
UC San Diego
UC San Diego Electronic Theses and Dissertations

Title
Bayesian Decentralized Learning

Permalink
https://escholarship.org/uc/item/2rm0q27r

Author
Kilinc, Osman Cihan

Publication Date
2019

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/2rm0q27r
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA SAN DIEGO

Bayesian Decentralized Learning

A Thesis submitted in partial satisfaction of the requirements
for the degree of Master of Science

in

Electrical Engineering (Machine Learning and Data Science)

by

Osman Cihan Kilinc

Committee in charge:

Professor Farinaz Koushanfar, Chair
Professor Tara Javidi
Professor Siavash Mir Arabbaygi

2019

The Thesis of Osman Cihan Kilinc is approved, and it is acceptable in quality and

form for publication on microfilm and electronically:

Chair

University of California San Diego

2019

iii

TABLE OF CONTENTS

Signature Page . iii

Table of Contents . iv

List of Figures . vi

List of Tables . viii

Acknowledgements . ix

Abstract of the Thesis . x

Chapter 1 Introduction . 1
1.1 Machine Learning . 2
1.2 Decentralized Learning . 3
1.3 Motivation . 4
1.4 The setting of Decentralized Learning . 6
1.5 Federated Learning . 9
1.6 Neural Networks . 11
1.7 Parameter Estimation . 12

Chapter 2 Bayesian Learning . 15
2.1 Modelling Uncertainty . 15
2.2 Bayesian Parameter Estimation . 18

2.2.1 Markov Chain Monte Carlo . 18
2.2.2 Variational Inference . 20
2.2.3 Decentralized Learning & Bayesian Parameter Estimation 22

2.3 Bayesian Neural Networks . 23
2.3.1 Local Reparametrization Trick . 24
2.3.2 Implementation . 25

Chapter 3 Decentralized Learning . 27
3.1 Introduction . 27
3.2 Background Work . 28

3.2.1 Gossip Algorithms . 30
3.2.2 Parallel Stochastic Gradient Descent Variants . 30
3.2.3 Personalized Optimization . 32

3.3 Peer-to-Peer Learning . 34
3.3.1 Problem Setup . 36
3.3.2 Algorithm . 37

3.4 Experiments . 39
3.4.1 Common Experiment Settings . 40
3.4.2 General Effectiveness . 40

iv

3.4.3 Effects of Non-IID and Unbalanced Data Partitioning 41
3.4.4 Effects of User Placement and Influence . 42
3.4.5 Effects of the Weight Matrix . 44
3.4.6 Effects of Dissimilar Data Distributions . 46
3.4.7 Asynchronous Training . 51

Chapter 4 Conclusion . 54
4.1 Future Work . 55

4.1.1 Secure Computation and Differential Privacy . 55
4.1.2 Social Interaction Matrix . 55
4.1.3 Gradient Estimation . 56

4.2 Conclusion . 56

Bibliography . 57

v

LIST OF FIGURES

Figure 1.1. Federated Learning Procedure . 10

Figure 3.1. MNIST 9 Users with IID Data Experiment. 41

Figure 3.2. General Effectiveness with Simple Assumptions. 41

Figure 3.3. MNIST Highly-Unbalanced and Non-IID Data with Grid Topology. 42

Figure 3.4. MNIST 9 Users with Unbalanced and Non-IID Data Experiment. 43

Figure 3.5. Most Informative Node at the Least Influential Spot Experiment Setting. . 43

Figure 3.6. Most Informative Node at the Least Influential Spot. 44

Figure 3.7. Star Topology and Fashion MNIST Data Distribution for Weight Matrix
Analysis. 44

Figure 3.8. Effects of the Weight Matrix. Social interaction matrix reflects the confi-
dence on the beliefs. 45

Figure 3.9. Dissimilar Data Distribution and Circular Graph Topology. 47

Figure 3.10. Effects of Very Dissimilar Data Distributions. 47

Figure 3.11. Dissimilar Data Distribution and Circular Graph Topology. 48

Figure 3.12. Fashion MNIST Non-IID Data Experiment with Resembling Classes. 49

Figure 3.13. Confusion Matrices of Two Nodes with Resembling Class Bias. 50

Figure 3.14. Bayesian Decentralized Asynchronous Learning Graph Topology. 51

Figure 3.15. Bayesian Decentralized Asynchronous Learning. 52

vi

LIST OF TABLES

Table 2.1. Bayesian Learning Notation . 26

vii

ACKNOWLEDGEMENTS

I would like to acknowledge Professor Farinaz Koushanfar for her support as the chair of

my committee, supervision, teachings, encouragement and remarks throughout the writing of

this thesis. Besides my advisor, I would also like to thank Anusha Lalitha and Professor Tara

Javidi for their invaluable contributions to the research explained in this work. Even though we

may have found each other on complete opposite ends of the spectrum, it was their support that

steered me in the right direction and introduced me to many new topics in the field.

I want to thank all my friends at the ACES lab for making me look forward to arriving

to the lab in the morning: Mohammad Samragh Razlighi, Mojan Javaheripi, Huili Chen, Siam

Umar Hussein, Malhar Jere, Xavier Carpent and Bita Darvish Rouhani. Outside the lab, I want to

thank all the friends that I have made throughout Master’s for their camaraderie. They truly made

the last two years unforgettably wonderful: Kazim Ergun, Apsara Williams, Austin Parsons,

Rhea-Comfort Addo, Olcay Soyalan, Ray Berkeley, Can Uysalel, Gokce Sarar, Aditya Vasan,

Kyle Thackston, Corentin Pochet, Viona Deconinck, Vanessa Kelly. I want to thank the Bayraktar

family, Canan Bayraktar, Ozdemir Bayraktar, Selcuk Bayraktar, Haluk Bayraktar and Ahmet

Bayraktar for showing me what’s possible with hard-work and being great role models.

Finally and most importantly, I would like to express my deepest gratitude to my parents.

Nothing would be possible without them and their support. Thank you.

viii

ABSTRACT OF THE THESIS

Bayesian Decentralized Learning

by

Osman Cihan Kilinc

Master of Science in Electrical Engineering (Machine Learning and Data Science)

University of California San Diego, 2019

Professor Farinaz Koushanfar, Chair

The field of machine learning has grown tremendously in the past decade. It is utilized in

many different industries with applications ranging from high-tech security systems to medical

diagnosis. In order to train their models, technology companies aggregate vast amounts of data

from their users and execute training in big data centers. In such an era, where the means of

machine intelligence is gathered at the hands of the few and data privacy rights are continuously

breached, the need for a more democratic and privacy-preserving machine learning method is

exigent. Fortunately, advances in mobile computing is gradually moving the computations on

the cloud to the devices. Decentralized learning reinforces these advances by enabling training

on decentralized data. In decentralized learning, users train their models with their local datasets

ix

and share the acquired knowledge with each other. It mitigates data-sharing and provides a

degree of freedom for model personalization. Thus, research on decentralized learning has

gained pace. In this thesis, we explore decentralized learning, make an analysis from a bayesian

perspective, explain the relevance of continual learning, and demonstrate empirical results from

an up-and-coming decentralized learning method.

x

Chapter 1

Introduction

Humans have an innate ability to learn new knowledge. However, our individual intellec-

tual capabilities are limited to a large degree and most of our knowledge comes from the wisdom

gained over the centuries of human progress. Every generation inherits the accumulated knowl-

edge from the previous generations. This knowledge is vital for our survival and it constructs the

modern civilization. In other words, the quintessence of our civilization lies in our individual

and collective ability to learn, accumulate and transfer knowledge.

The collective intelligence emerges from our collective efforts to solve problems [1].

Open source projects are wonderful examples to such collaborations[2]. They are continuously

improved and tested. Thus, knowingly or not, billions of people benefit from these projects.

Similarly, a collective machine intelligence can provide an efficient, accurate and robust solution

to a myriad of problems [3]. However, we are yet to discover a truly decentralized and effective

method to accumulate machine intelligence. The ultimate goal of this thesis is to provide

a detailed analysis of the decentralized learning problem and demonstrate the capabilities

of a decentralized learning method that utilizes variational inference. Before moving on to

decentralized learning, it is vital to briefly visit the basics of machine learning.

1

Machine Learning

By definition, machine learning is the scientific study of creating, training and analyzing

statistical models that has the ability to acquire new knowledge[4]. These statistical models

mathematically describe phenomena and their related uncertainty in terms of probability dis-

tributions over latent variables or unknown parameters. Essentially, they are used to make an

inference, where we intend to minimize the expected risk involved in decision making. The risk

function uses a loss function to compute the error between a prediction and the desired result,

denoted by L(y, ŷ), where y is the prediction and ŷ is the true value. Using y to denote a label and

x to denote the input vector, let’s describe a classification problem as an example. Suppose g(x)

is a decision function that makes the prediction y ∈ Y given x ∈ X . Then, we can write the risk

and the output of our model (ĝ(x)) as:

ĝ(x) = argmin
g(x)∈Y

Ex,y[L(g(x),y)] (1.1)

Ex,y[L(g(x),y)] =
∫

∑
y∈Y

p(x,y)L(g(x),y)dx (1.2)

Risk1 can be also written as:

Ex,y[L(g(x),y)] =
∫

p(x) ∑
y∈Y

p(y|x)L(g(x),y)dx (1.3)

Under “0-1” loss, the class with the highest probability is chosen, which is:

ĝ(x) = argmax
y∈Y

p(y|x) (1.4)

Thus, probability of y given x should be closely approximated to make an accurate

prediction. This is achieved through training. In practice, data represents the phenomena so

we wish to encode the information on the distribution of data into the statistical models such

2

as p(y|x). In other words, we are trying to learn the parameters or latent variables that best

explains the observed data so that we can use them for unobserved data that comes from the

same underlying distribution. This leads us to the question of parameter estimation. How do we

incorporate all available information? How can we encode prior knowledge? In the context of

decentralized learning, how can we convey what’s learnt by an individual to all other participants?

In Bayesian learning [5], training is built upon a prior distribution, p(w), which is

transformed into a posterior distribution (after observing data), p(w|D). It is a powerful tool to

describe uncertainty in parameter estimation. It can be calculated as:

p(w|D) =
p(D|w)p(w)

p(D)
(1.5)

Given observed data D, the posterior distribution from the previous example can be

calculated as:

p(y|x,D) =
∫

p(y|x,w)p(w|D)dw (1.6)

Intuitively, it should be clear that this is the expectation over all possible models and

it innately captures all the available information. However, calculating p(w|D) is a difficult

problem. Thus, we adopt an approximation approach and optimize a surrogate function. Bayesian

learning is well-studied field. The methods for such approximations will be covered in a later

section.

Decentralized Learning

Advances in machine learning and the paradigm shift in computing has brought a new

wave of innovations that enable learning on decentralized data, namely decentralized learning.

It includes all methods that enable learning on decentralized data that reside on participating

devices. Participants that volunteer in the training of the model, do so by contributing both

with their local data and with their computational resources. Their model is either partially or

3

completely available to others directly or indirectly through other entities such as a central server.

Moreover, participants may use a global model or their own private model. The training can be

done either asynchronously or synchronously. To mathematically describe decentralized learning,

let’s denote the set of participants as P, models available at clients as p(y|x;wi), wi defines the

model of participant i, we are interested in approximating p(y|x; ŵi) for each participant:

p(y|x; ŵi)≈ p(y|x;wi),∀ i ∈ P (1.7)

Decentralized learning serves as a fundamental starting point to utilize edge devices to

train deep learning models, where data is produced and collected from. This would substantially

decrease the communication costs, energy consumption at data centers, shrink the attack surface

for data leaks, and pave the way for a privacy-preserving machine learning method that also

emphasizes personalization. Moreover, it addresses some of the questions engendered by data

collection, such as data ownership. In the next section, we explain the motivation behind

decentralized learning further.

Motivation

Powerful models require mathematical rigor, tremendous amount of valuable data and an

abundance of computational resources for training. However, if data at hand does not adequately

represent the phenomena, then the performance of the model would suffer [6, 7, 8, 9]. The

awakening of machine learning was in part engendered by the increase in the computational

resources and the ability to make fast computations in parallel by utilizing GPUs[10]. Modern

machine learning models are trained with data collected from millions of devices in large

specialized data centers.

Many of the applications that make use of machine learning including computer vision,

speech recognition, speech generation and text generation target the edge devices. Since edge

devices, most importantly mobile phones, play a central role in our lives. These devices are

4

used by billions of people and they include powerful sensors on-board. Naturally, they are also

major data sources. They provide access to a large number of users with different usage patterns.

The advances in mobile computing, specifically the advent and use of tensor processing units

in mobile phones, enabled them to make inferences and execute training on-board. Moreover,

efficient techniques and machine learning frameworks that provide a lighter versions for edge

devices is gradually shifting the computation to edge devices[11]. Collectively, modern edge

devices have both the data and the computational resources required to produce powerful models.

Today, technology monopolies are dominant in data collection and model training. They

aggregate an unprecedented amount of data from their users and train machine learning models at

gigantic data centers. Majority of the users are not sufficiently informed about the data collection

and the technology that their data helps to train. This not only creates a privacy-risk for the users,

but also brings about problems on data-ownership. The well-publicized data breaches has put

the spotlight on data privacy and increased public concern on the topic. Moreover, only the most

powerful institutions can gather the resources required for machine learning. Therefore, it is of

utmost importance to provide the means of machine intelligence to public with a higher degree

of freedom. Providing these means to the public would support the democratization process

of machine learning. From the perspective of the companies, centralized learning approaches

induce high infrastructure costs due to data collection and processing. Moreover, data collection

brings about security risks that may negatively affect the company[12].

