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Introduction
Focal adhesions are integrin-mediated cell matrix junctions 

connecting the ECM to the actin cytoskeleton. The ECM pro teins 

bind to the extracellular domains of integrin het  erodimers, 

whereas the actin stress fi bers link to integrin cytoplasmic tails 

via large molecular complexes. These complexes comprise 

 actin-binding/modulating proteins, protein kinases, phospha-

tases, GTPases, and adaptor proteins (Lo, 2006) and are targets 

of regulatory signals that control focal adhesions’ function, 

including cell adhesion, migration, proliferation, differentiation, 

and gene expression (Schwartz et al., 1995; Hynes, 2002). 

Dysregulation of these components is associated with diseases 

such as cancer (Lo, 2006).

Tensin is a gene family with four members (tensin1, 

tensin2, tensin3, and cten), and their encoding proteins are 

localized to the cytoplasmic side of focal adhesions. Tensin1, 

the prototype of the family, interacts with actin fi laments in 

multiple ways (Lo et al., 1994) and contains an Src homology 

2 (SH2) domain that binds to phosphotyrosine-containing 

proteins (Davis et al., 1991; Cui et al., 2004), followed by a 

phosphotyrosine binding (PTB) domain that interacts with the 

NPXY motif on the β integrin cytoplasmic tails (Calderwood 

et al., 2003). Tensin2 and -3 have domain structures that are 

very similar to those of tensin1, although the central regions are 

diverse (Lo, 2004). On the other hand, cten (C-terminal tensin 

like) is a distant member of the family with smaller molecular 

mass, and the only sequence homologous region is the SH2 and 

PTB domains. The cten gene localizes to chromosome 17q21, a 

region frequently deleted in prostate cancer (Gao et al., 1995; 

Hagmann et al., 1996; Williams et al., 1996), and its expression 

is reduced or absent in prostate cancer (Lo and Lo, 2002), 

suggesting a role of cten as a tumor suppressor. However, the 

potential mechanism has not been well understood. In this 

study, we have identifi ed deleted in liver cancer 1 (DLC-1) as 

one of the binding partners of cten, mapped the binding sites on 

cten and DLC-1, and demonstrated the biological relevance of 

this interaction. Our results provide new insight into how cten 

may be involved in preventing tumor formation.
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T
he tensin family member cten (C-terminal tensin 

like) is an Src homology 2 (SH2) and phosphotyro-

sine binding domain–containing focal adhesion 

molecule that may function as a tumor suppressor. How-

ever, the mechanism has not been well established. We 

report that cten binds to another tumor suppressor,  deleted 

in liver cancer 1 (DLC-1), and the SH2 domain of cten is 

responsible for the interaction. Unexpectedly, the interac-

tion between DLC-1 and the cten SH2 domain is indepen-

dent of tyrosine phosphorylation of DLC-1. By site-directed 

mutagenesis, we have identifi ed several amino acid 

residues on cten and DLC-1 that are essential for this 

interaction. Mutations on DLC-1 perturb the interaction 

with cten and disrupt the focal adhesion localization 

of DLC-1. Furthermore, these DLC-1 mutants have lost 

their tumor suppression activities. When these DLC-1 mu-

tants were fused to a focal adhesion targeting sequence, 

their tumor suppression activities were signifi cantly 

 restored. These results provide a novel mechanism 

whereby the SH2 domain of cten-mediated focal adhe-

sion localiza tion of DLC-1 plays an essential role in its 

 tumor suppression activity.
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Results and discussion
To understand cten’s biological function and the potential 

mechanism involved, we set up experiments to identify cten-

associated proteins by yeast two-hybrid assay, mass spectrometry 

analysis, and candidate screenings. One of the molecules 

identifi ed is DLC-1, which is a tumor suppressor that regulates 

actin stress fi bers and cell adhesion and inhibits tumor cell 

growth and migration (Yuan et al., 1998, 2003b; Ng et al., 2000; 

Goodison et al., 2005; Wong et al., 2005). Its rat homologue, 

p122RhoGAP (RhoGTPase-activating protein), is isolated as 

a phospholipase Cδ1–interacting protein (Homma and Emori, 

1995) and is localized to caveolae (Yamaga et al., 2004) and 

focal adhesions (Kawai et al., 2004). To demonstrate the relation 

between DLC-1 and cten, an expression vector encoding GFP 

or GFP–DLC-1 was transfected into cten-expressing A549 

cells and molecules associated with GFP–DLC-1 or GFP were 

immunoprecipitated with anti-GFP antibodies. The immunoblot 

analysis indicated that endogenous cten was present in the 

GFP–DLC-1–associated complexes, but not in the GFP control 

(Fig. 1 A). The reciprocal experiment also detected GFP–DLC-1 in 

the cten immunocomplexes (unpublished data). The interaction 

was further examined by a luciferase reporter–based mammalian 

two-hybrid assay. The positive interaction shown by a fourfold 

enhancement of luciferase activity was detected when DLC-1 

and cten were cotransfected into NIH 3T3 cells (Fig. 1 B). 

