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a b s t r a c t

Social balance theory describes allowable and forbidden configurations of the topologies of signed
directed social appraisal networks. In this paper, we propose two discrete-time dynamical systems
that explain how an appraisal network converges to social balance from an initially unbalanced
configuration. These two models are based on two different socio-psychological mechanisms, respec-
tively: the homophily mechanism and the influence mechanism. Our main theoretical contribution is
a comprehensive analysis for both models in three steps. First, we establish the well-posedness and
bounded evolution of the interpersonal appraisals. Second, we fully characterize the set of equilibrium
points; for both models, each equilibrium network is composed of an arbitrary number of complete
subgraphs satisfying structural balance. Third, we establish the equivalence among three distinct
properties: non-vanishing appraisals, convergence to all-to-all appraisal networks, and finite-time
achievement of social balance. In addition to theoretical analysis, Monte Carlo validations illustrate how
the non-vanishing appraisal condition holds for generic initial conditions in both models. Moreover, a
numerical comparison between the two models indicates that the homophily-based model might be
a more universal explanation for the emergence of social balance. Finally, adopting the homophily-
based model, we present numerical results on the mediation and globalization of local conflicts, the
competition for allies, and the asymptotic formation of a single versus two factions.

© 2019 Elsevier Ltd. All rights reserved.

1. Introduction

Motivation and problem description. Social systems involving
friendly/antagonistic relationships are often modeled as signed
networks. Social balance (also referred to as structural balance)
theory, which originated from several seminal works by Heider
(1944, 1946), characterizes the stable configurations of signed
social networks, summarized as the famous Heider’s axioms:
‘‘Friends’ friends are friends; Friends’ enemies are enemies; En-
emies’ friends are enemies; Enemies’ enemies are friends’’. Em-
pirical studies for both large-scale networks (Facchetti, Iacono,
& Altafini, 2011; Leskovec, Huttenlocher, & Kleinberg, 2010) and
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small groups (Harary, 1961; King, 1964; Taylor, 1970) indicate
that social balance is a type of stable configurations frequently
observed in real social networks. Dynamic social balance theory,
aiming to explain how an initially unbalanced network evolves
to a balanced state, has recently attracted much interest. Despite
recent progress, it remains a valuable open problem to propose
dynamic models that enjoy desirable boundedness and conver-
gence properties. Such models make it possible to further study
meaningful predictions and control strategies for the evolution of
social networks to balance.

In this paper, we propose two novel discrete-time dynamic
social balance models, in which a group of individuals repeatedly
update their interpersonal appraisals via two socio-psychological
mechanisms, respectively: the homophily mechanism and the
influence mechanism. Loosely speaking, for the homophily mech-
anism, the interpersonal appraisals of any two individuals in
a social group are adjusted based on whether they agree on
the appraisals of the group members. For the influence mecha-
nism, each individual assigns influence to others proportionally
to her/his appraisal of them. Both mechanisms are well estab-
lished in the social sciences literature, e.g., see the seminal work
by Lazarsfeld and Merton (1954), and the award-winning book

https://doi.org/10.1016/j.automatica.2019.108580
0005-1098/© 2019 Elsevier Ltd. All rights reserved.
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by Friedkin and Johnsen (2011), respectively. For both models,
we characterize their sets of equilibrium and their dynamical
behavior. Moreover, we compare these two models via both
theoretical analysis and numerical comparisons and give a ten-
tative answer that, compared to the influence mechanism, the
homophily mechanism is a more universal explanation for the
evolution of appraisal networks to social balance.

Literature review. Following the early works by Heider (1944,
1946), static social balance theory has been extensively studied
in the last seven decades, including the characterization of the
balanced configurations for both complete networks (Cartwright
& Harary, 1956; Harary, 1953) and arbitrary networks (de Nooy,
1999; Easley & Kleinberg, 2010); the measure of the degree of
balance (Cartwright & Gleason, 1966; Henley, Horsfall, & De Soto,
1969); the clustering and its relation to balance (Davis, 1967;
Doreian & Mrvar, 1996); as well as the relevant partitioning al-
gorithms (Doreian & Krackhardt, 2001; Kim & Candan, 2012). Nu-
merous empirical studies have been conducted for different social
systems, including social systems at the national level (Harary,
1961; McDonald & Rosecrance, 1985), at the group level (King,
1964; Rawling & Friedkin, 2017), and at the individual level (Fac-
chetti et al., 2011; Taylor, 1970). For a comprehensive review we
refer to Zheng, Zeng, and Wang (2015).

In the last decade, researchers have started to incorporate
dynamical systems into the social balance theory, aiming to ex-
plain how a signed network evolves to a structurally balanced
state. Early works include the discrete-time local triad dynamics
(LTD) (Antal, Krapivsky, & Redner, 2005) and constrained triad
dynamics (Antal, Krapivsky, & Redner, 2006). These models suffer
from the existence of unbalanced equilibria, i.e., the jammed
states. Other works based on network games are proposed by van
de Rijt (2011) and Malekzadeh, Fazli, Jalaly Khalidabadi, Rabiee,
and Safari. In all the aforementioned models, the link weights in
the signed networks only take values from the set {−1, 0, 1}.

Our models are closely related to the continuous-time dy-
namic social balance models (Kułakowski, Gawroński, & Gronek,
2005; Marvel, Kleinberg, Kleinberg, & Strogatz, 2011;
Traag, Van Dooren, & De Leenheer, 2013), in which the link
weights can take arbitrary real values. The model proposed by
Kułakowski et al. (2005) is based on an influence-like mecha-
nism. Theoretical analysis by Marvel et al. (2011) reveals that for
symmetric initial conditions, the probability of achieving social
balance in finite time tends to 1 as the network size tends to
infinity. Traag et al. (2013) extend the set of initial conditions to
normal matrices and provide a sufficient condition for finite-time
social balance. In Traag et al. (2013), the authors also propose
an alternative continuous-time model based on a homophily
mechanism, and prove that the homophily-based model leads to
finite-time social balance for generic initial conditions. In addi-
tion to theoretical analysis, Kułakowski et al. (2005) investigate
numerically the relation between the formation of factions and
the initial appraisal distribution, for the influence-like model. The
corresponding results for the homophily-based model is unavail-
able in previous literature. A non-negligible shortcoming of all
the models mentioned above is that the interpersonal appraisals
diverge to infinity in finite time. To remedy this shortcoming,
in Kułakowski et al. (2005), the authors impose a predetermined
upper bound of the interpersonal appraisals. As the consequence,
the magnitudes of all the appraisals converge to the predeter-
mined upper bound, see the rigorous analysis in Wongkaew,
Caponigro, Kułakowski, and Borzì (2015). In addition to those
continuous-time models, Jia, Friedkin, and Bullo (2016) propose
a discrete-time model, with a generalized notion of social bal-
ance and a modified influence mechanism, and establish its
convergence to the generalized balance.

Contributions. The contribution of this paper are manifold. Our
paper is the first to propose two well-behaved discrete-time
models that explain the evolution of interpersonal appraisal net-
works towards the classic Heider’s social balance, via the
homophily and the influence mechanisms, respectively. Both
mechanisms are cast in the language of influence systems; in-
deed the key novelty is the formulation of appropriate influence
matrices such that both models are well-behaved and enjoy
the desirable properties of bounded evolution and convergent
appraisals.

Regarding the theoretical analysis, we first fully character-
izes the two models’ respective equilibrium sets, each of which
turn out to include all possible balanced configurations in terms
of sign pattern. Second, we establish the equivalence relations
among the non-vanishing appraisal condition, the convergence of
appraisal networks to all-to-all balanced configurations, and the
achievement of social balance in finite time.