Decentralized learning is not only advantageous for the democratization process, but

it has also been demonstrated that under certain conditions it provides better performance in

terms of bandwidth and energy than centralized learning algorithms [13]. In addition to the

communication costs, centralized learning processes are also retricted in terms of personalization.

They provide one-for-all solutions to its clients. On the other hand, decentralized learning are

inherently more suitable for personalization [14]. At the end of the training, models of i ∈ P and

5

j ∈ P potentially be different from each other:

wi 6= w j,∃ i 6= j (1.8)

There are many orthogonal methods to achieve personalization after learning a common w∗,

but it’s also possible to achieve a degree of personalization during learning and use different

objective functions for each participant. We will explore personalization more in section 3.1.

The setting of Decentralized Learning

Conventional machine learning algorithms collect data from different users into one large

training dataset, where data is assumed to be i.i.d. Moreover, preprocessing techniques can be

utilized to mitigate bias and redundancy. However, in decentralized learning, information on

local datasets is limited and we have no control over the distribution. As mentioned previously,

w is calculated by approximating p(w|D). The foremost assumption of decentralized learning

is the decentralized data, where all local datasets are a subset of D (Di ⊆ D, ∀ i ∈ P). How do

we approximate p(w|D), when training is executed at each device independently on their local

datasets Di. Specifically, how do we accumulate the knowledge acquired from p(w|Di)? This

approximation would yield a set of parameters ŵi for participant i and we wish to encode the

information of the whole dataset rather than its subset. The setting of decentralized learning

includes many complex cases, where the answer should also satisfy the assumptions below.

Massively Distributed

Complex machine learning tasks require a large training dataset. Training samples can be

distributed amongst millions or even billions of participant devices. Thus, decentralized learning

should be scalable enough to support the accumulation of information from the local datasets.

Moreover, it should provide a method to transfer the acquired knowledge, such that each client

can achieve a certain degree of success on the tasks. Suppose there are P number of participants,

6

the local dataset of participant i is denoted as Di, then the total number of samples in the training

dataset is ∑
P
i=1 |Di| as the whole dataset is defined as the union of all local datasets:

D =
P⋃

i=1

Di (1.9)

Since it is really hard to coordinate all the participants to train at the same time in such a massive

graph, asynchronous decentralized learning approaches are more favorable. For example, the

asynchronicity may be relaxed by allowing a subset of the participants to synchronize and train

simultaneously. In [15], only a small subset of the clients are selected to be trained in parallel. If

K is the number of clients trained at time t and P is the total number of clients, then K� P.

Non-Uniform Distribution (Highly Unbalanced)

The training samples may not be uniformly distributed amongst the participants. In fact,

the chances are that the local datasets are non-uniform. It would be unrealistic to expect that the

number of samples in the local datasets are equal, since dataset size will vary with respect to

patterns and levels of usage. Moreover, it may be highly unabalanced. For example, some local

datasets may contain thousands of samples, others might have less than ten samples. It depends

on the usage pattern and frequency. The more the users interact with their devices, the more data

will be aggregated. Denoting Di as the local dataset of participant i and D j as the local dataset of

participant j, this inequality can be written as:

|Di| � |D j|,∀ i! = j (1.10)

Non-IID Data Distribution

Since local datasets reflect the usage of each individual, they may represent a distribution

far from the overall data distribution. Thus, data is likely to be distributed in a Non-IID fashion

amongst the participants. For example, some labels might be missing from the local datasets,

can be underrepresented or overrepresented.

7

Dynamic Data Availability (Time & Location)

Usage patterns vary with time and location. Thus, the local datasets would also reflect the

time and location of the participating device. For example, samples drawn from participants at

different times during the day will vary and samples drawn from participants in different countries

represent the a distribution prevalent at that location. This adds another layer complexity to the

training, as it also requires a degree of robustness against catastrophic forgetting.

Dt
i 6= Dt+1

i (1.11)

Limited Connection

Edge devices are the biggest sources of data and some decentralized learning applications

may target these devices. Edge devices lack the computational resources that complex machine

learning algorithms require. Moreover, in some parts of the world, users have limited access to

the internet with a constraint on their downloads or uploads. To encourage participation and

collaboration, models should be optimized in terms of size and efficiency.

Unreliable Connection

Finally, participants may have unreliable connection. For example, users may voluntarily

turn off their device during training or lose internet connection. We do not have direct control

over the device, and all sorts of situations may arise that might result with a drop. Applications

may have have users all around the world, including users from developing countries, where

the internet service is not always available. The intermittent and unreliable internet service may

severely affect training, destabilize the application or leak information. Thus, decentralized

learning methods should be robust against these issues.

8

Graph Structure

The accumulation of the acquired knowledge depends on the graph structure. Decen-

tralized approachefigss rely on a strongly connected graph structure, where information can be

transferred from one node to another. Otherwise, it would not be possible to pass the accumulated

knowledge to all participants. The graph structure may be dynamic or static, meaning that new

nodes can be added to the graph or nodes can drop. However, here we are only interested in the

learning of available information on the graph. Additionally, decentralized machine learning

approaches should formalize the expected degree of success on different graph structures.

Hyperparameters

Hyperparameters are parameters that are set at the beginning of the training. As with

all machine learning approaches, the optimal hyperparameters depend on the model and data

distribution. Problems inherent to all machine learning approaches such as overfitting and

exploding or vanishing gradients can highly affect the success rate of decentralized learning.

Moreover, due to the collaborative nature of decentralized learning, there may be hyperparameters

that control the collaboration of the users.For example, asynchronous methods may require

training of multiple users in parallel, therefore the number of users to be trained simultaneously

should be known beforehand. The hyperparameters may not be uniform, for example each user

may train for a different number of local epochs. Hyperparameters can also be used to adjust the

influence of users over training. Thus, it is vital to clarify the role of the hyperparameters and

minimize the search space for optimal values.

Federated Learning

Federated learning is a decentralized learning method that enables asynchronous learning

on a federation of clients coordinated by a central server. Its asynchronous nature provides a

high level of flexibility. It has been shown that federated learning provides an overall accuracy

9

Figure 1.1. Federated learning procedure. (1) At the beginning of each communication round,
central server selects a number of available users. (2) Users receive the current global model.
(3) Users train the global model with their local data. (4) Gradient updates are sent back to the
server, where the global model is updated by Federated Averaging.

comparable to the centralized machine learning methods[15].

During training, federated learning uses a “star topology”, where all the participants are

connected to the central server as clients. At each communication round, the central server selects

a number of available clients, and the training is executed on the selected clients. Federated

learning utilizes stochastic gradient descent to optimize local models and the gradient updates

are sent back to the central server. Then, the gradient updates are used to compute the new global

model using a weighted average. The weights used in this process are defined as the local dataset

size of the clients averaged by the total dataset size of the selected clients.

10

Differences between Federated Learning and Decentralized Learning

• Central Server (Coordinator): Federated learning is a case of decentralized learning, since

there is a central server acting as a coordinator between the participants. Thus, federated

learning is not fully-decentralized. Other decentralized learning approaches may or may

not use such an entity.

• Global Model (Shared Initialization): At each communication round, federated learning

uses a federation of participants to acquire new knowledge and the acquired knowledge

is used to create a global model. The most recent global model is kept at the central

server. Federated learning also assumes shared initialization. At the beginning of each

communication round, central server sends the global model to the participants. The local

model is initialized with the global model, and trained on the local dataset.

Neural Networks

Over the past decade, deep learning has become increasingly attractive in solving complex

machine learning problems[16]. It’s been shown to provide impressive results. Deep learning

utilizes neural networks of different architectures to make inference and are often trained with

efficient frameworks for tensor calculations. These architectures can be made up of several

layers, where the intermediate layers between input and output layers are referred to as hidden

layers. Each individual layer is constructed from a number of neurons, where the output depends

on both the input, the parameters and a non-linear activation function. The input is processed

with a linear function (an affine transformation) using a linear map and a translation term, before

passing it on to the non-linear activation function. For example, to express the operations on a

fully-connected layer of a feed-forward network, let’s denote W as the weight matrix used to

transform an input vector x, b as the bias term, σ as the non-linear activation function, then the

output vector y given x is:

y = σ(WxT +b) (1.12)

11

The neural network reaches an output after passing the input from the layers iteratively

and gradually transforming it to an output. In other words, the layers are used to apply a mapping

and the decision is made by utilizing this mapping.

During training, deep neural networks inscribe the information on the data to its structures

using the parameters (w) and generate a mapping. Even in the deepest neural networks, the earlier

layers is encoded an information on the data distribution. This is achieved by backpropagation.

After loss is calculated, the gradients are calculated starting from the output layer and backward

propagated through the model until it reaches the input layer. Deep neural network architectures

can be improved and extended to enhance model expressiveness and encode the information

better. As the number of parameters increase in the model, it allows the model to capture more

information on the training dataset. However, it becomes harder to train and more prone to

overfitting. Thus, regularization methods are used during training as a precaution and to boost the

generalization of the model. During training, overfitting can be recognized from the comparison

of training and validation losses. It often manifests itself as an increasing validation loss, while

training loss is stably decreasing or has converged. Overparametrization of neural networks is

an example to the structural uncertainty that arises when constructing neural networks, which

is well represented in the bayesian context.The uncertainty in deep learning models is a well

studied field [17, 18, 19].

Parameter Estimation

There are various methods to estimate the parameters of a neural network. Differential

methods are used for this approximation including stochastic gradient descent (SGD) and Adam

optimizer [20]. We had previously mentioned bayesian approach to parameter estimation. Let’s

also briefly visit a frequentist approach to parameter estimation, before we move onto the

optimization methods.

12

Maximum Likelihood Estimation

Maximum likelihood estimation (MLE) does not convey prior knowledge to the model.

It only uses the training dataset. For a training dataset D = {(y1,x1),(y2,x2) · · · ,(yN ,xN)}, it can

be written as:

w∼argmax
w∈W

p(D|w) (1.13)

w∼argmax
w∈W

N

∏
i=1

p(yi|xi,w) (1.14)

w∼argmax
w∈W

N

∑
i=1

logp(yi|xi,w) (1.15)

In other words, we choose the values that maximize the likelihood distribution, p(D|w).

Moreover, we keep the parameters as values rather than a distribution on the parameters. For

example, for a coin toss, the frequentist approach would be to count and calculate the frequencies

of heads and tails. During inference, a prediction is made using this frequency. We will use the

term vanilla neural network, whenever the parameters are calculated by maximum likelihood

estimation and bayesian neural network whenever the parameters are calculated by bayesian

parameter estimation.

Gradient Descent

During training, we want to minimize the loss given the whole dataset, D. The derivative

of the loss function with respect to the parameters point to the steepest ascent. Thus, we want to

go in the negative direction of the gradient. However, the gradients do not give the distance to the

point where loss is minimum. They only give a direction. Therefore, we update the parameters,

after gradients are scaled with the learning rate, η :

w = w−η× ∂L(D)

∂w
(1.16)

13

Here the tuning of learning rate plays an important role for optimization, because if it’s too

small, we might get stuck in a local minima far from the minimum. If it’s too large, then it

might jump over a minimum. Moreover, this optimization procedure is an expensive operation.

Thus, we randomly select mini-batches of K samples from the training dataset, and optimize the

parameters with every mini-batch. The use of mini-batches increase the speed of optimization

and the stochasticity of this process provides an unbiased estimation of the true gradient. This

optimization method is called mini-batch gradient descent. In practice, gradients are calculated

by automatic differentiation tools and the optimization process is efficiently automated.

14

Chapter 2

Bayesian Learning

Modelling Uncertainty

Uncertainty plays a fundamental role in decision making and it emerges mainly from three

situations; uncertainty introduced by noisy data, uncertainty on the optimal model parameters

and uncertainty on the model structure.

Uncertainty Introduced by Data

In machine learning, models trained on observed data are often used to make predictions

given unobserved data[21], but how can we trust the observations? Measurements can be noisy

due to sensory error, such as noise introduced by a defective microphone or blurry images from

a damaged camera. Therefore, there is an intrinsic uncertainty that starts with measurement and

data acquisition. Given that neural networks have poor confidence calibration[22], this can have

dire consequences. Imagine a scenario, where an autonomous vehicle makes an overconfident

decision about the proximity of another vehicle due to a sensory error. If the driver is not aware

of the situation, this may result with a fatal traffic accident. However, if we can successfuly

convey this uncertainty to the model and calibrate the predictions accordingly, the driver can be

notified to take over the control before it is too late.

15

Uncertainty about Optimal Model Parameters

The goal of training is to learn a model rather than find the optimal values for individual

parameters[23]. In very large models we do not know the role individual parameters play in a

prediction. Therefore, it is not known whether a given set of parameters is optimal for predicting

unobserved data. In practice, datasets are often limited and we may unknowingly push our model

to overfit the dataset. Then, how do we adjust individual parameters and avoid situations like

overfitting? Regularizers such as weight decay are often used to prevent overfitting as they give

a degree of control over model complexity[24, 25]. It has also been demonstrated that they play

an ameliorative role in model calibration[22]. However, by themselves regularizers do not fully

convey the uncertainty on the individual parameters to the model.

