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Abstract

The most widely used multivariate statistical models in the social and behavioral
sciences involve linear structural relations among observed and latent variables. In
practice, these variables are generally nonnormally distributed, and hence classical
multivariate analysis, based on multinormal error-free variables having no simultane-
ous interrelations, is not adequate to deal with such data. Since structural relations
among variables imply a structure for the multivariate product moments of the vari-
ables, general methods for the analysis of mean and covariance structures have been
proposed to estimate and test particular model structures. Unfortunately, extant
statistical tests, such as the likelihood ratio test (LRT) and a test based on asymp-
totically distribution free (ADF) covariance structure analysis, have been found to be
virtually useless in practical model evaluation at finite sample sizes with nonnormal
data. For example, in one condition of a simulation on confirmatory factor analysis,
the LRT rejected the true model about 99.5% of the time at sample sizes from n =
150 to n = 5000, while the ADF test either always rejected the true model or did
not converge at n = 150, rejected the true model over 90% of the time at n = 250,
and did not perform nominally until n = 5000. Clearly, improved methods are needed.

We take a new look at the basic statistical theory of structural models under ar-
bitrary distributions, using the methodology of nonlinear regression and generalized
least squares estimation. For example, we adopt the use of residual weight matrices
from regression theory. We develop a series of estimators and tests based on pseudo
maximum likelihood and arbitrary distribution theory. We obtain a type of prob-
abilistic Bartlett correction for various test statistics that can be simply applied in
practice. A small simulation study replicates the extremely inadequate performance
of one of our own, and the classical ADF, model tests. In contrast, our corrected
statistics have approximately correct means at all sample sizes, though there is a ten-
dency for their variances to be too low at the smallest sample sizes leading to some
“overacceptance” of the true model.

KEY WORDS: Mean and covariance structures; structural relations; structural
equations; asymptotic distribution free; test; small sample sizes; corrections on tests.



1 INTRODUCTION

Linear structural equation models can be described as a class of models in which
a p—variate vector of variables X is presumed to be generated as X = A(, where the
matrix A = A(y) is a function of a basic vector of parameters, and the underlying k
(k > p) generating variables ( may represent measured, latent, or residual random or
fixed variables (e.g., Anderson, 1989; Bentler, 1983a; Satorra and Neudecker, 1994).
Examples of such models are path analysis, confirmatory factor analysis, simultane-
ous equation, and errors in variables models, and especially the generalized linear
structural relations models made popular in the social and behavioral sciences by
computer programs such as LISREL (Joreskog & Soérbom, 1993) and EQS (Bentler
& Wu, 1995a,b). These models represent by far the most widely used multivariate
models in the social and behavioral sciences (e.g., Bollen & Long, 1993; Byrne, 1994;
Hoyle, 1995), to which a new journal Structural Equation Modeling is devoted entirely.
While there are many approaches towards estimating and testing specialized variants
of these models (see e.g., Anderson, 1994; Fuller, 1987), generic classical approaches
such as regression often can not be used because the ( variables may all be hypothet-
ical variables which are in principle not observable. An example is factor analysis, in
which the ¢ variables are common and unique factors that, unlike principal compo-
nents, cannot be expressed as linear combinations of the X variables. However, since
the models imply a parametric structure for the multivariate moments of the X vari-
ables, especially, the means and covariances (but also higher-order moments, Bentler,
1983a), it is possible to estimate and test the models as so-called mean and covari-
ance structure models. That is, the parameters can be estimated, and the model null

hypothesis tested, without use of the ( variables by relying on unstructured sample



estimators X and S of the population mean vector i and covariance matrix ¥ of the
X wvariables. This can be done because any linear structural model implies a more
basic set of parameters 4, so that g = p(0) and ¥ = ¥(8). The ¢ parameters in 6
represent elements of + as well as the intercepts, regression coefficients, and variances
and covariances of the ( variables. Of course, moment structure models can be spec-
ified without relying on a linear structural model for motivation; a classic example is
the intraclass model in which g is unstructured and ¥ = ¢l17 4+ (b — ¢)I. So, while
linear structural models provide the most typical motivation for mean and covariance

structural models, such models have a broader general relevance.

Estimation and testing mean and covariance structure models is a straightforward
matter when the variables (, and hence the X variables, are presumed to be mul-
tivariate normally distributed. Then, with a sample X, ..., X, from X, classical
multivariate analysis can be brought to bear, e.g., via the normal theory maximum
likelihood estimator (MLE) and the likelihood ratio test (LRT). Unfortunately, most
social and behavioral data are clearly nonnormal (e.g., Micceri, 1989), so classical
methods can yield very distorted results. For example, in one condition of a simula-
tion with a confirmatory factor analysis model, Hu, Bentler, and Kano (1992) found
that the LRT rejected the true model in 1194 out of 1200 samples at sample sizes
that ranged from n=150 to n=>5000. Nonetheless, MLE and LRT remain by far the
most widely used methodology in practice (e.g., Gierl & Mulvenon, 1995). Some al-
ternatives to LRT in this context have been proposed (Arminger & Schoenberg, 1989;
Bentler, 1994; Browne, 1984, eq. 2.20; Kano, 1992; Satorra & Bentler, 1988, 1994),
but these methods accept the MLE, which is not fully efficient in the face of violation

of distributional assumptions.

In order to solve the fundamental problem of incorrect and misleading LRT statis-

tics, and to obtain an estimator with greater precision, Browne (1982, 1984) and



Chamberlain (1982) used Ferguson’s (1958) minimum modified x? principle to de-
velop an "asymptotically distribution free” (ADF) methodology (called "minimum
distance” by Chamberlain) for covariance structure analysis (in which g is unstruc-
tured). This approach was extended to asymptotically equivalent linearized estima-
tors by Bentler (1983b) and Bentler and Dijkstra (1985), and to mean and covariance
structure analysis by Bentler (1989, Ch. 10) and Muthén (1989). While the ADF
methodology is correct asymptotically, and it can perform reasonably well with small
models (e.g., Henly, 1993), in larger models with small to medium sized samples it can
be extremely misleading (e.g., Hu et al, 1992; Muthén & Kaplan, 1992; West, Finch,
& Curran, 1995). For example, in the condition noted above, Hu et al found that the
method either always rejected the true model or did not converge at n=150; rejected
the true model over 90% of the time at n=250; and did not perform nominally until
n=>5000. Although a computationally intensive improvement on ADF statistics has
been made (Yung & Bentler, 1994), and in spite of technical developments since 1982
as noted below, ADF theory thus also remains clearly inadequate to evaluate linear
structural or mean and covariance structure models. See Bentler and Dudgeon (in

press) for a review.