Numerical study of our both models leads to various insight-
ful results. First, Monte-Carlo validations indicate that the non-
vanishing appraisal condition holds for generic initial conditions,
while, for the influence-based model, the non-vanishing appraisal
condition holds almost surely if the initial appraisals satisfy some
generalized notion of symmetry. Second, further simulation re-
sults show that, for the influence-based model with generic initial
conditions, the probability that the appraisal network converges
to social balance monotonically decays to 0 as the network size
tends to infinity. Based on this observation, we conclude that
the homophily-based model might be a more universal explana-
tion than the influence-based model for the evolution to social
balance. Third, for the homophily-based model, we numerically
investigate its behavior under perturbation when the appraisal
network is composed of multiple structurally balanced subnet-
works. Such numerical study reveals some insightful and realistic
interpretations such as the escalation and mediation of local
conflicts. Finally, we study by simulation the effect of the initial
appraisal distribution on the formation of factions, i.e., whether
an appraisal network converges to two antagonistic factions or
an all-friendly network.

The main advantage of our models, compared with the previ-
ous continuous-time models (Kułakowski et al., 2005; Traag et al.,
2013), is that our models are well-behaved, in the sense that our
models enjoy the desirable property of convergent appraisals (as
opposed to the undesirable property of finite-time divergence).
The convergence property makes it possible to characterize the
systems’ fixed points and their stability, as well as the transition
from one equilibrium to another. In our models, the convergent
appraisals are due to the introduction of either homophily or
interpersonal influence networks, which also provide a connec-
tion between the field of dynamic social balance and the field
of opinion dynamics with antagonistic interactions, e.g. Altafini
(2013). In addition, our models have the desired property that
they are invariant under scaling, i.e., if a solution is scaled by
a constant, it remains a solution. This feature is particularly
important in the modeling of social systems, in which quantities
are usually meaningful only in the relative sense. Compared with
the model proposed in Kułakowski et al. (2005) with bounded
evolution, our models do not rely on any predetermined bound to
prevent divergence and the asymptotic appraisals in our models
are determined by the initial condition rather than the manually
determined bound. Some additional advantages of our models are
discussed in Section 5.1.

Organization. Section 2 introduces some notations and basic con-
cepts. Section 3 and 4 contain the theoretical analyses of our
models. Section 5 provides further discussions and numerical
results. Section 6 gives the conclusion. An auxiliary lemma is
provided in Appendix. Some proofs are provided in the technical
report (Mei, Cisneros-Velarde, Friedkin, & Bullo) with full details.



W. Mei, P. Cisneros-Velarde, G. Chen et al. / Automatica 110 (2019) 108580 3

Table 1
Notations frequently used in this paper.

1n (0n) The all-ones (all-zeros) n × 1 vector
R (Z≥0) Set of real numbers (non-negative integers)
≻ (≺) Entry-wise greater than (less than)
|X | Entry-wise absolute value of matrix X
sign(X) Entry-wise sign of X , i.e., sign(X)ij = 1 if Xij > 0,

sign(X)ij = −1 if Xij < 0, and sign(X)ij = 0 if Xij = 0.
|X |max The max norm of X , i.e, maxi,j|Xij|

Xi∗ (X∗i) the ith row (column) vector of X
G(X) Weighted digraph associated with adjacency matrix X . We

allow negative link weights. That is, if Xij < 0, then there
exists a link in G(X) from i to j with negative weight Xij .

2. Notations and basic concepts

Notations. Some frequently used notations are defined in Table 1.
The following sets will be used throughout this paper:

Snz-row ={X ∈ Rn×n
| for every i, Xi∗ ̸= 0⊤

n }, (1)

S+

s-symm ={X ∈ Rn×n
| sign(X) = sign(X)⊤ (2)
and Xii > 0 for every i},

S+

rs-symm ={X ∈ S+

s-symm | there exists γ ≻ 0n (3)

such that diag(γ )X =
(
diag(γ )X

)
⊤
}.

By definition, S+
rs-symm ⊂ S+

s-symm ⊂ Snz-row. In addition, S+
s-symm

and S+
rs-symm are both invariant under permutations. That is, given

any X ∈ S+
s-symm (or X ∈ S+

rs-symm resp.) and a permutation matrix
P , we have PXP⊤

∈ S+
s-symm (or PXP⊤

∈ S+
rs-symm resp.).

Appraisal matrices and social balance. Given a group of n agents,
the interpersonal appraisals are given by the appraisal matrix
X ∈ Rn×n. The sign of Xij determines whether i’s appraisal of
j is positive, i.e., i ‘‘likes’’ j, or negative, i.e., i ‘‘dislikes’’ j. The
magnitude of Xij represents the intensity of the sentiment. When
Xij = 0, the appraisal is one of indifference. The diagonal entry
Xii represents agent i’s self-appraisal. The weighted digraph G(X)
associated to X as the adjacency matrix is referred to as the
appraisal network.

Definition 2.1 (Social Balance (Harary, 1953; Heider, 1946)). An
appraisal network G(X) satisfies social balance, or, equivalently,
is structurally balanced, if the appraisal matrix X satisfies the
following properties: (S1) Xii > 0 for any i ∈ {1, . . . , n};
(S2) sign(Xij) sign(Xjk) sign(Xki) = 1 for any i, j, k ∈ {1, . . . , n}.

According to Harary (1953), a structurally balanced appraisal
network either has only one faction in which the interpersonal
appraisals are all positive, or is composed of two antagonistic fac-
tions such that individuals in the same faction positively appraise
each other while all the inter-faction appraisals are negative.

Lemma 2.2 (Equivalent Conditions for Social Balance). For any
X ∈ Rn×n such that all of its entries are non-zero, G(X) satisfies
social balance if and only if it satisfies (S1) in Definition 2.1 and
(S3): sign(Xi∗) = ± sign(Xj∗), for all i, j ∈ {1, . . . , n}. Moreover, for
G(X) satisfying social balance, X is sign-symmetric, i.e., sign(X) =

sign(X)⊤.

Proof. Suppose that (S1) and (S3) hold. For any i, j ∈ {1, . . . , n},
sign(Xi∗) = δ sign(Xj∗), where δ is either −1 or 1. Therefore,
sign(Xij) sign(Xji) = δ2 sign(Xjj) sign(Xii) = 1, i.e., sign(Xij) =

sign(Xji). Moreover, for any k, since sign(Xij) = δ sign(Xjj) and
sign(Xjk) = δ sign(Xik), we have

sign(Xij) sign(Xjk) sign(Xki)

= δ2 sign(Xjj) sign(Xik) sign(Xki) = 1.

Therefore, (S1) and (S3) imply (S1) and (S2) in Definition 2.1, as
well as the sign symmetry of X .

Now suppose (S1) and (S2) in Definition 2.1 hold. The sign
symmetry of X is obtained by letting k = j in (S2). Moreover,
due to the sign symmetry and (S2), we obtain sign(Xij) sign(Xjk)
sign(Xik) = 1. Therefore, sign(Xik) sign(Xjk) does not depend on k
and is equal to sign(Xij) ∈ {−1, 1}. That is, sign(Xi∗) = ± sign(Xj∗)
for any i and j. This concludes the proof. □

3. Homophily-based model

In this and the next section, we propose and analyze two
dynamic social balance models, respectively. These two models
are distinct in the microscopic individual interaction mechanisms.