 Finally, to test the interaction between endogenous DLC-1 

and cten, we screened numerous cell lines and found that 

MLC-SV40 (immortalized normal prostate epithelialcell line) 

expressed both cten and a low level of DLC-1. This cell line 

was used for coimmunoprecipitation assay, and the results 

demonstrated that cten interacted with endogenous DLC-1 

(Fig. 1 C).

To demonstrate the direct interaction and map the regions 

responsible for the binding, we have applied yeast two-hybrid 

assay. As expected, the full-length DLC-1 binds to intact cten 

(Fig. 2, A and B). With truncated constructs, the interaction 

regions were initially mapped to the N-terminal half (1–800) 

of DLC-1 and the C-terminal region (327–715) of cten, 

which contains the SH2 and PTB domains. We generated and 

examined constructs containing only the SH2 or PTB domain. 

Surprisingly, it was the SH2 domain that interacted with DLC-1. 

Because all tensin members contain the highly conserved SH2 

domains (Lo, 2004), we predicted that they were likely to bind 

to DLC-1 as well. Indeed, DLC-1 interacted with SH2 domains 

of tensin1, -2, and -3 in the yeast two-hybrid assay (Fig. 2 B). 

Furthermore, when the arginine residue at the critical position, 

βB5, in the SH2 domain of cten was mutated into alanine 

(R474A), it abolished the interaction. Therefore, we have 

confi rmed that the SH2 domain of cten binds to DLC-1. By a 

similar approach, we have defi ned the binding region on DLC-1 

(1–535; Fig. 2 B).

Figure 1. Identifi cation of DLC-1 as a cten binding partner. (A) A549 cells 
were transfected with pEGFP (lane 1) or pEGFP–DLC-1 (lane 2). Cell lysates 
were coimmunoprecipitated with anti-GFP and analyzed by immunoblotting 
(IB) with anti-cten (left) or anti-GFP (right). The arrow indicates cten, and 
arrowheads show GFP and GFP–DLC-1. (B) NIH 3T3 cells in 24-well dishes 
were cotransfected with pCMV-AD-cten, and pCMV-BD vector with no 
insert as a negative control (column 1), pCMV-BD-DLC-1 (column 2), pCMV-
BD-DLC-1S440A (column 3), or pCMV-BD-DLC-1Y442F (column 4), and together 
with the reporter plasmid pFR-Luc. The luciferase activities were measured 
by luminometry and shown as relative light units (RLU) per milligram of 
cellular proteins. Data are from two independent triplicate experiments. 
Error bars indicate mean ± SD. (C) MLC SV-40 cell lysates were 
coimmunoprecipitated with normal rabbit serum (lane 1) or anti–DLC-1 
(lane 2) and analyzed by immunoblotting with anti-cten (left) or anti–DLC-1 
(right). The arrow indicates cten, and the arrowhead shows DLC-1.

Figure 2. Determination of binding regions on cten and DLC-1 and their 
binding specifi cities. (A) Schematic diagram of cten and DLC-1 and their 
segments that were used for mapping the binding sites. (B) AH109 yeast 
cells transformed with the indicated plasmids and grown on two-dropout 
plates were restreaked on four-dropout plates. (C) Bacterial lysates 
containing Xpress–DLC-1 (113–535) were incubated with immobilized 
GST (lane 1) or GST-cten SH2 (lane 2). After washing, the associated 
proteins were analyzed by immunoblotting (IB) with anti-Xpress antibody. 
(D) 0.5 μg of purifi ed GST-cten SH2 (lane 1), GST-Src SH2 (lane 2), and 
GST-p85 SH2 (lane 3) recombinant proteins were incubated with DLC-1 
peptide (CSRLSIY442DNVPG) immobilized on agarose beads. After 
washing, the associated proteins were analyzed by immunoblotting with 
anti-GST antibody. (E) 0.5 μg of purifi ed GST-cten SH2 recombinant 
proteins were incubated with DLC-1 peptide (CSRLSIY442DNVPG; lane 1), 
tyrosine-phosphorylated DLC-1 peptide (CSRLSIpY442DNVPG; lane 2), 
EGFR peptide (CSVQNPVY1086HNQP; lane 3), or tyrosine-phosphor-
ylated EGFR peptide (CSVQNPVpY1086HNQP; lane 4) immobilized on 
agarose beads. After washing, the associated proteins were analyzed 
by immunoblotting with anti-GST antibody.
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The SH2 domain is known as a binding motif for phos-