As a result of the remarkable failure of ADF theory to be relevant to nonasymp-
totic samples, it seems time to take another basic look at estimation of structural
models under arbitrary distributions. We do this by invoking the methodology of
nonlinear regression, which has previously been considered relevant by Browne (1982),
Lee and Jennrich (1984), Shapiro (1986), Fuller (1987), and Bentler (1993). Unfortu-
nately, these workers did not provide any methods to improve on ADF. We shall see,
however, that theoretical as well as empirical improvements on ADF can be achieved.
In particular, based on the standard regression idea of using residual weight matrices
in generalized least squares (GLS) estimation, we develop a class of estimators and

tests. Among these are Bartlett-type corrected ADF statistics which are asymptoti-



cally equivalent to ADF but outperform it in nonasymptotic samples.

Turning now to more technical matters, Satorra (1992) modeled the means and
covariances simultaneously. His GLS method is to model the sample covariance of
(XT,cl), where ¢ is a known constant, and use a singular matrix as a weight ma-
trix. Under the assumption that X has finite eighth order moments, Bentler (1989),
Muthén (1989), and Browne and Arminger (1995) model the sample mean and co-
variance matrix (X, S) simultaneously, using the inverse of the sample covariance of
(X,5) as a weight matrix. Our approach is different from Browne and Arminger’s
(1995) in that we model the raw moment of (X, vech(XXT)), where vech(.) is the
function which transforms a symmetric matrix into a vector by picking the nondupli-
cated elements of the matrix. Model structures on raw moments generated by linear
structural models on the variables are well-known (e.g., Bentler, 1983b; Satorra and
Neudecker, 1994). Our perspective is different from Satorra’s in that we consider the
statistical properties of the estimator in a more rigorous way. Following these au-
thors, we can use the inverse of the sample covariance of (X, vech(X XT)) as a weight
matrix. However, in the spirit of regression, we show that another asymptotically
equivalent weight matrix is the inverse of the cross products of the fitted residuals.
Moreover, we do not need any distributional assumption besides that the first four

moments of X are finite.

We have the following notation: Y; = vech(X,XT), Z, = (XI, Y1), o(0) =

K3

vech(X(0)), 7(0) = vech(u(0)uT(9)) and

So we have



where e; are iid with Fe, =0 and

var(e;)) =V = ( “21 “22 ),

the true covariance matrix of Z;. Since we have a correct structure on wvar(X),

Vi1 = ¥(6p), but we may not have any structure on V;, and V,,. Define

n

Qu(0) = - 322~ €)W, (7~ €0)), )

i=1
where W, is a possibly random weight matrix. Then the estimator én which minimizes
@, (0) will be referred to as a GLS estimator of 6. As the stochastic function @, (6)
is the standard quantity to be minimized in a regression model, it is also the objective
function we will work with in Section 2. Since
Qub) = 2 3% = W2 = Z)+ (2= €O W (Z =€), (3)
and the first term in (3) does not involve 6, the generalized least squares estimator
én also minimizes
FL(0) = (7 — £0)) W, (7 — £(6)). W)
The equivalence of F, () and @, (0) was formally observed by Shapiro (1986) in the
setting of iid Z,. Note that the equivalence of minimizing @,(0) and F,(6) holds
algebraically even when Z; are not iid. Consequently, mean and covariance structure
analysis can be performed for only independent Z; with common first four moments.
Actually, all the theorems in the next two sections hold if we assume that X, are inde-
pendently distributed with common first four moments, and the fifth moments of X,
are uniformly bounded. Since independent random variables with common first four
moments are not far from iid, we will only deal with iid X; because of the theoretical

simplicity.

Arminger and Schoenberg (1989) considered modeling the mean and covariance

by the pseudo MLE (PMLE) method of Gourieroux, Monfort, and Trognon (1984).



In the setting of iid observations, the assumptions of Gourieroux et al are more
than enough. However, Gourieroux et al’s assumptions are hard to check. Under a
set of much simpler assumptions, we also will consider the statistical properties of
the PMLE. Unless specified otherwise, we denote h(ﬂ) = 0h/IPT, evaluated at .
In order to get a PMLE estimator, the iteratively reweighted least squares method

through a Gauss-Newton algorithm is often used to solve the following equation for

A

0

I

ETOW(0)(Z — €(9)) = 0, (5)

2(0) AW0) )
o= o) o) ©

and A(0) = cov(X,,Y;), ¥(0) = var(Y;) are given by normal theory. When the PML

K3

where

function is not concave, the solution to equation (5) is not unique. Our perspective
is different from Gourieroux et al (1984) in that we will show that there is a solution
near the true 6,. Our estimation of standard errors is also different from PMLE.
The existence of a root of an equation like (5) was formerly considered by Ferguson
(1958). He used the implicit function theorem in proving the existence of the root.
The approach we use is different from Ferguson’s in that we will use the inverse func-
tion theorem to show the existence of a root of (5). Our approach is less involved

than that of Ferguson and our assumptions are simpler and easier to check.

When there is no interest in a structured mean, the unknown parameters will
include both the mean parameter p and the structured covariance parameter. The
common practice in covariance structure analysis is to use X as the estimator for p,
and fit the sample covariance S to ¥(8) by MLE assuming X ~ N(pg, X(6p)). Since
X and S are independent when X is normal, modeling S by ¥(f) is the approach
of marginal likelihood or conditional likelihood as defined in Cox and Hinkley (1974,
p. 17). When X is not normal, the sample mean X and S are not independent any
more. Modeling S by ¥() using the ADF method only uses marginal information.