Uncertainty on the Model Structure

There are many possible models for any given task. It might not be certain whether

support vector machines or neural networks would be optimal[26, 27]. Furthermore, the optimal

size of a model is unknown[28]. If the model has too many parameters for the task, it would

overfit the data. In order to prevent overfitting, we may want to limit the number of parameters.

However, if it is oversimplified, then the model would not be able reach our expectation and

might even perform worse.

Model Uncertainty in Decentralized Learning

Until now, we considered the motivation behind uncertainty modelling from a centralized

machine learning perspective. Now, let’s consider this topic from a decentralized perspective.

The uncertainty in the centralized setting is also relevant for decentralized machine learning.

The model on each participant is affected by the models on other devices. This increases data

uncertainty as a number of participants might contribute to the global state of the network

with knowledge acquired from faulty data. Moreover, decentralized learning must enable each

participant to internalize the knowledge acquired on other devices. Given that personalization is

16

a vital aspect of decentralized learning, from the perspective of an individual participant there is

an uncertainty over the true values of the parameters. Finally, when the participants train with

their own data, the information on data observed by other participants should not be lost. To the

contrary, individual contributions should be accumulated.

Bayesian Perspective on Uncertainty

The space of exploration is too large to search for the optimal probability distribution

and consider all the uncertainties. Therefore, they should be conveyed to model to make more

well-informed decisions. In the bayesian frontier, one view suggests to find the probability of

several different model sizes given data and use it when making predictions [23]. Suppose that

Mi represents an arbitrary model from a set of selected models appropriate for a task then:

p(Mi|D) =
P(D|Mi)P(Mi)

P(D)
(2.1)

p(D|Mi) =
∫

p(D|Mi,w)P(w|Mi)dw (2.2)

A second more prevalent view follows a prior-based approach, and argues that constraining

model-size is unnecessary as long as the prior-belief conveys the uncertainty to the model. Thus,

the number of parameters in a model should not be limited by Occam’s Razor or using the limited

observed data. Bayesian learning leads to an automatic Occam’s Razor and regulates the model

in terms of complexity with the prior. Moreover, it has consistently been shown that Bayesian

neural networks can reach the performance of well-regulated ordinary neural networks[29, 30].

In practice, using smaller Bayesian models are better as long as a similar performance is achieved

due to faster computations and the smaller memory allocation. This is especially important for

decentralized learning problems, where users usually have constrained resources.

17

Bayesian Parameter Estimation

Bayesian parameter estimation inherently provides a framework to formalize this uncer-

tainty and the ability to incorporate all available knowledge to the model. In Bayesian statistics,

posterior distribution gives context to the decision-making process. It is calculated by marginal-

ising over the parameters as in equation 1.6. However, calculating p(y|x) is not straightforward

and is computationally intractable for high-dimensional problems. Since it can not be solved in

polynomial time, we adopt an approximation approach. In other words, we try to answer queries

about the original distribution by simulating it. In the rest of this section, we will explore the

approximation methods namely, markov chain monte carlo sampling and variational inference.

Markov Chain Monte Carlo

For a long time, Markov Chain Monte Carlo (MCMC) methods were the preferred

method for approximating the posterior. MCMC methods that are closely related to our topic

include; Metropolis-Hastings sampling[31, 32, 33], Gibbs sampling (a special case of Metropolis-

Hastings) and Hybrid Monte Carlo (HMC)[18] methods. Although these methods are beyond

the scope of this work, it is important to have a general understanding of MCMC methods.

In machine learning and statistics, the widespread use of MCMC started in the early

90’s[34], where in 1995 Raymond Neal pioneered its use in Bayesian Neural Networks[35].

Instead of calculating the integral, MCMC methods generate random samples from the posterior

distribution and thereby simulate the posterior. After generating a large enough sample set, the

mean, variance or any other characteristic for the distribution can be estimated. The degree of

accuracy in this estimation can be adjusted as desired. As the number of samples grow, the

accuracy of the estimation increases. The reasoning behind MCMC can be induced from the fact

that the characteristics of a distribution can be empirically estimated from the samples drawn

from it. For example, given Gaussian distribution N(µ,σ), µ can be estimated from the random

18

variable x∼ N(µ,σ), since:

µ = E[x] =
∫

∞

−∞

x f (x)dx (2.3)

= lim
s→∞

1
s

s

∑
i=1

xi (2.4)

MCMC methods generate samples by fixing the remaining variables and previously drawn

samples. Let’s give a brief example to this ”sweeping” behavior from Gibbs sampling to clarify

it further[36]. Suppose we have a pair of random variables (X ,Y), we first sample from a prior

x0 ∼ q(x), then we alternately sample from the distributions as follows:

y0 ∼ p(y|X = x0)

x1 ∼ p(x|Y = y0)

y1 ∼ p(y|X = x1)

...

yi−1 ∼ p(y|xi−1)

xi ∼ p(x|yi−1)

...

xs ∼ p(x|ys−1)

ys ∼ p(y|xs)

The sequence of random variables generated by this process is called ”Gibbs sequence”:

x0,y0,x1,y1,x2, · · · ,yi−1,xi, · · · ,xs,ys. Using the Gibbs sequence with a large enough s, we can

get approximations close to the true distribution. However, it is particularly hard to successfully

approximate the true distribution for large datasets and complex models. It has been shown

that the convergence of MCMC methods require all parameters to have converged [37], which

portends bad convergence rates for models such as neural networks. Given the size of the modern

19

datasets and complexity of models such as deep neural networks, variational inference has been

adopted as the primary approximation method.

Variational Inference

The fundamental idea behind variational inference is to use a proxy distribution to

approximate the posterior. This is achieved by iterative optimizations over the latent variables of

this proxy distribution. In other words, we search over the space of approximating distributions

and find the distribution that is closest to the posterior. Since it follows an optimization approach,

it allows the use of stochastic optimization and distributed optimization methods. Therefore,

variational inference scales more easily to large datasets compared to MCMC methods. This

does not mean that variational inference is always better than MCMC methods, as they both

enjoy some theoretical guarantees. Although it is known that variational inference understates

the variance of the posterior density as a result of its objective function[38], it has also been

shown that this does not translate to accuracy loss [39]. Given that scalability is what essentially

matters for decentralized learning, in this work we stick to variational inference.

To find the distribution that closely approximates the posterior, we want to minimize a

measure of distance between the proxy and the posterior. Particularly, we find the distribution that

minimizes the Kullback-Leibler (KL) divergence. Following the classification example from the

previous chapter, let’s explore the theory behind variational inference. Assume that the training

dataset D is a collection of observations and corresponding labels D = (x0,y0),(x1,y1)...,(xn,yn).

There are n number of samples in D. When making a prediction ŷ given a test observation x̂,

we try to minimize the expected loss Ep(w|D)[p(ŷ|x̂,w)]. This translates to
∫

p(ŷ|x̂,w)p(w|D)dw,

and we had previously defined p(w|D) as:

p(w|D) =
p(D|w)p(w)

p(D)
(2.5)

20

p(D) is unfortunately intractable since it requires the calculation:

p(D) =
∫

p(w,D)dw (2.6)

Thus, rather than compute p(D), we approximate p(w|D) using a proxy distribution q(w|θ),

where the distribution q(.) is parametrized by the latent variables θ .

q∗(w|θ) =argmin
θ∈Θ

KL(q(w|θ)||p(w|D)) (2.7)

q∗(w|θ)≈p(w|D) (2.8)

After finding the set of latent variables that minimizes KL-divergence between the proxy and the

posterior, we find the expected loss as Eq∗(w|θ)[p(ŷ|x̂,w)]. KL(q(w|θ)||p(w|D)) can be calculated

as:

KL(q(w|θ)||p(w|D)) =
∫

q(w|θ)log
q(w|θ)
p(w|D)

dw (2.9)

=
∫

q(w|θ)log
q(w|θ)

p(w)p(D|w)
dw+ logp(D) (2.10)

With this factorization, KL divergence also yields a constant term, which is also called the log

evidence logp(D). Let’s note that it is a non-negative value. Moreover, since it is a constant term,

if only consider the first term during minimization. Thus, the equivalent objective function is:

argmin
θ∈Θ

∫
q(w|θ)log

q(w|θ)
p(w)

dw−
∫

q(w|θ)logp(D|w)dw (2.11)

argmin
θ∈Θ

KL[q(w|θ)||p(w)]−Eq(w|θ)[logp(D|w)] (2.12)

Let’s remember that the factorization of the objective function also yields the log evidence and

that KL divergence has a non-negative value. Therefore, minimizing KL divergence is equivalent

21

to maximizing the evidence lower bound (ELBO).

argmax
θ∈Θ

Eq(w|θ)[logp(D|w)]−KL[q(w|θ)||p(w)] (2.13)

logp(D)≥ Eq(w|θ)[logp(D|w)]−KL[q(w|θ)||p(w)] (2.14)

This objective function also outlines a trade-off between the log-likelihood and the prior. The

intuitive explanation is that maximizing Eq(w|θ)[logp(D|w)] forces the q(w|θ) to explain the

observed data well, while minimizing KL[q(w|θ)||p(w)] increases the similarity between q(w|θ)

and the prior p(w).

Decentralized Learning & Bayesian Parameter Estimation

Bayesian parameter estimation aims to incorporate all available knowledge to the model.

We have explored how it is achieved locally in centralized learning, but what does ”all available

knowledge” mean in the context of bayesian neural networks? In centralized learning, ”all

available knowledge” includes not only the uncertainties and observations, but also initial beliefs.

One can use informative priors to reflect the expert’s domain knowledge to the model. In

the context of decentralized learning, we can reinterpret the prior to include the accumulated

knowledge.

Priors are used to capture the prior beliefs and the process of learning starts with the

priors. Before any data is observed, the model would only have its prior. When the model

starts observing data, its learning would be built upon its prior beliefs and we update this to a

posterior distribution. After observing sufficient amount of data, model would depend more

on its observations. Its own experiences become more important in its decisions than its prior

beliefs.

In the context of collective intelligence, priors may be used to capture the previously

acquired knowledge. Let’s use an analogy to illustrate the utility of priors and prior beliefs. We

may not have experienced something on our own, but fortunately as humans we are capable of

22

using other’s experiences in our decision making. Before we experience a phenomena on our

own, our decisions would reflect our prior beliefs. As we get more experienced, we would rely

on our own experience rather than others.

Prior-based approaches to decentralized learning build upon prior beliefs and take ad-

vantage of the priors to accumulate knowledge. Suppose a new node joins to a decentralized

learning graph. The fledgling node has no data available. Fortunately, it is connected to the

graph. Its neighbors can communicate parts of their model with it. By doing so, they would

also be passing the accumulated knowledge. At the beginning, the node’s decisions would rely

more on other’s observations than its own. During learning, its model would be built on the

global state of the graph. Then, it may choose to broadcast its beliefs and acquired knowledge

to its neighbors. The node’s publicized beliefs would be ”absorbed” by the graph. This can be

generalized to all nodes. Learning in decentralized learning builds on the global state, which can

be conveyed to the nodes as prior belief.

Bayesian Neural Networks

The bayesian approach to neural networks conveys the aforementioned uncertainties to

the model. Research on bayesian neural networks build on the works of David MacKay[17]

and Radford M. Neal [18]. The intractabilities of bayesian learning is also inherent to bayesian

neural networks. Because of the complexities of neural networks, variational inference is often

the method of choice. Although variational inference renders the calculation of the posterior

to an approximation, the calculation of the expected log-likelihood remains to be impractical.

Therefore, once again we will have to approximate the expectation.

− logp(D|w)≈ 1
S

S

∑
k=1
−logp(D|wk = qk(θ)), (2.15)

where wk is the kth Monte Carlo sample drawn from a distribution q(θ) and S is the number of

samples drawn. This would still require a lot of computation if we need to sample S times for

23

each observation (x,y) ∈D. Fortunately, it has been shown that variational inference is amenable

to mini-batch gradient descent [40]. A more recent work approaches to the problem from a more

practical perspective [30] and improves upon [40]. In particular, [30] utilizes reparametrisation

on the expected log-likelihood MC estimates. All implementations in this work follow [30],

which was subjectively the simplest and most practical approach. The fundamental idea behind

this approach is to use the pathwise derivative estimator rather than the characteristic function

estimator [19]. Gradients can then be calculated simply by backpropagation and the parameters

can be updated with gradient descent. Reparametrization trick specifically recasts the weights as

q(θ ,ε), where ε is a random variable. In our implementations, we use a Gaussian distribution

parametrized by θ = (µ,σ) for the variational posterior q(w|θ). Then, using ε ∼ N(0,1), we

can sample the weights as w = µ +σε . Furthermore, we reparametrize σ as log(1+ exp(ρ)),

which always yields a non-negative value.

Local Reparametrization Trick

As previously mentioned, variational inference understates the variation of the poste-

rior. Fortunately, variance of the estimator can be further minimized by employing the local

reparametrization trick [41], which samples from the resulting activations rather than the weights.