photyrosine-containing peptides. However, yeast cells contain a 

very low level of, if any, phosphotyrosine. To test that this SH2–

DLC-1 interaction is truly independent of tyrosine phosphory-

lation and to further map the binding region, because shorter 

fragments of N-terminal DLC-1 displayed self-activation 

activity in the yeast two-hybrid system, we performed a pull-

down assay using recombinant GST-SH2 and Xpress–DLC-1 

fragments expressed in bacteria, which contain no tyrosine 

kinase at all. The result showed that recombinant SH2 remained 

bound to DLC-1 (113–535; Fig. 2 C). Together with our results 

using synthetic peptides for binding (see the following 

paragraph), we have confi rmed that the interaction is phospho-

tyrosine independent.

It has been shown that the interaction of the SH2 domain 

of SAP (also named SH2D1A), the gene product mutated 

in X-linked lymphoproliferative syndrome, to lymphocyte 

coreceptor SLAM is independent of tyrosine phosphorylation 

(Sayos et al., 1998). In fact, the SH2 domain of SAP interacts with 

non–tyrosine-phosphorylated peptides containing S/TIYxxI/V 

(Poy et al., 1999), and we found that there was one such site, 
440SIYDNV, in DLC-1. Coincidentally, this site resides in the 

SH2 binding region (113–535). When either S440 or Y442 was 

mutated (S440A or Y442F), the interaction was abolished in 

both mammalian and yeast two-hybrid assays (Fig. 1 B and 

Fig. 2 B), demonstrating that this is indeed the essential site on 

DLC-1 for binding to the SH2 domain of cten. Interestingly, 

although the SAP SH2 domain binds to a similar motif, SAP 

SH2 domain does not interact with DLC-1 (Fig. 2 B). We further 

tested whether DLC-1 might be able to interact with other SH2 

domain containing proteins, such as Src and p85, by a pull-

down assay using the DLC-1 peptide (CSRLSIY442DNVPG)–

conjugated beads. As shown in Fig. 2 D, only cten SH2 domain 

could interact with the DLC-1 peptide. In addition, cten SH2 do-

main did not bind to an EGFR peptide (CSVQNPVY1086HNQP) 

regardless of whether Y1086 was phosphorylated (Fig. 2 E). 

These results demonstrated the binding specifi city between the 

DLC-1 and cten SH2 domain. Furthermore, we tested whether syn-

thetic tyrosine-phosphorylated peptide (CSRLSIpY442DNVPG) 

interacted with the cten SH2 domain and found that phosphory-

lation on Y442 slightly reduced the interaction (Fig. 2 E). Be-

cause no report had documented the tyrosine phosphorylation 

of DLC-1 and we did not detect tyrosine phosphorylation 

of DLC-1 (113–535) when incubated with recombinant Src 

(unpublished data), the biological relevance of this reduced 

binding is currently unknown.

Because both cten and DLC-1 localize to focal adhesions 

and a previous study found that p122RhoGAP (117–533; Kawai 

et al., 2004), corresponding to DLC-1 (125–541), contained 

the focal adhesion targeting site, which overlapped with the 

SH2 binding site identifi ed in this study, we speculated that 

the DLC-1 and cten interaction might be responsible for recruit-

ing DLC-1 to focal adhesions. If this is the case, S440A and Y442F 

DLC-1 mutants would not be able to localize to focal adhesions. 

