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Abstract. Akin to the Erdős-Rademacher problem, Linial and Morgenstern made the fol-
lowing conjecture in tournaments: for any d ∈ (0, 1], among all n-vertex tournaments
with d

(
n
3

)
many 3-cycles, the number of 4-cycles is asymptotically minimized by a special

random blow-up of a transitive tournament. Recently, Chan, Grzesik, Král’ and Noel intro-
duced spectrum analysis of adjacency matrices of tournaments in this study, and confirmed
this for d ⩾ 1/36.

In this paper, we investigate the analogous problem of minimizing the number of cycles
of a given length. We prove that for integers ℓ ̸≡ 2 mod 4, there exists some constant cℓ > 0
such that if d ⩾ 1− cℓ, then the number of ℓ-cycles is also asymptotically minimized by the
same extremal examples. In doing so, we answer a question of Linial and Morgenstern about
minimizing the q-norm of a probabilistic vector with given p-norm for integers q > p > 1.
For integers ℓ ≡ 2 mod 4, however the same phenomena do not hold for ℓ-cycles, for which
we can construct an explicit family of tournaments containing fewer ℓ-cycles for any given
number of 3-cycles. We propose two conjectures concerning the minimization problem for
general cycles.
Keywords. Tournaments, cycles, spectrum
Mathematics Subject Classifications. 05C20, 05C35, 05C38

1. Introduction

A classic problem of Erdős and Rademacher [Erd55] in extremal graph theory asks to determine
the smallest number fr(m,n) of cliques of size r contained in a graph with n vertices and m

∗Research supported by the National Key R and D Program of China 2020YFA0713100, National Natural
Science Foundation of China grant 12125106, and Anhui Initiative in Quantum Information Technologies grant
AHY150200. Email: jiema@ustc.edu.cn.
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edges. An asymptotic version of this problem is then to determine the following limit

fr(α) := lim
n→∞

fr
(
⌈α
(
n
2

)
⌉, n
)(

n
r

) , (1.1)

for any α ∈ [0, 1]. The value of fr(α) has been precisely determined for r = 3 by Raz-
borov [Raz08], for r = 4 by Nikiforov [Nik11], and for r ⩾ 5 by Reiher [Rei16].

In this paper, we consider extremal problems on cycles in tournaments.1 The problem we
consider highly resembles Erdős-Rademacher problem [Erd55]. For a cycle Cℓ of length ℓ and
a tournament T , a homomorphism of Cℓ to T is a mapping from V (Cℓ) to V (T ) that preserves
edges. Let t(Cℓ, T ) denote the number of homomorphisms of Cℓ to T divided by |V (T )|ℓ.2

One of the most natural extremal problems on tournaments is to determine the maximum
number of cycles of a given length in tournaments. This can be traced back to the work of
Kendall and Babington Smith [KS40] in 1940. It is well-known (see [CG91, Goo59]) that a
tournament T satisfies t(C3, T ) ⩽ 1

8
and it has the maximum number of cycles C3 if and only

if it is almost regular. Optimal results on 4-cycles and 5-cycles were obtained by Beineke and
Harary [BH65] and by Komarov and Mackey [KM17], respectively. For other cycles, Day con-
jectured in [Day18] that the asymptotic maximum of t(Cℓ, T ) is achieved by a random oriented
tournament if and only of ℓ is not divisible by four. This was confirmed recently by Grzesik,
Král’, Lovász and Volec in [GLV+22] using algebraic approach, where they also obtained the
asymptotic maximum of t(C8, T ) and a very close estimation on the maximum of t(Cℓ, T ) for
any ℓ divisible by four.

Another natural extremal problem is to study the complementary problem, i.e., the minimum
number of cycles of a given length in tournaments. Since irregular tournaments (such as transi-
tive tournaments) can contain arbitrary small number of cycles, one has to introduce some extra
restriction on tournaments for measuring regularity in this minimizing problem. As mentioned
the results of [CG91, Goo59] earlier, one such good measure could be the density t(C3, T )
of 3-cycles. This was indeed addressed by Linial and Morgenstern in [LM16], where they
asked for the asymptotic minimum density t(C4, T ) of 4-cycles in tournaments T with fixed
density t(C3, T ) of 3-cycles.

A random blow-up of a m-vertex transitive tournament is a tournament T with
V (T ) = V1 ∪ V2 ∪ · · · ∪ Vm such that all arcs within each Vi are oriented randomly and
for any i < j, all arcs between Vi and Vj are oriented from Vi to Vj . Linial and Morgen-
stern [LM16] conjectured that a random blow-up T ∗ of a transitive tournament with all but
one part of equal size and one smaller part would achieve the asymptotic minimum t(C4, T ).
Suppose that T ∗ has n vertices and t parts of equal size zn for some real z ∈ (0, 1]. Then we
have that tz ⩽ 1 < (t + 1)z, which implies that t = ⌊z−1⌋. Therefore, with high probability, it
holds for any ℓ ⩾ 3 that

t(Cℓ, T
∗) =

1

2ℓ

(
⌊z−1⌋zℓ + (1− ⌊z−1⌋z)ℓ

)
+ o(1), where o(1) → 0 as n → ∞.

1Throughout this paper, by a cycle in a digraph, we always mean a directed one.
2We would like to remark that the homomorphism density and the density as subgraphs of cycles Cℓ are asymp-

totically the same, because the number of homomorphisms of Cℓ to T that maps V (Cℓ) to fewer than |V (Cℓ)|
vertices of V (T ) is of order O(|V (Cℓ)|ℓ−1).
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The authors [LM16] also pointed out that the structure of this conjectured extremal configuration
resembles those of the famous Erdős-Rademacher problem [Erd55] (see [CGKN20] for more
discussion).

To state the above conjecture in a precise formula, define a function gℓ : [0, 1/8] → [0, 1] for
any integer ℓ ⩾ 4 as follows: Let gℓ(0) = 0 and for any real z ∈ (0, 1], let

gℓ

(
1

8

(
⌊z−1⌋z3 + (1− ⌊z−1⌋z)3

))
=

1

2ℓ

(
⌊z−1⌋zℓ + (1− ⌊z−1⌋z)ℓ

)
.

It is worth noting that the function gℓ(·) is continuous and increasing on [0, 1/8].

Conjecture 1.1 (Linial and Morgenstern [LM16], Conjecture 2.2). Every tournament T satisfies
that

t(C4, T ) ⩾ g4(t(C3, T )) + o(1),

where the o(1) term goes to zero as |V (T )| goes to infinity.

Linial and Morgenstern [LM16] proved several other general bounds between the densities
of C3 and C4 in tournaments. In particular, some of these imply that this conjecture holds for
tournaments T with t(C3, T ) asymptotically equal to 0, 1/8 and 1/32. They [LM16] also asked
to understand the relationships among the higher densities t(Cℓ, T ).

Very recently, Chan, Grzesik, Král’ and Noel [CGKN20] introduced spectral analysis of
adjacency matrices of tournaments in this study. They proved the following result, which makes
a breakthrough towards Conjecture 1.1.

Theorem 1.2 (Chan, Grzesik, Král’ and Noel [CGKN20]). Conjecture 1.1 holds
for t(C3, T ) ∈ [ 1

72
, 1
8
].

Moreover, they [CGKN20] developed a limit theory for tournaments and used it to charac-
terize the asymptotic structure of all extremal tournaments T with t(C3, T ) ∈ [1/32, 1/8] for
Conjecture 1.1.