Definition 3.1 (Homophily-based Model). Given an initial appraisal
matrix X(0) ∈ S+

s-symm ⊂ Rn×n, the homophily-based model is
defined by

X(t + 1) = diag(|X(t)|1n)−1X(t)X⊤(t). (4)

Remark 3.2 (Interpretation). Eq. (4) updates the appraisals based
on what can be considered as the homophily mechanism. For any
i, j ∈ {1, . . . , n}, agent i’s appraisal of agent j at time step t + 1
depends on to what extend they are in agreement with each other
on the appraisals of all the agents in the group. For any k ∈

{1, . . . , n}, if sign(Xik(t)) = sign(Xjk(t)), then the term Xik(t)Xjk(t)
contributes positively to Xij(t + 1), and vice versa. The matrix
W (X(t)) = diag(|X(t)|1n)−1X(t) can be regarded as the influence
matrix constructed from the appraisals through homophily mech-
anism. Since Xij(t + 1) =

∑
k Wik(t)Xjk(t), each |Wik(t)| represents

how much weight individual i assigns to the agreement on the
appraisal of individual k. Note that the entry-wise absolute value,
i.e., |W (t)|, is row-stochastic. Such type of influence matrices has
been widely studied in the opinion dynamics with antagonism,
see Hendrickx (2014), Proskurnikov and Cao (2017) and Xia, Cao,
and Johansson (2016).

The proposition below presents some useful results on the
finite-time behavior of the homophily-based model.

Proposition 3.3 (Invariant Set and Finite-Time Behavior of HbM).
Consider the dynamical system (4) and define fhomophily(X) = diag
(|X |1n)−1XX⊤. Pick X0 ∈ Snz-row. The following statements hold:

(i) the map fhomophily is well-defined for any X ∈ Snz-row and
maps Snz-row to S+

s-symm;
(ii) the solution X(t), t ∈ Z≥0, to Eq. (4) from initial condition

X(0) = X0 exists and is unique;
(iii) the max norm of any solution X(t) satisfies

|X(t + 1)|max ≤ |X(t)|max ≤ |X(0)|max ;

(iv) for any c > 0, the trajectory cX(t) is the solution to Eq. (4)
from initial condition X(0) = cX0.

Proof. For simplicity, denote X+
= fhomophily(X). For any X ∈

Snz-row, since, for any i and j, X+

ij =
1

∥Xi∗∥1

∑
k XikXjk and ∥Xi∗∥1 > 0,

fhomophily(X) is well-defined. Moreover,

X+

ii =
1

∥Xi∗∥1

∑
k

XikXik =
∥Xi∗∥

2
2

∥Xi∗∥1
> 0, and

X+

ij =
∥Xj∗∥1

∥Xi∗∥1
X+

ji , for any i and j.

Therefore, fhomophily maps Snz-row to S+
s-symm. This concludes the

proof of statement (i). Statement (ii) is a direct consequence of
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statement (i), since, for any t ∈ Z≥0, X(t) ∈ Snz-row defines a
unique X(t + 1) = fhomophily(X(t)) ∈ S+

s-symm. In addition,

|X+

ij | ≤
1

∥Xi∗∥1

n∑
k=1

⏐⏐XikXjk
⏐⏐ ≤

1
∥Xi∗∥1

n∑
k=1

⏐⏐Xik
⏐⏐⏐⏐Xjk

⏐⏐
≤ max

k
|Xjk| ≤ |X |max

immediately leads to statement (iii). Finally, statement (iv) is
obtained by replacing X(t) with cX(t) on the right-hand side
of Eq. (4). □

According to statement (iii) of Proposition 3.3, for any a >
0, the set Snz-row ∩ [−a, a]n×n is positively invariant under dy-
namics (4). This desired bounded-evolution property makes our
model substantially different from some previous models, in
which X(t) diverges in finite time (Marvel et al., 2011; Traag et al.,
2013).

The theorem below characterizes the set of fixed points of
system (4), i.e, the steady-state appraisal matrix X satisfying X =

fhomophily(X). Fixed points are sociologically interesting because
they correspond to the states that can often be observed in the
real world.

Theorem 3.4 (Fixed Points and Balance). Consider the dynamical
system (4) in domain Snz-row. Define

Qhomophily

=

{
PYP⊤

∈ Snz-row

⏐⏐⏐ P is a permutation matrix,

Y is a block diagonal matrix with blocks of

the form αbb⊤, α > 0, b ∈ {−1, +1}m, m ≤ n
}

.

Then

(i) Qhomophily is the set of all the fixed points of (4),
(ii) for any X ∈ Qhomophily, G(X) is composed by isolated complete

subgraphs that satisfy social balance.

Proof. We first prove that any X∗
∈ Qhomophily is a fixed point

of system (4). For any α > 0 and b ∈ {−1, +1}n, the matrix
Y = αbb⊤ satisfies

fhomophily(Y ) = diag(nα1n)−1α2bb⊤bb⊤
= αbb⊤

= Y .

This arguments extend to block diagonal matrices Y . By the defi-
nition of fhomophily, for any block diagonal matrix Y = diag(Y (1), . . .

, Y (K )), Y = fhomophily(Y ) if and only if Y (i)
= diag(|Y (i)

|1n)−1Y (i)Y (i)⊤

for any i. Therefore, Y is a fixed point of system (4) if each Y (i) in
Y = diag(Y (1), . . . , Y (K )) is a ni × ni matrix of the form αib(i)b(i)

⊤,
with αi > 0, b(i) ∈ {−1, +1}ni , and n1 + · · · + nK = n. Moreover,
given any fixed point Y , for any permutation matrix P ∈ Rn×n,

PYP⊤
= P diag(|Y |1n)−1YY⊤P⊤

= diag(|PYP⊤
|1n)−1(PYP⊤)(PYP⊤)⊤

= fhomophily(PYP⊤).

Therefore, any X∗
∈ Qhomophily is a fixed point of (4).

Now we prove by induction that Qhomophily is the set of all the
fixed points of system (4). For the trivial case of n = 1, Qhomophily
represents the set of all the positive scalars and one can easily
check that any positive scalar X is a fixed point of system (4)
with n = 1. Suppose statement (i) holds for any system with
dimension ñ < n. For system (4) with dimension n, suppose X
is a fixed point, i.e., X = fhomophily(X). For any i, j ∈ {1, . . . , n},
by comparing the (i, j)−th and the (j, i)−th equations of X =

fhomophily(X), we conclude that Xij and Xji always have the same
sign. In addition, since Xii =

∑n
k=1 X

2
ik

/
∥Xi∗∥1, we have Xii > 0 for

any i. Since X is a fixed point of fhomophily, we have that, for any
i, j ∈ {1, . . . , n},

|Xij| =
1

∥Xi∗∥1

⏐⏐⏐∑
k

XikXjk

⏐⏐⏐
≤

1
∥Xi∗∥1

∑
k

|Xik||Xjk| ≤ |X |max .

Moreover, there exists (i, j) such that |Xij| = |X |max. For any such
(i, j), either of the following two cases hold:

Case 1: i = j and there does not exist k ̸= i such that
|Xik| = |X |max. In this case, |Xii| = |X |max. Since

|Xii| =
1

∥Xi∗∥1

⏐⏐⏐∑
k

XikXik

⏐⏐⏐
≤

1
∥Xi∗∥1

∑
k

|Xik||Xik| ≤ |X |max ,

in order for |Xii| = |X |max to hold, Xi∗ must satisfy |Xik| = |X |max,
for any k such that Xik ̸= 0. By the definition of Case 1, we
conclude that there does not exist k ̸= i such that Xik ̸= 0.
Therefore, there exists a permutation matrix P such that

PXP⊤
=

[
|X |max 0⊤

n−1
0n−1 X̃(n−1)×(n−1)

]
.

Since PXP⊤ is also a fixed point of system (4), one can check
that X̃ satisfies X̃ = diag(|X̃ |1n)−1X̃ X̃⊤. Therefore, X̃ is a fixed
point of system (4) with dimension n−1. Since we have assumed
that statement (i) holds for dimension ñ < n, there exists an
(n−1)×(n−1) permutation matrix P̃ and a block diagonal Ỹ , with
blocks of the form αbb⊤, where α > 0, b ∈ {−1, +1}m, m < n−1,
such that X̃ = P̃ Ỹ P̃⊤. Therefore,

X = P⊤

[
1 0⊤

n−1
0n−1 P̃

][
|X |max 0⊤

n−1
0n−1 Ỹ

][
1 0⊤

n−1
0n−1 P̃

]⊤

P .

