

pNN50. Within these ranges, cvRMSSD and pNN50 both increased linearly with HRDB, 

with a slope of 1.16 and 1.26, respectively (i.e., estimated increase in pNN50 or cvRMSSD 

for each unit increase in HRDB), with HRDB explaining 27% of the variability for both 

cvRMSSD and pNN50 (i.e., R2 = 0.27). At values of HRDB below this range, the model 

showed no relationship between HRDB and cvRMSSD or pNN50. At values of HRDB 

above this range, the models actually predicted an inverse relationship between HRDB 

and cvRMSSD/pNN50 (slopes of – 4.21 and – 4.53, respectively). However, this should 

be interpreted with caution, given the small number of observations in this range and the 

presence of three outliers with high HRDB and low cvRMSSD/pNN50. Moreover, at higher 

values of HRDB, there was greater variability in the markers of resting HRV. For example, 

the standard deviation of pNN50 increased by 0.51 (± 0.08) as HRDB increased.

Multivariate models

HRDB and the covariates identified as significant in univariate analyses (see Table 3) were 

entered into a multivariate linear regression model with log cvRMSSD as the outcome 

variable, and into an ordinal regression model with pNN50 as the outcome variable. Only 

HRDB remained significant in both models (see Table 4). In the linear regression model 

every unit increase in HRDB resulted in a 0.033 increase in log cvRMSSD explaining – 20% 

of the variance. The ordinal regression model predicted that as HRDB increases by one unit 

the likelihood of a pNN50 score greater than 4.9 increased by 1.12 (1.08, 1.16).

Discussion

A significant literature supports the role of resting HRV as an index of self-regulatory 

ability in the service of goal-directed behavior [17, 32, 48]. However, this interpretation 

depends upon the structural integrity of the underlying autonomic pathways. This is 

a very reasonable assumption in younger, medically healthy people. However, it bears 

closer examination in diverse populations including older patients and those who are 

medically and/or neurologically complex. In such populations, degeneration of structures 

of the central autonomic network is still expected to be rare enough so as not to warrant 

specific attention; however, subclinical dysfunction of peripheral autonomic structures, i.e., 

autonomic neuropathy, is fairly common. Both resting HRV (i.e., pNN50, cvRMSSD) and 

reflexive HRV (i.e., HRDB) are essentially measures of responsiveness of the sinus node to 

neural outflow, either at rest or during a specific stimulus, respectively. However, there are 

subtle but important differences. In contrast to resting HRV, autonomic reflexes, which are 

used to quantify autonomic neuropathy, are not strongly influenced by cortical inputs given 

(1) the neuroanatomy involving primarily peripheral nerve and brainstem structures, and (2) 

the use of standardized physical maneuvers to evoke the reflex which would be expected to 

overwhelm more subtle cortical inputs.

In the current study, we sought to understand how resting HRV might be influenced 

by demographic, neurologic,and medical factors, focusing on autonomic neuropathy as 

quantified by autonomic reflexes. In univariate analyses, we found that lower resting HRV 

was associated with markers of autonomic neuropathy, especially decreased reflexive HRV, 
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but also the total CASS score and adrenergic CASS subscore. In addition, consistent with 

prior literature, many of the other factors we studied were associated with one or more of the 

resting HRV indices in univariate analyses, including age, DSP on neurological examination, 

the presence of psychiatric disease, hypertension, DSP, diabetes, COPD, and CKD [26, 29, 

49-51].

Some of the results of this study were to be expected; however, there are relatively few prior 

studies examining associations between autonomic reflexes and resting HRV. Perhaps the 

largest group of such studies was published from 1988 to 2003, and took the perspective 

of validating the then more newly developed spectral analyses of resting HRV against 

autonomic reflex screens [22, 27, 28, 30, 50, 52]. Autonomic reflexes have also occasionally 

been measured in studies of HRV in psychiatric conditions. One study found that HRDB 

was reduced in patients with schizophrenia and their first degree relatives as compared to 

healthy controls [25]. Relationships between measures of resting HRV and demographic 

factors (without measurement of autonomic reflexes) have been more commonly described 

[26, 50, 51, 54]. For example, resting HRV decreases as age increases, which may be due to 

a decline in both parasympathetic activity and sympathetic activity [51, 54].

Subsequent analyses provided additional context as to the importance of HRDB in the 

interpretation of resting HRV. The adaptive regression models revealed that, for values 

of HRDB below approximately 12, which approximates the lower limit of normal for 

HRDB in the age range under study, resting HRV was also generally low. Thus, for 

participants in this range, resting HRV is unlikely to be a useful behavioral biomarker, 

because dysfunction of the more distal vagal pathway limits the responsiveness of heart rate 

to cortical influences [17, 18]. At HRDB values over 12, a fairly linear relationship between 

HRDB and resting HRV was observed, with HRDB explaining a moderate portion of the 

variance in the measures of resting HRV, indicating that, in this range, a significant portion 

of the variance in resting HRV is due to other unmeasured factors (e.g., cortical inputs) [17, 

18]. Moreover, at the highest levels of HRDB (indicating unequivocally normal subcortical 

and peripheral vagal function), we observed significantly more variance in the resting HRV 

measures, indicating that, for these participants, HRDB has little relationship to resting HRV. 

Multivariate models indicated that demographic, psychiatric, and medical factors are not 

associated with resting HRV independent of HRDB. This is likely because many of these 

factors are associated with autonomic neuropathy (represented in the multivariate model by 

HRDB) and do not have additional independent effects on resting HRV. The exception to 

this is psychiatric disease, which would not be expected to be associated with autonomic 

neuropathy. In the univariate analysis, the presence of psychiatric disease was associated 

with lower pNN50 and a trend towards lower cvRMSSD, associations which did not persist 

in the multivariate model. These findings are in keeping with the body of literature which 

demonstrates lower resting HRV in psychiatric disease, and also with our hypothesis that 

these more subtle cortical inputs can be readily overshadowed by autonomic reflexes evoked 

by physical maneuvers.