In this paper, we study the minimum number of cycles in tournaments T with fixed density
t(C3, T ) of 3-cycles. The following is our main result, which exhibits an analog of Theorem 1.2
for a cycle of length not of the form 4k + 2 in tournaments that are “close” to be regular.

Theorem 1.3. Let T be a tournament and ℓ ⩾ 4 be an integer with ℓ ̸≡ 2 mod 4.
If t(C3, T ) ⩾ 1

8
− 1

10ℓ2
, then it holds that

t(Cℓ, T ) ⩾ gℓ(t(C3, T )) + o(1),

where the o(1) term goes to zero as |V (T )| goes to infinity.

By the same random blow-up example, we see that the above lower bound for any cycle Cℓ

of length not of the form 4k + 2 is asymptotically tight. We conjecture that similarly as in
Conjecture 1.1, the bound in Theorem 1.3 can be extended to any value of t(C3, T ).

The same minimizing problem for cycles of length of the form 4k + 2 is much more com-
plicated. For instance, it is still an open problem (see [Sav16]) to determine the asymptotic
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minimum density t(C6, T ) of 6-cycles even in regular tournaments T , i.e., t(C3, T ) = 1/8. On
the other hand, we do know that the analogous bound in Theorem 1.3 for these cycles does not
hold for any value of t(C3, T ) (see Lemma 4.2). For any ℓ of the form 4k + 2, we will describe
an explicit family of tournaments T with t(Cℓ, T ) < gℓ(t(C3, T )) for any value of t(C3, T ),
and conjecture that this family provides the optimal value for the minimum t(Cℓ, T ). Using re-
sults of [GLV+22], one also can give a close estimation on the minimum t(Cℓ, T ) for regular
tournaments, which provides evidences for supporting the above conjecture; see Lemma 4.4.

We now turn back to Theorem 1.3. The proof of Theorem 1.3 is motivated by the one
in [CGKN20], which used spectral analysis on adjacency matrices of tournaments. Through the
spectral analysis, Theorem 1.3 can be reduced to a list of optimization problems (see Subsec-
tion 3.2), whose constraints are non-linear non-convex polynomials of degree at most three and
its objective function is a multinomial of degree ℓ. The base case of these optimization prob-
lems is a minimization problem on the interplay between q-norms of probability vectors (see
Theorem 1.4 below). A probability vector w⃗ is an infinite-dimensional vector consisting of en-
tries wi for each integer i ⩾ 1, where all wi’s are non-negative and add up to exactly one. Linial
and Morgenstern [LM16] proved that for any real 0 < C < 1, the minimum of

∑
w4

i among all
probability vectors w⃗ satisfying

∑
w3

i = C is attained by letting w1 = · · · = wm > wm+1 ⩾ 0
and wi = 0 for any i > m+1,3 which was used in the proof of Theorem 1.2 in [CGKN20]. The
authors [LM16] also raised the following “natural sounding” question: find the smallest q-norm
among all probability vectors of given p-norm for any integers q > p > 1. We answer this in
the following strengthening, which holds for any reals q > p > 1. (We should postpone the
definition of the function fp,q in Section 2.)

Theorem 1.4. For any reals q > p > 1 and C ∈ (0, 1), consider all probability vectors w⃗
satisfying

∑
wp

i = C. Then the minimum of
∑

wq
i among all such vectors equals fp,q(C),

which is attained by letting w1 = w2 = · · · = wm > wm+1 ⩾ 0 and wi = 0 for any i ⩾ m+ 2.4

After settling this base case in the list of optimization problems of Theorem 1.3, we ap-
ply mathematical induction to solve other optimization problems. The difficulty we face in the
inductive step is that unlike in [CGKN20], we cannot use the method of Lagrange multipliers
because we find that for longer cycles, the Lagrange points of these optimization problems are
not unique and their forms are very complicated due to the high degree multinomial objective
function. To overcome this, we focus on a shorter interval for t(C3, T ) and turn to some analytic
method to complete the proof of Theorem 1.3.

The rest of the paper is organized as follows. In Section 2, we prove Theorem 1.4. In Sec-
tion 3, we prove Theorem 1.3. In Section 4, we consider cycles Cℓ for ℓ = 4k + 2, by giv-
ing a family of tournaments T with t(Cℓ, T ) < gℓ(t(C3, T )) for every value of t(C3, T ) (see

3Lemma 2.7 in [LM16] also requires that m is the smallest integer among all possible such choices. However,
as we shall explain in Section 2 (in the proof of Theorem 2.1) that w⃗ satisfying

∑
wi = 1,

∑
wp

i = C, w1 = · · · =
wm > wm+1 ⩾ 0 and wi = 0 for any i ⩾ m+ 2 is unique, which only depends on p and C.

4Perhaps it is worth pointing out that it is not trivial to see that there always exists an optimal vector to this
infinite-dimensional optimization problem. We would like to emphasise that the minimum of this optimization
problem is attained by a probability vector such that its first m coordinates are equal, the next one is smaller and
possibly non-zero, and all the others are zero.
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Lemma 4.2) and an asymptotic form of the minimum t(Cℓ, T ) as ℓ → ∞ for regular tourna-
ments T (see Lemma 4.4). We conclude with two conjectures concerning the minimization
problem discussed here.

2. The optimization problem of Linial–Morgenstern

In this section we prove Theorem 1.4, which considers an infinite-dimensional minimization
problem. We should first prove an analogous finite-dimensional version (see Theorem 2.1), and
then show how to use this finite-dimensional version to derive Theorem 1.4. We also give a
direct corollary of Theorem 1.4 at the end of this section.

Let q > p > 1 be two reals. We define the function fp,q(·) : [0, 1] → [0, 1] as follows:
Let fp,q(0) = 0 and for any z ∈ (0, 1], let

fp,q
(
⌊z−1⌋zp + (1− ⌊z−1⌋z)p

)
= ⌊z−1⌋zq + (1− ⌊z−1⌋z)q.

We point out that for any real p > 1, z 7→ ⌊z−1⌋zp+(1−⌊z−1⌋z)p is a strictly increasing continu-
ous bijection from (0, 1] to (0, 1]. From this, it is easy to see that fp,q(·) is a strictly increasing con-
tinuous function on [0, 1]. Also let us notice that gℓ(s) = f3,ℓ(8s)/2

ℓ for
any s ∈ [0, 1/8].

2.1. A finite-dimensional version

Theorem 2.1. For any reals q > p > 1, C ∈ (0, 1) and positive integer k with 1
kp−1 ⩽ C,

consider all vectors w⃗ = (w1, . . . , wk) satisfying
∑k

i=1 wi = 1,
∑k

i=1 w
p
i = C and wi ⩾ 0 for

each i ∈ [k]. Then the minimum of
∑k

i=1w
q
i among all such vectors equals fp,q(C), which is

attained by letting w1 = w2 = · · · = wm > wm+1 ⩾ 0 and wi = 0 for any i ⩾ m+ 2.

First, let us note that optimal solutions to the minimization problem in Theorem 2.1 always
exist, by the following two facts:

(i) Since the function (w1, . . . , wk) →
∑k

i=1w
p
i is continuous, and k

kp
⩽ C < 1, there exists

a vector (w1, w2, · · · , wk) satisfying
∑k

i=1wi = 1,
∑k

i=1w
p
i = C and wi ⩾ 0 for each

i ∈ [k]. Thus, the feasible region is not empty.