The matrix P⊤

[
1 0⊤

n−1
0n−1 P̃

]
is also a permutation matrix. There-

fore X ∈ Qhomophily.
Case 2: j ̸= i and |Xij| = |X |max. We first define some notations

used in the following proof: For any k, let θk = {ℓ | Xkℓ ̸= 0}
and |θk| be the cardinality of the set θk. Note that, since X =

fhomophily(X) ∈ S+
s-symm, k is always in θk and Xkk > 0. Let Xℓ∗,θk ∈

R1×|θk| be the ℓ-th row vector of X with all the Xℓp entries such
that p /∈ θk is removed.

We point out a general result that, for any k and ℓ, if

|Xkℓ| =
1

∥Xk∗∥1

⏐⏐⏐ n∑
p=1

XkpXℓp

⏐⏐⏐ = |X |max ,

then, for the second equality to hold, X must satisfy that:
(1) θk ⊂ θl; (2) |Xℓp| = |X |max for any p ∈ θk; (3) sign(Xℓ∗,θk ) =

± sign(Xk∗,θk ). Therefore, for the i, j indexes such that |Xij| =

|X |max and i ̸= j, we have: |Xjk| = |X |max, for any k ∈ θi;
θi ⊂ θj; and sign(Xj∗,θi ) = ± sign(Xi∗,θi ). Since i ∈ θi and X =

fhomophily(X), we obtain |fhomophily(X)ji| = |Xji| = |X |max. Therefore,
|fhomophily(X)ik| = |Xik| = |X |max, for any k ∈ θj, and θj ⊂ θi, which
in turn leads to θi = θj and |Xik| = |X |max for any k ∈ θi. Therefore,
for any k ∈ θi, |fhomophily(X)ik| = |x|max, which implies |Xkℓ| =

|X |max for any l ∈ θi. Since |fhomophily(X)kℓ| = |Xkℓ|, we further
obtain that θk ⊂ θl and sign(Xk∗,θk ) = ± sign(Xℓ∗,θk ). Moreover,
due to the fact that the indexes k and l are interchangeable, we
conclude that, for any k, l ∈ θi: (a) θk = θl = θi; (b) |Xkℓ| = |X |max;
(c) sign(Xk∗) = ± sign(Xℓ∗).

If |θi| = n, let α = X11 and b = sign(X1∗)⊤, then we have
X = αbb⊤. If |θi| < n, there exists a permutation matrix P such
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that

PXP⊤
=

[
X (θi) 0|θi|×(n−|θi|)

0(n−|θi|)×|θi| X̃

]
,

where X (θi) is a |θi| × |θi| matrix. Moreover, X (θi) = |X |max bb⊤,
where b = sign(Xi∗,θi )

⊤. Following the same line of argument
for Case 1, we know that X̃ is of the form P̃ Ỹ P̃⊤ and thereby
X ∈ Qhomophily. This concludes the proof for statement (i).

For any X∗
∈ Qhomophily, there exists a permutation matrix P

and a block diagonal matrix Y = diag(Y (1), . . . , Y (K )) such that
X∗

= PYP⊤. Note that G(Y ) has exactly the same topology as
G(X), but with the nodes re-indexed. Therefore, we only need
to analyze the structure of G(Y ). The graph G(Y ) is made up of
K isolated complete subgraphs and Y (i)

= αib(i)b(i)
⊤ for each

such subgraph G(Y (i)), where b(i) = (b(i)1 , . . . , b(i)ni )
⊤. Therefore,

according to Lemma 2.2, each subgraph G(Y (i)) satisfies social
balance. This concludes the proof for statement (ii). □

Remark 3.5 (Social Balance with Multiple Isolated Subgraphs). An
appraisal matrix X ∈ Qhomophily can be a block-diagonal matrix
diag(X1, . . . , Xk) and thus corresponds to an appraisal network
G(X) composed of k isolated subgraphs, each of which satisfies so-
cial balance as in Definition 2.1. With the notion of social balance
extended to graphs with multiple isolated subgraphs, in terms
of sign pattern, the set of fixed points X of the homophily-based
model (4) corresponds to exactly the set of all the possible struc-
turally balanced configurations of the appraisal network G(X).
Such characterization of fixed points is impossible in the previous
continuous-time models (Marvel et al., 2011; Traag et al., 2013)
since those models diverge in finite time. Moreover, for any X ∈

Qhomophily such that G(X) has k isolated subgraphs, X is a rank-k
matrix.

Before presenting the main results on the convergence of the
appraisal matrix X(t) to social balance, we define a property of
X(t) as the solution to Eq. (4).

Definition 3.6 (Non-vanishing Appraisal Condition). A solution X(t)
satisfies the non-vanishing appraisal condition if lim inft→∞ mini,j
|Xij(t)| > 0.

Theorem 3.7 (Convergence and Social Balance in HbM). Con-
sider the homophily-based model given by Eq. (4). The following
statements hold:

(i) Each element in Qhomophily of rank one is a locally stable fixed
point of fhomophily;

(ii) For any X(0) ∈ Snz-row, the following three statements are
equivalent:

(a) the solution X(t) satisfies the non-vanishing appraisal
condition;

(b) there exists t0 > 0 such that G(X(t)) satisfies social
balance for all t ≥ t0;

(c) there exists X∗
∈ Qhomophily of rank one such that

limt→∞ X(t) = X∗.

Proof. For simplicity of notations, let |X |min = mink,l |Xk,l|. We
start by proving the following two claims. For any given t0 ≥ 0,
if all the entries of X(t0) are non-zero and G(X(t0)) satisfies social
balance, then,

(C.1) for any t ≥ t0, G(X(t)) satisfies social balance and
sign(X(t)) = sign(X(t0));

(C.2) for any t ≥ t0, |X(t)|max is non-increasing and |X(t)|min is
non-decreasing.

To prove claim (C.1), it suffices to prove that G(X(t0 +1)) satisfies
social balance and sign(X(t0 + 1)) = sign(X(t0)), as the cases
for t ≥ t0 + 1 follow by induction. For any i and j, since
G(X(t0)) satisfies social balance, according to Lemma 2.2, we have
sign(Xi∗(t0)) = ± sign(Xj∗(t0)). In addition, we have Xjj(t0) > 0 for
any j. Therefore,

sign
(
Xij(t0+1)

)
= sign

( 1
∥Xi∗(t0)∥1

n∑
k=1

Xik(t0) Xjk(t0)
)

= sign
(
Xij(t0) Xjj(t0)

)
= sign

(
Xij(t0)

)
,

for any i and j. This concludes the proof for claim (C.1). For any
t ≥ t0, since G(X(t)) satisfies social balance,

|Xij(t + 1)| =
1

∥Xi∗(t)∥1

n∑
k=1

|Xik(t)||Xjk(t)| for any i, j,

we have |X(t + 1)|min ≥ |X(t)|min ≥ |X(t0)|min and |X(t + 1)|max ≤

|X(t)|max ≤ |X(t0)|max.
Now we prove statement (i), i.e., each X∗

∈ Qhomophily with
rank 1 is locally stable. Let X∗

= αbb⊤, where α > 0 and b ∈

{−1, +1}n. For any matrix ∆ ∈ Rn×n such that |∆|max = ζ < α,
we have sign(X∗

+∆) = sign(X∗). Due to claim (C.1) and (C.2), we
know that, for X(0) = X∗

+ ∆, X(t) satisfies that, for any t ≥ 0:
(1) sign(X(t)) = sign(X(0)) = sign(X∗); (2) α − ζ ≤ |X(t)|min ≤

|X(t)|max ≤ α + ζ . Therefore, for any i and j, Xij(t) is of the form
αij(t) sign(X∗

ij ), where 0 < α − ζ ≤ αij(t) ≤ α + ζ . We thereby
have⏐⏐X(t) − X∗

⏐⏐
max = max

ij

⏐⏐αij(t) sign(X∗

ij ) − α sign(X∗

ij )
⏐⏐

= max
ij

|αij(t) − α| ≤ ζ .