The intuition here is as follows. The weights affect the expected log-likelihood only through

the activations. For a posterior, whose weights are parametrized by a Gaussian distribution, the

resulting activations would also be a Gaussian. Monte Carlo estimators accuracy can be adjusted

with the number of samples that it generates. When we sample from the weights to calculate

the expected log-likelihood, the variance of the estimator is inversely proportinal to the number

of the weights. The reparametrization allows us to sample from the activations. Given that the

number of activation variables are less than the number of the weights, the number of samples

required to be generated is lower.

24

Implementation

In this work, we follow the implementation introduced by Blundell [30]. Thereby, the

objective function F(D,θ)≈ KL[q(w|θ)||p(w|D)] is:

F(D,θ)≈
S

∑
s=1

logq(ws|θ)− logp(ws)− logp(D|ws), (2.16)

where ws is the sth sample generated and S is the total number of Monte Carlo samples. We also

draw comparisons between closed form and open form KL divergence calculations with respect

to performance. The objective function of the closed form KL divergence calculation translates

to:

F(Di,θ)≈
1
M

KL[q(w|θ)||p(w)]+ 1
S

S

∑
k=1
−logp(Di|wk), (2.17)

Since weights of the variational posterior are sampled from a diagonal Gaussian distribution, if

the prior is also a Gaussian KL-divergence can be calculated in closed-form. Let prior distribution

(p(w|α)) be a Gaussian with mean µα and variance σα , then the closed form KL divergence can

be calculated as follows:

KL[q(w|θ)||p(w;α)] =
1
2
[log
|Σα |
|Σθ |
−d + tr(Σ−1

α Σθ)+(µα −µθ)
T

Σ
−1
α (µα −µθ)] (2.18)

where θ = (µθ ,σθ) and α = (µα ,σα). Notice that KL divergence is calculated once for each

mini-batch instead of each wk sample. The detailed procedure for all implementations are given

below.

25

Table 2.1. Notation for Algorithm 1 & 2.

Algorithm Notation
N Number of samples in one mini-batch
M Number of mini-batches per epoch
S Number of times weights are sampled; Monte Carlo Estimator
D Training dataset
NOTE: wk is kth Monte Carlo sample drawn from the variational posterior
NOTE: D(m) is mth mini-batch
NOTE: θ = (µ,ρ)

Algorithm 1. Bayes by Backprop. KL Divergence calculted from log probabilities.
for i = 1 to M do:

for k = 1 to S do:
εk ∼ N(0, I)
wk← µ + log(1+ exp(ρ))◦ εk
logq(wk|θ), log p(wk;α)← Calculate log probabilities
logP(Di|wk)← Perform forward pass over the mini-batch

end for
F(Di,θ)← 1

S ∑
S
k=1

1
M [logq(wk|θ)− log p(wk;α)]+ 1

S ∑
S
k=1− log p(Di|wk)

θ ← θ +η∇θ F(Di,θ))
end for

Algorithm 2. Bayes by Backprop. KL Divergence calculted in closed form.
for i = 1 to M do:

for k = 1 to S do:
εk ∼ N(0, I)
wk← µ + log(1+ exp(ρ))◦ εk
logP(Di|wk)← Perform forward pass over the mini-batch

end for
F(Di,θ)← 1

M KL[q(w|θ)||p(w;α)]+ 1
S ∑

S
k=1− log p(Di|wk)

θ ← θ +η∇θ F(Di,θ))
end for

26

Chapter 3

Decentralized Learning

Introduction

Decentralized learning attracted tremendous attention to itself in the last few years. It is

a promising field in machine learning that enables learning on decentralized data. Particularly,

because it does not require data to be transmitted to an external server. Instead it requires only

the transmission of acquired knowledge. It shrinks the surface for privacy risks. Therefore, it

alleviates the problems engendered by data-privacy and data-ownership. It creates a framework

for which data-privacy can even further minimize the risks involved in knowledge sharing.

Moreover, it introduces a degree of personalization, whereas centralized learning methods

provide a one-for-all model to its users. For example, adapting the model to the individual

usage-patterns would increase the accuracy of recommender systems.

A more prominent application for decentralized learning would be in healthcare appli-

cations, where data-privacy is of utmost importance. Using decentralized learning in these

applications would not only mitigate the privacy-risks, but also facilitate a degree of personaliza-

tion for personalized care. Of course, the decisions would not only rely on the data provided by

the individual. It would also depend on the knowledge acquired from others.

The advantages of decentralized learning are not limited to personalization and data-

privacy. The centralized approaches require data to be collected in the central server. Often, data

is too large to be processed and has to be distributed. Therefore, the central server redistributes

27

data to other entities with adequate computational resources, where learning actually takes

place. However, this approach to learning creates a communication bottleneck and slows down

learning [13]. On the other hand, decentralized learning enjoys a relative freedom with respect

to communication costs. Moreover, decentralized learning can be easily scaled up. It has been

shown that more nodes can increase the speed of learning [13].

Due to the advances in mobile computing, we are witnessing a paradigm shift in comput-

ing. Mobile devices have become powerful enough to run complex models and the new trend is

to move computations to the ”client-side”. This is mostly incentivized from high infrastructure

costs induced by centralized approaches. In parallel, public concern on data-privacy increased

significantly, urging companies to take more precautions. Research on decentralized learning has

gained pace to provide a framework to achieve training independently and directly on the data

sources. There are two main approaches to decentralized learning: fully decentralized learning

and federated learning. Federated learning uses a central server to coordinate learning. At each

communication round, central server selects a subset of clients and sends them the global model.

Clients train the current global model with their local data and send the gradient updates. The

central server aggregates the gradient updates and computes the new global model. It is called

federated learning, because the learning is achieved asynchronously by a federation of clients.

Nevertheless, all this coordination creates traffic on the central server. Therefore, federated

learning is also subject to the aforementioned communication bottleneck. Fully-decentralized

learning enjoys a relative freedom, as all the calculations on the nodes are achieved independently

at all nodes and nodes communicate the acquired knowledge to their one-hop neighbors. The

sparsity of the communication graph enables ease of training in terms of communication traffic.

Background Work

Research on decentralized optimization is rooted in the seminal works published in

1980s [42, 43]. Decentralized optimization has applications in various areas including opinion

28

dynamics analysis, network learning, cooperative robotics, communication networks as well as

sensor networks. Decentralized learning approaches the empirical risk minimization problem

from a decentralized optimization perspective and find an optimal set of parameters over the

whole dataset. Many methods also try to minimize the communication costs. Significant progress

has been made in the field, but there is still room for improvement.

In essence, empirical risk minimization problem is minimization of the expected loss

over the training dataset:

w∗ = argmin
w∈Rd

L(w), where L(w) = ED[l(w)] =
1
n

n

∑
i=1

li(w), (3.1)

li(.) is the loss function that calculates the loss of w given datapoint (xi,yi) ∈ D and n is the

number of datapoints in the training dataset. We try to minimize the total loss over all datapoints

in D through optimizing w. The decentralized learning objective function can be written as:

w∗ = argmin
w∈Rd

L(w), where L(w) =
K

∑
k=1

nk

n
Lk(w), (3.2)

Lk(w) =
1
nk

nk

∑
i=1

li(w), (3.3)

where K is the number of nodes and nk is the number of samples in the local dataset of node

k. Lk is the expected loss given the local dataset at node k. If data was i.i.d amongst the nodes,

then the expected loss would be the same at all the nodes, E[Li(w)] = E[L j(w)],∀i, j ∈ P, and

the problem could essentially be solved like a centralized learning problem, since:

w∗ = argmin
w∈Rd

1
K

K

∑
k=1

E[Lk(w)] (3.4)

Unfortunately, data can be highly-unbalanced and non-iid in decentralized learning. Therefore,

we can not make such assumptions. Moreover, solving this problem is comparatively harder for

neural networks because of its size and complexity. In section 1.7, we explained how gradient

29

descent and stochastic gradient descent was applied in a centralized setting. Over the past

few years, federated optimization methods that combine the benefits of both GD and SGD

have been proposed [44]. However, federated optimization uses a central entity to coordinate

training, and keeps the most recent global model. Fully-decentralized optimization is a more

demanding problem, since learning is achieved with only the locally available information and

the communication between the immediate neighbors.

Gossip Algorithms

Gossip algorithms is an important family of algorithms, which has a problem definition

structurally close to empirical risk minimization. Gossip algorithms try to answer consensus

problems such as decentralized averaging [45, 46, 47], where the computational costs are

distributed amongst the nodes and nodes communicate with their neighbors to find a solution.

Moreover, gossip algorithms do not require synchronization between nodes. Note that empirical

risk minimization and decentralized averaging problems are both structured as a finite-sum. The

mean of data distributed amongst K nodes is:

xavg =
1
K

K

∑
k=1

xk, (3.5)

where xk is the datapoint on node k. [48, 49] consider a problem that includes non-smooth

functions and propose subgradient methods to address the problem.

Parallel Stochastic Gradient Descent Variants

The main idea behind parallel stochastic gradient descent (PSGD) variants is to use SGD

to train on local data in parallel and aggregate the acquired knowledge. In an early work on the

topic, the aggregation step is achieved by simply taking the average of local updates to get a

solution w∗ [50]. The synchronous and asynchronous decentralized parallel stochastic gradient

descent algorithms were analyzed by several works [51, 52, 53]. PSGD variants have also been

30

widely studied to solve large-scale machine learning problems in deep learning [54, 55]. The

federated averaging method improves upon EASGD and adapts it to the federated learning setting

[15]. LEASGD builds upon EASGD to provide a differentially-private method with reduced

communication costs [56]. Another recent work proposes a new algorithm D2 that is robust to

data variation among the nodes [57]. An overview of PSGD algorithms, including a extensive

comparison between the Centralized-PSGD (C-PSGD) and Decentralized-PSGD (D-PSGD)

is provided in [13]. Moreover, D-PSGD algorithms are demonstrated to perform better than

C-PSGD algorithm under certain conditions.

[58] analyzes the convergence of decentralized gradient descent approach to the consensus

problem. [59] presents EXTRA which uses a gradient tracking technique. It is the first modified

version of decentralized gradient descent that uses fixed-step size. Hence, it performs significantly

better than decentralized gradient descent. Another solution proposed in [60] builds on previous

stochastic incremental averaging gradient algorithms; SAG algorithm [61] and its unbiased

version SAGA [62]. However, SAG and SAGA is not very suitable for neural networks because

of their memory requirements. Lastly, [63] extends a distributed optimization method CoCoA

to the decentralized setting and provide significant improvements over previous methods for

learning linear models [64]. Decentralized optimization is a field that has received significant

attention from the machine learning community as well. [65] provides an overview of methods

from a machine learning perspective.

Federated Optimization

Federated optimization is similar to distributed optimization methods with more restric-

tive assumptions. The fundamental idea of federated optimization is that it requires a parameter

server that is shared by all the nodes. Rather than follow the decentralized optimization ap-

proaches explained in the previous section, the centralized distributed optimization methods are

extended to the federated learning setting [44]. Research on federated optimization is aligned

with this very idea and focus on communication cost optimization under stricter assumptions on

31

data distribution. One such problem is distributed mean calculation without assuming that data is

i.i.d.. Distributed mean calculation is a vital step in federated averaging, since the central server

computes a weighted average of the model updates to create the new global model at the end of

each communication round. This problem was most recently addressed with a communication

efficient solution in [66]. Since federated optimization is interested in solving optimization

problems in the federated learning setting, data is assumed to be massively distributed, highly

unbalanced and non-iid. The prob lem definition of federated optimization is clarified and

relevant optimization algorithms are reviewed by Konecny in [44]. Furthermore, Federated

SVRG (FSVRG) algorithm is proposed as a solution to the federated optimization problem.

FSVRG is a combination of DANE and SVRG algorithms [67, 68]. The main idea of FSVRG

is to utilize the quadratic perturbation trick of DANE and use SVRG to skip the expensive

operations inherent in DANE. More specifically, SVRG is used to calculate a stochastic update

rather than the exact minimum required by DANE. An extensive literature review on stochastic,

distributed and federated optimization methods can be found in [69].

Another line of work follow alternating direction method of multipliers (ADMM) [70] for

distributed optimization, which is well-suited to solve distributed convex optimization problems

with a central entity. [71] improves upon ADMM and modifies it for larger networks. [72]

proposes a broadcast-based method that enables agents to collectively solve the minimization

problem. [73] improves upon previous work and proposes a method that enables asynchronous

updates.

Personalized Optimization

The first significant step towards fully decentralized learning in the context of person-

alized models was made by Vanheasebrouck [14], which builds upon the gossip algorithms

literature. However, rather than learning a global objective, nodes define their own objective and

32

train accordingly. Since nodes define their own objectives, individual models are learnt as:

θ
ml
i ∈ argmin

θ∈Θ

L(θ ,Di), (3.6)

where θ ml
i is the learned model at node i. The network graph that defines the nodes and their

relations is assumed to be given as a weight matrix W and a set of edges E. The weights

are assumed to reflect task similarity between the nodes. Nodes are only aware of their one-

hop neighbors. The two asynchronous methods proposed in this work are model propagation

and collaborative learning. Throughout learning, both methods seek an adjustable degree of

smoothness over the network graph. Each node holds a confidence value on its training. By

weighting the contributions of the node’s local training and belief over its neighbors’ models to

the objective function, the confidence levels can be controlled and reflected to the training.