(ii) It is clear that the feasible region for w⃗ is compact.

To prove Theorem 2.1, we need to establish some lemmas. The first one is a generalization
of the well-known fact that the determinant of a Vandermonde matrix is non-zero.

Lemma 2.2. For reals 0 < c1 < c2 < · · · < cn and s1 < s2 < · · · < sn, let ai,j = csij for
any 1 ⩽ i, j ⩽ n. Then the rank of the matrix {ai,j}n×n is n.

Proof. We prove it by induction on n. First, it holds trivially when n = 1. Now suppose it
holds for n ⩽ k − 1 for some k ⩾ 2 and assume by contradiction that when n = k, there
exists such a matrix A = {csij }k×k whose rank is less than k. Then there exists a non-zero
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column vector λ⃗ = (λ1, . . . , λk)
T such that λTA = (0, 0, . . . , 0). Thus, the function

∑k
i=1 λix

si

has k distinct zero points c1, c2, . . . , ck. This also means that
∑k

i=1 λix
si−s1 has k distinct zero

points c1, c2, . . . , ck. By Lagrange’s mean value Theorem, the function
∑k

i=2 λi(si−s1)x
si−s1−1

has k − 1 distinct zero points d1, . . . , dk−1, where di ∈ (ci, ci+1). Let µi = λi+1(si+1 − s1) and
ti = si+1 − s1 − 1 for each i ∈ [k − 1]. Then for the matrix B = {dtij }(k−1)×(k−1) and the
vector µ⃗ = (µ1, . . . , µk−1)

T , we have µ⃗TB = (0, 0, . . . , 0). If µ⃗ = 0⃗, then we see λi = 0 for
any i ∈ {2, 3, . . . k}. As

∑k
i=1 λix

si has k distinct zero points, it forces λ1 = 0 and thus λ⃗ = 0⃗,
which is a contradiction. Therefore µ⃗ ̸= 0⃗, which implies that the rank of B is less than k − 1.
This is contradictory to our induction hypothesis.

Let w⃗ = (w1, . . . , wk) denote an optimal vector for the minimization problem in Theorem 2.1
such that w1 ⩾ w2 ⩾ · · · ⩾ wk ⩾ 0. The next lemma says that there are at most two distinct
positive real numbers that the entries of w⃗ can take.

Lemma 2.3. Suppose w⃗ = (w1, . . . , wk) is an optimal solution to the minimization problem in
Theorem 2.1 with w1 ⩾ w2 ⩾ · · · ⩾ wk ⩾ 0. Then there exist two reals 1 > a > b > 0 such
that for any i ∈ [k], wi ∈ {0, b, a}

Proof. We may assume by contradiction that there are wi > wj > wℓ > 0 for some indices
1 ⩽ i < j < ℓ ⩽ k. The method of Lagrange multipliers says that, at the optimal vector, the
gradient of the objective function is perpendicular to the tangent plane of the feasible region.
This implies that the rank of the following matrix 1 1 1

wp−1
i wp−1

j wp−1
ℓ

wq−1
i wq−1

j wq−1
ℓ


is less than 3. By Lemma 2.2, we get a contradiction, completing this proof.

The following lemma says more about the optimal vector w⃗ and is key for Theorem 2.1.

Lemma 2.4. Suppose w⃗ = (w1, . . . , wk) is an optimal solution to the minimization problem in
Theorem 2.1 with w1 ⩾ w2 ⩾ · · · ⩾ wk ⩾ 0. Then there exist no reals 1 > a > b > 0 and
integers i, j, ℓ ∈ [k] such that wi = a, wj = b and wℓ = b.

Proof. We assume by contradiction that wi = a, wj = b and wℓ = b. Our proof strategy is to
find a new vector in the feasible region which reduces the objective function. We consider two
cases separately, depending on whether 2(a+2b

2
)p ⩾ ap + 2bp or not.

Case 1. 2
(
a+2b
2

)p
⩾ ap + 2bp.

Let f : [0, 1) → R be such that f(x) = (a − 2x)p + 2(b + x)p. We have
f ′(x) = 2p(b + x)p−1 − 2p(a − 2x)p−1. So f ′(x) < 0 on [0, a−b

3
) and f ′(x) > 0 on (a−b

3
, a
2
].

We also have f(0) = ap +2bp and f(a
2
) = 2(a+2b

2
)p ⩾ ap +2bp. Therefore, there exists one and

only one x0 ∈ (a−b
3
, a
2
] such that f(x0) = ap + 2bp. Let c = a− 2x0, d = b+ x0. Then we have

0 ⩽ c < d, c+ 2d = 2b+ a and cp + 2dp = ap + 2bp. (2.1)
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We claim that 0 ⩽ c < b < d < a. To see this, first note that by the strict convexity of
x 7→ xp, we have f(a−b

2
) = bp+2(a+b

2
)p < bp+(bp+ap) = f(0). Then f(x) < ap+2bp = f(x0)

on (0, a−b
2
]. This implies x0 >

a−b
2

and thus c < b < d. It remains to show d < a. If a+2b
2

< a,
then d = b + x0 ⩽ b + a

2
< a, as desired. So we may assume a+2b

2
⩾ a, i.e., a− b ⩽ a

2
. Using

the strict convexity of x 7→ xp again, f(a− b) = (2b− a)p +2ap > 2bp + ap = f(x0). Because
f ′(x) > 0 on [a − b, a

2
], we have f(x) ⩾ f(a − b) > f(x0) for all x ∈ [a − b, a

2
]. This implies

that x0 < a− b and thus d = b+ x0 < a, proving the claim.
We want to replace (a, b, b) with (d, d, c) in w⃗ while reducing the objective function. In order

to do this, we consider the following function h(x):

Let h(x) = cx + 2dx − ax − 2bx if c > 0, and let h(x) = 2dx − ax − 2bx if c = 0.

Now we argue that h(q) < 0. Assume by contradiction that h(q) ⩾ 0. Using the fact that
0 ⩽ c < b < d < a, when x is sufficiently large, we have h(x) < 0. So there exists some
real s ⩾ q such that h(s) = 0. By (2.1), we also have h(p) = h(1) = 0. If c > 0, then h(0) = 0
and thus h(x) has four zero points 0 < 1 < p < s. This implies that

1 1 1 1
c b d a
cp bp dp ap

cs bs ds as




1
−2
2
−1

 =


0
0
0
0

 .

Then the rank of the matrix above is less than 4, which is contradictory to Lemma 2.2. So c = 0.
Then h(x) has three zero points 1 < p < s, which imply that b d a

bp dp ap

bs ds as

−2
2
−1

 =

0
0
0

 .

Again, this is contradictory to Lemma 2.2. The proof of h(q) < 0 is now completed.
Therefore, cq+2dq < aq+2bq. Let w⃗′ be obtained from w⃗ by replacing (a, b, b)with (c, d, d).

Clearly, w⃗′ is still in the feasible region, but it reduces the objective function. This contradicts
that w⃗ is an optimal vector, completing the proof for Case 1.

Case 2. 2
(
a+2b
2

)p
< ap + 2bp.

We first prove that a > 2b. Let f(x) = xp+2−2(x
2
+1)p. So f ′(x) = pxp−1 − p(x

2
+ 1)p−1.