Therefore, for any ϵ > 0, there exists ζ = min{
α
2 , ϵ

2 } such that,
for any X(0) satisfying |X(0) − X∗|max < ζ , |X(t)−X∗|max < ϵ for
any t≥0, i.e., X∗ is locally stable.

Now we prove (ii)(a)⇒ (ii)(b). We first establish the conver-
gence of the solution X(t) to some set of structurally balanced
states via the LaSalle invariance principle. For simplicity, denote
X+

= fhomophily(X). The map fhomophily(X) is continuous for any
X ∈ S+

s-symm and, by Proposition 3.3, for any given X(0) ∈ S+
s-symm,

|X(t)|max ≤ |X(0)|max for any t ∈ Z≥0. In addition, letting δ =

lim inft→∞ mini,j |Xij(t)| > 0, we see that there exists t̃ ∈ Z≥0
such that mini,j |Xij(t)| ≥ δ/2 for any t ≥ t̃ . Therefore, the set

Gc =

{
X ∈ S+

s-symm

⏐⏐⏐ min
i,j

|Xij| ≥ δ/2,

|X |max ≤ |X(0)|max

}
is a compact subset of S+

s-symm and X(t) ∈ Gc for any t ≥ t̃ .
Thirdly, define V (X) = |X |max. The function V is continuous on
S+
s-symm and, by Proposition 3.3, satisfies V (X+) − V (X) ≤ 0 for

any X ∈ S+
s-symm. According to the extended LaSalle invariance

principle in Theorem 2 of Mei and Bullo, X(t) converges to the
largest invariant set M of the set E = {X ∈ Gc | V (X+) − V (X) =

0}.
Now we characterize the largest invariant set M . For any X ∈

M ⊂ E, V (X+) = V (X) = |X |max. Suppose |X+

ij | = maxk,ℓ|X+

kℓ|.
Since X+

= fhomophily(X), we have

|X+

ij | ≤
1

∥Xi∗∥1

n∑
ℓ=1

|Xiℓ||Xjℓ| ≤ |X |max . (5)

In order for all these inequalities to hold with equality and
noticing that |Xiℓ| > 0 for any ℓ since X ∈ Gc , X must satisfy
that
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(a) Xi∗ and Xj∗ have the same or opposite sign pattern, i.e.,
sign (Xi∗) = ± sign (Xj∗),

(b) All entries of Xj∗ have the magnitude |X |max.

Therefore, for any X ∈ E, there exist some i and j such that
the aforementioned conditions (a) and (b) hold. Moreover, since
the set M is invariant, X ∈ M implies X+

∈ M ⊂ E. Applying
Condition (b) to X+, there exists a j̃ such that, for any p, |X+

j̃p
| =⏐⏐X+

⏐⏐
max = |X |max. In order for |X+

j̃p
| = |X |max to hold, following

the same argument on the conditions such that the inequali-
ties (5) become equalities, we know that, for any p, sign (Xj̃∗) =

± sign (Xp∗) and |Xpk| = |X |max for any k. As these relationships
hold for any p, we conclude that for any i, j ∈ {1, . . . , n}, Xi∗
and Xj∗ must have the same or the opposite sign pattern. Let
α = |X |max and b = sign(X⊤

1∗). Each row of X is thereby equal
to either αb⊤ or −αb⊤. Therefore, X is of the form X = αcb⊤,
where c ∈ {−1, 1}n. Moreover, since all the diagonal entries of
X are positive, the column vector c satisfies cibi = 1 for any i,
which implies c = b. In short, we have proved that X ∈ M leads
to X = αbb⊤. In addition, by Theorem 3.4, any matrix X = αbb⊤,
with α > 0 and b ∈ {−1, 1}n, is a fixed point of fhomophily and is
thus invariant. Therefore, we conclude the compactness of

M =

{
X = αbb⊤

⏐⏐⏐ δ

2
≤ α ≤ |X(0)|max , b ∈ {−1, 1}n

}
.

For any X̂ ∈ M , since X̂ satisfies social balance (see
Theorem 3.4) and mini,j |X̂ij| ≥ δ/2 > 0, there exists an open
neighbor set defined as U(X̂) = {X = X̂+∆ | |∆|max < mini,j |X̂ij|}

such that any X ∈ U(X̂) satisfies social balance. According to
the Heine–Borel theorem, there exists a finite set {X̂1, . . . , X̂K } ⊂

M such that M ⊂ ∪
K
k=1U(X̂k). Since ∪

K
k=1U(X̂k) is an open set,

there exists ϵ > 0 such that the neighbor set of M , defined
as U(M, ϵ) = {X ∈ S+

s-symm | |X − M|max < ϵ}, satisfies that
U(M, ϵ) ⊂ ∪

K
k=1U(X̂k) and thereby any X ∈ U(M, ϵ) satisfies social

balance.
Since X(t) → M as t → ∞, there exists t0 ∈ Z≥0 such

that X(t) ∈ U(M, ϵ) for any t ≥ t0. Therefore, X(t) satisfies
social balance for any t ≥ t0, which concludes the proof for
(ii)(a)⇒ (ii)(b).

Now we prove (ii)(b)⇒ (ii)(c). Suppose G
(
X(t0)

)
satisfies so-

cial balance for some t0 > 0. If |X(t0)|max = |X(t0)|min, then
there exists some α > 0 such that X(t0) = αB, where B ∈

{−1, 1}n×n. Since G
(
X(t0)

)
satisfies social balance, we have Bii > 0

and Bj∗ = ±B1∗, which in turn implies that B = B⊤

1∗B1∗ =

sign(X1∗(t0))⊤ sign(X1∗(t0)). Therefore, X(t0) is already a rank-one
fixed point in the set Qhomophily.

Suppose G
(
X(t0)

)
satisfies social balance but |X(t0)|max >

|X(t0)|min. For any t ≥ t0, let |Xpq(t)| = |X(t)|min. We have that,
for any i and j,

|Xjp(t + 1)|=
1

∥Xj∗(t)∥1

n∑
k=1

|Xjk(t)| |Xpk(t)|

≤
|Xjq(t)|

∥Xj∗(t)∥1
|Xpq(t)| +

(
1 −

|Xjq(t)|
∥Xj∗(t)∥1

)
|X(t)|max

≤ |X(t)|max −
|Xjq(t)|

∥Xj∗(t)∥1

(
|X(t)|max − |X(t)|min

)
≤ |X(t)|max −

|X(t)|min

n |X(t)|max

(
|X(t)|max − |X(t)|min

)
,

and, similarly,

|Xij(t + 2)| =
1

∥Xi∗(t+1)∥1

n∑
k=1

|Xik(t+1)| |Xjk(t+1)|

≤
|Xip(t + 1)|

∥Xi∗(t + 1)∥1
|Xjp(t + 1)|

+

(
1 −

|Xip(t + 1)|
∥Xi∗(t + 1)∥1

)
|X(t + 1)|max

≤
|Xip(t+1)|

∥Xi∗(t+1)∥1
|Xjp(t+1)| +

(
1 −

|Xip(t+1)|
∥Xi∗(t+1)∥1

)
|X(t)|max

= |X(t)|max −
|Xip(t+1)|

∥Xi∗(t+1)∥1

(
|X(t)|max − |Xjp(t+1)|

)
≤ |X(t)|max

−
|X(t + 1)|min

n |X(t + 1)|max

|X(t)|min

n |X(t)|max
(|X(t)|max−|X(t)|min)

≤ |X(t)|max −
|X(t)|2min

n2 |X(t)|2max

(
|X(t)|max−|X(t)|min

)
.