While model propagation achieves learning in two phases, collaborative learning in-

terweaves local learning and regularization using Alternating Direction Method of Multipliers

(ADMM) [70]. Nodes update their beliefs over their neighbors’ models at each communication

round. The objective function of model propagation is formalized as:

FMP(Θ) =
1
2
(

n

∑
i< j

Wi j||θi−θ j||2 +µ ∑
i=1

Diici||θi−θ
ml
i ||2), (3.7)

where Dii = ∏
n
j=1Wi j is used as a normalization term, µ > 0 is the trade-off parameter, and ci is

the node’s confidence on its local training. Note that this formalization carries the weighting

and thereby the trade-off inherent to decentralized learning. Minimizing the first term would

make the model more similar to the neighbors’ model, while minimizing the second term would

make the model to rely more on local data. By generalizing a semi-supervised label propagation

technique [74], an asynchronous algorithm is provided as a solution. Instead of learning the

subproblems locally and then propagating the model, collaborative learning approach enables the

nodes to learn simultaneously using both their local datasets and the behavior of their neighbors.

33

The objective function of collaborative learning is defined as:

FCL(Θ) =
n

∑
i< j

Wi j||θi−θ j||2 +µ

n

∑
i=1

DiiLi(θi) (3.8)

Notice that the first term is the same as before, enforcing a degree of similarity between a node

and its neighbors. However, the second term is changed and alleviates the accuracy decrease on

the local dataset. Authors reformulate the problem as a partial consensus problem and solve it

using a decentralized gossip algorithm. Bellet [75] builds on collaborative learning method and

uses a block coordinate ascent algorithm instead of ADMM to solve the objective function of

collaborative learning method. The proposed solution does not require any auxiliary variables.

Moreover, since it’s based on block gradient descent rather than ADMM, nodes can broadcast

their models to their neighbors at once. Thus, it significantly outperforms the previously proposed

ADMM-based algorithm. A recent work recasts the problem as a multi-task learning problem

[76]. Authors enable decentralized learning of personalized non-linear classifiers with their novel

reformulation based on l1-Adaboost [77] and present an asynchronous and decentralized solution

that relies on peer-sampling service [78]. With a combination of base predictors, authors depend

on l1-Adaboost’s ability to build non-linear classifiers. This ability separates their method from

previous works.

Peer-to-Peer Learning

Decentralized learning can be cast as a problem of social learning, since we try to

optimize models by training only on the observations residing on independent devices. The

observerations reflect usage patterns, users and their interactions. With a continuous flow of

observations, more iterations and communication between the devices, models would would

eventually get closer (if a consensus is sought). This is because we try to find the parameters that

are optimal not just for the local dataset, but also for the data residing on other devices.

Social learning studies the dynamics of learning in social networks and formulates the

34

problem as a dynamic game between agents in a complex network. In the social network setting,

people can be seen as willing participants that exchange their ideas, opinions and observations.

New hypotheses emerge through our interactions and individual observations, and some of our

hypotheses are invalidated with information exchange. Thus, we can easily reinterpret distributed

hypothesis and social learning problem as a decentralized learning problem in the context of

machine learning, since collective machine intelligence emerges through the interaction between

machines. In this section, we focus on a method that is based on distributed hypothesis testing

and social learning [79], and generalize this method to peer-to-peer learning [80].

Each node is able to sample local observations, or in other words have a local dataset

generated by an underlying distribution fθ∗(x). Peer-to-peer learning improves on the ideas

first introduced in [81]. [81] proposes a novel method that only requires a strongly connected

network for successful learning. It significantly loosens the assumptions on the network structure

compared to previous works, where an influential nodes with uninformative observations can

destabilize training. This is achieved by focusing on the neighborhood rather than the whole

network. Instead of making inferences about the beliefs of other nodes in the network, nodes

form their beliefs from a convex combination opinions of one-hop neighbors and their own belief.

At the beginning of each communication round, nodes observe the opinions of their neighbors.

Then, nodes update their Bayesian posterior belief based on their observations. Finally, they

merge their belief with the opinions observed at the beginning of the communication round

and form their final belief. In other words, the final belief of each node is constructed from

the average belief held in the neighborhood. Lalitha [79] follow the same procedure, but the

consensus average is calculated from the log-beliefs of the nodes. Nodes’ influence on the

consensus can be adjusted with the weights. Note that this happens prior to the learning process

in the next iteration. Hence, at the next iteration learning builds upon the consensus. [82, 83]

propose similar update rules with slight changes in the procedure, where [82] also analyze its

consistency and characterize the convergence rate for time-varying graphs. In depth analysis of

the learning rule introduced in [79] is given in [84].

35

Problem Setup

Until now, the problem setup was described without any mathematical notations. Here

we provide the problem definition and derive a solution following [80].

Communication Network

We consider a weighted and directed graph G with a set of N individual nodes [N] and

a stochastic matrix W that describes the social interaction between the nodes. N(i) defines the

neighborhood of i and i ∈ N(i). Moreover, if there is an edge going from j to i, then j ∈ N(i) and

i receives information from j. The influence of node j on node i is given by weight Wi j ∈ [0,1]

and Wii ∈ [0,1] is the confidence of i on its own knowledge. If Wi j = 0, then we can assume

j 6∈ N(i). Lastly, ∑ j∈N(i)Wi j = 1.

Data Distribution

Each node i ∈ [N] has access to a local dataset Di, where samples Xi in the local dataset

are generated from the usage patterns unique to i. This means that for i, j ∈ [N], Di and D j may

be statistically heterogeneous. Moreover, the total number of samples in Di is given as ni, where

Di = {(X0
i ,Y

0
i),(X

2
i ,Y

1
i), ...,(X

ni
i ,Y ni

i)}. Number of samples at each node may not be uniform

across the network, to the contrary it is more likely that data is distributed in a highly-unbalanced

manner. If the data is non-identically distributed, then the local likelihood functions Li will also

be dissimilar.

Model

We assume that each user/node has the capability to learn on its local dataset, and the

statistical models are structurally the same. Nodes learn the local likelihood distributions P(Di|θ)

based on their local datasets by adjusting the model’s parameters θ ∈Θ. Furthermore, we ensure

36

that nodes learn a global data distribution by minimizing the objective function:

argmin
π∈P(Θ)

Li(π) = EDi[P(y|x,π)], where Pi(y|x,π) =
∫

Θ

li(y;x,θ)π(θ)dθ , (3.9)

However, calculation of this integral is intractable with complex models such as neural net-

works. Therefore, we approximate P(y|x,π) by iterative optimizations on a proxy function q(.),

parameterized by θ . Thus, our objective function becomes:

argmin
π∈P(Θ)

EDi[KL[q(θ)||P(y|x,π)]], (3.10)

We recast this objective and make local bayesian updates to the variational posterior as follows:

qi(θ) = argmin
q(.)∈Q

KL[q(.)||π(θ)]−Eq(.)[logP(x|y)] (3.11)

The intuition behind the objective function is explained later in section 3.3.2.

Algorithm

The learning rule in peer-to-peer learning can be simplified to 3 steps as shown in

algorithm 3. At each communication round nodes first make a local bayesian update and

compute a new variational posterior. Secondly, nodes broadcast their posteriors to their one-hop

neighbors and receive the variational posterior from the neighbors. In the final step, each node

takes the weighted average of the beliefs. After the first communication round, nodes use the

average belief in the neighborhood as their prior.

Intuition

The objective function must seek a degree of consensus between the nodes and robust

acquisition of knowledge from the local datasets. In other we do actually seek an inexact solution

for the local dataset, which actually better generalizes to the global dataset. In ordinary neural

37

Algorithm 3. Peer-to-Peer Learning Procedure

1: Input: π
(0)
i ∈ P(Θ) and Di, ∀i ∈ [N]

2: for communication round c = 1 to C do:
3: for i = 1 to N do in parallel:
4: q(c)i (θ) = argminq(.)∈Q KL[q(.)||p(y|x,π(c−1)

i)]

5: Broadcast q(c)i to all j ∈ N(i) and receive q(c)j from all j ∈ N(i)

6: π
(c)
i (θ) =

exp(∑N
j=1 Wi jlogq(c)j (θ))∫

Θ
exp(∑N

j=1 Wi jlogq(c)j (φ))dφ

7: end for
8: end for

networks, this can be achieved by regularization methods. [14, 75] provides a solution to the

problem for ordinary neural networks. However, peer-to-peer learning [80] takes the bayesian

approach to decentralized learning by utilizing the prior (π(θ)) to convey the knowledge acquired

by the neighbors to the nodes decisions. Each node learns from its local data and communicates

its belief on the data distribution to its immediate neighbors. The first term in equation 3.11

increases the similarities between the prior and the variational posterior, and maximizing the

second term maximizes the log-likelihood. Thus, during local training we seek the set of

parameters that optimizes this trade-off.

After all one-hop neighbors declare their beliefs on the data distribution, the average

belief of the neighborhood can be passed on to the model with the prior. Until convergence,

the communication between the nodes ensures that models do not largely diverge from each

other. This is forged by taking a weighted average of the log-beliefs in [84]. The prior acts as

an anchor to the consensus, and limits the impact of local updates without the need to tune any

parameters. Although the node does not have direct access to its neighbors datasets, we aim to

pass the acquired knowledge such that it is able to identify and distinguish other prevalent data

distributions than its own. It is achieved with a manner of locality, as nodes do not communicate

with other parts of the network.

38

Implementation

In the implementation, algorithm 2 was used for the local bayesian updates in step 4.

However, it is important to note that any method that accurately approximates the posterior

P(y|x,π) can be used. As explained in section 2.3, the gradient calculation of Bayes-by-Backprop

method [30] is straightforward with backpropagation. More information on different methods

for step 4 can be found in section 2.2.

In the consensus step (step 6), the average belief in the neighborhood is calculated. When

the variational posterior qi(θ) is a Gaussian, it is particularly easy to make the calculations.

In other words, Q in step 2 would denote the family of Gaussian distributions. Since the

average belief in the neighborhood would also be a Gaussian, we can eliminate the intractable

normalization in step 6. Following [80], if we denote θ of the variational posterior qc
i is computed

as (µc
i ,Σ

c
i), then the parameters of π(θ), (µ̃c

i , Σ̃
c
i) is reduced to the following equations.

• The covariance matrices of the average belief for each node i ∈ [N] can be calculated as:

Σ̃
(c)−1

i = ∑
j∈N(i)

Wi jΣ
(c)
j
−1

(3.12)

• The mean of the average belief for each node i ∈ [N] can be calculated as:

µ̃
(c)
i = Σ̃

(c)
i ∑

j∈N(i)
Wi jΣ

(c)
j
−1

µ
(c)
j (3.13)

The effectiveness of the method is explored in the following sections.

Experiments

In this section, the performance of the peer-to-peer learning method is illustrated. Peer-

to-Peer learning is one of the few methods that has shown success in fully-decentralized training

of neural network models. In all of the experiments, a multi-layer perceptron architecture with 2

39

hidden layers of 200 neurons were used. Overall it was observed that algorithm 1 performs as

good as algorithm 2. However, since algorithm 2 is much faster, KL-divergence between the

variational posterior and the prior (π(θ)) was calculated in closed-form.

Common Experiment Settings

To make thorough analysis and illustrate different aspects of peer-to-peer learning in

the context of decentralized learning various experiment settings are required. Due to physical

limitations we considered much smaller graphs ranging from 2 to 100 nodes. In practice, there

can be millions or even billions of devices connected to the graph in various settings. However,

experiments support the convergence analysis and theoretical guarantees given in [80]. In all

experiments Adam optimizer with the learning rate of 0.001 was used to apply gradients to the

weights at the end of each iteration.

Datasets

It can be argued that moving on to more complex datasets would be a big problem for the

decentralized learning field, before establishing a robust experimental design. The lack of robust

experimental design is also faced in continual learning. A recent paper criticizes the established

benchmarks in the field and illustrates their weaknesses [85]. Especially for fully-decentralized

learning, the lack of work also limits our abilities to construct baselines. In this work, we only

demonstrate the capabilities of our method for image classification. To this end, two well-known

datasets were chosen: Fashion MNIST [86] and MNIST [87].

General Effectiveness

In this section, we consider the general effectiveness of peer-to-peer learning under

relaxed, but unrealistic assumptions. For this experiment, MNIST dataset was distributed

independently and identically among 9 nodes in a grid topology. Each node had approximately

the same number of training samples. The grid topology can be seen in figure 3.1. Weights

40

Figure 3.1. MNIST 9 Users with IID Data Experiment. MNIST dataset is independently and
identically distributed over a 9-Node Graph.

Figure 3.2. General Effectiveness with Simple Assumptions. The figure demonstrates the test
accuracies of each user throughout the training. Overall, they reach 98% test accuracy, same as
the baseline.

were equally distributed to the edges and according to the degrees of the nodes such that

Wi j =
1
|N(i)| ,∀ j ∈ N(i). For centralized approaches the baseline accuracy is 98%, and it can

clearly be seen that all the nodes in the graph 3.2 are gather around the 98% test accuracy. This

experiment demonstrates that peer-to-peer learning method is suitable for simple tasks with IID

distribution and knowledge acquired at one node gradually disseminates to the rest of the nodes.