Some information will be lost in general by using a summary statistic S though it
is hard to say how much information is lost as discussed by Cox and Hinkley (1974,
p. 17-18). When X; is not normal, X may not be the most efficient estimator of
anymore. Even though g is a nuisance parameter in covariance structure analysis,
the efficiency of an estimator for p can influence the efficiency of the estimator of
the structured covariance parameter (Pierce, 1982). Thus, it is tempting to consider
modeling the mean and the covariance simultaneously even when we do not have an
interest in a structured mean. One way is to treat the mean p, as unknown and let
the parameter § include both g and the structured covariance parameter. But not
knowing pg, it is plausible that we can not extract any information about ¥ from
X as commented by Cox and Hinkley (1974, p. 18) in a similar example. Since for
nonsymmetric distributions, it is very hard to clarify the above discussion, we will

continue this after some empirical evidence at the end of the paper.

We will investigate the consistency and asymptotic normality of both the GLS
estimator and the normal theory MLE. A new estimator of the asymptotically cor-
rect covariance matrix will also be given for each estimator. Some rigorous proof
will be given whenever necessary. Since for iid samples, the main applications are
in structured covariances (e.g., factor analysis model) rather than structured mean
models, we will develop the general theory for model (1) but emphasize applications
in structured covariances with an unstructured mean. We consider the GLS estimator
in Section 2 and the normal theory MLE when the data are not normal in Section 3.
In Section 4, we discuss a difference between the different GLS weight matrices and
give our corrected test statistics. Some empirical performance of the corrected test
statistics will be presented in Section 5. Conclusions and remarks will be given at the

end of this paper.



2 RESIDUAL-BASED GENERALIZED LEAST
SQUARES

In this section, we consider the consistency, asymptotic normality and tests of
the GLS estimator which minimizes (2) or (4). Especially, a consistent estimator of
V based on the fitted residuals will be given. The advantage of residual-based test
statistics will be discussed in Section 4. We need the following assumptions for our
results in this paper.

Assumptions:

Al. 0, € © which is a compact subset of R?.
A2. £(0) = £(0,) only when 0 = 0.

A3. £(0) is twice continuously differentiable.
Ad. £(0,) is of full rank.

For consistency and asymptotic normality of én, we do not require the covariance of

7 to be nonsingular.
The following theorem is about the strong consistency of the GLS estimator.

Theorem 1. Let W, be a sequence of weight matrices which converges almost

surely to W, a positive definite matriz. Under assumptions A1 and A2, én 22 0.

Proof: Since minimizing @), () is equivalent to minimizing F, (6), we will work on

F,(0) here. Since Z 2% £(f,) by the strong law of large numbers, we have

F(0) == (£(60) — £(0))"W (£(00) — &(0). (7)



Since all the én lie in ©® which is compact, we can choose a subsequence énl which

converges to §/. Since

letting n;, — oo, we have

(£(00) = £(67)TW(£(0o) — £(0")) < 0.

Since W is positive definite, we must have 6’ = ,. So any convergent subsequence

converges a.s. to f, and this proves 0, % 0.

Theorem 1 tells us that as long as £(6) is identified, the estimator that minimizes
(1) is strongly consistent. We can choose W, to be the identity matrix, the inverse of
the sample covariance of Z,, or the inverse of the cross products of the fitted residuals

assuming the covariance of Z; is nonsingular. When the mean is unstructured, an

identified ¥(0) will make £(8) identified.

In order to get the GLS estimator of §,, a common practice is to solve the following

equation for én by the Gauss-Newton algorithm,
ELO)W,(Z - €(0)) = 0. (8)
The following theorem is about the asymptotic normality of the GLS estimator which

satisfies (8).

Theorem 2. Assume A3 and A4, iof W, LW and én £, 0y, then én is

asymptotically normal with
Vi, = 60) = N(0,Q),

where ) = A=A~ with
A= éT(‘go)Wé(‘go)



and

Il = éT(eo)WVWé(‘go)-

Proof: Since f, satisfies (8), using the Taylor expansion on £(#), we have

where € = Z —£(0,) and 0, lies between , and én Since ¢ has continuous derivatives

and \/ne LA N(0,V), the theorem follows from (9) and the Slutsky theorem.

When V' is full rank, we have the following corollary which is an asymptotic ver-

sion of the Gauss-Markov theorem.

Corollary 1. When W = V-1, the Q) in Theorem 2 simplifies to
Q' = éT(‘go)V_lé(‘go)

and we get a minimum variance estimator asymptotically among all estimators which

satisfy (8).

When g is unstructured we denote the estimator as (f,,, én) If V is nonsingular,

we have the following corollary.

Corollary 2. In Theorem 2, let W = V=1, If all the third central moments of X

are zero, then [i, and én are asymptotically independent with

Vin(ji, — o) £ N(0,X71(6y))

and

Va(b, —8y) £ N(0,Q,),

10



where

01 = 6T(0)B-16(0),

22
and B = Vyy — VIN-1V,.
Moreover, when the 4th central moments of X satisfy

Okl = 0405 + 03051 + 040,
then Q55 has a simplier form

05 = %&:{(0)(2—1 @ £1),(0), (10)

where o,(0) = vec(X(0)) and all the matriz functions are evaluated at §,.

Since the proof of the above corollary is not so interesting and involves a lot of

algebraic operations, we give it in the appendix.

Corollary 2 tells us that if all the third central moments of X are zero, we can
model g and ¥ separately and do not lose any information asymptotically. This is

the case with the multivariate elliptically symmetric distribution (Fang, Kotz, and

Ng, 1990; Shapiro and Browne, 1987).

Since the asymptotic covariance matrix of én in Theorem 2 involves an unknown
matrix V., we need a consistent estimator of it in order to do some tests or to com-
pute the standard errors. Further, according to Corollary 1, if we choose a proper
weight matrix W, in Theorem 2, we can get a more efficient estimator. An obvious
estimator of V' is the sample covariance S, = L% (Z; — I\ Z; — Z)T. An asymp-
totically equivalent one is the cross product of the fitted residuals. In the context of
regression, estimating the variance and covariance matrix through residuals has been

used extensively. It can also be used in mean and covariance structure analysis.