Therefore,

|X(t + 2)|max − |X(t + 2)|min

≤

(
1 −

|X(t)|2min

n2 |X(t)|2max

)(
|X(t)|max − |X(t)|min

)
≤

(
1 −

|X(t0)|2min

n2 |X(t0)|2max

)(
|X(t)|max − |X(t)|min

)
.

Nowwe have established the exponential convergence of |X(t)|max
− |X(t)|min to 0. Therefore, there exists α > 0 such that limt→∞

|Xij(t)| = α for any i, j. Moreover, since sign(X(t)) = sign(X(t0))
for any t ≥ t0, we have limt→∞ X(t) = αbb⊤, where b =

sign(X1∗(t0))⊤. This concludes the proof for (ii)(b)⇒ (ii)(c).
The proof for (ii)(b)⇒ (ii)(a) is straightforward. If G

(
X(t0)

)
satisfies social balance, then, according to claim C.2), |X(t)|min ≥

|X(t0)|min for any t ≥ t0, which means that lim inft→∞ minij |Xij(t)|
≥ |X(t0)|min > 0.

Now we prove (ii)(c)⇒ (ii)(b). Suppose X(t) → X∗ as t → ∞.
For any X∗

∈ Qhomophily of rank one, there exists α > 0 and
b ∈ {−1, 1}n such that X∗

= αbb⊤. Since α > 0, there exists
a neighbor set U(X∗) such that for any X ∈ U(X∗), sign X =

sign X∗, which implies that, for any X ∈ U(X∗), G(X) satisfies social
balance. Moreover, since X(t) → X∗, there exists t0 > 0 such that
X(t) ∈ U(X∗) for any t ≥ t0. Therefore, G

(
X(t)

)
achieves social

balance at t0. This concludes the proof. □

As Theorem 3.7 points out, the appraisal matrix X(t) converge
to some rank-one matrix αbb⊤ if and only if X(t) achieves social
balance (see Definition 2.1) at some time t0. The mathemat-
ical intuition behind the convergence to rank-one matrices is
that, after achieving social balance, the quantity maxij |Xij(t)| −

minkℓ |Xkℓ(t)| is monotonically vanishing. In reality, various fac-
tors such as noisy disturbances and individual prejudice (see
Friedkin & Johnsen, 1990) may prevent the appraisal matrix from
converging to rank-one matrices.

Monte-Carlo validation of the non-vanishing appraisal con-
dition indicates that statement (ii)(b) of Theorem 3.7 holds for
generic initial conditions. The detailed simulation results are pre-
sented in Section 5. In fact, there exist some counter examples
of X(0) with which the non-vanishing condition on the solution
X(t) does not hold. Example 1: if X(0) is block-diagonal, then the
dynamics of the blocks are decoupled. While statement (ii) of
Theorem 3.7 still holds block-wisely, the non-vanishing condition
on the entire matrix X(t) does not hold; Example 2: if all the
off-diagonal entries of X(0) ∈ Rn×n are equal to some −b < 0
and all the diagonal entries are equal to a = (n − 2)b/2, one can
check by computation that X(1) becomes a diagonal matrix with
strictly positive diagonals, i.e., X(1) is a rank-n fixed point and
therefore the non-vanishing condition does not hold. However,
for both Examples 1 and 2, the sets of initial conditions are zero-
measure and simulation results indicate that the zero-pattern
of X(t) with those specifically constructed X(0) are not robust
under perturbation: For Example 1, if X(0) has two diagonal
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blocks, any perturbation of any of its zero-entries render the
convergence of X(t) to a rank-one matrix, and therefore the non-
vanishing appraisal condition holds again; For Example 2, under
any perturbation of any entry of X(0), X(t) converges to a rank-
one matrix and the non-vanishing appraisal condition holds as
well. Moreover, even for Examples 1 and 2, the systems are still
well-behaved and the solutions X(t) achieve social balance with
k isolated subgraphs, as defined in Remark 3.5.

We end this section with some remarks on the homophily-
based model.

Remark 3.8 (Sufficient Conditions for Non-Vanishing Appraisals).
Since the non-vanishing appraisal condition is satisfied if X(t)
achieves social balance at finite time, by writing down the closed-
form expressions of X(1) and X(2) and applying Lemma 2.2, we
obtain the following sufficient conditions on the initial appraisals
X for non-vanishing appraisals: (i) either (Xi∗X⊤

1∗)(X1∗X⊤

j∗ )(Xi∗X⊤

j∗ )>
0 for any i, j, (ii) or (Xi∗X⊤XX⊤

1∗)(X1∗X⊤XX⊤

j∗ )(Xi∗X⊤XX⊤

j∗ ) > 0 for
any i, j. Here the condition (i) ((ii) resp.) corresponds to the case
when X(1) (X(2) resp.) is structurally balanced. Both condition (i)
and (ii) define sets of initial appraisal matrices X with non-zero
measure.

Remark 3.9. Our homophily-based model exhibits the following
somehow unrealistic behavior: for any X(0) ∈ Snz-row, the solution
X(t) immediately becomes sign-symmetric at time step 1. How-
ever, if we adopt a simple modification by considering individual
memory, i.e., if the dynamics are given by

X(t + 1) = ϵ fhomophily(X(t)) + (1 − ϵ)X(t), (6)

for some ϵ ∈ (0, 1], then, following the same argument as in the
proofs for Proposition 3.3, Theorems 3.4, and 3.7, we conclude
that

(i) The set Spos-diag = {X ∈ Rn×n
| Xii > 0 for any i} is invariant

under dynamics (6);
(ii) Theorem 3.4 still holds, while statements (ii)–(iv) of

Proposition 3.3 and Theorem 3.7 still hold for any X(0) ∈

Spos-diag.

The proof is provided in the technical report (Mei et al.).

4. Influence-based model

In this section, we propose the influence-based model (IbM)
and present some important theoretical results parallel to the
results on the homophily-based model. Since the proof methods
are similar to those in Section 3, we leave out all the proofs in this
section and refer the readers to the technical report (Mei et al.).

Definition 4.1 (Influence-based Model). Given an initial appraisal
matrix X(0) ∈ S+

rs-symm ⊂ Rn×n, the influence-based model is
defined by

X(t + 1) = diag(|X(t)|1n)−1X(t)X(t). (7)

Remark 4.2 (Interpretation). Compared with the homophily-based
model (4), the only difference here is that the term X(t)X(t)⊤
on the right-hand side of (4) is changed to X(t)X(t). Eq. (7) now
describes an interpersonal influence process: Individuals adjust
their appraisals of each other via the opinion dynamics X(t +

1) = W (t)X(t). Here the opinion of each individual is how she/he
appraise every one in the group, and each Wij(t) denotes the
weight that individual i assigns to individual j’s opinions. The
construction of the influence matrix W (t) = diag

(
|X(t)|1n

)−1X(t)
implies that the interpersonal influences are proportional to the
interpersonal appraisals.

Next, we present some results on the invariant set and finite-
time behavior of the influence-based model.

Proposition 4.3 (Finite-time Properties of the IbM). Consider the
dynamical system (7) and define finfluence(X) = diag(|X |1n)−1XX.
Pick any X0 ∈ S+

rs-symm. The following statements hold:

(i) the map finfluence is well-defined for any X ∈ Snz-row and maps
S+
rs-symm to S+

rs-symm;
(ii) the solution X(t), t ∈ Z≥0, to Eq. (7) from initial condition

X(0) = X0 exists and is unique;
(iii) |X(t)|max is non-increasing for any t ≥ 0;
(iv) for any c > 0, the trajectory cX(t) is the solution to Eq. (7)

from initial condition X(0) = cX0.