This shows that f(x) is monotone decreasing on (0, 2) and monotone increasing on (2,+∞).
So f(x) < f(0) = 0 for any x ∈ (0, 2]. Using the condition of Case 2, we have that
f(a

b
) = (a

b
)p + 2 − 2( a

2b
+ 1)p > 0. As we just proved that f(x) < 0 for any x ∈ (0, 2], it

must be the case that a
b
> 2. So a > 2b and moreover, a+ 2b > a > a+2b

2
.

Let g(x) = xp+(a+2b−x)p−ap−2bp. Since g′(x) = pxp−1−p(a+2b−x)p−1, it is easy to
see that g(x) is monotone increasing on [a+2b

2
, a+2b]. Because g(a) = ap+(2b)p−ap−2bp > 0

and g(a+2b
2

) = 2(a+2b
2

)p−ap−2bp < 0, there exists a unique x0 ∈ (a+2b
2

, a) such that g(x0) = 0.
Let c = a + 2b − x0 and d = x0. Because g(x0) = 0, we have that cp + dp = ap + 2bp.
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Since x0 ∈
(
a+2b
2

, a
)
, we have that a > x0 = d > a+2b

2
> a + 2b − x0 = c > 2b > b. Also,

c+ d = (a+ 2b− x0) + x0 = a+ 2b. We now summarize these as follows:

0 < b < c < d < a, c+ d = a+ 2b and cp + dp = ap + 2bp. (2.2)

In this case, we want to replace (a, b, b) with (d, c, 0) in w⃗, while reducing the objective
function. For this purpose, we consider the function h(x) = ( c

a
)x + (d

a
)x − 1− 2( b

a
)x.

We claim that h(x) > 0 holds for any x ∈ (1, p). Assume by contradiction that there ex-
ists s ∈ (1, p) such that h(s) ⩽ 0. By (2.2), h(1) = h(p) = 0. Let β be a minimum point of h(x)
in [1, p]. Because there exists s ∈ (1, p) with h(s) ⩽ 0, we can choose β ∈ (1, p) with h(β) ⩽ 0
and h′(β) = 0. Let α ∈ [0, β] be a maximum point of h(x) on [0, β]. As h(0) = −1 < 0 and
there exists some s′ ∈ (0, β) with h(s′) ⩾ 0 ⩾ max{h(0), h(β)},5 we can choose α ∈ (0, β)
with h′(α) = 0. As limx→+∞ h(x) = −1 < 0, there exists t > p such that h(t) < 0. Let γ be a
maximum point of h(x) on [β, t]. Since h(p) ⩾ 0 ⩾ max{h(β), h(t)} where p ∈ (β, t), we can
choose γ ∈ (β, t) with h′(γ) = 0. For 0 < α < β < γ, we have h′(α) = h′(β) = h′(γ) = 0,
implying that ( b

a
)α ( c

a
)α (d

a
)α

( b
a
)β ( c

a
)β (d

a
)β

( b
a
)γ ( c

a
)γ (d

a
)γ

−2 log b
a

log c
a

log d
a

 =

0
0
0

 .

Then the rank of the matrix above is less than 3, a contradiction to Lemma 2.2.
Next we show that h(x) < 0 holds for any x ∈ (p,+∞). Assume by contradiction that

there exists some s ∈ (p,+∞) such that h(s) ⩾ 0. Because limx→+∞ h(x) = −1, there
exists t ∈ (s,+∞) such that h(t) < 0. Let α be a maximum point of h(x) on [1, p]. By the
previous paragraph, we can choose α ∈ (1, p) with h(α) > 0 and h′(α) = 0. Let γ be a
maximum point of h(x) on [p, t]. Because h(s) ⩾ 0 ⩾ max{h(p), h(t)} where s ∈ (p, t), we
can choose γ ∈ (p, t) with h(γ) ⩾ 0 and h′(γ) = 0. Lastly, let β be a minimum point of h(x)
on [α, γ]. Similarly, we can choose β ∈ (α, γ) with h′(β) = 0. For 0 < α < β < γ, we
have h′(α) = h′(β) = h′(γ) = 0. This implies that( b

a
)α ( c

a
)α (d

a
)α

( b
a
)β ( c

a
)β (d

a
)β

( b
a
)γ ( c

a
)γ (d

a
)γ

−2 log b
a

log c
a

log d
a

 =

0
0
0

 .

By Lemma 2.2 again, we get a contradiction.
In particular, h(q) < 0, which means cq + dq < aq + 2bq. Then we can replace (a, b, b)

with (d, c, 0) in w⃗. The new vector is still in the feasible region but reduces the objective function.
Thus we get a contradiction. This completes the proof of Lemma 2.4.

Now we are ready to prove Theorem 2.1.

Proof of Theorem 2.1. Let w⃗ = (w1, . . . , wk) be an optimal vector to the minimization problem
in Theorem 2.1 such that

∑k
i=1wi = 1,

∑k
i=1 w

p
i = C and w1 ⩾ w2 ⩾ · · · ⩾ wk ⩾ 0.

By Lemmas 2.3 and 2.4, we may assume that there exists some m such that w1 = · · · =
wm > wm+1 ⩾ 0 and wi = 0 for any i ⩾ m + 2. We show that w⃗ satisfying the above

5Clearly, here one can take s′ = 1.
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additional condition is uniquely determined by p and C. Set z = w1. Since 0 ⩽ wm+1 < z,
we have mz ⩽ 1 =

∑
wi < (m + 1)z, implying that z−1 − 1 < m ⩽ z−1, i.e., m = ⌊z−1⌋.

So wm+1 = 1− ⌊z−1⌋z. Using the restriction
∑

i w
p
i = C, we get that

⌊z−1⌋zp + (1− ⌊z−1⌋z)p = C. (2.3)

Note that z 7→ ⌊z−1⌋zp + (1 − ⌊z−1⌋z)p is a strictly increasing continuous bijection
from (0, 1] to (0, 1]. So there exists a unique solution z ∈ (0, 1) to the above equation. This
proves that such an optimal vector w⃗ is unique, which gives the minimum of

∑k
i=1w

q
i to

be ⌊z−1⌋zq + (1− ⌊z−1⌋z)q = fp,q(C), completing the proof of Theorem 2.1.

2.2. Proof of Theorem 1.4

We move on to prove Theorem 1.4. The proof will use the fact that the minimum value fp,q(C)
of Theorem 2.1 is an increasing continuous function with the variable C on [0, 1].

Proof of Theorem 1.4. Consider any probability vector w⃗ satisfying
∑

wp
i = C. Take any small

constant ϵ > 0 and choose k ∈ N+ to be sufficiently large such that t :=
∑k

i=1wi ⩾ 1− ϵ
and 1

kp−1 ⩽ C/2 ⩽ C − ϵ. Then we deduce that
∑∞

i=k+1 wi ⩽ ϵ and
∑∞

i=k+1w
p
i ⩽ ϵ, im-

plying that
∑k

i=1 w
p
i ⩾ C − ϵ. Now we normalize wi by letting vi := wi/t for each i ∈ [k].

Then
∑k

i=1 vi = 1 and as t ⩽ 1,
∑k

i=1 v
p
i =

(∑k
i=1 w

p
i

)
/tp ⩾ C− ϵ. By Theorem 2.1, we have

∞∑
i=1

wq
i ⩾

k∑
i=1

wq
i = tq ·

k∑
i=1

vqi ⩾ tq · fp,q

(
k∑

i=1

vpi

)
⩾ (1− ϵ)q · fp,q (C − ϵ) .