11



Theorem 3. [If£(0) is a continuous matriz function and én is strongly consistent,

then

n

U, = S 07— el )T (1)

=1

is a strongly consistent estimator of V.

Proof:

+(€00,) = €(06))(E(D,,) — £(0,))T. (12)

Since ¢ is continuous, the last three terms in (12) approach zero. The theorem follows

by the strong law of large numbers.

From the above three theorems, we can use a two stage estimating process. First,
use least squares, for example, to get a consistent estimator of 6,. Then, using
W, = Vn—l in (11) as the weight matrix in Theorem 2, the corresponding updated es-
timator will be most efficient asymptotically according to Corollary 1. This is a type
of linearized improvement estimator (Bentler, 1983b; Bentler and Dijkstra, 1985). For
small to medium sample sizes, it is known that the efficiency of an estimated weight
matrix influences the efficiency of the mean parameter (Carroll, Wu, and Ruppert,
1988). For linear regression models, if starting with least squares, Carroll et al rec-
ommend repeating this process at least twice. Their recommendation also applies to

our estimator in Theorem 2.
Next we propose a test for the overall fit of the model. This test requires either the

weight matrix S~ or Vn—l. We will discuss the difference between Vn—l and St in de-

tail in Section 4. The following lemma will simplify the proofs regarding test statistics.

12



Lemma 1. For the én in Theorem 2, we have

VI(Z = €(6,)) = {1 = £(00)[ET () WE(0,)] €T (86)W }v/me + o, (1).

Proof: Using the Taylor expansion on &(8), we have
£0,) = €000) + E00)(B, — 00) + 0,5, (13)
From (9) we have
(D, — ) = [T )W EW)HET(03)W Vi + o,(1). (1)
The lemma follows from (13), (14) and

V(7 — €(0,)) = Vi Z — £(00)) — (7 — €(6,)) + Opw%).

Theorem 4. Under assumptions Al to Af, if W, £, W, then

nF,(0,) = nQ,(0,) —nQ,(Z) 5 3 N2,
k

where Q),(7) denotes the fitted index of the unstructed mean and covariance and the

N, s are the nonzero eigenvalues of VIWZMW:IV2 with
M=1I- W%é(‘go)[éT(eo)Wé(eo)]_léT(eo)W%-
Further more, if V is nonsingular and W = V-1, then

nF(0,) =nQ,(0,) —nQ.(Z) = \2, ..

where px = p(p+1)/2.

13



Proof: From Lemma 1, we have
nk,(0,) & UTVIWsMW3V3U
k

where U ~ N(0, 7). Furthermore, when W = V-1, ViWzMW3zVz = M which is a

projection matrix of rank p + p* — ¢, the theorem follows.

Theorem 4 gives us a way to test the general fit of the hypothetical structure.
Note that when W does not equal V-1, én will not be asymptotically efficient. Then
the distribution of nQn(,&n,én) —nQ,(X,s) can be approximated by ax?, where r
is the rank of VEWZMW3:V? and ra = tr(V%W%MW%V%). Details of such an
approximation can be found in Satorra and Bentler (1988, 1994). It works well in
covariance structure practice (Chou, Bentler, and Satorra, 1991; Hu et al, 1992). A
second alternative is to use an approximation to the distribution of a mixture of y?
variates, as proposed by Bentler (1994). The success of such a testing procedure
will depend on the quality of the approximation. A third test alternative is to ex-
tend Browne’s (1984, Proposition 4) residual covariance test to mean and covariance

structure analysis. To implement it, we need a consistent estimator V, of V.

Corollary 3. Under assumptions Al to A4, if V, £, V', then

n(Z = E0,))TEDNET (0,00} €T (0,)(Z = £(0,)) = 2

p+p*—q’

where fc(én) is a (p+p*) x (p+p* —q) matriz of full column rank with columns that

are orthogonal to f(én)

Proof: From Lemma 1, we have

14



where = = (I — H)V(I — H)T with

H=1- 5(00)[fT(HO)Wf(HO)]—lfT(HO)W,

VieT(0,)(Z — €(0,)) = N(0,€7(0,)VE.(6,)). (16)

The corollary follows.

Even though én does not need to be most efficient in Corollary 3, it still requires
a consistent estimator of V. As in Theorem 4, both S5, and Vn can be used in place
of V,, under arbitrary distributions. Browne’s test and Satorra’s (1992) extension to
mean and covariance structures were based on S.. The relation between the resulting
tests will be discussed in detail in Section 4. As noted by Bentler (1989) and Satorra
(1992), if the distribution is known to be normal, a normal theory estimator V, can
be used instead. The y? test in Theorem 4 can be invoked by a two step procedure
it W £ V-1, For example, if we start with a least squares fit, we can use Vn—l as a

weight matrix and update én, then nF(én) £ Xz_l_p*_q.

3 NORMAL THEORY MLE WHEN DATA ARE
NOT NORMAL

In this section, we will consider the behavior of normal theory MLE when the
data are not normal. As in the last section, we suppose that the mean and covariance
structure &, = £(6y) is correct and we model Z; in (1) as a nonlinear regression model.

We also need to assume that () is positive definite in this whole section. We need

15



some preparations first.

Let B,(xy) be a ball of radius r with center at x,. The following lemma is a

modified version of the fundamental inverse function theorem (Rudin, 1976, p. 221).

Lemma 2. Let f(x) be a continuously differentiable mapping from RP to RP. Let

A be a nonsingular p x p matriz and x = $||A=Y|~1. If B,(x¢) is a ball on which

1/(2) = All < &,

then f(B,(xq)) contains the ball B, .(f(xy)).

Since both A(#) and W(#) in (6) are functions of p(f) and X(6), when X(6,) is

nonsingular, we can check by a tedious verification that W (6,) defined in (6) exists

and is positive definite. Now let

9.(0) = ETOW(0)(Z — £(9)),

we have
,(0) = €T OWOE0) + oglE WO} Z ~ £(0).