This study has limitations. First, there were multiple limitations related to this being 

secondary analysis. Brown et al. previously showed that differences in breathing frequency 

while recording resting HRV may be an important confounder [55]. We did not control 
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for the variation in respiratory rate in this study, although all participants were resting 

quietly. Next, a lack of detailed psychiatric information, including symptoms at the time 

of the autonomic testing, limited our ability to address the important question of how 

much of the remaining variance in measures of resting HRV (i.e., not explained by HRDB) 

is attributable to psychiatric or psychological factors. Also, these are pooled data from 

two studies, and, although both samples are drawn from the same general population, by 

definition one group were people living with HIV while the other had a neurologic disorder 

or symptoms. Additionally, these two groups are comparable with respect to our main 

predictor and outcomes; however, significant differences are observed for race, ethnicity, 

and a few comorbidities. Finally, a control group consisting of healthy participants from 

the community could have provided additional information about the relationship between 

resting and reflexive HRV. Future studies would benefit from adding these data.

Our study population is likely enriched for autonomic neuropathy. This was advantageous, 

because it allowed for better characterization of how resting HRV behaves when HRDB is 

low, which may not have been possible in a community-based sample; however, it limits 

generalizability. Next, HRV may have additional input from other reflexes that exist outside 

the sinus node, such as the baroreflex, and this should be considered in future studies [56]. 

Finally, there are participants who had low HRDB and higher markers of resting HRV. 

This likely represents poor effort with the HRDB task, highlighting a limitation in reflexive 

measures, i.e., that they require cooperation.

Conclusions

This study demonstrates that, in diverse medically and neurologically complex populations, 

knowledge of the function of peripheral autonomic pathways is necessary to properly 

interpret the significance of resting HRV as a behavioral biomarker. Thus, ideally, 

measurement of resting HRV should be accompanied by an autonomic reflex screen in these 

populations, and interpreted as a behavioral biomarker only after autonomic neuropathy has 

been convincingly excluded. If resources to assess autonomic reflexes are not available, 

at a minimum a careful medical history should be obtained, and relevant comorbidities 

(e.g., DSP, HTN, DM, COPD, CKD, liver disease) included as covariates. Future studies 

using combined measures of resting and reflexive HRV might be able to better localize 

dysfunction along the vagal pathways, enhancing understanding of their role in health and 

disease.
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Fig. 1. 
Relationship between HRDB [a measure of reflexive HRV in beats per minute (bpm)) and 

cvRMSSD (a measure of resting HRV). The solid line represents the prediction of the 

adaptive regression spline model. cvRMSSD the heart rate adjusted root mean square of 

successive differences between normal heartbeats, HRDB heart rate with deep breathing (in 

bpm)
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Table 1

Participant characteristics (n = 209)a

Age, years 50 (41.00, 57.00)

Sex

 Female 105 (50.24%)

 Male 104 (49.76%)

Race/ethnicity

 Black 104 (49.76%)

 Hispanic 82 (39.23%)

 Non-Hispanic white 18 (8.61%)

 Asian 2 (0.96%)

 Other 3 (1.44%)

Comorbidities

 Hypertension 94 (45.85%)

 Diabetes 40 (19.14%)

 Cardiovascular diseaseb 22 (10.53%)

 Hyperlipidemia 58 (28.28%)

 Obesity 31 (15.12%)

 COPD 21 (10.05%)

 HIV 114 (54.55%)

 Chronic kidney disease 20 (9.57%)

 Chronic liver diseasec 61 (29.19%)

 Rheumatologic disorders 36 (17.22%)

 Neurologic disorders 149 (71.3%)

 CNSd 96 (45.9%)

 PNSe 81 (38.8%)

Psychiatric disorders 95 (45.5%)

Neurologic examination

Distal sensory polyneuropathy 81 (38.76%)

UPDRS normal 90 (43%)

UPDRS United Parkinson’s Disease Rating Scale, an indicator of abnormal neurologic examination finding referable to the central nervous system, 
COPD chronic obstructive pulmonary disease, CNS central nervous system, PNS peripheral nervous system

a
Values are median (interquartile range) or frequency (percentage)

b
Includes coronary artery disease, congestive heart failure, myocardial infarction, peripheral vascular disease, and arrhythmia

c
Includes hepatitis B, hepatitis C, other chronic hepatitis and cirrhosis

d
Includes epilepsy, headache, memory disorders, movement disorders, multiple sclerosis, stroke, traumatic brain injury, vertigo

e
Includes myopathy, neuromuscular junction disorders, peripheral neuropathies, radiculopathy
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Table 2

Univariate correlation coefficients (Spearman’s rho) for cvRMSSD and pNN50 and with participant factors 

(continuous variables)

Variable cvRMSSD pNN50

Age − 0.2160077 (p = 0.001682) − 0.2547 (p = 0.0002)

HRDB 0.4978859 (p < 0.001) 0.5266 (p < 0.0001)

VR 0.4599434 (p < 0.001) 0.4450 (p < 0.0001)

CASS − 0.2838831 (p < 0.001) − 0.3063 (p < 0.0001)

UPDRS − 0.1259396 (p = 0.06922) − 0.1252 (p = 0.0708)

HRDB heart rate response to deep breathing, VR valsalva ratio, CASS Composite Autonomic Severity Score, UPDRS United Parkinson’s Disease 
Rating Scale
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