In contrast to the colocalization of cten and GFP–DLC-1 

(1–535) at focal adhesion sites, the GFP–DLC-1 (1–535)S440A 

or GFP–DLC-1 (1–535)Y442F was diffusely distributed in the 

cytoplasm (Fig. 3 A), indicating that the SH2 binding site 

is essential for DLC-1’s focal adhesion localization. The 

protein expressions of these constructs were confi rmed by 

Figure 3. Subcellular localization of DLC-1 and its recruitment by cten 
SH2. (A) A549 cells grown on coverslips were transfected with pEGFP–
DLC-1 (1–535), pEGFP–DLC-1 (1–535)S440A, or pEGFP–DLC-1 (1–
535)Y442F. After labeling with anti-cten antibodies followed by Alexa Fluor 
594–conjugated secondary antibody, cells were visualized with a 
confocal microscope. Arrows indicate cten and GFP fusion protein 
colocalized at focal adhesions. Arrowheads show only cten at focal 
adhesions. About 100 GFP-positive cells were examined in each 
transfection. More than 90% of GFP-positive cells showed focal adhesion 
localization when transfected with GFP–DLC-1 (1–535), and no GFP-
positive cells transfected with DLC-1 mutants showed focal adhesion 
localization. Cell lysates from A549 transiently expressing GFP–DLC-1 
(1–535; lane 1), GFP–DLC-1(1–535)S440A (lane 2), or GFP–DLC-1 
(1–535)Y442F (lane 3) were immunoprecipitated with anti-GFP and ana-
lyzed by immunoblotting with anti-GFP to show similar amounts, and 
correct sizes of recombinant proteins were expressed. (B) A549 cells 
grown on coverslips were cotransfected with pDsRed1/pEGFP–DLC-1 
(1–535) or pDsRed1-cten SH2-SKL/pEGFP-DLC-1 (1–535). Cells were vis-
ualized with a confocal microscope. Note that the DsRed-cten SH2-SKL 
and GFP–DLC-1 (1–535) were colocalized at peroxisomes (arrows), 
although some GFP–DLC-1 (1–535) proteins were still detected at focal 
adhesions (at different focus plane; not depicted), as predicted, because 
of the presence of endogenous tensins in A549 cells. Arrowheads show 
only GFP–DLC-1 (1–535) at focal adhesions. Bars, 10 μm.
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immunoblotting (Fig. 3 A). To further demonstrate that the cten 

SH2 domain is crucial for recruiting DLC-1 to a subcellular 

compartment, we generated a DsRed-cten SH2-SKL construct 

so that the DsRed-cten SH2 domain would be fused with the 

peroxisomal targeting peptide, SKL (Gould et al., 1989), at the 

C terminus when expressed and be targeted to peroxisomes. 

As shown in Fig. 3 B, although the DsRed was distributed in the 

cytoplasm, the DsRed-cten SH2-SKL proteins were accumu-

lated at peroxisomes. When these constructs were cotransfected 

with GFP–DLC-1 (1–535), the DsRed-cten SH2-SKL was able 

to recruit some GFP–DLC-1 (1–535) to peroxisomes, demon-

strating that cten SH2 alone is suffi cient for the interaction and 

recruitment of DLC-1.

DLC-1 was identifi ed as a candidate tumor suppressor, 

and its expression was lost or down-regulated in various can-

cers, including liver, breast, lung, brain, stomach, colon, and 

prostate, because of either genomic deletion or aberrant DNA 

methylation (Yuan et al., 1998, 2003a; Ng et al., 2000; Kim et al., 

2003; Plaumann et al., 2003; Wong et al., 2003; Song et al., 

2006). It has been reported that reexpression of DLC-1 in liver, 

breast, and lung cancer cell lines inhibits cancer cell growth 

(Yuan et al., 2003b, 2004; Zhou et al., 2004; Goodison et al., 

2005; Wong et al., 2005), supporting its role as a tumor suppres-

sor. DLC-1 contains three conserved domains: the sterile α mo-

tif (SAM), RhoGAP, and steroidogenic acute regulatory-related 

lipid transfer (START) domains (Fig. 2 A). SAM domains have 

been implicated in protein–protein interactions and are highly 

versatile in their binding partners. Some SAM domains may 

bind to each other to form homodimers or polymers, whereas 

others can interact with other proteins, or even RNA and DNA 

(Qiao and Bowie, 2005). START domains are predicted to con-

tain a binding pocket for lipids, and modifi cations in the pocket 

may determine ligand binding specifi city and function (Iyer et al., 

2001). RhoGAP domains convert the active GTP-bound Rho 

proteins to the inactive GDP-bound state and function as nega-

tive regulators of RhoGTPases, which are involved in actin 

cytoskeleton organization, focal adhesion assembly, and cell 

proliferation (Moon and Zheng, 2003), and dysregulation of 

Rho activity has been implicated in tumorigenesis (Jaffe and 

Hall, 2002). A recent study demonstrated that the RhoGAP and 

START domains of DLC-1 are required for its tumor suppres-

sion activity (Wong et al., 2005). However, these two domains 

are not suffi cient because expression of the RhoGAP and 

START domains alone does not inhibit tumor cell growth (Wong 

et al., 2005). In fact, the shortest fragment with the suppression 

activity contains, in addition to the RhoGAP and START 

 domains, a region overlapping with the SH2 binding site, which 

is critical for focal adhesion localization. We hypothesized that 

the appropriate focal adhesion localization is essential for 

DLC-1’s functions, including tumor cell suppression activity. 