Effects of Non-IID and Unbalanced Data Partitioning

In this section, we consider a more difficult task than the previous experiment. In practice,

datasets will reflect the usage patterns of the users. Therefore, local datasets of the nodes may be

statistically heterogenous. Moreover, data may be distributed in a highly unbalanced manner.

For this reason, in this experiment we explore the setting where the central node has all the

41

Figure 3.3. MNIST Highly-Unbalanced and Non-IID Data with Grid Topology. The yellow node
has all the samples from the first 8 digits (48000 samples) and rest of the dataset is distributed
equally to the blue nodes.

handwritten digits of classes 0,1,2,3,4,5,6,7 and the rest of the training dataset (classes 8,9) is

randomly and equally distributed amongst the 8 remaining nodes. As a result of this non-iid

distribution, there are approximately 48000 samples in the central node, while other nodes each

have about 1500 samples. The topology and distribution is more clearly illustrated in figure 3.3.

Social interaction matrix W remains the same as the previous experiments, all neighbors have

equal influence over node i,∀i ∈ [N]. Even under such circumstances, it can be seen from figure

3.4 that there is little change in the learning curve and all the nodes are gathered aroun 98% test

accuracy. Unfortunately, peer-to-peer learning method is not successful in all cases. We will see

in the following experiments that the success of the experiment can be attributed to the careful

placement of the classes.

Effects of User Placement and Influence

The previous experiment demonstrated the performance of peer-to-peer learning method

on a more complicated task, where data was distributed highly non-iid and unbalanced. We also

assumed that the most-informative node would also be placed at the most influential place in

the graph. In the grid-like structure seen in figure 3.5, the central node is the most influential

node when all nodes are affected equally by their immediate neighbors. Here we investigate a

different situation, where the most informative node is at the least influential spot at the grid. In

this experiment, only the place of the most informative node is changed. Other variables remain

the same. The results are demonstrated in figure 3.6. When the users are placed according to

42

Figure 3.4. MNIST 9 Users with Unbalanced and Non-IID Data Experiment. A grid-like graph
structure was simulated where each row and column had 3 users connected to each other. The
central node had 48000 samples from classes 0,1,2,3,4,5,6,7 and the remaining samples were
distributed evenly amongst the rest of the nodes. All the nodes reach 98% overall accuracy, same
as the baseline.

Figure 3.5. Most Informative Node at the Least Influential Spot Experiment Setting. The yellow
node has 48000 samples from classes 0,1,2,3,4,5,6,7 and the remaining samples are distributed
evenly to the blue nodes. Due to the social interaction matrix, in this case corner nodes are the
least influential nodes in this grid-like structure, where as center nodes are the most influential.

their local datasets informativeness, the convergence rate would be higher. For example, in

the previous section, we went through a case, where the most informative node was placed at

the center. Given the social interaction matrix, where edges on each row are equally weighted,

the central node is the most influential node over all the network. Thus, we can expect higher

convergence rates. Due to the simplicity of the task, the difference between figure 3.3 and figure

3.5 is not noticable. The learning curve is similar and final test accuracy of the nodes (98%)

are negligibly close. The social interaction matrix and node placement are both effective for the

resulting influences of the nodes. In the next section, using a different topology we analyze the

effects of social interaction matrix.

43

Figure 3.6. Most Informative Node at the Least Influential Spot. All the nodes reach 98% overall
accuracy. Information flows regardless where the most informative node is located in the graph.
If a node learns to distinguish between the classes, no matter where it is placed on the graph, the
acquired knowledge will spread through the network.

Figure 3.7. Star Topology and Fashion MNIST Data Distribution for Weight Matrix Analysis.
The most informative node is the yellow node with 48000 samples from 8 classes, whereas blue
nodes have 1500 samples from 2 classes. The confidence factor of the blue nodes is given by α

and blue node’s confidence

Effects of the Weight Matrix

In this section, we investigate how the social interaction matrix affects learning. It is

important to note that the influence of the nodes in the network depends on the eigenvector

centrality of the social interaction matrix. The eigenvector centrality of a stochastic matrix such

as W can be easily calculated by taking the power of W until convergence. The eigenvector

centrality should be fair to give each node to have an influence over the global learning. It should

not vanish nor should it explode. This was an important issue to address before running any

tests. Especially for larger graphs, it becomes harder to assign individual weights to each edge.

For this reason, the experiment setting with only 9 nodes was created as shown in figure 3.7.

In this experiment we use Fashion MNIST dataset, where the training dataset includes 60000

44

Figure 3.8. Effects of the Weight Matrix. Social interaction matrix reflects the confidence on the
beliefs. When badly designed, the performance of the method suffers.

samples from 10 different clothing classes. The number of samples from the first 8 classes are

48000 and the last two classes have 12000 samples in total. The first node colored with yellow

contains all the samples from the first 8 classes, and blue nodes share the rest of the training

dataset randomly and equally. Yellow node can be seen as the master node, since it has a similar

role as the central server in federated learning. It is connected to all the other nodes in the graph,

and information from one node to another can only flow through it. The row corresponding to the

yellow node in the social interaction matrix is given as W1 = [1/9, ...,1/9], where all the nodes

have equal influence on the average belief. For the blue nodes weights are assigned as; Wi1 = α

and Wii = 1−α . Since blue nodes are only connected to the yellow node, all other elements

on their corresponding row in W would take zero. Compared to MNIST, Fashion MNIST

includes more complex texture and shapes. Therefore, with the MLP architecture achieves 88%

accuracy with centralized training. With this setting, we expect the convergence rate to grow, as

α increases. Indeed, it can be clearly seen from figure 3.8 that this is the case. When α = 0.1,

the average test accuracy converges to 77.5%, which is nearly 10% lower than the baseline. It

can be seen that the more confidence we place on the most informative node, the closer the

learning curve converges to the baseline. Thus, the design of the social interaction matrix highly

affects the performance of learning. Unfortunately, in very large graphs it becomes especially

harder to design such a graph. Moreover, the decentralized learning graph would be dynamic in

45

practice and data distributions will change quite often. The social interaction matrix, and the

ability to assign different confidence levels to neighbors, enables a framework for explore and

exploit in learning. For example it can be leveraged to adjust dissimilarity between the models

and make them more personalized. It can also be seen that the average test accuracy over all the

test dataset is affected highly affected by such adjustment. Therefore, the design of the weight

matrix requires a lot of thought and it is an interesting problem that should be robustly addressed

by future work.

Effects of Dissimilar Data Distributions

Decentralized learning will face various challenging data distributions in the real world.

In this section, we investigate if peer-to-peer learning is robust against different data partitions.

To this end, we use Fashion MNIST dataset which is comparatively more complex than MNIST.

In this case, we do not want a complex graph topology nor do we want an unbalanced distribution.

Therefore, we create a 10-node directed circular graph, where two types of nodes placed in an

alternating fashion. There are 5 nodes of type-1 and 5 nodes of type-2. Odd nodes are type

1 and even nodes are type-2. Nodes only receive information from their clockwise neighbor

and only send information to their counter-clockwise neighbor. Social interaction matrix was

adjusted such that nodes have more confidence in their neighbor than themselves. In particular,

Wii = 0.25 and Wi j = 0.75, where j = i+ 1 ∀ i < 10 and j = 1 for node 10. The rest of the

elements in W are zero. Since we aim to test how peer-to-peer learning performs with different

data partitions, we made two experiments with different data partitioning strategies. Even though

the data partitioning was changed very slightly, the performance strangely suffered under the

second case. In the first case, we consider a situation where all the resembling classes are

collected under the same type of node. The graph structure and class selection can be seen on

figure 3.9. All samples from the shirt-like classes are independently and identically distributed

to yellow nodes (type-1). The remaining samples from the classes including three shoe-like

classes, trouser and bag are independently and identicaly distributed to blue nodes (type-2).

46

Figure 3.9. Dissimilar Data Distribution and Circular Graph Topology. Samples from all
resembling classes are collected under one type.

Figure 3.10. Effects of Very Dissimilar Data Distributions. All nodes achieve a test accuracy
around 85%.

Results are demonstrated in figure 3.10. It can be seen that even with the sparsity of the graph

average test accuracy converges to 85%. There is a slight decrease in test accuracy (∼3%)

compared to the centralized learning method. This can still be considered a successful result

given that there was little optimization made for the learning. In the first case, we consider

a situation where all the resembling classes are collected under the same type of node. The

graph structure and class selection can be seen on figure 3.9. All samples from the shirt-like

classes are independently and identically distributed to yellow nodes (type-1). The remaining

samples from the classes including three shoe-like classes, trouser and bag are independently

and identicaly distributed to blue nodes (type-2). It can be seen that even with the sparsity of the

graph average test accuracy converges to 85%. There is a slight decrease in test accuracy (3̃%)

compared to the centralized learning method. This can still be considered a successful result

given that there was little optimization made for the learning. Although the results of the first

47

Figure 3.11. Dissimilar Data Distribution and Circular Graph Topology. shirt and trouser classes
are exchanged between types. Blue nodes also learn the distribution of a shirt-like class.

case may raise the expectations from the model, peer-to-peer learning underperforms for the

second case. In the first case, all resembling classes were represented on the same nodes. The

other nodes did not have any samples from these classes. We now consider a situation where this

is not case. The graph structure and class selection can be seen on figure 3.11. All samples from

the shirt-like classes except the shirt class and sampels from the trouser class are independently

and identically distributed to yellow nodes (type-1). The remaining samples from the classes

including three shoe-like classes, shirt and bag are independently and identicaly distributed to

blue nodes (type-2). Notice that only the shirt class and the trouser class are exchanged between

the two types. The number of samples at each node is equal. Moreover, now blue nodes have

samples from a shirt-like class in their local dataset.

The results for the experiment are demonstrated in figure 3.12. While there is only a

negligible decrease in accuracy for the yellow nodes, the blue nodes (even nodes) strangely

do not seem to be learning. The average test accuracy of the blue nodes is 67% about 15%

lower than yellow nodes. Nodes ability to distinguish the classes and classify them correctly

are demonstrated in figure 3.13. It can be clearly seen from the confusion matrices in figure

3.13 that nodes are highly biased towards their own datasets. Nodes are not accurately learning

to distinguish between the classes, when they have samples from resembling classes in their

own dataset. This is because peer-to-peer learning is suffering from a problem also common

in prior-based continual learning approaches [85]. In continual learning prior-based methods

are successful in transferring learning between the tasks, if the tasks are dissimilar and do not

48

Figure 3.12. Fashion MNIST Non-IID Data Experiment with Resembling Classes.

resemble each other. However, they fail when it’s not the case. Similarly, peer-to-peer learning

method is successful, when all the samples from the resembling classes are in the same dataset.

Unfortunately, in other cases, it fails. It’s critical that the prior of the local bayesian model

adequately represents the uncertainty and conveys this uncertainty to the decisions made by the

model. For the good case, peer-to-peer learning is successful because of the dissimilarity in

data distributions. In bayesian learning, we expect the decisions to reflect the uncertainty of the

prediction. Since learning builds on the prior, especially at the beginning of each communication

round, model’s decision would depend heavily on the prior. In the good case, since datasets

are very dissimilar, model would make inconfident decisions and the gradients would be small.

Due to this regulatory effect from the prior, the model would learn gradually. However, when

there are resembling classes, at the beginning of the training models would confident incorrect

decisions. When a model makes a confident prediction, the gradients would be proportionally

larger. After the first communication round, all nodes would have knowledge about the average

belief in their neighborhood and this would be assigned as their prior for the next communication

round. The first decision models make would be heavily biased towards the average belief of

the neighborhood. Normally, we wish the gradients to change the weights such that the model

becomes more successful in classifying the samples. Let’s illustrate how the gradients would

affect learning with an example. After the first communication round the blue node would

49

(a) Type-1 Node Confusion Matrix (b) Type-2 Node Confusion Matrix

Figure 3.13. Confusion Matrices of Two Nodes with Resembling Class Bias. The confusion
matrix on the left side demonstrates that type-1 nodes do not learn the encoding of the samples
from ”shirt” class (label 6) and is heavily biased towards the shirt-like classes that are represented
in its local dataset. Confusion matrix on the right side shows that type-2 nodes become heavily
biased towards ”shirt” class (label 6)and incorrectly classify the shirt-like classes as ”shirt”.

have some information about the shirt-like classes in the yellow nodes. During local learning,

it would get a sample from the shirt class, which heavily resembles the shirt-like samples in

the yellow node. It would make a confident but incorrect decision on the shirt sample. Thus,

the gradients that are essentially used to classify shirt would be large, but also weights that

distinguish other shirt-like classes would be heavily affected. If the uncertainty was well-reflected

to the decisions, this would not have been a problem, learning would be stable and successful.

Unfortunately, peer-to-peer learning is unsuccessfuly for these cases due to the accumulation of

gradient mis-estimates. This shows a common challenge faced by both prior-based continual

learning aproaches and bayesian decentralized learning. The gradient mis-calculations are the

main culprit for the poor performance of peer-to-peer learning. The idea implemented in peer-to-

peer learning is quite intuitive, where we use the average belief of the neighborhood as the prior

to learning in the next communication round. In the context of bayesian decentralized learning,

approximation of the local variational posteriors affect the global learning as well. Thus, a more

accurate approximation should be provided in order to make peer-to-peer learning more practical.