Using the continuity of fp,q, by letting ϵ → 0 we can get
∑∞

i=1w
q
i ⩾ fp,q(C). Now let w⃗0 be a

probability vector with z = w1 = · · · = wm > wm+1 ⩾ 0 and wi = 0 for any i ⩾ m+ 2, where
m = ⌊z−1⌋ and z is from (2.3). Then such w⃗ satisfies that

∑∞
i=1w

p
i = C and

∑∞
i=1w

q
i = fp,q(C).

So the minimum value in Theorem 1.4 exists and equals fp,q(C).

Now we present a corollary of Theorem 1.4, which will be used frequently in Section 3.

Corollary 2.5. Let n, ℓ be positive integers and x1, . . . , xn be any non-negative reals such
that ℓ ⩾ 4 and

∑n
i=1 xi =

1
2
. Then

∑n
i=1 x

ℓ
i ⩾ gℓ

(∑n
i=1 x

3
i

)
.

Proof. By definition of gℓ(·), together with Theorem 1.4, we have that for any s ∈ [0, 1/8],

gℓ(s) =
f3,ℓ(8s)

2ℓ
= min

{
1

2ℓ

∑
i

wℓ
i |
∑
i

w3
i = 8s,

∑
i

wi = 1, wi ⩾ 0 for any i ⩾ 1

}

= min

{∑
i

xℓ
i |
∑
i

x3
i = s,

∑
i

xi =
1

2
, xi ⩾ 0 for any i ⩾ 1

}
.

This implies the desired inequality.
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3. Cycles of given length in tournaments

In this section, we prove Theorem 1.3 by using the approach based on the spectrum analysis on
the adjacency matrix of a tournament, which was initiated in [CGKN20, GLV+22].

3.1. Some preliminaries

First we give some algebraic notation on a tournament T . Let V (T ) = [n]. For any i, j ∈ [n],
we write ij for an arc with head i and tail j. The adjacency matrix of T is an n × n matrix
M = (mi,j), where mi,j = 1 if ij ∈ E(T ) and mi,j = 0 otherwise. It is easy to see that

t(Cℓ, T ) = tr(M ℓ)/nℓ,

where tr(X) denotes the trace of the matrix X . Let I denote the n×n identity matrix. We call
A := (1

2
I + M)/n the tournament matrix of T .6 It follows that A + AT = J , where J is the

n× n matrix with each entry being 1
n
. It is not difficult to see that

t(Cℓ, T ) = tr(M ℓ)/nℓ = tr(Aℓ) + o(1), (3.1)

where limn→+∞ o(1) = 0. The following fact will be crucial (see [BG68], or [CGKN20,
Lemma 2]).

Lemma 3.1. Every eigenvalue of a tournament matrix has nonnegetive real part.

Besides Corollary 2.5, we also need to use the following optimization. The proof of the
case p = 3 was given in [CGKN20] (see Lemma 9), which can be easily transformed to general
cases.

Lemma 3.2. For integers p ⩾ 2, n ⩾ 1 and any real 1 > t > 0 such that nt ⩾ 1, consider
all vectors (w1, w2, . . . , wn) satisfying

∑n
i=1 wi = 1 and wi ∈ [0, t] for every i ∈ [n]. Then the

maximum of
∑n

i=1w
p
i is attained by letting w1 = w2 = · · · = w⌊t−1⌋ = t, w⌊t−1⌋+1 = 1− t⌊t−1⌋

and wj = 0 for any j ⩾ ⌊t−1⌋+ 2.

For a complex number z, we denote its real part by Re z and its absolute value by |z|. We
write the imaginary unit by i. The following inequality was explicitly given in [GLV+22] (see
the inequality (9) therein). For completeness, we present a proof here.

Lemma 3.3. For any odd integer ℓ > 0 and complex number z with Re z ⩾ 0, it holds
that Re zℓ ⩽ ℓ|z|ℓ−1Re z.

Proof. Let z = a + bi for reals a, b with a ⩾ 0. It suffices to consider a > 0 and b ⩾ 0. Write
b/a = tan(α) for α ∈ [0, π

2
). Then Re zℓ = |z|ℓ · cos(ℓα). Since ℓ is odd, it follows that

|Re zℓ| = |z|ℓ · | sin ℓ(π/2− α)| ⩽ |z|ℓ · ℓ · | sin(π/2− α)| = |z|ℓ · ℓ · | cosα| = ℓ|z|ℓ−1a.
6We note that the tournament matrix in [BG68] denotes the adjacency matrix, which is different from the notion

here. In this paper, instead of the adjacency matrix M , we deal with A = ( 12I +M)/n all the time.
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3.2. Proof of Theorem 1.3

In view of Theorem 1.2, we may assume that ℓ ⩾ 5 is an integer with ℓ ̸≡ 2 mod 4.
Let ℓ = 4k + µ, where µ ∈ {−1, 0, 1} and let T be any tournament satisfying

t(C3, T ) ⩾
1

8
− 1

10ℓ2
.

Our goal is to show t(Cℓ, T ) ⩾ gℓ(t(C3, T )) + o(1), where lim|V (T )|→+∞ o(1) = 0.
Denote A by its tournament matrix and let σ = tr(A3). By the Perron–Frobenius theorem,

we may assume that the eigenvalues of A are ρ, r1, . . . , rt, a1 + b1i, . . . , as + bsi, where ρ is
the spectral radius of A and ri, aj, bj are reals for each i ∈ [t] and j ∈ [s]. We now collect
some properties on these eigenvalues. First, using Lemma 3.1 together with the fact that ρ is
the spectral radius, we see that ri ∈ [0, ρ] for each i ∈ [t] and aj ⩾ 0 and a2j + b2j ⩽ ρ2 for
each j ∈ [s]. Since each diagonal element of A is 1

2n
, we have ρ +

∑t
i=1 ri +

∑s
j=1 aj =

Re tr(A) = tr(A) = 1
2
. Similarly, we have

ρ3 +
t∑

i=1

r3i +
s∑

j=1

(a3j − 3ajb
2
j) = Re tr(A3) = tr(A3) = σ,

ρ2 +
t∑

i=1

r2i +
s∑

j=1

(a2j − b2j) = Re tr(A2) = tr(A2) ⩾ 0,

where the second inequality implies that

s∑
j=1

b2j ⩽ ρ2 +
t∑

i=1

r2i +
s∑

j=1

a2j ⩽ (ρ+
t∑

i=1

ri +
s∑

j=1

aj)
2 =

1

4
.

Since A is a real matrix, if aj + bji is an eigenvalue of A, then so is aj − bji. Hence we
have 2b2j ⩽ 1

4
, implying that b2j ⩽ 1

8
for each j ∈ [s].