Let
g(0) = ET(O)W (0)(£(0,) — £(0)),

then we have

§(0) = —ET(O)W (0)&(0) + {%[@(G)W(G)]}(f(@o) —£(9))
and both
9.(0) == ¢(0),
and

9a(0) == 4(0)

16
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(18)



uniformly on ©.

Theorem 5. Under assumptions A3 and A4, with probability 1 there is ar > 0
such that g,(8) has a zero point in B,.(0y) for all n sufficiently large.

Proof: Let A = §(6,) which is nonsingular and x = £[|A="||~'. Since ¢,,(#) converges
to ¢(8) uniformly on ©, there exist positive numbers N; and r such that for all n > N,

19.(0) = Al < 19.(0) = g(O)][ + [19(0) — g(6o)|
< Kk, € B.(b).

Applying Lemma 2 to g, (), it follows that ¢, (B,(6,)) contains a ball B,.(g,(6,)) for
all n > Nj. Since ¢, (0,) == 0, there exists a number N, such that ||g,(6,)|] < &r
for all n > N,. Let N = max(N;, N,), we have 0 € B,.(g,(0,)) for all n > N. Thus
0 € B,.(9,(0y)) and there is a zero point of ¢, in B, (6,) for all n > N.

When the mean is unstructured, then

0= s o))

( é i((g; ) ( AZT((GG)) égz; )_1 N ( —dT(H)E_—llATE—l dT(GO)B—l ) )

(5) is equivalent to

Since

i, =X
{ 57 (0)(S1(0) @ S-1(0))(vec(S) — ,(0)) = 0. (19)

From Theorem 5 and (19), we have the following corollary.

Corollary 4. Under assumptions A3 and A4, with probability 1 there is a r > 0
such that the second equation in (19) has a solution in B,(6y) for all n sufficiently

17



large.
The following theorem is about the strong consistency of én which satisfies (5).

Theorem 6. Under assumptions A2, A3 and A/, if én satisfies gn(én) =0 and
is in B.(6y), then én 224 0,.

Proof: Since ¢(8) is nonsingular in B,(§,), the function ¢(8) has a unique zero point
of 6y in B,.(6,). Now let ém be any converged subsequence of én with limit ¢’ € B,(6,),

we have gm(én ) = 0. Let n;, — oo we obtain ¢(#') = 0. Since ¢(#) has a unique zero

B

point of 8,, we have ¢/ = 6, and the theorem follows.
When p(0) = p, the unstructured mean, we have the following corollary.

Corollary 5. Under assumptions A3 and A/, if én satisfies the second equation
in (19) and is in B,(6,), then 0. 20,

The following theorem is about the asymptotic distribution of én
Theorem 7. Under assumptions A3 and A}, if én £, o, then

Vi, = 05) = N(0,9),
where ) = D-1G D1 with

D = JiT(0)57i(0) + 5T(O)(S © D)3, (0),

G = @05 (0) + AT (0) (X1 Vi — 71 (i) B~o(0)
+ OB (Vo N7t = 7 () n(0) + 61 (0) B~ (0),

B = (by ) with by o = 04,01+ 0401, and all the matriz functions are evaluated at 0.
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Proof: Since én satisfy gn(én) = 0, using the Taylor expansion we have

gn(‘go) + gn(gn)(én - 00) = 07

where 0, lies between én and 6,. Since

Vg, () = N(0,11)
with
Il = éT(eo)W(eo)VW(ao)é(eo)

and 5(0) is continuous, we have

N

Vi(0, = 5) = N(0,0)
with Q-1 = A-1I1A-1, where
A= éT(eo)W(eo)é(eo)-

Since W () is given by the normal theory, from Corollary 2, we have

=00 (5 v ) () =0

2
So we only need to show that II = (, and this is just a simplification with some

algebra.

When there is no structure on the mean y, we have fi,, = X. From Theorem 7,

we have the following corollary.

Corollary 6. Under assumptions A3 and A4, if én £, 0y, then
N B N(0,9Q),
en - 00

where ) = D-1G D1 with



and
¥-1 ¢
G — 12 ) 7
( Gy Gy

Gip = G;Fl = (X7, — 71 (p)) B4 (0),

where

Giyy = 6T (0) B~ (Vo — ATETIVy, — Vy NTTA + ATESTA) B15(0)

B = (b ) with by, o, = oy,04+04,0,,, and all the matriz functions are evaluated at 0.

Note that when
(Voo — ATEIV), — Vi BTTA + ATETTA) < B,

the normal theory MLE overestimates the standard errors of én, otherwise, MLE un-
derestimates the standard errors. A consistent estimator of  is to put fi, = X and
én into the structured parameters and use the result in Theorem 3 to estimate V.
Arminger and Schoenberg (1989, p. 414) stated that “Without loss of generality we
assume that p(6,) = 07, then they proceeded in the context of p(6,) = 0 to get a sim-
plification of the standard errors of én in covariance structure analysis. Their result is
not true in general. In practice, even if the mean is zero, the finite sample efficiency
will be different when treating u(f,) = 0. From Corollary 6, we can see that X and
én are generally dependent in normal theory covariance structure analysis. If all the
third central moment of X are zero, then X and én are independent asymptotically,

as with elliptically contoured distributions with an unstructured mean. In this case,

we may model the mean and covariances separately for computational covenience.

When the underlying distribution is not normal, the normal theory LRT will give
incorrect inference generally. However, the test statistic in Corollary 3 will behave
correctly asymptotically and can be used to evaluate the model. Finally, we note that

there are specialized independence and model conditions under which, asymptotically,
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some parameters in a linear structure can be estimated efficiently, some standard er-
rors obtained correctly, and the model null hypothesis tested using normal theory
statistics even if the data are not normal. See Satorra and Neudecker (1994) for a

recent contribution and further references to asymptotic robustness theory.