Notice that Snz-row is not an invariant set of the map finfluence.
For example,

X(0) =

[
1 2

−0.5 −1

]
∈ Snz-row

leads to X(1) /∈ Snz-row and, moreover, finfluence(X(1)) is not
defined. For the influence-based model, we consider S+

rs-symm as
the domain of system (7) due to its invariance under the map
finfluence. According to Proposition 4.3, for any X(0) ∈ S+

rs-symm and
any t ≥ 0, each entry of |X(t)| is uniformly upper bounded, which
is a desired property the previous models in Marvel et al. (2011)
and Traag et al. (2013) do not have.

The following theorem characterizes the set of fixed points of
the map finfluence in S+

rs-symm.

Theorem 4.4 (Fixed Points and Social Balance). Consider system (7)
in domain S+

rs-symm. Define

Qinfluence

=

{
PYP⊤

∈ S+

rs-symm

⏐⏐⏐ P is a permutation matrix,

Y is a block diagonal matrix with blocks of the

form sign(w)w⊤, w ∈ Rm and |w| ≻ 0m,m ≤ n
}

.

Then

(i) Qinfluence is the set of all the fixed points of system (7) in
domain S+

rs-symm,
(ii) for any X ∈ Qinfluence, G(X) is composed by isolated complete

subgraphs that satisfy social balance.

Remark 4.5. The proof of Theorem 4.4 implies that Qinfluence
is actually the set of all the fixed points of the map finfluence in
S+
s-symm. However, the set Qinfluence does not contain all the fixed

points in Snz-row. For example, let X = αbb⊤ for some α > 0 and
b ∈ {−1, +1}n. Then, pick one i ∈ {1, . . . , n} and set X∗i = 0n. It
can be easily verified that X = finfluence(X) but X /∈ Qinfluence.

Now we present the main results on the convergence of the
appraisal network to social balance.

Theorem 4.6 (Convergence and Social Balance in the IbM). Consider
the influence-based model given by Eq. (7). The following statements
hold:

(i) Each element in Qinfluence of rank one is a locally stable fixed
point of finfluence;

(ii) For any X(0) ∈ S+
rs-symm, the following three statements are

equivalent:

(a) the solution X(t) satisfies the non-vanishing appraisal
condition given by Definition 3.6;
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(b) there exists t0 ≥ 0 such that G(X(t)) satisfies social
balance for all t ≥ t0;

(c) there exists X∗
∈ Qinfluence of rank one such that

limt→∞ X(t) = X∗.

5. Further discussion and numerical simulations

5.1. Numerical validation of the non-vanishing appraisal condition
and model comparisons

Monte Carlo validation indicates that, for the homophily-
based model, the non-vanishing appraisal condition, given by
Definition 3.6, holds for generic initial conditions in Snz-row. By
generic initial condition, we mean each of X(0)’s entries is in-
dependently randomly generated from the uniform distribution
on some support [−a, a]. Since the homophily-based model is
independent of scaling, we only need to consider the support
[−1, 1]. For any randomly generated X(0) ∈ Snz-row ∩ [−1, 1]n×n,
define the random variable Z : Snz-row → {0, 1} as

Z(X(0)) =

{
1, if min

100≤t≤1000
min
i,j

|Xij(t)| ≥ 0.001,

0, otherwise.

Let p = P[Z(X(0)) = 1]. For N such independent random samples
Z1, . . . , ZN , define p̂N =

∑N
i=1 Zi/N . For any accuracy 1−ε ∈ (0, 1)

and confidence level 1− ξ ∈ (0, 1), |p̂N − p| < ε with probability
greater than 1−ξ if the Chernoff bound is satisfied: N ≥

1
2ε2

log 2
ξ
.

For ε = ξ = 0.01, the bound is satisfied by N = 27000. We
ran the 27000 independent simulations of the homophily-based
model with n = 8, and found that p̂ = 1. Therefore, we conclude
that, for any generic initial condition X(0) ∈ Snz-row, with 99%
confidence level, there is at least 0.99 probability that every entry
of |X(t)| is lower bounded by a positive scalar (set to be 0.001 in
this simulation) for all t ∈ {100, . . . , 10000}.

We remark that the continuous-time homophily-based
model (Traag et al., 2013) has a similar property that the inter-
personal appraisals reach social balance in finite time, however
they diverge later also in finite time.

The same Monte Carlo validation is also applied to the
influence-based model, except that now the generic initial con-
ditions X(0) ∈ S+

rs-symm ⊂ Rn×n is generated by the following
steps: (1) Randomly and independently generate the diagonal
and the upper triangular entries of a matrix X̂ ∈ Rn×n from
the uniform distribution on [−1, 1]; (2) Let X̂ij = X̂ji for any
i > j; (3) Randomly and independently generate the entries of
a n × 1 vector γ from the uniform distribution on [0, 1]; (4)
Let X(0) = diag(γ )X̂ . We obtained that, for any initial condition
X(0) ∈ S+

rs-symm, with 99% confidence level, there is at least 0.99
probability that every entry of |X(t)| is uniformly strictly lower
bounded from 0 for all t ∈ {100, . . . , 10000}.

In the continuous-time influence-like model (Marvel et al.,
2011; Traag et al., 2013), when the initial appraisal matrix X(0) is
a normal matrix, i.e., when X(0)X(0)⊤ = X(0)⊤X(0), the appraisal
network G(X(t)) almost surely reaches social balance only in the
limit case when the network size n tends to infinity. Compared
with these models, besides the desired convergence property, our
influenced-based model has the following advantages: (1) Unlike
the set of normal matrices, of which the sociological meaning is
not explicit, the almost-sure convergence to social balance in our
influence-based model holds for any X(0) = diag(γ )X̂ , where X̂
is symmetric and diag(γ ) has positive diagonals. With the term
diag(γ ), our model allows for individuals’ heterogeneous scaling
of appraisals, which is sociologically more reasonable; (2) In our
influence-based model, the almost-sure finite-time achievement
of social balance holds for any finite network size n.

For both homophily-based and influence-based models, Monte
Carlo validations with uniform but asymmetric initial appraisal

Fig. 1. Error-bar plot of the estimated probability of converging to social balance
for both the homophily-based model and the influence model. For each network
size, we run 1000 realizations, each with an initial condition X(0) randomly
generated from Snz-row ∩ [−1.1]n×n in the same way as in the first paragraph of
Section 5.1. Numerical convergence is determined by whether the non-vanishing
appraisal condition holds. The error bars are taken as the estimated standard
deviations of the probability estimation and turn out to be very small (0 for the
homophily-based model).

Fig. 2. Visualization of the evolution of the appraisal matrix under perturbations
in the homophily-based model. For each entry, the dark gray color indicates
a negative appraisal, while the light gray indicates a positive one. The white
color indicates no appraisal. The appraisal network has 11 nodes and is initially
in a social balance state with 3 isolated subgraphs. With 6 links (4 positive
and 2 negative links) added to the network, the appraisal network evolves to a
single-clique structurally balanced state after 5 iterations.

distributions lead to the same results, but are not presented here
due to the limit of space.

We further numerically estimate, for our influence-based
model, the probability that the non-vanishing appraisal condition
holds for generic initial conditions X(0) ∈ Snz-row ∩ [−1, 1]n×n.
According to Theorem 4.6, this probability is also the probability
that the appraisal network converges to social balance. As shown
in Fig. 1, for the influence-based model, the probability of con-
verging to social balance is quite low and decays to zero as the
network size increases. Such feature indicates that, if system (4)
and (7) correctly characterize the homophily and influence mech-
anisms, respectively, then the homophily mechanism is a more
universal explanation for the convergence of appraisal networks
to social balance. That is, it is more probable that the empirically
observed structurally balanced social networks are formed via the
homophily mechanism rather than the influence mechanism.