Figure 4. Colony formation and cell growth assays in MDA-MB-468 cells 
transfected with wild-type and mutant DLC-1. (A) Cells were transfected 
with the indicated constructs. After being cultured in media containing 0.8 
mg/ml G418 for 2 wk, G418-resistant colonies were stained with crystal 
violet. (B) The histogram shows the colony formation assay of GFP (column 1), 
GFP–DLC-1 (column 2), GFP–DLC-1S440A (column 3), GFP–DLC-1Y442F 
(column 4), GFP–FAB–DLC-1 (column 5), GFP–FAB–DLC-1S440A (column 6), 
and GFP–FAB–DLC-1Y442F (column 7) from four independent experiments. 
(C) G418-resistant MDA-MB-468 cells (2 × 105) expressing the indicated 
proteins were seeded in triplicate in 60-mm dishes. Cells were harvested at 
24-h intervals for 4 d, and the numbers of viable cells were counted by 
trypan blue exclusion assay with a hematocytometer. Error bars indicate 
mean ± SD. (D) Cell lysates from MDA-MB-468 transfected with GFP vec-
tor (lane 1), GFP–DLC-1 (lane 2), GFP–DLC-1S440A (lane 3), GFP–DLC-1Y442F 
(lane 4), GFP–FAB–DLC-1 (lane 5), GFP–FAB–DLC-1S440A (lane 6), or GFP–
FAB–DLC-1Y442F (lane 7) were immunoprecipitated with anti-GFP and 
analyzed by immunoblotting with anti-GFP to show similar expression 
levels and correct sizes of recombinant proteins. The arrow indicates GFP, 

and arrowheads show GFP–DLC-1 and GFP–FAB–DLC-1 fusion proteins. 
(E) A549 cells grown on coverslips were transfected with pEGFP–FAB–DLC-1, 
pEGFP–FAB–DLC-1S440A, or pEGFP–FAB–DLC-1Y442F. After labeling with 
anti-cten antibodies followed by Alexa Fluor 594–conjugated secondary 
antibody, cells were visualized with a confocal microscope. Arrows indicate 
cten and GFP fusion protein colocalized at focal adhesions. Bars, 10 μm.
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To test this, we performed the colony formation assay using 

MDA-MB-468 breast cancer cell line, in which the growth was 

suppressed by DLC-1 overexpression (Yuan et al., 2003b). Con-

sistent with a previous report, wild-type DLC-1 was able to 

suppress MDA-MB-468 cell growth. However, neither GFP–

DLC-1S440A nor GFP–DLC-1Y442F could inhibit MDA-MB-468 

cell growth (Fig. 4, A and B). In agreement with these results, 

the growth curve of MDA-MB-468 cells was signifi cantly 

slower with wild-type DLC-1 (Fig. 4 C). Thus, the SH2 binding 

site is not only essential for DLC-1’s focal adhesion localization 

but also critical for its tumor suppression activity. To further 

address the importance of the focal adhesion localization of 

DLC-1 to its tumor suppression activity, we fused wild-type and 

mutant DLC-1 with the N-terminal focal adhesion binding (FAB) 

site (aa 65–360) of chicken tensin1 (Chen and Lo, 2003), which 

is not conserved in cten. This FAB fusion forced the focal adhe-

sion localization of GFP–FAB–DLC-1, GFP–FAB–DLC-1S440A, 

and GFP–FAB–DLC-1Y442F (Fig. 4 E). From the colony forma-

tion assay, the constitutive focal adhesion localizations of these 

molecules signifi cantly enhanced the suppression activities of 

DLC-1S440A and DLC-1Y442F mutants (Fig. 4, A and B). There-

fore, the focal adhesion localization of DLC-1 is essential for its 

tumor suppression activity. Nonetheless, the suppression activi-

ties of DLC-1S440A and DLC-1Y442F were not fully restored by 

linking to FAB. It is possible that the cten–DLC-1 interaction is 

not just for recruiting DLC-1 to focal adhesions but also for 

regulating its activity. In addition, because we fused DLC-1 

with the N-terminal FAB site of tensin1 and DLC-1 normally 

binds to the C-terminal SH2 domains of tensins, these FAB 

fusion mutant proteins were not targeted to the precise position 

within the focal adhesion complexes. This spatial discrepancy 

may also contribute to the weaker suppression activities observed 

in GFP–FAB–DLC-1S440A and GFP–FAB–DLC-1Y442F.