4 SEVERAL CORRECTED TEST STATISTICS

Our intention in this paper is to present a unified approach to mean and covariance
structure analysis through regression. This point of view implies that the inverse of
the cross products of the residuals, which has been used extensively in the regression
literature, should also be considered for use in covariance structure analysis. Here we
discuss further implications of this viewpoint. In the ADF test statistic, the inverse
of the sample covariance S, of Z; is used to get én and the corresponding test statistic
is nFn(én) Since Vn is also a consistent estimator of V' from Theorem 3, we can also
use the inverse of Vn in estimating én and get a corresponding test statistic through

a two stage estimation process. By an ANOVA decomposition, we have

Even though S, and Vn are asymptotically equivalent, from (20) it follows that Vn >
S,. Consequently, we expect that S, and Vn should have different effects on test

statistics. From (20) we also have

ot _ g1 STNZ 02— €0)) TS (21)
T (2= €0,)) S (2 - (D)

So the estimator én which satisfies

E0(0,)571(7Z - ¢(0,)) =0 (22)
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also satisfies
M0, )VZ - ¢(0,)) =0. (23)

As a result, the two stage estimation process is uncessary if we start with 571 as a
weight matrix. Let Fn(én) denote the minimized function using S7! as the weight
matrix and T} = nFn(én) be the corresponding test statistic. In the context of
covariance structures with an unstructured mean, T} would be the ADF test statistic,
but in our regression context it is not the same. Then, from (21), a corrected test

statistic corresponding to the weight matrix Vn—l is

1+ F(6,)

Ty

(24)

As we mentioned earlier, the ADF statistic in covariance structure analysis has been
found to reject the null hypothesis exceptionally frequently in small to medium sample
sizes (Hu et al, 1992). Possibly the same result can occur with 7). However, since
T, < T, generally, we expect T}, to behave better in small to medium sample sizes.

From
we have

So we can write

1
1= (1= BT+ 0,(). (25)
Comparing (25) with Bartlett-type corrections for LRT statistics, the correction term

1
1+ Fyn

a standard Bartlett-type correction for LRT statistics and 1-|—1F for T is that the

represents a correction to the ADF type test statistic 77. The difference between

Bartlett-type correction shifts the LRT statistics towards zero by a positive factor of

order O(+) while 1—|—1Fn shifts 7} towards zero by a positive factor of order O,(+). If

we use the inverse of the cross products of the fitted residuals from an ADF fitting
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as a weight matrix, the correction is automatic.

Since T, < T generally, it is possible that 7, may lose some power as a test
statistic. We will show that asymptotically 7, has the same power as that of T}
against alternatives. When the null hypothesis is not true, then £, = EZ # £(0) for
any 0 € O. Let

5(‘9) = (50 - 5(9))TW(50 - 5(9))

and 0* minizes 6(8) on ©. We can rewrite (7) as

F.(0) =2 5(0).

n

Exactly the same argument as in Theorem 1 shows that én 2% 9+, So

F,(0,) = 6(6%) + 0,(1),

and X
1T, = ——— — .
L+ F,(0,)
If we assume that
6,
5(9*) = fo + — (26)

\/ﬁ?

which is a standard condition for considering the power of a test statistic, then
f(én) 22 ¢, and Fn(én) = O,(L). Since T} is a noncentral chi-square variate under
(26), from (25), T, is also a noncentral chi-square variate with the same noncentrality
parameter and degrees of freedom. So T}, has exactly the same behavior as T} asymp-

totically.

With a similar empirical behavior to that of T}, the test statistic in Corollary 3

based on S, also rejects the null hypothesis too often (e.g., Chan, 1995). Let T'(V},)
denote the test statistic in Corollary 3. From (20), we have

T(V,) = % (27)
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A

So T(V,

) represents a correction to T(S.) and the merit of T(V,) comparing with

T(S,) is exactly the same as that of T, comparing with T;.

We have discussed the correction for ADF type statistics by modeling the mean
and covariance simultaneously as a regression model. The correction factor in (24)
and (27) also can be applied to only covariance structure analysis. Notice that since
the covariance structure analysis of modeling S by ¥() is equivalent to modeling
(X; — X)(X,;, — X)T by X(#), we can use the fitted residuals vech{(X; — X)(X, —
X)T) — vech(Z(én)) and get a corresponding residual weight matrix. Exactly the
same algebra shows that using the weight from the residuals corresponds to the cor-
rection (24) and (27) of the ADF statistic of Browne (1982, 1984) and Chamberlain
(1982) and the statistic in Proposition 4 of Browne (1984).

5 EMPIRICAL PERFORMANCE OF THE
CORRECTED STATISTICS

We have presented our corrected statistics in last section and discussed their merits
from a theoretical point of view. In order to see the practical effect of our correction,
a small scale simulation was performed. The model is the same as the one used by
Hu et al (1992), i.e. a 3-factor model with each factor having its own 5-indicators.
Since we do not put any structure on the mean vector, we have p + p* = 135 and
g = 48. So the degrees of freedom of the chi-square statistic in Theorem 4 is 87. The
observed variables X; were generated under two conditions. In the first condition,
both the common factors and the unique factors are normal, so X; ~ N(g, ). In

the second condition, the common factors are still normal, but the unique factors
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are independent lognormal variates so the skewnesses of the observed X, are not zero
anymore. We chose sample sizes 150 to 1000 for each condition. 500 simulation
replications were performed for a given sample size. We estimated the model in two
ways: first, a covariance structure model only with ADF estimation, and second, as
a regression model with an unstructured mean and a structured covariance with an
optimal weight matrix. Thus we study asymptotically efficient estimators only. The
results are summarized in Table 1 and Table 2, where ADF is the covariance structure
test statistic of Browne (1984); CADF represent the corrected ADF test statistic (24)
which is equivalent to using the inverse of the cross products of the fitted residuals as
a weight matrix. With the same notation as in Hu et al (1992), M and SD represent
the means and the standard deviations, respectively, of the empirical test statistics
across the 500 replications. The Freq represents the rejection frequency of the empir-

ical test statistics using the 95% percentile of the x2..
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Table 1
Emprical Behavior of the Correction on Test Statistics