50

Figure 3.14. Bayesian Decentralized Asynchronous Learning Graph Topology. Yellow node
acts as the central server; it does not have a local dataset and it is used to construct the global
model. A subset of the blue nodes are selected at each communication round to be trained.

This is an interesting challenge that may be addressed by future work.

Asynchronous Training

As the communication network gets larger, it becomes impossible to coordinate the users

to train simultaneously. Therefore, decentralized learning methods that enable asynchronous

learning is more favorable. In this section, we analyze the performance of bayesian decentralized

asynchronous learning based on peer-to-peer learning and federated learning. Graph structure

can be seen in figure 3.14. Only a subset of the network train their models simultaneously. Yellow

node acts as the central server in federated learning; it is only used to accumulate knowledge

and transfer it between the nodes. All nodes have equal influence over the global model, i.e.

W1i = 1/100∀i ∈ [N], i 6= 1. Moreover, the training is initialized with the global model such that

Wi1 = 1,∀i ∈ [N], i 6= 1 and all other elements in the weight matrix is zero. Similar to federated

learning, at each communication round a subset of the nodes are randomly selected and trained in

parallel. We use a 100-node graph with a star topology. MNIST dataset was distributed equally

to the blue nodes, but to test the robustness of the method several different data distributions was

considered. Each client trains for only an epoch with a batch size of 10 except the third case,

where models were trained with a batch size of 128. Results can be seen from figure 3.15. In the

figure, line plots demonstrate the average test accuracy of the blue nodes and test accuracy of the

yellow node for different cases. When data is distributed in an iid manner among the blue nodes,

the method was largely successful. We first experimented with the case, where only half of the

clients were trained at the same time. In the second case, 30% of the clients were selected at each

51

Figure 3.15. Bayesian Decentralized Asynchronous Learning.

communication round. It can be seen that in both cases test accuracies of the models reach the

baseline test accuracy (98%). In the third case, once again we randomly distribute 600 samples

to each blue node, but only 20 nodes are trained at the same time and a batch size of 128 is used.

It can be seen that the model starts converging much later in training. Given that the learning

curve did not change in the first two cases, this can be due to the scarcity of local updates. In the

fourth case, the training dataset was sorted by label and split into 500 shards of size 120. After

the shards were shuffled, they were distributed to the blue nodes. Each blue node received 5

shards with 600 samples in total. Although we increased the number asynchronous clients to 40,

the method performs poorly with only 80% test accuracy. This is due to the inherent issues of

peer-to-peer learning. When dissimilarity between datasets are small, nodes fail to distinguish

the similar data distributions that is not represented in their own local dataset. In the fifth case,

the training dataset was sorted by label and split into 200 shards of size 300. After the shards

were shuffled, they were distributed to the blue nodes. Each blue node received 2 shards with 600

samples in total. At each communication round, 20 nodes were selected and trained in parallel.

The performance is much worse than all other cases. The test accuracy converged to 70% test

accuracy.

The method used in this experiment is only a special case of peer-to-peer learning.

Although it performed poorly for some of the cases, this is largely due to problems explained

in section 3.4.6. If this problem can be addressed, our experiments suggest that peer-to-peer

52

learning is amenable to asynchronicity.

53

Chapter 4

Conclusion

Decentralized learning is a growing field that requires more attention from the research

community. It is not just important for the democratization of machine intelligence, but it is also

a less expensive method to train powerful statistical models. Due to its setting and scale, there

are many interesting challenges to be solved.

In this work, we approached decentralized learning from a bayesian learning perspective,

which enables the embodiment of all available knowledge in the model. It provides an automatic

Occam’s Razor, i.e. it does not require regularization methods as Maximum-Likelihood Estima-

tion does. It inherently has the ability to convey the uncertainties to the decisions that the model

makes. For this reason, it can be used to make better calibrated and more informed decisions.

This especially important for deep learning models, where interpretability of the model is limited

and individual roles of model parameters are unknown. There are many methods to approach

deep learning from a bayesian perspective. In section 2.3, we attempted to explain some of the

methods.

To the best of our knowledge, peer-to-peer learning is the first bayesian approach to

decentralized learning [80]. Moreover, some existing prior-based approaches in continual

learning can be generalized to it [88, 89]. It has been demonstrated by the experiments in the

previous chapter that peer-to-peer learning is generally effective, but it can be further improved.

54

Future Work

Decentralized learning is open to improvements from many aspects. Complex challenges

faced in the field require creative solutions. These challenges include secure multi party compu-

tation of the global updates, differential privacy, the optimization of the social interaction matrix

and improvements for posterior approximation in bayesian parameter estimation.

Secure Computation and Differential Privacy

In general, it is best to restrict direct access to user models. Moreover, communication

between neighbors must be secure. This is only possible through encryption. In federated

learning, there are some practical methods to achieve secure aggregation of gradient updates

[90]. However, it remains an important problem in decentralized learning. Methods that target

this problem should make ensure secure knowledge sharing and secure computations for model

updates.

Decentralized learning shrinks the risk surface for data-leaks as users won’t be sharing

their knowledge with a central entity. However, it is possible to infer the samples back from the

statistical models. This is because models learn the encoding of local data distributions. In other

words, they carry an encoding of the samples they were trained on. For this reason, differential

privacy has become a trending topic in machine learning. In the context of decentralized learning,

knowledge learnt at one node spreads through the graph and all models would eventually embody

the knowledge learnt at other nodes. Therefore, addressing this problem is of utmost importance

to protect user’s privacy.

Social Interaction Matrix

In federated averaging, the heuristic for weights is incredibly simple. Given its simplicity

and the lack of theoretical guarantees, it still demonstrates very successful results. This is not

the case in peer-to-peer learning. Optimal weight matrix depends on the graph structure, data

55

distribution and the complexity of the tasks at hand. In practice, the social interaction matrix

would also be dynamic. It is unrealistic to assume that is given. The problem is more challenging

where graph is large and nodes only have access to information about their one-hop neighbors.

Gradient Estimation

In the previous chapter, it was demonstrated that peer-to-peer learning method performs

poorly for non-iid data. This is because the uncertainty is not well-represented by the prior and

it is not conveyed into the model’s decisions. As a result, the gradients are misestimated and

overall test accuracy of the models suffer. Thus, to address this problem gradients must be more

accurately estimated with a better representation of the uncertainty. To this end, methods that

more closely approximate the posterior can increase the performance of peer-to-peer learning

in the local bayesian update step. One such method is Bayesian Gradient Descent, which was

proposed for task agnostic continual learning [91].

Conclusion

In this work, we introduced decentralized learning, bayesian neural networks, and

implemented a bayesian decentralized learning method. Peer-to-peer learning provides the

theoretical guarantees that federated learning does not. However, it must be improved to be

practical. To the best of our knowledge, there is very little work in fully-decentralized learning

that targets neural networks and complex tasks. Introduction of new methods would stimulate

innovation and decentralized learning can become a driving force behind machine intelligence.

We are at the beginning of a special phase for machine learning.

56

Bibliography

[1] S. Luo, H. Xia, T. Yoshida, and Z. Wang, “Toward collective intelligence of online commu-
nities: A primitive conceptual model,” Journal of Systems Science and Systems Engineering,
vol. 18, no. 2, pp. 203–221, 2009.

[2] B. Kogut and A. Metiu, “Open-source software development and distributed innovation,”
Oxford review of economic policy, vol. 17, no. 2, pp. 248–264, 2001.

[3] D. H. Wolpert and K. Tumer, “An introduction to collective intelligence,” arXiv preprint
cs/9908014, 1999.

[4] E. Alpaydin, Introduction to machine learning. MIT press, 2014.

[5] D. P. Kingma, Variational inference & deep learning: A new synthesis. PhD thesis, PhD
thesis, University of Amsterdam, 2017.

[6] A. K. Jain and B. Chandrasekaran, “39 dimensionality and sample size considerations in
pattern recognition practice,” Handbook of statistics, vol. 2, pp. 835–855, 1982.

[7] S. J. Raudys and A. K. Jain, “Small sample size effects in statistical pattern recognition:
Recommendations for practitioners,” IEEE Transactions on Pattern Analysis & Machine
Intelligence, no. 3, pp. 252–264, 1991.

[8] A. Halevy, P. Norvig, and F. Pereira, “The unreasonable effectiveness of data,” IEEE
Intelligent Systems, 2009.

[9] C. Sun, A. Shrivastava, S. Singh, and A. Gupta, “Revisiting unreasonable effectiveness
of data in deep learning era,” in Proceedings of the IEEE international conference on
computer vision, pp. 843–852, 2017.

[10] D. Steinkraus, I. Buck, and P. Simard, “Using gpus for machine learning algorithms,” in
Eighth International Conference on Document Analysis and Recognition (ICDAR’05),
pp. 1115–1120, IEEE, 2005.

[11] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand, M. Andreetto,
and H. Adam, “Mobilenets: Efficient convolutional neural networks for mobile vision
applications,” arXiv preprint arXiv:1704.04861, 2017.

57

[12] A. Acquisti, A. Friedman, and R. Telang, “Is there a cost to privacy breaches? an event
study,” ICIS 2006 Proceedings, p. 94, 2006.

[13] X. Lian, C. Zhang, H. Zhang, C.-J. Hsieh, W. Zhang, and J. Liu, “Can decentralized algo-
rithms outperform centralized algorithms? a case study for decentralized parallel stochastic
gradient descent,” in Advances in Neural Information Processing Systems, pp. 5330–5340,
2017.

[14] P. Vanhaesebrouck, A. Bellet, and M. Tommasi, “Decentralized collaborative learning of
personalized models over networks,” in International Conference on Artificial Intelligence
and Statistics (AISTATS), 2017.

[15] H. B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas, “Communication-
efficient learning of deep networks from decentralized data,” 2016.

[16] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” nature, vol. 521, no. 7553, p. 436,
2015.

[17] D. J. MacKay, Bayesian methods for adaptive models. PhD thesis, California Institute of
Technology, 1992.

[18] R. M. Neal, Bayesian learning for neural networks, vol. 118. Springer Science & Business
Media, 2012.

[19] Y. Gal, Uncertainty in deep learning. PhD thesis, PhD thesis, University of Cambridge,
2016.

[20] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” arXiv preprint
arXiv:1412.6980, 2014.

[21] Z. Ghahramani, “Probabilistic machine learning and artificial intelligence,” Nature, vol. 521,
no. 7553, p. 452, 2015.

[22] C. Guo, G. Pleiss, Y. Sun, and K. Q. Weinberger, “On calibration of modern neural
networks,” in Proceedings of the 34th International Conference on Machine Learning-
Volume 70, pp. 1321–1330, JMLR. org, 2017.

[23] C. E. Rasmussen and Z. Ghahramani, “Occam’s razor,” in Advances in neural information
processing systems, pp. 294–300, 2001.

[24] C. M. Bishop, “Regularization and complexity control in feed-forward networks,” in
Proceedings International Conference on Artificial Neural Networks ICANN, vol. 95,
pp. 141–148, 1995.

[25] J. E. Moody, “The effective number of parameters: An analysis of generalization and
regularization in nonlinear learning systems,” in Advances in neural information processing
systems, pp. 847–854, 1992.

58

[26] E. Byvatov, U. Fechner, J. Sadowski, and G. Schneider, “Comparison of support vector
machine and artificial neural network systems for drug/nondrug classification,” Journal of
chemical information and computer sciences, vol. 43, no. 6, pp. 1882–1889, 2003.

[27] I. Yilmaz, “Comparison of landslide susceptibility mapping methodologies for koyulhisar,
turkey: conditional probability, logistic regression, artificial neural networks, and support
vector machine,” Environmental Earth Sciences, vol. 61, no. 4, pp. 821–836, 2010.

[28] I. J. Myung, “The importance of complexity in model selection,” Journal of mathematical
psychology, vol. 44, no. 1, pp. 190–204, 2000.

[29] Y. Gal and Z. Ghahramani, “Bayesian convolutional neural networks with bernoulli approx-
imate variational inference,” arXiv preprint arXiv:1506.02158, 2015.

[30] C. Blundell, J. Cornebise, K. Kavukcuoglu, and D. Wierstra, “Weight uncertainty in neural
networks,” arXiv preprint arXiv:1505.05424, 2015.

[31] N. Metropolis and S. Ulam, “The monte carlo method,” Journal of the American statistical
association, vol. 44, no. 247, pp. 335–341, 1949.

[32] N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller, “Equation
of state calculations by fast computing machines,” The journal of chemical physics, vol. 21,
no. 6, pp. 1087–1092, 1953.

[33] L. E. Baum, T. Petrie, G. Soules, and N. Weiss, “A maximization technique occurring in the
statistical analysis of probabilistic functions of markov chains,” The annals of mathematical
statistics, vol. 41, no. 1, pp. 164–171, 1970.

[34] A. E. Gelfand and A. F. Smith, “Sampling-based approaches to calculating marginal
densities,” Journal of the American statistical association, vol. 85, no. 410, pp. 398–409,
1990.

[35] C. Andrieu, N. De Freitas, A. Doucet, and M. I. Jordan, “An introduction to mcmc for
machine learning,” Machine learning, vol. 50, no. 1-2, pp. 5–43, 2003.

[36] G. Casella and E. I. George, “Explaining the gibbs sampler,” The American Statistician,
vol. 46, no. 3, pp. 167–174, 1992.