In this study, we have demonstrated that the tumor 

suppressor DLC-1 interacts with the SH2 domains of cten and 

other tensins as well. Although the SH2 binding site on DLC-1 

also contains a critical tyrosine residue (Y442), the interaction 

does not rely on the phosphorylation of Y442. However, the 

phosphorylation of Y442 does reduce the interaction. This is a 

novel binding feature of tensins’ SH2 domains. Furthermore, 

this interaction is highly specifi c for the SH2 domain of tensin 

family, as the SH2 domains of SAP, Src, and p85 all fail to bind 

to DLC-1. The biological signifi cance of the cten–DLC-1 

interaction is illustrated by mislocalization and the loss of tumor 

suppression activities of DLC-1S440A and DLC-1Y442F mutants. 

Furthermore, the suppression activities of these mutants could 

be rescued by tagging with FAB sequence. Therefore, in 

addition to genomic deletion and promoter hypermethylation, 

mislocalization of the DLC-1 protein may be another mechanism 

for acquiring tumorigenicity involving DLC-1 dysregulation. 

In this regard, further investigations on the DLC-1 protein 

localization in cancer samples with “normal” DLC-1 expression 

level are highly warranted. Based on these fi ndings, we propose 

that DLC-1 is recruited to focal adhesion sites by one or more 

tensin members, depending on cell types and tissues. At the 

focal adhesion site, the RhoGAP domain of DLC-1 negatively 

regulates Rho small GTPase, which organizes actin stress fi bers, 

and focal adhesion turnover, in turn, mediates cell migration 

and proliferation. When the expression and/or localization of 

DLC-1 are compromised, the cells are more susceptible for 

transformation. The fact that DLC-1 is able to bind to all tensins 

through their SH2 domains may explain why DLC-1 relies on 

tensin members for its normal localization and function, yet 

DLC-1–knockout mice (Durkin et al., 2005) displayed a 

more severe phenotype than tensin1 or -3 single-knockout mice 

(Lo et al., 1997; Chiang et al., 2005). It may require double or 

even triple tensin knockout to observe the defect results from 

mislocalization of DLC-1. On the other hand, recruiting DLC-1 

to focal adhesion sites may not be the only function for cten. It is 

known that activated caspase3 cleaves cten at the DSTD570¯S, 

site generating two cten fragments: 1–570 and 571–715 (Lo 

et al., 2005). The later contains the PTB domain alone, which 

by itself is able to reduce cell growth by inducing apoptosis (Lo 

et al., 2005). In this case, the loss of cten expression may lead 

to uncontrolled cell growth and result in cell transformation. 

Together with our current fi ndings, cten may function as a tumor 

suppressor in multiple ways.

Materials and methods
Plasmid constructions and mutagenesis
The full-length coding sequence of the DLC-1 gene was amplifi ed from 
human kidney cDNA. The full-length and truncated fragments of DLC-1 
were subcloned in frame into mammalian expression vector pEGFP-C2 
(CLONTECH Laboratories, Inc.), yeast expression vector pGBKT7 (CLON-
TECH Laboratories, Inc.), and mammalian two-hybrid vector pCMV-BD 
(Stratagene). The full-length and truncated fragments of cten were 
constructed into pGADT7 (CLONTECH Laboratories, Inc.) and pCMV-AD 
(Stratagene) for yeast and mammalian two-hybrid analyses, respectively. 
The cDNA encoding the SH2 domain of SAP was amplifi ed from human 
thymus cDNA and subcloned into pGADT7. The corresponding coding 
regions of the SH2 domains of tensin1, tensin2, tensin3, and cten were 
subcloned into pGADT7 and bacterial expression vector pGEX-5X-1 (GE 
Healthcare). The region encoding DLC-1 residues 113–535 was inserted 
into pTrcHis containing His and Xpress tags (Invitrogen). The mutations in 
DLC-1 (S440A and Y442F) and cten SH2 domain (R474A) were generated 
by site-directed mutagenesis. The corresponding coding regions of the SH2 
domains of Src and p85 were subcloned into pGEX-5X-1. To construct 
pDsRed1-cten SH2-SKL, SKL residues were introduced into the C terminus 
of cten SH2 fragment by PCR. The resulting amplifi ed PCR products were 
then ligated into pDsRed1-C1 (CLONTECH Laboratories, Inc.). The 
N-terminal FAB site of chicken tensin1 (residues 65–360; Chen and Lo, 
2003) was used to construct fusions to the N terminus of DLC-1 in pEGFP–
DLC-1, pEGFP–DLC-1S440A, or GFP–DLC-1Y442F plasmids. All constructs 
were verifi ed by DNA sequencing.