F ~ Normal(0,®), E ~ Normal(0,V)

Sample Size

Method 150 200 300 500 1000
ADF:
M 217.43 165.80  130.01 110.09 97.15
SD 46.16 33.06 22.83 1899 15.84
Freq 444 /445  482/495 415 241 101
CADF:
M 87.81 89.78 90.13 89.83 88.36
SD 7.72 9.76 10.93  12.60 13.08
Freq 0/445 11/495 20 32 35
T
M 203.82 162.18  129.04 109.87 97.10
SD 40.53 31.20 22.34 1891 15.83
Freq 422/424  479/497 411 237 100
T,:
M 85.58 88.75 89.67  89.69 88.32
SD 7.29 9.43 10.76  12.55 13.07
Freq 0/424 6/497 19 30 35
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Table 2
Emprical Behavior of the Correction on Test Statistics

F ~ Normal(0,®), E ~ Lognormal(0, V)

Sample Size

Method 150 200 300 500 1000
ADF:
M 211.74 158.06  125.29 107.54 97.97
SD 40.17 28.46 19.81  16.76 14.21
Freq 471/472  484/498 391 203 92
CADF:
M 87.04 87.60 87.93  88.19 89.07
SD 6.92 8.7H 9.79 11.28 11.75
Freq 0/472 1/498 7 14 26
1
M 199.99 153.94  124.52 107.37 97.94
SD 35.28 26.23 19.45  16.63 14.22
Freq 453/455 481/495 388 203 91
T
M 85.06 86.38 87.56  88.08 89.05
SD 6.54 8.25 9.66 11.20  11.77
Freq 0/455 1/495 6 15 26
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From the results in Table 1 and Table 2, we can see that the ADF method is es-
sentially unusable at any of the sample sizes studied. At n = 150, the procedure only
converges 445/500 or 472/500 times, and in all but one converged solution the true
model is rejected. At n = 300, about 80% of true models are rejected. At n = 1000,
the procedure works better, but about 20% are still rejected. Hu et al (1992) showed
that the method behaves as expected at n = 5000. On the other hand, from the
row labeled CADF, we see that the statistic using the inverse of the cross products
of the fitted residuals as a weight matrix gives a great improvement over the ADF
statistic. As expected, the correction is larger for smaller sample sizes and tends to
be smaller as sample size becomes larger. When sample size is small, the rejection
rate for CADF is usually less than .05. It seems that the statistic over-corrects. But,
considering that the test statistic is only approximately chi-square distributed for a
given sample size, and that an ideal test statistic would accept the model in all sam-
ples when the underlying null hypothesis is true, it is really an advantage rather than
a flaw for us to use the corrected statistic in practice. The standard deviation of x2.
is v/2 x 87 ~ 13.19. At small sample sizes, the empirical standard deviation of the
test statistics is generally smaller than expected. Considering that the CADF means
are around 87 at all sample sizes, small standard errors are also much better than
larger standard errors with means much larger than 87. Notice that the Bartlett-type
correction for a LRT statistic is based on correcting the mean of the statistic (e.g.,
Stuart and Ord, 1991, §23.9), making the mean of the corrected statistic nearer to
the degrees of freedom of a chi-square. OQur correction seems also to mainly correct

the means.

The regression test statistic Ty performs virtually the same as the ADF test statis-
tic. That is, T} also greatly rejects the true model as can be seen in Tables 1 and
2. In fact, we can see that the differences between ADF and T} disappear when the
sample size gets larger. Even though X and S are not asymptotically independent,

28



using the marginal information S for estimating 6, when there is only a covariance
structure does not lose information for this specific example. This is not surprising.
As commented by Cox and Hinkley (1974, p. 18), before knowing s, we can not
extract any information from X about , when x is unstructed. This phenomenon

may occur in general for other skewed data.

On the other hand, the corrected regression statistic T}, based on our residual GLS
procedure, implemented via (24), also performs excellently. Its performance is virtu-
ally the same as that of the CADF. Hence, while our regression approach has yielded
substantially enhanced test statistic performance based on residual weight matrices,
in the unstructured mean case we have not found evidence that modeling the means
yields any improvement in performance. Of course, in models with structured means
i = p(6y), modeling the means can not be avoided. We would expect our regression
approach using residual weight matrices also to outperform the classical approach in

small samples for the reasons noted above.

6 CONCLUSIONS

Our approach yields a variety of estimators and tests depending on the initial
consistent estimator chosen and the second-stage weight matrix used for final esti-
mates and tests. Perhaps our most interesting result is that the two-stage approach
can be avoided completely. Similarly, although we have emphasized the importance
of residual weight matrices, it may not be necessary to compute such matrices. The
estimators that result from the use of GLS weight matrices and residual-based weight

matrices are numerically equal, and the test statistics that would be obtained from
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residual-based weight matrices can be computed as simple Bartlett-type corrections
to the GLS statistics. Our small simulation study has shown that these corrected
statistics work remarkably well. Although we have emphasized arbitrary distribution
theory, our corrections also apply to data of any known distributional forms for which

the appropriate GLS weight matrices are used.

It is obvious, from our discussion in Section 4, that T, will reject the null hypothe-
sis for certain departing alternatives even when sample size is small. It is possible that
for a very small misspecification of the model and a small sample size, T, may not be
as powerful as T} against alternatives. This also occurs with standard Bartlett-type
corrections. From our experience, T} almost always rejects alternatives for all sample
sizes. Also, every model is probably wrong in practice and there is some consensus
that a model need not to be totally correct before it becomes useful (e.g, Box, 1979).
The possible leniency in T, for a very small misspecification may be an advantage for

accepting a useful but not perfect model in practice.