Optimization Problem OPTσ
ℓ (s, t, ρ)

Parameters : real numbers σ ∈ [0, 1
8
], ρ ∈ [0, 1

2
]

nonnegative integers ℓ, t, s with t+ s ⩾ 1 and ℓ ⩾ 5
Variables : real numbers r1, . . . , rt, a1, b1, . . . , as, bs

Constraints : ρ+
t∑

i=1

ri +
s∑

j=1

aj =
1
2

ρ3 +
t∑

i=1

r3i +
s∑

j=1

(a3j − 3ajb
2
j) = σ

0 ⩽ r1, . . . , rt ⩽ ρ, 0 ⩽ a1, . . . , as
for any j ∈ [s], a2j + b2j ⩽ ρ2, b2j ⩽ 1

8

Objective : Φσ
ℓ (s, t, ρ) := min

{
ρℓ +

t∑
i=1

rℓi +
s∑

j=1

Re (aj + bji)ℓ
}
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We define the optimization problemOPTσ
ℓ (s, t, ρ), for which the optimal solutionΦσ

ℓ (s, t, ρ)
exists. Since the eigenvalues of A satisfy the constraints in OPTσ

ℓ (s, t, ρ), using (3.1) we have

t(Cℓ, T ) = tr(Aℓ) + o(1) = ρℓ +
t∑

i=1

rℓi +
s∑

j=1

Re (aj + bji)ℓ + o(1) ⩾ Φσ
ℓ (s, t, ρ) + o(1),

(3.2)

where lim|V (T )|→+∞ o(1) = 0. Also by (3.1), we have that

σ = tr(A3) = t(C3, T ) + o(1) ⩾
1

8
− 1

10ℓ2
+ o(1) ⩾

(1
2
− 1

80k2

)3
+
( 1

80k2

)3
.

We now devote the rest of the proof to show the following statement:

Statement (⋆). For any real ρ ∈ [0, 1
2
] and nonnegative integers ℓ, t, s with ℓ ⩾ 5, ℓ ̸≡ 2 mod 4

and t+ s ⩾ 1, if σ ⩾ (1
2
− 1

80k2
)3 + ( 1

80k2
)3, then Φσ

ℓ (s, t, ρ) ⩾ gℓ(σ).

Before we proceed, we point out that to finish the proof of Theorem 1.3, it suffices to
prove (⋆). Indeed, if (⋆) holds, then using (3.2) and the fact that gℓ(·) is a continuous function,
we can deduce the desired inequality as follows:

t(Cℓ, T )− o(1) ⩾ Φσ
ℓ (s, t, ρ) ⩾ gℓ(σ) = gℓ

(
t(C3, T ) + o(1)

)
⩾ gℓ(t(C3, T )) + o(1).

We prove the statement (⋆) by induction on s. If s = 0, then applying Corollary 2.5 di-
rectly, we can derive Φσ

ℓ (s, t, ρ) ⩾ gℓ(σ). So we may assume that s ⩾ 1 and there exists
some integer m such that (⋆) holds for any s < m. Now we consider when s = m. Assume
that (r1, . . . , rt, a1, b1, . . . , am, bm) is an optimal vector of OPTσ

ℓ (m, t, ρ).
Recall ℓ = 4k + µ, where µ ∈ {−1, 0, 1}. Suppose that am = 0. Because 3amb

2
m = 0,

the upper bound constraint about σ is not related to bm. If µ = 0, then Re (am + bmi)4k = b4km
is minimized in the objective function when bm = 0. If µ ∈ {−1, 1}, then Re (am + bmi)ℓ =
Re (bmi)ℓ = 0, so by setting bm = 0 the new vector still satisfies all the constraints and the
objective value remains unchanged. Therefore, when am = 0, we can always set bm = 0 and
use induction directly. From now on, we may assume am > 0.

Since ρ +
∑t

i=1 ri +
∑m

j=1 aj = 1
2

and 0 ⩽ ri, aj ⩽ ρ for each i ∈ [t], j ∈ [m], we can
deduce from Lemma 3.2 that(1

2
− 1

80k2

)3
+
( 1

80k2

)3
⩽ σ ⩽ ρ3 +

t∑
i=1

r3i +
m∑
j=1

a3j ⩽

⌊
1

2ρ

⌋
ρ3 +

(1
2
− ρ

⌊
1

2ρ

⌋)3
.

This implies that

ρ ⩾ 1/2− 1/80k2 and thus aj ⩽ 1/80k2 for each j ∈ [m]. (3.3)

Let σ′ := σ+3amb
2
m. Shifting σ to σ′ and viewing am as a new variable rt+1, we can obtain a

new optimization problem OPTσ′

ℓ (m−1, t+1, ρ). Our proof idea in what follows is to compare
the optimal values of the two optimization problemsOPTσ

ℓ (m, t, ρ) andOPTσ′

ℓ (m− 1, t+ 1, ρ)
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by using analytic arguments. For this purpose, we introduce some definitions as below.
For |x| ⩽ |bm|, let

σ(x) = σ + 3amx
2 and λ(x) =

1

3

√
6σ(x)− 3

16
.

By the first two constraints of OPTσ
ℓ (m, t, ρ), we have

1

32
⩽ σ ⩽ σ(x) ⩽ σ(bm) ⩽ ρ3 +

t∑
i=1

r3i +
m∑
j=1

a3j ⩽

(
ρ+

t∑
i=1

ri +
m∑
j=1

aj

)3

=
1

8
.

Solving ⌊z−1⌋ z3 + (1− ⌊z−1⌋ z)3 = 8σ(x), we get ⌊z−1⌋ = 1 and

z =
1

2
+

2

3

√
6σ(x)− 3

16
=

1

2
+ 2λ(x).

By definition of gℓ, we have that for |x| ⩽ |bm|,

gℓ(σ(x)) =
(1
4
− λ(x)

)ℓ
+
(1
4
+ λ(x)

)ℓ
. (3.4)

Now we apply induction hypothesis to the optimization problem OPTσ′

ℓ (m−1, t+1, ρ) with
variables r1, . . . , rt, rt+1, a1, b1, . . . , am−1, bm−1, where rt+1 := am. Then it follows that

ρℓ +
t∑

i=1

rℓi + aℓm +
m−1∑
j=1

Re (aj + bji)ℓ ⩾ gℓ(σ
′) = gℓ(σ(bm)).

By considering a new function

Fℓ(x) := gℓ(σ(x)) + Re (am + xi)ℓ − aℓm, (3.5)

we see from the previous inequality that the objective value of OPTσ
ℓ (m, t, ρ) satisfies

Φσ
ℓ (m, t, ρ) = ρℓ +

t∑
i=1

rℓi +
m∑
j=1

Re (aj + bji)ℓ ⩾ Fℓ(bm). (3.6)

To prove (⋆), it further reduces to show Fℓ(bm) ⩾ Fℓ(0) = gℓ(σ(0)) = gℓ(σ).
First, we consider the case when |bm| ⩽ 1

5
. Note that we have the derivative

F ′
ℓ(x) =

2ℓamx

λ(x)

[(
1

4
+ λ(x)

)ℓ−1

−
(
1

4
− λ(x)

)ℓ−1
]
+

d

dx
Re (am + xi)ℓ

=
4ℓamx

λ(x)

2k∑
j=1

(
ℓ− 1

2j − 1

)(
1

4

)ℓ−2j

λ(x)2j−1 +
2k∑
j=1

(−1)j
(

ℓ

2j

)
(2j)x2j−1aℓ−2j

m ,
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where the index j is at most 2k as ℓ− 1 ⩽ 4k. Then it follows that for x ⩾ 0,

F ′
ℓ(x) ⩾

4ℓamx

λ(x)

2k−1∑
j=1

(
ℓ− 1

2j − 1

)(
1

4

)ℓ−2j

λ(x)2j−1 +
2k−1∑
j=1

(−1)j
(

ℓ

2j

)
(2j)x2j−1aℓ−2j

m

= ℓ ·
2k−1∑
j=1

(
ℓ− 1

2j − 1

)
x2j−1aℓ−2j

m

[(
1

4am

)ℓ−2j−1(
λ(x)

x

)2j−2

+ (−1)j

]
.