Cell culture and transfection
MLC-SV40 cells, a gift from J. Rhim (Uniform Services University, Bethesda, 
MD), were cultured in keratinocyte serum-free medium supplemented with 
antibiotics, 5 ng/ml human recombinant EGF, and 0.05 mg/ml bovine 
pituitary extract (Invitrogen). A549, NIH3T3, and MDA-MB-468 cells 
purchased from American Type Culture Collection were cultured in DME 
supplemented with antibiotics and 10% fetal bovine serum. A549 cells 
were transfected using Lipofectamine 2000 (Invitrogen), whereas NIH 3T3 
and MDA-MB-468 cells were transfected using SuperFect transfection 
reagent (QIAGEN) according to the manufacturer’s instructions.

Immunoprecipitation and immunoblotting
Transiently transfected A549 or MDA-MB-468 cells with GFP fusion 
constructs were lysed in immunoprecipitation buffer (1% Triton X-100, 
50 mM Tris-HCl, pH 8.0, 150 mM NaCl, 5 mM EDTA, 10 μg/ml aprotinin, 
10 μg/ml leupeptin, 1 μg/ml pepstatine, and 1 μM PMSF) and cleared 
by centrifugation at 14,000 g for 15 min at 4°C. The clarifi ed cell lysates 
were incubated with 1 μg of an anti-GFP goat polyclonal antibody 
(Rockland) by rotating at 4°C for 1 h, followed by the addition of 30 μl 
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of 50% of protein A–Sepharose slurry (GE Healthcare) for 1 h. The 
protein A beads were collected by centrifugation and washed with 
immunoprecipitation buffer. Samples were then boiled in protein loading 
buffer and subjected to immunoblotting analyses using anti-GFP rabbit 
polyclonal antibodies (Santa Cruz Biotechnology, Inc.).

For coimmunoprecipitation, 24 h after transfection, A549 cells 
expressing the GFP or the GFP–DLC-1 constructs were lysed in coimmuno-
precipitation buffer (0.1% Triton X-100, 25 mM Tris-HCl, pH 8.0, 50 mM 
NaCl, 0.2 mM EDTA, 10 μg/ml aprotinin, 10 μg/ml leupeptin, 1 μg/ml 
pepstatine, and 1 μM PMSF). Cell lysates were then sheared by passing 
through a syringe needle, and the cell debris was removed by centrifuga-
tion at 14,000 g for 15 min at 4°C. 1.2 mg of the clarifi ed cell lysates 
were incubated with 2 μg of an anti-GFP goat polyclonal antibody 
(Rockland) by rotating at 4°C for 4 h, followed by the addition of protein 
A–Sepharose. Samples were subjected to immunoblotting analyses using 
anti-cten (Lo and Lo, 2002) and anti-GFP rabbit polyclonal antibodies 
(Santa Cruz Biotechnology, Inc.).

A similar approach was performed for coimmunoprecipitation of 
endogenously expressed DLC-1 in MLC-SV40, except that 3 mg of the 
clarifi ed MLC-SV40 cell lysates were incubated with 1 μg of an anti–DLC-1 
rabbit polyclonal antibody (Santa Cruz Biotechnology, Inc.) by rotating at 
4°C overnight. Immunoblotting analyses were performed using anti-cten 
rabbit polyclonal antibodies and anti–DLC-1 mouse monoclonal antibodies 
(BD Biosciences).

Mammalian two-hybrid assay
Plasmids (1 μg of each mammalian two-hybrid construct and 0.5 μg of 
pFR-Luc reporter) were transfected into NIH 3T3 cells using SuperFect. Cells 
were harvested 24 h after transfection. Firefl y luciferase and activities in 
the cell extracts were determined by the procedure using Luciferase Assay 
System (Promega) and measured by luminometry.

Yeast two-hybrid analyses
To assay the interaction between DLC-1 and cten, the Saccharomyces 
 cerevisiae strain AH109 was transformed with combinations of cten fragments 
in the activation domain (AD) plasmid, pGADT7, together with each of the 
DLC-1 fragments in the DNA-binding domain (DNA-BD) plasmid, pGBKT7. 
In brief, 5 ml of overnight culture of AH109 in YPD medium was diluted 
50-fold and allowed to grow for another 4 h at 30°C. The yeast cells were 
harvested by centrifugation at 2,000 g for 15 min at room temperature 
and washed twice with 25 ml of sterile water. The cells were resuspended 
in 0.5 ml of 0.1 M lithium acetate (LiAc). 100 μl of competent cells were 
mixed with 600 μl TE-LiAc-PEG (1× TE, 0.1 M LiAc, and 40% polyethylene 
glycol [mol wt 3,350]), 10 μl of salmon sperm DNA, and 1 μg of each 
plasmid. After incubation at 30°C for 30 min, 70 μl of DMSO was added 
to the cells and heat shocked at 42°C for 15 min. The transformation 
mixture was centrifuged and washed with 1 ml of sterile water. The cell 
pellets were subsequently resuspended in 1× TE buffer and plated on 
nutritional selection agar lacking leucine and tryptophan. The resulting 
colonies were then restreaked on quadruple dropout plates lacking Ade, 
His, Leu, and Trp.