[37] J. Gill, “Is partial-dimension convergence a problem for inferences from mcmc algorithms?,”
Political Analysis, vol. 12, no. 4, 2004. PDF.

[38] D. M. Blei, A. Kucukelbir, and J. D. McAuliffe, “Variational inference: A review for
statisticians,” Journal of the American Statistical Association, vol. 112, no. 518, pp. 859–
877, 2017.

[39] D. M. Blei and M. I. Jordan, “Variational inference for dirichlet process mixtures,” Bayesian
analysis, vol. 1, no. 1, pp. 121–143, 2006.

59

[40] A. Graves, “Practical variational inference for neural networks,” in Advances in neural
information processing systems, pp. 2348–2356, 2011.

[41] D. P. Kingma, T. Salimans, and M. Welling, “Variational dropout and the local reparame-
terization trick,” in Advances in Neural Information Processing Systems, pp. 2575–2583,
2015.

[42] J. N. Tsitsiklis, Problems in decentralized decision making and computation. PhD thesis,
Massachusetts Institute of Technology, 1984.

[43] J. Tsitsiklis, D. Bertsekas, and M. Athans, “Distributed asynchronous deterministic and
stochastic gradient optimization algorithms,” IEEE transactions on automatic control,
vol. 31, no. 9, pp. 803–812, 1986.

[44] J. Konečnỳ, H. B. McMahan, D. Ramage, and P. Richtárik, “Federated optimization:
Distributed machine learning for on-device intelligence,” arXiv preprint arXiv:1610.02527,
2016.

[45] D. Kempe, A. Dobra, and J. Gehrke, “Gossip-based computation of aggregate information,”
in 44th Annual IEEE Symposium on Foundations of Computer Science, 2003. Proceedings.,
pp. 482–491, IEEE, 2003.

[46] S. Boyd, A. Ghosh, B. Prabhakar, and D. Shah, “Gossip algorithms: Design, analysis and
applications,” in Proceedings IEEE 24th Annual Joint Conference of the IEEE Computer
and Communications Societies., vol. 3, pp. 1653–1664, IEEE, 2005.

[47] S. Boyd, A. Ghosh, B. Prabhakar, and D. Shah, “Randomized gossip algorithms,”
IEEE/ACM Transactions on Networking (TON), vol. 14, no. SI, pp. 2508–2530, 2006.

[48] A. Nedic and A. Ozdaglar, “Distributed subgradient methods for multi-agent optimization,”
IEEE Transactions on Automatic Control, vol. 54, no. 1, p. 48, 2009.

[49] J. C. Duchi, A. Agarwal, and M. J. Wainwright, “Dual averaging for distributed optimiza-
tion: Convergence analysis and network scaling,” IEEE Transactions on Automatic control,
vol. 57, no. 3, pp. 592–606, 2011.

[50] M. Zinkevich, M. Weimer, L. Li, and A. J. Smola, “Parallelized stochastic gradient descent,”
in Advances in neural information processing systems, pp. 2595–2603, 2010.

[51] S. S. Ram, A. Nedić, and V. V. Veeravalli, “Asynchronous gossip algorithms for stochastic
optimization,” in Proceedings of the 48h IEEE Conference on Decision and Control (CDC)
held jointly with 2009 28th Chinese Control Conference, pp. 3581–3586, IEEE, 2009.

[52] S. S. Ram, A. Nedić, and V. V. Veeravalli, “Asynchronous gossip algorithm for stochastic
optimization: Constant stepsize analysis,” in Recent Advances in Optimization and its
Applications in Engineering, pp. 51–60, Springer, 2010.

60

[53] K. Srivastava and A. Nedic, “Distributed asynchronous constrained stochastic optimization,”
IEEE Journal of Selected Topics in Signal Processing, vol. 5, no. 4, pp. 772–790, 2011.

[54] J. Dean, G. Corrado, R. Monga, K. Chen, M. Devin, M. Mao, A. Senior, P. Tucker, K. Yang,
Q. V. Le, and A. Ng, “Large scale distributed deep networks,” in Advances in neural
information processing systems, pp. 1223–1231, 2012.

[55] S. Zhang, A. E. Choromanska, and Y. LeCun, “Deep learning with elastic averaging sgd,”
in Advances in Neural Information Processing Systems, pp. 685–693, 2015.

[56] H.-P. Cheng, P. Yu, H. Hu, F. Yan, S. Li, H. Li, and Y. Chen, “Leasgd: an efficient
and privacy-preserving decentralized algorithm for distributed learning,” arXiv preprint
arXiv:1811.11124, 2018.

[57] H. Tang, X. Lian, M. Yan, C. Zhang, and J. Liu, “D2: Decentralized training over decen-
tralized data,” arXiv preprint arXiv:1803.07068, 2018.

[58] K. Yuan, Q. Ling, and W. Yin, “On the convergence of decentralized gradient descent,”
SIAM Journal on Optimization, vol. 26, no. 3, pp. 1835–1854, 2016.

[59] W. Shi, Q. Ling, G. Wu, and W. Yin, “Extra: An exact first-order algorithm for decentralized
consensus optimization,” SIAM Journal on Optimization, vol. 25, no. 2, pp. 944–966, 2015.

[60] A. Mokhtari and A. Ribeiro, “Dsa: Decentralized double stochastic averaging gradient
algorithm,” The Journal of Machine Learning Research, vol. 17, no. 1, pp. 2165–2199,
2016.

[61] M. Schmidt, N. Le Roux, and F. Bach, “Minimizing finite sums with the stochastic average
gradient,” Mathematical Programming, vol. 162, no. 1-2, pp. 83–112, 2017.

[62] A. Defazio, F. Bach, and S. Lacoste-Julien, “Saga: A fast incremental gradient method with
support for non-strongly convex composite objectives,” in Advances in neural information
processing systems, pp. 1646–1654, 2014.

[63] L. He, A. Bian, and M. Jaggi, “Cola: Decentralized linear learning,” in Advances in Neural
Information Processing Systems, pp. 4536–4546, 2018.

[64] M. Jaggi, V. Smith, M. Takác, J. Terhorst, S. Krishnan, T. Hofmann, and M. I. Jordan,
“Communication-efficient distributed dual coordinate ascent,” in Advances in neural infor-
mation processing systems, pp. 3068–3076, 2014.

[65] V. Cevher, S. Becker, and M. Schmidt, “Convex optimization for big data: Scalable,
randomized, and parallel algorithms for big data analytics,” IEEE Signal Processing
Magazine, vol. 31, no. 5, pp. 32–43, 2014.

[66] A. T. Suresh, F. X. Yu, S. Kumar, and H. B. McMahan, “Distributed mean estimation with
limited communication,” in Proceedings of the 34th International Conference on Machine
Learning-Volume 70, pp. 3329–3337, JMLR. org, 2017.

61

[67] O. Shamir, N. Srebro, and T. Zhang, “Communication-efficient distributed optimization us-
ing an approximate newton-type method,” in International conference on machine learning,
pp. 1000–1008, 2014.

[68] R. Johnson and T. Zhang, “Accelerating stochastic gradient descent using predictive vari-
ance reduction,” in Advances in neural information processing systems, pp. 315–323,
2013.

[69] J. Konečnỳ, “Stochastic, distributed and federated optimization for machine learning,”
arXiv preprint arXiv:1707.01155, 2017.

[70] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Distributed optimization and
statistical learning via the alternating direction method of multipliers,” Foundations and
Trends R© in Machine learning, vol. 3, no. 1, pp. 1–122, 2011.

[71] E. Wei and A. Ozdaglar, “Distributed alternating direction method of multipliers,” in 2012
IEEE 51st IEEE Conference on Decision and Control (CDC), pp. 5445–5450, IEEE, 2012.

[72] A. Makhdoumi and A. Ozdaglar, “Broadcast-based distributed alternating direction method
of multipliers,” in 2014 52nd Annual Allerton Conference on Communication, Control, and
Computing (Allerton), pp. 270–277, IEEE, 2014.

[73] R. Zhang and J. Kwok, “Asynchronous distributed admm for consensus optimization,” in
International Conference on Machine Learning, pp. 1701–1709, 2014.

[74] D. Zhou, O. Bousquet, T. N. Lal, J. Weston, and B. Schölkopf, “Learning with local and
global consistency,” in Advances in neural information processing systems, pp. 321–328,
2004.

[75] A. Bellet, R. Guerraoui, M. Taziki, and M. Tommasi, “Personalized and private peer-to-peer
machine learning,” arXiv preprint arXiv:1705.08435, 2017.

[76] V. Zantedeschi, A. Bellet, and M. Tommasi, “Communication-efficient and decen-
tralized multi-task boosting while learning the collaboration graph,” arXiv preprint
arXiv:1901.08460, 2019.

[77] C. Shen and H. Li, “On the dual formulation of boosting algorithms,” IEEE Transactions
on Pattern Analysis and Machine Intelligence, vol. 32, no. 12, pp. 2216–2231, 2010.

[78] M. Jelasity, S. Voulgaris, R. Guerraoui, A.-M. Kermarrec, and M. Van Steen, “Gossip-based
peer sampling,” ACM Transactions on Computer Systems (TOCS), vol. 25, no. 3, p. 8, 2007.

[79] A. Lalitha, A. Sarwate, and T. Javidi, “Social learning and distributed hypothesis testing,”
in 2014 IEEE International Symposium on Information Theory, pp. 551–555, IEEE, 2014.

[80] A. Lalitha, O. C. Kilinc, T. Javidi, and F. Koushanfar, “Peer-to-peer federated learning on
graphs,” 2019.

62

[81] A. Jadbabaie, P. Molavi, A. Sandroni, and A. Tahbaz-Salehi, “Non-bayesian social learning,”
Games and Economic Behavior, vol. 76, no. 1, pp. 210 – 225, 2012.

[82] A. Nedić, A. Olshevsky, and C. A. Uribe, “Nonasymptotic convergence rates for cooperative
learning over time-varying directed graphs,” in 2015 American Control Conference (ACC),
pp. 5884–5889, IEEE, 2015.

[83] S. Shahrampour, A. Rakhlin, and A. Jadbabaie, “Distributed detection: Finite-time analysis
and impact of network topology,” IEEE Transactions on Automatic Control, vol. 61, no. 11,
pp. 3256–3268, 2015.

[84] A. Lalitha, T. Javidi, and A. D. Sarwate, “Social learning and distributed hypothesis testing,”
IEEE Transactions on Information Theory, vol. 64, no. 9, pp. 6161–6179, 2018.

[85] S. Farquhar and Y. Gal, “Towards robust evaluations of continual learning,” arXiv preprint
arXiv:1805.09733, 2018.

[86] H. Xiao, K. Rasul, and R. Vollgraf, “Fashion-mnist: a novel image dataset for benchmarking
machine learning algorithms,” arXiv preprint arXiv:1708.07747, 2017.

[87] Y. LeCun, C. Cortes, and C. Burges, “Mnist handwritten digit database,” AT&T Labs
[Online]. Available: http://yann. lecun. com/exdb/mnist, vol. 2, p. 18, 2010.

[88] C. V. Nguyen, Y. Li, T. D. Bui, and R. E. Turner, “Variational continual learning,” arXiv
preprint arXiv:1710.10628, 2017.

[89] F. Zenke, B. Poole, and S. Ganguli, “Continual learning through synaptic intelligence,”
in Proceedings of the 34th International Conference on Machine Learning-Volume 70,
pp. 3987–3995, JMLR. org, 2017.

[90] K. Bonawitz, V. Ivanov, B. Kreuter, A. Marcedone, H. B. McMahan, S. Patel, D. Ram-
age, A. Segal, and K. Seth, “Practical secure aggregation for privacy-preserving machine
learning,” in Proceedings of the 2017 ACM SIGSAC Conference on Computer and Commu-
nications Security, pp. 1175–1191, ACM, 2017.

[91] C. Zeno, I. Golan, E. Hoffer, and D. Soudry, “Task agnostic continual learning using online
variational bayes,” arXiv preprint arXiv:1803.10123, 2018.

63

	Signature Page
	Table of Contents
	List of Figures
	List of Tables
	Acknowledgements
	Abstract of the Thesis
	Introduction
	Machine Learning
	Decentralized Learning
	Motivation
	The setting of Decentralized Learning
	Federated Learning
	Neural Networks
	Parameter Estimation

	Bayesian Learning
	Modelling Uncertainty
	Bayesian Parameter Estimation
	Markov Chain Monte Carlo
	Variational Inference
	Decentralized Learning & Bayesian Parameter Estimation

	Bayesian Neural Networks
	Local Reparametrization Trick
	Implementation

	Decentralized Learning
	Introduction
	Background Work
	Gossip Algorithms
	Parallel Stochastic Gradient Descent Variants
	Personalized Optimization

	Peer-to-Peer Learning
	Problem Setup
	Algorithm

	Experiments
	Common Experiment Settings
	General Effectiveness
	Effects of Non-IID and Unbalanced Data Partitioning
	Effects of User Placement and Influence
	Effects of the Weight Matrix
	Effects of Dissimilar Data Distributions
	Asynchronous Training

	Conclusion
	Future Work
	Secure Computation and Differential Privacy
	Social Interaction Matrix
	Gradient Estimation

	Conclusion

	Bibliography