Using (3.3) we have 0 < am ⩽ 1
80k2

⩽ 1
4
, implying

(
1

4am

)ℓ−2j−1

⩾ 1, where each ℓ− 2j − 1 ⩾

4k − 2 − 2j ⩾ 0. Also since σ(x) ⩾ σ ⩾ 73
800

, this implies that λ(x) ⩾ 1
5

and thus for
|x| ⩽ |bm| ⩽ 1

5
, we have |λ(x)

x
| ⩾ 1. Putting everything together, we can derive that F ′

ℓ(x) ⩾ 0
for all |x| ⩽ |bm|. Therefore, Φσ

ℓ (m, t, ρ) ⩾ Fℓ(bm) ⩾ Fℓ(0) = gℓ(σ), as wanted.
It remains to consider |bm| > 1

5
. As a fact we may assume bm > 1

5
(because reversing the

sign of bm would still satisfy all constraints of OPTσ
ℓ (m, t, ρ)). We claim that

Fℓ(bm) ⩾ gℓ(σ(bm))− (ℓ+ 1)amb
ℓ−1
m . (3.7)

To see this, first consider µ ∈ {−1, 1}, that is, ℓ is odd. By Lemma 3.3, we have

Fℓ(bm) ⩾ gℓ(σ(bm))− aℓm − ℓ · am
(√

a2m + b2m

)ℓ−1

⩾ gℓ(σ(bm))− (ℓ+ 1)amb
ℓ−1
m ,

where the last inequality holds because bm > 1
5
, am ⩽ 1

80k2
and ℓ ⩾ 5. Now consider µ = 0

(that is ℓ = 4k). Let bm/am = tanα for some α ∈ (0, π
2
). Then we have

tanα > 16k2 >
8k

π
⩾

1

tan(π/8k)
= tan

(π
2
− π

8k

)
.

So α ∈ (π
2
− π

8k
, π
2
) and ℓα = 4kα ∈ (2kπ − π

2
, 2kπ). This implies Re (am + bmi)ℓ =

(
√

a2m + b2m)
ℓ cos(ℓα) ⩾ 0. Together with (3.5), we also can derive that

Fℓ(bm) ⩾ gℓ(σ(bm))− aℓm ⩾ gℓ(σ(bm))− (ℓ+ 1)amb
ℓ−1
m ,

where the last inequality holds since (bm/am)ℓ−1 > 16k2 > ℓ+ 1. This proves (3.7).
By (3.4), we have

d

dx
gℓ(σ(x)) =

2ℓamx

λ(x)

[(
1

4
+ λ(x)

)ℓ−1

−
(
1

4
− λ(x)

)ℓ−1
]

For any x ∈ [0, bm], we have λ(x) ⩾ 1
5

and thus
(
1
4
+ λ(x)

)ℓ−1
⩾ ℓ

(
1
4
− λ(x)

)ℓ−1
. Hence,

d

dx
gℓ(σ(x)) ⩾

2(ℓ− 1)amx

λ(x)

(
1

4
+ λ(x)

)ℓ−1

.
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Since w = 1
4
+ λ(x) is the larger root of the equation (1

2
− w)3 + w3 = σ(x),

where σ(x) ⩾ σ ⩾ (1
2
− 1

80k2
)3 + ( 1

80k2
)3, we can deduce that 1

2
> 1

4
+ λ(x) ⩾ 1

2
− 1

80k2
.

Then

d

dx
gℓ(σ(x)) ⩾ 8(ℓ− 1)amx

(
1

2
− 1

80k2

)ℓ−1

for any x ∈ [0, bm]. By integration, we have gℓ(σ(bm))− gℓ(σ) ⩾ 4(ℓ− 1)amb
2
m

(
1
2
− 1

80k2

)ℓ−1
.

This together with (3.6) and (3.7) gives that

Φσ
ℓ (m, t, ρ) ⩾ Fℓ(bm) ⩾ gℓ(σ) + (ℓ− 1)am

[
4b2m

(
1

2
− 1

80k2

)ℓ−1

− ℓ+ 1

ℓ− 1
bℓ−1
m

]

⩾ gℓ(σ) + (ℓ− 1)amb
ℓ−1
m

[
4

bℓ−3
m

(
39

80

)ℓ−1

− ℓ+ 1

ℓ− 1

]

⩾ gℓ(σ) + (ℓ− 1)amb
ℓ−1
m

(39

40

)2
(
39
√
2

40

)ℓ−3

− ℓ+ 1

ℓ− 1

 > gℓ(σ),

where the second last inequality follows by that b2m ⩽ 1
8

and the last inequality holds because(
39
40

)2 (39
√
2

40

)ℓ−3

− ℓ+1
ℓ−1

increases for ℓ ⩾ 5 and is at least 2
(
39
40

)4 − 3
2
> 0. This finishes the

proof of the statement (⋆) and thus of Theorem 1.3.

4. Cycles of length 4k + 2

In this section, we consider cycles Cℓ, where ℓ = 4k + 2 for some integer k ⩾ 1.
First, we construct a family of tournaments T with t(Cℓ, T ) < gℓ(t(C3, T )) for any value of

t(C3, T ). We need to introduce some of the limit theory of tournaments established in [GLV+22].
A tournamenton is a measurable function W : [0, 1]2 → [0, 1] such that W (x, y)+W (y, x) = 1
for all (x, y) ∈ [0, 1]2. For a tournamenton W define

C(W, ℓ) = 2ℓ
∫
x1,...,xℓ∈[0,1]

W (x1, x2)W (x2, x3) . . .W (xℓ−1, xℓ)W (xℓ, x1) dx1 . . . xℓ.

For a tournamenton W, its spectrum σ̂(W ) is defined in [GLV+22] as the limit multiset of the
spectra of step approximations of W after removing 0 (for the precise definition on the step ap-
proximation and the convergence of multisets, we would like to refer to Section 2 of [GLV+22]).
As pointed out by the referee, σ̂(W ) is not the traditional spectrum σ(W ) defined by viewing
W as a linear operator.7 For our purpose, the definition of σ̂(W ) will suffice to evaluate the
density of cycles of a given length in a tournamenton W , and by Proposition 4 of [GLV+22], we
have C(W, ℓ) = 2ℓ ·

∑
x∈σ̂(W ) x

ℓ.

7However, the two sets σ̂(W ) and σ(W ) become the same when multiplicities are neglected in σ̂(W ) and when
the zero (if it exists) is removed from σ(W ).
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A carousel tournament Tn is a tournament with vertex set {0, 1, . . . , 2n}, where i → j
for every i, j satisfying i + 1 ⩽ j ⩽ i + n (computations module 2n + 1). Note that Tn

is regular, implying that t(C3, Tn) = 1/8 + o(1) where o(1) → 0 as n → ∞. Let WC

be the tournamenton as follows: for x, y ∈ [0, 1], let WC(x, x) = 1/2, WC(x, y) = 1
if y ∈ (x − 1, x − 1/2) ∪ (x, x + 1/2], and WC(x, y) = 0 otherwise. Then WC is the limit
object of carousel tournaments Tn satisfying that limn→∞ t(Cℓ, Tn) = C(WC , ℓ)/2

ℓ. One can
deduce from [GLV+22] that

σ̂(WC) = {1/2} ∪ {±i/(2k − 1)π : ∀k ∈ N}

and as ℓ = 4k + 2,

lim
n→∞

t(Cℓ, Tn) =
C(WC , ℓ)

2ℓ
=

∑
x∈σ̂(WC)

xℓ =
1

2ℓ
− 2

∞∑
k=1

( 1

(2k − 1)π

)ℓ
. (4.1)

The density of C4k+2 of the carousel tournament has also been obtained in [Sav16] in terms of
Bernoulli numbers. Define αℓ :=

1
2ℓ
− 2

∑∞
k=1

(
1

(2k−1)π

)ℓ
. Note that αℓ < 1/2ℓ. We are ready

to construct the desired family of tournaments.