5.2. Social balance under perturbation

For the homophily model, extensive simulation observations
indicate that social balance with k > 1 isolated subgraphs
is unstable under perturbations. With some links added to the
network, the subnetworks connected by the added links merge
into larger subnetworks and the perturbed network converges to
another balanced state with fewer isolated subgraphs, see Fig. 2
as an example and the following two insightful scenarios.

Example 1 (Globalization of Local Conflicts). Consider the appraisal
network with two isolated subgraphs. Each subgraph is struc-
turally balanced and made up of two antagonistic factions. The
two factions in subgraph 1 are node sets V1 and V2, respectively,
while the two factions in subgraph 2 are V3 and V4, respectively.
Suppose one link with weight η is added from one node in V1 to
one node in V3. By computing the closed form expression of X(2),
we obtain that the perturbed appraisal network always recovers
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Fig. 3. Visual illustration of the behavior of the social balance with 2 isolated
subgraphs with the addition of one inter-subgraph link.

to a complete and structurally balanced network composed of
two antagonistic factions. Moreover, if η > 0, then the two
factions are V1∪V3 and V2∪V4; If η < 0, then the two factions are
V1∪V4 and V2∪V3. Fig. 3 visualizes the behavior described above.
In reality, such behavior could be interpreted as the escalation
of local conflicts. One real example of such phenomena is the
formation of the globalized conflicts between the Axis and the
Ally in World War II, after the Nazi German allied with the
Imperial Japan.

Example 2 (Competition for Ally and Mediation of Conflicts). Con-
sider an appraisal network with two isolated subgraphs: sub-
graph 1 with two antagonistic factions V1 = {1, . . . , n1} and
V2 = {n1 + 1, . . . , n1 + n2}, and subgraph 2 with only one faction
V3 = {n1 + n2 + 1, . . . , n1 + n2 + n3}. Suppose the appraisal
matrix associated with subgraph 1 is given by αbb⊤, where b =

(1⊤
n1 , −1⊤

n2 )
⊤, and α > 0 represents the sentiment strength

inside subgraph 1. Similarly, the appraisal matrix associated with
subgraph 2 is given by α̂b̂b̂⊤, where b̂ = 1n3 and α̂ > 0 represents
the sentiment strength inside subgraph 2. Imagine then that both
V1 and V2 aim to ally with V3. Accordingly, suppose that, in order
to ally with V3, each node in V1 builds a bilateral link with each
node in V3, with link weight ϵ1 > 0, while each node in V2 builds
a bilateral link with each node in V3 with weight ϵ2 > 0. With
all these links added, the associated appraisal matrix takes the
following form:

X(0) =

⎡⎢⎣ α1n11⊤
n1 −α1n11⊤

n2 ϵ11n11⊤
n3

−α1n21⊤
n1 α1n21⊤

n2 ϵ21n21⊤
n3

ϵ11n31n1 ϵ21n31⊤
n1 α̂1n31⊤

n3

⎤⎥⎦ .

Along the evolution of X(t) determined by X(0), we obtain the
following numerical results.

(i) If ϵ1n1 > ϵ2n2, i.e., faction V1 takes greater effort than V2
in allying with V3, then V1 gains at least one ally, either V2 or
V3. Moreover, the following conditions ϵ1n1 − ϵ2n2 ≥ α̂ϵ2n3/α
and ϵ1ϵ2n3 ≤ α2(n1 + n2) guarantee that V1 ally with V3;
This statement also holds when all the subscripts 1 and 2 are
switched;

(ii) If ϵ1ϵ2n3 ≤ α2(n1 + n2), then V3 eventually gains at least
one ally. That is, V3 avoids the situation in which V1 and V2 end
up allying with each other against V3;

(iii) Any of the following conditions guarantees that no nega-
tive link exists in the asymptotic appraisal network: (1) ϵ1ϵ2n3 ≥

α2(n1 + n2) and ϵ1n1 − ϵ2n2 = 0; (2) ϵ1ϵ2n3 ≥ α2(n1 + n2)
and 0 < ϵ1n1 − ϵ2n2 ≤ ϵ2α̂n3; (3) ϵ1ϵ2n3 ≥ α2(n1 + n2) and
0 < ϵ2n2 − ϵ1n1 ≤ ϵ1α̂n3. Notice that the inequality ϵ1ϵ2n3 ≥

α2(n1 + n2) is required for all the three sufficient conditions.
The right-hand side of this inequality above reflects the ‘‘scale’’
of the conflicts between factions V1 and V2, while the left-hand
side is V1 and V2’s average efforts in allying with V3, multiplied
by the size of V3. From the three sufficient conditions, we learn
that the larger the size of V3, the more capable it is of mediating
the conflicts between V1 and V2. In addition, V1 and V2’s strong
willingness to ally with V3, as well as the sentiment strength
inside V3, i.e., α̂, also helps mediate the conflicts.

Fig. 4. Formation of factions under different initial condition distributions for
the homophily-based model. The white color indicates the presence of two
factions in all the 30 random samples, while the dark gray color indicates the
presence of one faction in all of the samples. The light gray color indicates any
other case.

5.3. Distribution of initial conditions and formation of factions in the
homophily-based model

We investigate numerically, for the homophily-based model,
how initial appraisal distribution determines whether the ap-
praisal network evolves to only one faction or two antagonistic
factions. We randomly and independently sample the entries
of X(0) from the uniform distribution on [xmin, xmax], for which
ave(xmin, xmax) = (xmax + xmin)/2 indicates how the initial ap-
praisals are biased towards being positive. We set xmax − xmin =

2 and change the values of ave(xmin, xmax) and the number of
agents. Given [xmin, xmax], 30 samples of the initial condition X(0)
are independently randomly generated and for each X(0) we
count how many factions appear at X(500). Since any X(0) and
−X(0) lead to the same X(1) and X(t) thereafter, we only consider
different values of ave(xmin, xmax) ≥ 0. Fig. 4 shows that, for fixed
network size, the smaller the value of ave(xmin, xmax), the more
likely it is to find two antagonistic factions; for fixed value of
ave(xmin, xmax), the larger the network size, the more likely that
only one faction emerges.

Note that similar numerical study in Marvel et al. (2011) for
the continuous-time influence-like model indicates that the ap-
praisal network evolves to two antagonistic factions if the initial
mean appraisal is non-positive. The appraisal network evolves to
all-friendly state if the initial mean is positive. However, such
results in Marvel et al. (2011) only hold for the limit case of
infinitely large network size n.

6. Conclusion

This paper proposes both homophily-based and influence-
based discrete-time models for the bounded evolution of inter-
personal appraisal networks towards social balance. For either
model, the set of fixed points includes all the possible balanced
configurations, in the sense of sign pattern, of the appraisal net-
work. Under the non-vanishing appraisal condition, we prove
that both models exhibit asymptotic convergence to structurally
balanced networks, while the convergence property holds for
larger initial conditions set in the homophily-based model than
in the influence-based model. Moreover, our models admit the
existence of multiple isolated subgraphs in the final structure of
the evolved appraisal network. Numerical study indicates how
the final emergence of factions in the social network is sensitive
to the initial appraisal distribution, and how the system transits
from one fixed point to another under perturbations.

We remark that our models and the previous continuous-
time models (Jia et al., 2016; Kułakowski et al., 2005; Marvel
et al., 2011; Traag et al., 2013) all adopt the definition of social
balance for complete graphs, or isolated complete subgraphs in
our paper, which implies that individuals interact with everyone
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in the group/subgroup. This assumption limits the scope of the
application of our models to (groups of) small-size groups, which
are usually assumed to be complete graphs.

Possible future research directions include a better under-
standing of the influence-based model for arbitrary initial con-
ditions, a validation of the proposed models with laboratory
and/or field data, the study of asynchronous models with pairwise
updates, and further study of conditions and cases in which one
socio-psychological mechanism dominates the other.
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