In vitro pull-down assay
For GST pull-down assay, the cDNAs encoding the SH2 domain of cten 
were subcloned into pGEX-5X-1 to generate GST fusion proteins (GST-cten 
SH2). The corresponding coding region of 113–535 amino acids of 
human DLC-1 was ligated into pTrcHis to express an Xpress-tagged protein, 
Xpress–DLC-1 (113–535). GST-cten SH2 proteins were expressed in and 
purifi ed from Escherichia coli using glutathione-agarose (Sigma-Aldrich). 
20 μg of GST or GST-cten SH2 on glutathione-agarose beads was mixed 
with 2 mg of bacterial lysates expressing Xpress–DLC-1 (113–535) in 
extraction buffer (0.1% Triton X-100, 50 mM Tris-HCl, pH 8.0, 150 mM 
NaCl, and 0.2 mM EDTA). After incubation on a rotator for 3 h at 4°C, the 
slurry was pelleted by centrifugation and washed fi ve times with ice-cold 
extraction buffer. The pellet was resuspended in protein loading buffer and 
subjected to immunoblotting analyses using an anti-Xpress mouse 
monoclonal antibody (Invitrogen).

For peptide pull-down assay, peptides were covalently bound to 
Sulfolink resin (Pierce Chemical Co.) via terminal cysteine residues 
following the manufacturer’s instructions and used in pull-down assays with 
eluted GST fusion proteins. GST fusion proteins were purifi ed using 
glutathione-agarose in PBS containing 0.2% Triton X-100 and eluted by 
elution buffer (10 mM reduced glutathione in 10 mM Tris-HCl, pH 9.5). 
Eluted GST fusion proteins were then concentrated in PBS buffer using 
Centricon (Millipore). 30 μl of 50% slurry of peptide beads (	10 μg 

peptides immobilized) were incubated with 0.5 μg GST fusion protein in 
1 ml PBS buffer containing 0.1% Triton X-100 by rotating at 4°C for 1 h. 
After extensive washes, samples were boiled in protein loading buffer and 
subjected to immunoblotting analyses using anti-GST mouse monoclonal 
antibodies (Cell Signaling).

Immunofl uorescence microscopy
A549 cells grown on glass coverslips were transfected and incubated at 
37°C in 5% CO2 for 10–16 h before microscopic imaging. Cells were 
fi xed with methanol at −20°C. After rinsing with PBS, cells were incubated 
with 1:25 anti-cten rabbit polyclonal antibody for 2 h. Samples were then 
incubated with 1:800 Alexa Fluor 594–conjugated secondary antibody 
(Invitrogen) for 1 h and visualized with a confocal microscope (LSM 510; 
Carl Zeiss MicroImaging, Inc.).

Colony formation assay
MDA-MB-468 cells were seeded in a 6-well plate at 2 × 105 cells per well. 
16 h later, 2 μg of pEGFPC2 vector or various DLC-1 constructs (pEGFP–
DLC-1, pEGFP–DLC-1S440A, pEGFP–DLC-1Y442F, pEGFP–FAB–DLC-1, pEGFP–
FAB–DLC-1S440A, or pEGFP–FAB–DLC-1Y442F) were transfected into the cells. 
After 48 h, the cells were seeded in a 6-well plate at a density of 104 cells 
per well and selected by 0.8 mg/ml G418 (Geneticin; Invitrogen) for 2 wk. 
Colony formation effi ciency was determined by counting the G418-resistant 
colonies stained with crystal violet solution (0.25% crystal violet and 3.7% 
formaldehyde in 80% methanol).

Cell growth analysis
MDA-MB-468 cells were seeded in a 6-well plate at 2 × 105 cells per well. 
16 h later, 2 μg of pEGFPC2 vector or various DLC-1 constructs (pEGFP–
DLC-1, pEGFP–DLC-1S440A, or pEGFP–DLC-1Y442F) were transfected into the 
cells. After 48 h, the cells were seeded in 100-mm dishes and selected by 
0.8 mg/ml G418 for 6 d. Cells were then collected and seeded in triplicate 
in 60-mm dishes at 2 × 105 cell density. Cells were harvested at 24-h 
intervals for 4 d, and the numbers of viable cells were counted by trypan 
blue exclusion assay with a hematocytometer.
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