Definition 4.1. A carousel blow-up of a m-vertex transitive tournament is a tournament T with
V (T ) = V1∪V2∪· · ·∪Vm such that each Vi induces a carousel tournament and for any i < j, all
arcs between Vi and Vj are oriented from Vi to Vj . A carousel blow-up of a m-vertex transitive
tournament is called balanced if |V1| = |V2| = · · · = |Vm−1| ⩾ |Vm|.

Now consider a balanced carousel blow-up T ⋆ of a transitive tournament, and compute the
density t(Cℓ, T

⋆). Suppose that T ⋆ has n vertices and t parts of equal size zn for some z ∈ (0, 1].
Then tz ⩽ 1 < (t+ 1)z, which implies that t = ⌊z−1⌋. By (4.1), if n is sufficiently large, then

t(Cℓ, T
⋆) = αℓ ·

(
⌊z−1⌋zℓ + (1− ⌊z−1⌋z)ℓ

)
+ o(1), where o(1) → 0 as n → ∞.

On the other hand, we have t(C3, T
⋆) = 1

8

(
⌊z−1⌋z3 + (1− ⌊z−1⌋z)3

)
+ o(1). Note that z can

be any real in (0, 1]. We can summarize this construction as following.

Lemma 4.2. For any ℓ = 4k+2 for some integer k ⩾ 1, there exist tournaments T with arbitrary
t(C3, T ) such that t(Cℓ, T ) = 2ℓαℓ · gℓ(t(C3, T ))+ o(1), which is strictly less than gℓ(t(C3, T )).

Next, we apply results of [GLV+22] to obtain a lower bound on t(Cℓ, T ) for all regular tourna-
ments T . We need the following lemma in [GLV+22]. Let Dn denote the n×n skew-symmetric
matrix with all entries above the diagonal equal to 1 and all entries below the diagonal equal
to −1.

Lemma 4.3 ([GLV+22], Lemma 11). For any n ∈ N, the spectral radius of any skew-symmetric
matrix in [−1, 1]n×n is at most the spectral radius of Dn.
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Let A be the tournament matrix of an n-vertex regular tournament T . Let J be the n × n
matrix with every entry equal to 1 and let B := A− J/2n. Then B is a skew-symmetric matrix
with all entries in {−1

2n
, 1
2n
, 0}. Because T is regular, the sum of entries in each column (or row)

of B is 0, which shows that JB = BJ = 0. Therefore by (3.1), we have

t(Cℓ, T ) = tr(Aℓ) + o(1) = tr
(
(J/2n+B)ℓ

)
+ o(1) = tr((J/2n)ℓ) + tr(Bℓ) + o(1).

It is known that the spectral radiuses ρn of the matrices Dn divided by n converge to 2
π

(see the
proof of Lemma 12 in [GLV+22]). Let the spectral radius of B be ρ and the eigenvalues of B
be λ1, λ2, . . . , λn. Then we have that by Lemma 4.3, |λi| ⩽ ρ ⩽ ρn

2n
= 1

π
+ o(1) for any i ∈ [n],

and
n∑

i=1

|λi|2 ⩽ tr(BBT ) = n−1
4n

, where the last equality follows from the fact that every non-

diagonal entry of B is 1/2n or −1/2n and every diagonal entry of B is 0. Define σ :=
n∑

i=1

|λi|2.

Applying Lemma 3.2, as ℓ is even, we can obtain that

|tr(Bℓ)| ⩽
n∑

i=1

|λi|ℓ =
⌊
σ

ρ2

⌋
ρℓ +

(
σ −

⌊
σ

ρ2

⌋
ρ2
)ℓ/2

.

Note that ⌊ σ
ρ2
⌋ρℓ + (σ − ⌊ σ

ρ2
⌋ρ2)ℓ/2 increases as σ and ρ increase. By plugging σ ⩽ n−1

4n

and ρ ⩽ 1
π
+ o(1) in the above inequality, we obtain

|tr(Bℓ)| ⩽ 2

(
1

π

)ℓ

+

(
1

4
− 2

π2

)ℓ/2

+ o(1)

and thus

t(Cℓ, T ) ⩾ tr
(
(J/2n)ℓ

)
− |tr(Bℓ)|+ o(1) ⩾

1

2ℓ
− 2

(
1

π

)ℓ

−
(
1

4
− 2

π2

)ℓ/2

+ o(1),

where
(
1
4
− 2

π2

)1/2 ≈ 0.218 < 1
π
. Together with (4.1), we have the following lemma.

Lemma 4.4. For every ϵ > 0, there exists ℓ0 such that for every ℓ ⩾ ℓ0 with ℓ ≡ 2 mod 4,

1

2ℓ
− (2 + ϵ)

(
1

π

)ℓ

⩽ min
T

t(Cℓ, T ) ⩽
1

2ℓ
− 2

(
1

π

)ℓ

,

where the minimum is over all n-vertex regular tournaments T for large n.

It seems plausible to believe that for every such ℓ ⩾ 6, limn→∞ minT t(Cℓ, T ) = αℓ where
the minimum is over all n-vertex regular tournaments T .

5. Concluding remarks

We prove the statement of Theorem 1.3 whenever t(C3, T ) ⩾ 1
8
−O( 1

ℓ2
). It is possible to lower

the condition on t(C3, T ). A special case is ℓ = 5. Using Theorem 1.4 and a similar argument
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as in [CGKN20] (via the method of Lagrange multiplier), we also can obtain the same bound as
in Theorem 1.2 that t(C5, T ) ⩾ g5(t(C3, T )) + o(1) whenever t(C3, T ) ∈ [ 1

72
, 1
8
]. For integers

ℓ with ℓ ≡ 0, 1 mod 4, using more careful calculation, we can prove the same conclusion of
Theorem 1.3 whenever t(C3, T ) ⩾ 1

8
− O(1

ℓ
). However, the approach we used has its obvious

limit, so we choose to present a unified, less complicated proof for Theorem 1.3.
We now conclude this paper by the following two conjectures. The first one is a direct gener-

alization of Conjecture 1.1 for cyclesCℓ with ℓ ̸≡ 2 mod 4, which is supported by Theorem 1.3.

Conjecture 5.1. For any integer ℓ ⩾ 4 with ℓ ̸≡ 2 mod 4, every tournament T satisfies that

t(Cℓ, T ) ⩾ gℓ(t(C3, T )) + o(1),

where the o(1) term goes to zero as |V (T )| goes to infinity.

Conjecture 5.2. For any integer ℓ ⩾ 6 with ℓ ≡ 2 mod 4, every tournament T satisfies that

t(Cℓ, T ) ⩾ 2ℓαℓ · gℓ(t(C3, T )) + o(1),

where the o(1) term goes to zero as |V (T )| goes to infinity.

If true, as demonstrated by Lemma 4.2, the above conjecture would be sharp.
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