We have discussed the effect of the correction in Section 4. Now let us look at
it from another point of view. When the null hypothesis is not true and the depar-
ture is small, we have KT, = nF,, = d + 6 where d is the degrees of freedom of
the model and 6 is the noncentrality parameter of x2 distribution. So the multiplier
/(1 4+ Fyg) = n/(n+d+6). This point of view also is interesting because it gives
us another rationale for our correction eq. (24). Suppose we decided to base our
correction on n/(n + d + 5) using an estimated noncentrality parameter. Then if we
take as the estimator 6 = (nFl —d), we obtain our correction. From this point of view
we also could consider other alternatives. First, we could use other noncentrality pa-
rameter estimators. For example, if we used max{(nFl —d),0}, our correction would
be modified when T} < d. This may be useful since the variance of this corrected

statistic would be greater than that of T, or CADF, which, according to Tables 1
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and 2, tends to be too small in small samples. Also, since under the null hypothesis
6 = 0, we immediately get the correction n/(n 4 d). Unlike eq. (24), the latter does
not depend on model fit. This is an attractive feature, but since the variance of such
a corrected statistic would be the same as variance of the uncorrected statistic, this
variance would be substantially too large as shown in Tables 1 and 2. Hence, this
correction probably would not work well. Further, these alternatives do not have the

virtue of arising precisely from our residual GLS approach.

Although we have not discussed the standard error estimators obtained from our
approach, it is a simple matter to show algebraically that the residual-based standard
error estimator is identical to its typical ADF estimator. That is {fT(én)Sz—lf(én)}—l =
{fT(én)Vn—lf(én)}—l However, since empirical evidence shows that ADF standard
error estimates substantially underestimate the empirical sampling variability of the
estimators at smaller sample sizes (Henly, 1993; West et al 1995), it would be desir-
able to find a way to correct the standard errors as well. One way to do this is to

recognize from (24) that the divisor (1 + F,,(8,,)) could be used to define yet a dif-

N

ferent weight matrix, namely, (1 + F,,(0,))~157. The resulting covariance matrix of
the estimator will become (1 + Fn(én)){fT(én)Sz—lf(én)}—l The estimated variances
would be increased, though asymptotically they would be the same. We will discuss

this issue elsewhere.

In practice most applications do not involve a structured mean. We have shown
that substantial improvements in test statistic accuracy can be obtained applying
our approach to this situation with both normal and nonnormal data. Although the
sample mean may not be the most efficient estimator of ¢ with nonnormal data, we
have found no evidence that simultaneous estimation of the unstructured mean and
the covariance parameters improves the performance of the resulting estimators and

test statistics in this situation. Further study of this problem is indicated (see e.g.,
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Kano, Bentler, and Mooijaart, 1993).

Finally, several obvious extensions of our results should be mentioned. In order to
keep our presentation simple, we did not discuss constraints on parameters. These are
handled in the usual way. Also, all of our results assumed a single model evaluation
based on one sample from a given population. In reality, researchers may compare
nested models and may use x? difference, Wald, or Lagrange multiplier (score) tests
for this purpose (e.g., Satora, 1989). ADF and generalized variants of these tests will
be plagued by the same small-sample problems discussed above, and, as we will dis-
cuss elsewhere, our new methods can be adopted directly to this situation. Similarly,
many applications of structural models are to multiple independent samples from
possibly the same population (e.g., Bentler, Lee, and Weng, 1987; Muthén, 1989).

Extensions to this situation are direct and need not be detailed.

7 APPENDIX

Proof of Corollary 2: We rewrite 2-1 in Corollary 1 as

~ Ol Q12
le(Qﬂ sz)v (28)

where

QU = A= =71 () B=Vo N7+ (7T () — B71Vig) B (),

Q12 = QN = (7 (p) — $71V,,) B-16(0),

and Q22 = 5T(0)B~15(0) with A = ¥ — V;,V4;' Vo;. Under the hypothesis that all the
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third central moments are zero, that is

E(xz - ;uiO)(xj - lujO)(xk - /ukO) = 07 all ivjv k? (29)

we have

v ik = cov(x;,Y;L)
= E(% - Nio)wﬂ'k
= [joOik T Hro0sj- (30)
It can be shown that 77(u) = X1V}, by a direct and tedious computation. So in
(27) the off diagonal matrices become zero and the first diagonal matrix becomes
Y~1. This proves the independence of ji,, and én
Let Voy = (v 41) with
Vijkl = cov(yijv ykl)
= B(vx; — Fax)(xpe, — Bxgay)
= Faaape, — BroEaprg. (31)
Since
Bavixae; = oy +{ogem + ot + Gty + o}
+ Aoty F Ty T A Oty F Oy, F O pif }
R N (32)
and
EvivjBrgay = (05 + pipty ) (O + prptr)
OijOkt + Oijffly & Opifbifbj + fhifhj fy g, (33)
we have from (30), (31) and (32)
Uikt = O TR+ Tt + Tty + i}

+ o F o+ iy i}
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When the third and fourth central moments of X satisfy
Oijr = Ogj1 = Oipg = O = 0,
and
Okl = 0405 + 03051 + 040,
we have from (33), (34) and (35)
Vil = OO0+ 0305
A+ At O A Oty A O}

Now denote
VBV = (@) 277 (1) = (845,11)
As 7(p) is a p* X p matrix with the ¢jth row given by

0T, _ a(ﬂiﬂj)
ouT ouT

= (0,..,0,1;,0,...,0,11;,0,...,0),

where y; is the 7th element, and y; is the jth element.
We have from (37) and (38)

Oijkl = Ouphljfty + Ogpljiy + O fhifly + O jifhi -
From (36) and (39) we have
B =Vy — %(N)Z%T(N) = (bij,kl)

with
bij,kl = Vi kl — 5ij,kl = 0,051+ 040 .

Using Browne’s (1974) notation, we have from (40) and (41)

B=2KT(Z @)K,
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(39)

(40)

(41)

(42)
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where K, is the matrix such that

Since K,

and

with

we have

o(0) = K,,vec(X(0)).
has the properties
[KI(S0Y)K,] ' =K- (X 'ox KT,
vec(X(0)) = K-To(0),

m

K- =(KTK, ) KT,

GT(0)B-16(0) = %dT(G)Kﬂ;(Z—l®2—1)[(;Td(0)

= LT 0 X5, (0).

The proof is finished.
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